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Type 1 diabetes is a disease with serious personal and socioeconomic consequences that has attracted
the attention of modellers recently. But as models of this disease tend to be complicated, there has been
only limited mathematical analysis to date. Here we address this problem by providing a bifurcation
analysis of a previously published mathematical model for the early stages of type 1 diabetes in diabetes-
prone NOD mice, which is based on the data available in the literature. We also show positivity and
the existence of a family of attracting trapping regions in the positive 5D cone, converging towards a
smaller trapping region, which is the intersection over the family. All these trapping regions are compact
sets, and thus, practical weak persistence is guaranteed. We conclude our analysis by proposing 4 novel
treatment strategies: increasing the phagocytic ability of resting macrophages or activated macrophages,
increasing the phagocytic ability of resting and activated macrophages simultaneously and lastly, adding
additional macrophages to the site of inflammation. The latter seems counter-intuitive at first glance, but
nevertheless it appears to be the most promising, as evidenced by recent results.

Keywords: bifurcation analysis; codimension 1; codimension 2; mathematical modelling; NOD; type 1
diabetes (IDDM); model-guided experiments; treatment; cure; attracting trapping region.

1. Introduction

The consensus of today is that type 1 diabetes (T1D) is caused by a selective depletion of the insulin-
producing pancreatic β cells as a result of their falling prey to an autoimmune reaction (Höglund et al.,
1999). In humans it is putative that T1D is triggered by external factors (Skyler, 2007) in genetically
susceptible individuals (Maier & Wicker, 2005). As the β cells are removed, the body becomes unable
to maintain the blood-glucose homeostasis, and eventually hyperglycemic T1D ensues. Without daily
subcutaneous injections of insulin the disease is fatal (Lo & Clare-Salzler, 2006). Insulin, however,
only treats the symptoms, not the cause of the sickness itself. T1D affects 0.5% of people in the
developed countries, in addition 5–15% of those diagnosed with type 2 diabetes (T2D) are thought

c© The authors 2013. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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206 K. H. M. NIELSEN ET AL.

to have T1D—not T2D (Mathis et al., 2001). Furthermore, the number of people with T1D (and T2D)
is expected to soar during the next 20 years (Wild et al., 2004). This makes the search for viable methods
of T1D treatment ever more important.

Diabetes, especially T1D, is hard to study in vivo in humans (Sparre et al., 2005), which is one
of the reasons why mathematical modelling has found its way into this field of research, where it, in
conjunction with data obtained from animal models of diabetes and in vitro experiments, aids in under-
standing various aspects of the disease. The focus of this paper is one such mathematical model proposed
by Marée et al. (2006), which we have dubbed the DuCa model, as it is the result of a collaboration
between Dutch and Canadian researchers, and the biological implications of the bifurcation analysis
of the model. The DuCa model deals with the stages of T1D that are prior to infiltration by T cells,
and derives some of its mathematical background from the Copenhagen model, which was proposed
by Freiesleben De Blasio et al. (1999). The key conclusion is that a chronic autoimmune process is
established before T cells become involved (Marée et al., 2006). To our knowledge, the authors of the
DuCa model have not performed a bifurcation analysis before, nor have they established practical weak
persistence as the one we present here.

The main result of our analysis is four novel treatment strategies. The first three arise from our codi-
mension 1 and 2 analyses and are intuitively straightforward. The first two methods consist of increas-
ing the phagocytic ability of either the resting or the activated macrophages. The third is increasing the
phagocytosis rates of the resting as well as the activated macrophages. The fourth treatment strategy is
more counter-intuitive. It entails boosting the immune response by adding additional macrophages to
the site of inflammation. This is contrary to the idea that has generally been pursued, which involves
decreasing the immune response.

The organization of this paper is as follows: in Section 2 a well-accepted hypothesis of an early
phase of T1D is presented. The underlying mechanisms are unveiled and two different mouse strains
are characterized. The mechanisms explained in Section 2 give rise to the mathematical model by Marée
et al. (2006), which is provided in Section 3. Section 4 provides the existence and uniqueness of solu-
tions and the construction of a family of attracting trapping regions. It is also shown that the intersection
of these is itself a trapping region. Section 5 covers two codimension 1 analyses and in Section 6 aspects
of a codimension 2 analysis, which has physiological implications, are discussed. Section 7 introduces
an important feature of the system and some results that are important when interpreted within the bio-
logical setting of the DuCa model. In Section 8 we gather the results of the bifurcation analysis and
interpret them in terms of prospective treatment strategies. Finally Section 9 contains a discussion of
the results and proposes different ways of testing them.

2. Biological background

The background of the model presented in Marée et al. (2006) has to do with the way macrophages,
a type of immune cell, respond to β cells that are terminating through either apoptosis or necrosis.
Apoptosis is commonly described as ‘programmed cell death’. It entails an organized shutting-down
of the cell whereby the cell shrinks, and no or little cell-debris is spilt (Steer et al., 2006). The result
of this ‘quiet’ death is that no inflammation ensues. Necrosis, on the other hand, is associated with
inflammation, and entails loss of cell-membrane integrity, which implies spillage of cell-debris (Zong
& Thompson, 2006). The difference between an apoptotic and a necrotic β cell plays an integral part in
the model presented in Marée et al. (2006).

Full-blown T1D is preceded by a long period of decline in β cell mass (Skyler, 2007). As the β cells
start terminating, resting macrophages will try to clear them through a process called phagocytosis.
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When macrophages phagocytize apoptotic cells they become activated, which in healthy mouse-strains
up-regulates their phagocytic ability. However, if the macrophages are unable to clear the β cells fast
enough, the β cells become secondary necrotic (Marée et al., 2006; Zong & Thompson, 2006). When an
activated macrophage phagocytizes a necrotic β cell, it elicits an inflammatory response that involves
secretion of a number of signal proteins called cytokines (Marée et al., 2006; Alberts et al., 2008). In
T1D some of the cytokines are cytotoxic to β cells and will induce apoptosis or necrosis in otherwise
healthy β cells (Stoffels et al., 2004; Steer et al., 2006), thus adding to the amount of β cells that needs
clearing.

Marée et al. (2005) investigated the phagocytic ability of macrophages from the diabetes-prone
NOD mouse-strain and the Balc/c-strain which does not (in general) develop diabetes. It was concluded
that macrophages from Balb/c mouse strain, are generally more efficient at phagocytizing apoptotic
β cells than NOD macrophages—the resting Balb/c macrophages were twice as effective at phagocy-
tizing than the their NOD counterparts. Furthermore, they found that Balb/c macrophages undergo an
activation step after they have engulfed the first apoptotic β cell. After the activation step, their phago-
cytosis rate increases. In NOD mice no activation step was observed, i.e. the NOD macrophages do not
become more efficient at phagocytizing after engulfment of an apoptotic β cell—the activated Balb/c
macrophages were found to phagocytize 5 times as fast as the ‘activated’ NOD macrophages. These
results were refined and confirmed by Marée et al. (2008).

In addition to these results, it has been shown that in rodents a large number of pancreatic β cells
undergo apoptosis, as part of a pancreatic remodelling at the neonatal stage (Scaglia et al., 1997; Trudeau
et al., 2000; Mathis et al., 2001). Similar results have been reported in pigs (Bock et al., 2003) and in
humans (Kassem et al., 2000). In the following we will refer to this event as the apoptotic wave. These
findings led to the hypothesis that the reason why T1D is more prevalent in NOD mice (relative to other
mouse strains) is the poor phagocytosis rate of their macrophages (e.g. Trudeau et al., 2000; Mathis
et al., 2001). The greater phagocytosis rate in Balb/c mice implies that the macrophages are able to
accommodate the increased amount of apoptotic β cells during the apoptotic wave, whereas this is not
the case in NOD mice. Here, so many of the apoptotic β cells are left uncleared long enough for the cells
to become necrotic, so that the pool of necrotic cells induces a production of cytokines large enough to
maintain a depletion of healthy β cells; i.e. initiates chronic inflammation.

In summary the biological reasoning behind the model presented by Marée et al. (2006) can be
summarized as follows: an apoptotic wave occurs, which causes an accumulation of apoptotic β cells,
and as the resting macrophages start to phagocytize the β cells they become activated. In NOD mice, in
particular, a portion of the apoptotic β cells are left uncleared long enough for them to become necrotic.
When the activated macrophages engulf and phagocytize the necrotic β cells, they secrete different
cytokines, of which some are cytotoxic to the healthy β cells. The cytotoxic cytokines cause the healthy
β cells to become apoptotic, thus adding to the accumulation of apoptotic β cells.

3. Mathematical model

For the sake of readability of the following chapters, we restate the DuCa model here; parameters and
model are identical to Marée et al. (2006) save for a few slight changes: compared with the original
model, we have set J = a, e1 = e2 = e and g = f1. (Asymmetry in the competition terms, i.e. having
e1 |= e2 leads to competitive exclusion De Boer & Perelson, 1994.) The model consists of a system
of 5 coupled ODEs that describe the change in concentration of resting macrophages, M , activated
macrophages, Ma, apoptotic β cells, Ba, necrotic β cells, Bn, and cytokines, C. The equation describ-
ing the change in concentration of apoptotic β cells is non-autonomous due to the apoptotic wave,
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represented here by W(t).

dM

dt
= a + (k + b)Ma − cM − f1MBa − eM (M + Ma), (3.1)

dMa

dt
= f1MBa − kMa − eMa(M + Ma), (3.2)

dBa

dt
= W(t) + AmaxC

kc + C
− f1MBa − f2MaBa − dBa, (3.3)

dBn

dt
= dBa − f1MBn − f2MaBn, (3.4)

dC

dt
= αBnMa − δC. (3.5)

For an illustration of the model and a discussion of parameters, we refer the reader to Marée et al.
(2006). Table A1 given in Appendix A provides an overview of the values, units and meaning of the
parameters. Parameters discussed from hereon have the units provided in Table A1.

4. Mathematical analysis: existence of solution and trapping regions

In the following sections we will use the notation x = (x1, x2, x3, x4, x5) for (M , Ma, Ba, Bn, C).
The existence and uniqueness of solutions to initial value problems of the system follows: since

the apoptotic wave is modelled by a non-autonomous function solution curves may cross in phase
space. This can be remedied by the change of variables t = y and adding the equation ẏ = 1, with initial
value y(0) = 0, to the system. By doing so we obtain a system that is Lipschitz continuous in (R+ ∪
{0})6, since all equations are continuously differentiable in this domain, which guarantees existence and
uniqueness (of the 6D system).

4.1 Trapping regions

Besides existence and uniqueness, it is always a priority to establish whether one’s solutions are well-
behaved in the physiological sense; i.e. if solutions starting in the positive cone stay in the positive cone;
i.e. xi(t) � 0, for all i = 1, . . . , 5 and t > 0, if xi(0) � 0, for all i = 1, . . . , 5, and solutions are uniformly
bounded; i.e. there exists a constant x̄i > 0 such that xi(t) � x̄i for all t > 0 and i = 1, . . . , 5. Equivalently,
this means that xi and x̄i exist such that 0 � xi � lim inft→∞ xi(t) � lim supt→∞ xi(t) � x̄i, i = 1, . . . , 5,
which we refer to as practical weak persistence; lim inf and lim sup denote limit inferior and superior,
respectively. This generally follows if it is possible to construct a trapping region, TR, which we define
as an outflow-closed region; a region in phase space that fulfill that once in this region the solution
cannot leave it. In our case the trapping region is in (R+ ∪ 0)5. Obviously, we cannot extend the trapping
region to the 6D system due to the solution for y. We start by showing positivity, i.e. xi(t) � 0 for all
t > 0 and i = 1, . . . , 5, if xi(0) � 0 for all i = 1, . . . , 5.

Observe that (3.1–3.5) are of the form

ẋi = fi(x) − gi(x)xi, (4.1)

where fi � 0 does not depend on xi, f1(x) > 0 and gi � 0.
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To ensure that the flow is not pointing out of (R+ ∪ {0})5 on any of the hyperplanes defined by
xi = 0 for i = 1, . . . , 5, we look at the sign of ẋi for xi = 0 with the other variables � 0. From (4.1) we
see that ẋ1 > 0 for x1 = 0 and ẋi � 0, for xi = 0, i = 2, . . . , 5. So the flow is contained in (R+ ∪ {0})5 by
the positive hyperplanes xi = 0, i = 1, . . . , 5. Hence, the flow will not leave the positive orthant once it
enters it.

Next we establish that the concentrations cannot grow indefinitely by constructing a trapping region
TR = [x1, x̄1] × [x2, x̄2] × [x3, x̄3] × [x4, x̄4] × [x5, x̄5] for some constants xi, x̄i ∈ R+ ∪ {0} with xi < x̄i,
and i = 1, . . . , 5. From the foregoing discussion we see that candidates for lower bounds, xi, may be
chosen as zero. However, as we will see, we need to establish a nonzero lower bound for at least one
variable. As for the upper bounds, we wish to show that the derivatives become negative if the variables
are allowed to become sufficiently large.

To simplify things, we start by defining Xm = x1 + x2, where the subscript, m, denotes macrophages,
(i.e. Xm = M + Ma), then Ẋm = ẋ1 + ẋ2. This gives us

a − cXm − eX 2
m < Ẋm � a + bXm − eX 2

m. (4.2)

Thus for

Xm � X m :=
√

c2

4e2
+ a

e
− c

2e
, (4.3)

we get Ẋm � 0 with equality if, and only if, Xm = X m. X m > 0 will prove important shortly. For

Xm � X̄m := b

2e
+

√
b2

4e2
+ a

e
, (4.4)

we have Ẋm � 0, with equality if, and only if, Xm = X̄m. For the construction of the trapping region,
define R12 := {(x1, x2) ∈ R

2 : x1 � 0, x2 � 0, X m � x1 + x2 < X̄m}. Next set Xb = x3 + x4, where the sub-
script b denotes β-cells (i.e. Xb = Ba + Bn), then

Ẋb = W(t) + Amaxx5

kc + x5
− (f1x1 + f2x2)(Xb). (4.5)

The apoptotic wave is assumed to peak after 9 days, so set Kmax := W(9) + Amax, then

Ẋb < Kmax − min{f1, f2}XmXb < Kmax − min{f1, f2}X mXb, (4.6)

where min{f1, f2} indicates the minimum value of the two phagocytosis rates. Set X̄b :=
(Kmax/min{f1, f2}X m), then Ẋb < 0 for Xb > X̄b; the construction of X̄b was the reason we needed X m > 0.
Define R34 := {(x3, x4) ∈ R

2 : x3 � 0, x4 � 0, 0 � x3 + x4 < X̄b}. Figure 1 provides an illustration of the
sets R12 and R34. Bold lines are the boundaries of the sets, with dashed lines indicating the upper bound-
aries, which are not included in the sets. If the concentrations of resting and activated macrophages start
in R12, they will not leave it. A similar statement holds for apoptotic and necrotic β cells in R34.

Finally, if x5 > (α/δ)X̄mX̄b then ẋ5 < 0 so set x̄5 := (α/δ)X̄mX̄b, and define R5 := [0, x̄5]. Hence, the
Cartesian product, R12 × R34 × R5 of R12, R34, and R5 defines the trapping region TR. Please notice
that TR is not a minimal trapping region: by considering each of the variables by themselves a smaller
trapping region can be obtained. However, that requires more work, and any trapping region will suffice.

Next we would have liked to show that for initial values in the positive orthant but not in TR, xi(t)
enters the trapping region in finite time. This would imply that TR is an attracting trapping region.
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Fig. 1. Graphical illustration of the sets R12 and R34. Bold lines indicate boundaries of the sets. Dashed lines are the upper
boundaries that are not included in the sets.

However, since it is possible that ẋi = 0 for xi = x̄i, for some i, we cannot prove this, but we can come
arbitrarily close to the result. For this purpose we construct a family of trapping regions, TRε , and prove
that these are attracting and that the intersection of these gives TR.

First define

R̃12 := {(x1, x2) : x1 � 0, x2 � 0, X m � x1 + x2 < X̃m} with X̃m > X̄m, (4.7)

R̃34 := {(x3, x4) : x3 � 0, x4 � 0, 0 � x3 + x4 < X̃b} with X̃b > X̄b, (4.8)

R̃5 := [0, x̃5] with x̃5 > x̄5. (4.9)

Then going through a construction similar to that for TR, it follows that T̃R = R̃12 × R̃34 × R̃5 is also
a trapping region. Hence the flow becomes strictly negative on the corresponding upper boundaries
of T̃R. Now, for any ε > 0, let R̃ε

12 be R̃12 with the substitution X̃m = X̄m + ε, and construct R̃ε
34 in

an analogous way. This gives us x̃5 = α/δ(X̄m + ε)(X̄b + ε). Define TRε = R̃ε
12 × R̃ε

34 × R̃ε
5, then all

TRε’s are also trapping regions, of the form T̃R, for any ε > 0, and TR = ⋂
ε>0 TRε , i.e. TRε → TR

for ε → 0.

Proposition 4.1 For any ε > 0, TRε is a trapping region for the ODE system given in (3.1–3.5), with
TR = ⋂

ε>0 TRε .

Next we show that the trapping regions TRε are attracting for every ε > 0, and any initial condition
in the positive orthant, but not in TRε , enters into it in finite time.

Proposition 4.2 Any point in (R+ ∪ {0})5 \ TRε is attracted to TRε , and it enters the trapping region
in finite time. Hence, TRε is an attracting trapping region in the positive cone for any ε > 0.

Thus we need to show that if we choose x(0) ∈ R
5
+ \ TRε then at some time, Ti, xi(t), has

entered proji(TRε), where i = 1, . . . , 5, and proji(TRε) is the projection of TRε onto the xi-axis—e.g.
proj5(TRε) = [0, x̃5]—and for T = ∑5

i=1 Ti, all the xi(t)’s enter proji(TRε).

Proof. Given any ε > 0 and x(0) ∈ (R+ ∪ {0})5 \ TRε . Then xi(0) /∈ proji(TRε) for some i = 1, . . . , 5.
If x1(0) ∈ proj1(TRε), we put T1 = 0. If x1(0) > X̃m, we have that inf[X̃m,x1(0)]{ẋ1} = min[X̃m,x1(0)]{ẋ1} :=
m1 < 0 is finite, since ẋ1 is continuous and negative. Thus, 1/ẋ1 � 1/m1 < 0 on [X̃m, x1(0)], and the time
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it takes x1 to enter into proj1(TRε) is

∫ X̃m

x1(0)

dx1

ẋ1
�

∫ X̃m

x1(0)

dx1

m1
= (X̃m − x1(0))/m1 := T1. (4.10)

If x1(0) < X m, then min[x1(0),X m]{ẋ1} := m1 > 0 is finite. Thus, 1/m1 � 1/ẋ1 > 0 on [x1(0), X m], and the
time it takes x1 to enter into proj1(TRε) is

∫ X m

x1(0)

dx1

ẋ1
�

∫ X m

x1(0)

dx1

m1
= (X m − x1(0))/m1 := T1. (4.11)

During the timespan T1, x travels from x(0) to x(T1) such that x1(T1) ∈ proj1(TRε). Thereafter, x1(t) is
trapped in proj1(TRε) for all future times t > T1.

Now if x3(T1) ∈ proj3(TRε), put T3 = 0, else m3 = min[X̃b,x3(T1)]{ẋ3} = inf[X̃b,x3(T1)]{ẋ3} < 0 is finite.

As before the time it takes x3(T1) to enter into proj3(TRε) is less than or equal to T3 = (X̃b − x3(T1))/m3.
For all future times x3(t) is trapped in proj3(TRε).

Similarly, we construct finite positive times T2, T4, T5 such that x2(T1 + T3 + T2) ∈ proj2(TRε), and
x2(t) is trapped there for all future times, x4(T1 + T3 + T2 + T4) ∈ proj4(TRε), and x4(t) is trapped
there for all future times, and, finally x5(T1 + T3 + T2 + T4 + T5) ∈ proj5(TRε), and x5(t) is trapped
there for all future times. Hence, letting T = ∑5

i=1 Ti, it follows that x(T) ∈ TRε and stays there for all
future times t > T . �

By this construction TRε is an attracting trapping region.

5. Bifurcation analysis

The defining assumption of Marée et al. (2006) is that the difference in the phagocytic ability between
NOD and Balb/c mice, alone, is responsible for their distinct fates (Marée et al., 2006). In other words,
depending on how we choose the phagocytosis rates the model should tend either to a stable state that
corresponds to a disease state of chronic inflammation, which we denote by x∗

DS, or to a stable state
that corresponds to a healthy, or non-inflammatory, state, x∗

H , as t → ∞. This makes the phagocytosis
parameters (f1, f2) the natural bifurcation parameters. For this reason we perform a numerical codimen-
sion 1 analysis using f1 and f2 as bifurcation parameters. Here, we will only deal with the analyses based
on NOD parameters as these are the most interesting from a medical point of view – the Balb/c mouse
does not become diabetic within the window of parameters studied here.

In the process of producing bifurcation diagrams we used an autonomous version of the DuCa model
– the model without the W(t)-term—in the bifurcation continuation scheme. We did so because we
wanted the ‘full picture’. Since the apoptotic wave is ultimately responsible for the long-term behaviour
of the system, e.g. pushing the system into the domain where x∗

DS is an attracting fixed point, we applied
proper initial conditions in lieu of the wave. In other words, we replaced the wave with an initial pool
of apoptotic β cells, Ba(0), when doing continuations of the x∗

DS and set Ba(0) = 0 when doing a con-
tinuation of x∗

H . The initial pool was chosen based on the procedure described below.
We used a Newton–Raphson method to produce the bifurcation diagrams. The method requires

initial guesses from which to start its iterative process. To this end we ran simulations of the nonau-
tonomous DuCa model for different values of f1 (or f2) until the concentrations had stabilized suf-
ficiently. Then we used these concentration values as xi(0)s, i.e. initial guesses, for our bifurcation
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Fig. 2. Bifurcation diagrams showing loge(Ma) (top) and loge(Ba) (bottom) versus the phagocytosis rate of resting macrophages,
f1. All other parameters are as given in Table A1. Notice that the y-axes have been modified to facilitate the overview. The
three dots on the y-axes indicate the part of the y-range that has been removed. Solid lines consist of stable fixed points. Dashed
lines indicate unstable fixed points. The uppermost line is the disease state, and the lowest line is the disease-free state (in both
diagrams). They are separated by a state of low-level inflammation, which is unstable. Two bifurcations occur as f1 is varied. At
f1 ≈ 2.57 × 10−5 a Hopf bifurcation (HB) occurs (indicated by filled circle), and a fold bifurcation happens at f1 ≈ 3.45 × 10−5

(indicated by filled diamond). The system is bistable for f1 values lower than the Hopf point.

continuation scheme. (PyDSTool Clewley et al., 2007 and XPPAUT Ermentrout, 1987 produce similar
diagrams, but struggle to produce diagrams with f1 as the bifurcation parameter.)

Using f1 as the bifurcation parameter: Figure 2 shows a bifurcation diagram with the loge-
concentration of activated macrophages (top) and apoptotic β cells (bottom) plotted against f1—the
phagocytosis rate of resting macrophages; all other parameters are as in Table A1. The y-axes have been
modified to reflect that we are plotting the logarithm of the concentration of activated macrophages (and
apoptotic β cells). Thus, the solid line through log(Ma) = −40 (and log(Ba) = −40) is the disease-free
state, i.e. where Ma = 0 (and Ba = 0), and ‘. . .’ indicates the part of the y-axes we have removed. Dashed
lines represent unstable fixed points, while solid lines consist of stable fixed points. For f1 lower than
≈ 2.57 × 10−5 the system is bistable, meaning that the diseased and healthy state are both stable, or
attracting. The dashed line separating the two states consists of unstable states of low-level inflamma-
tion and serves as a threshold between health and inflammation. When the phagocytosis rate of resting
macrophages reaches ≈ 2.57 × 10−5, the upper full line changes into a dashed line, indicating that the
disease state changes stability. Eigenvalue inspection (not shown) reveals that at this approximate value
of f1, the real value of two complex eigenvalues changes sign from negative to positive. Thus, we are
dealing with a HB. Simulations with f1 values to the left of, and initial conditions close to, the HB
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point exhibit spirals that tend to the stable disease state (damped oscillations), while simulations with f1
values just to the right of the HB point, and initial conditions perturbed slightly from the disease state,
spiral away from the disease state, and eventually end up in the healthy state.

Following this the, now unstable, disease state descends with increasing f1 until it amalgamates with
the line of, unstable, low-level inflammation from beneath at f1 ≈ 3.45 × 10−5 in a fold bifurcation.
Thus for f1 > 2.57 × 10−5, there are two unstable branches and one stable branch—the healthy state. As
a point of reference for these values of f1, we remark that the f1 value of Balb/c macrophages that was
used in Marée et al. (2006) is f1 = 2 × 10−5.

Though we have not been able to determine which type of HB we are dealing with—it may be a
codimension 12 bifurcation—at f1 ≈ 2.57 × 10−5, indirect evidence, such as the existence of hysteresis,
and thereby irreversibility in terms of f1, suggests that it is subcritical. (If we start on the x∗

DS-curve and
increase f1 beyond the fold bifurcation value of f1, we will witness a (hysteresis) jump to x∗

H . However,
if we start on x∗

H at an f1 value greater than the fold bifurcation value and reduce the value of f1 to less
than the fold bifurcation value, we will not see a similar jump, not even as f1 is decreased below the
HB value.)

In many systems hysteresis is not a desirable feature, but in this case its presence is more than
welcome, because the irreversibility that it entails implies that if we can increase f1 beyond the HB
point, the system will tend to the healthy state, x∗

H . Put in terms of the NOD mouse: without prophylactic
measures, the β cells of a NOD mouse are destined to be depleted by a chronic inflammation (within
the frame of the DuCa model). However, by artificially increasing the phagocytic ability of its resting
macrophages after the inflammation has become chronic, even just for a while, the reservoir of apoptotic
β cells would be cleared, thereby bringing the inflammation to an end. See Section 8 for a discussion of
the effectiveness, and realism, of this method.

While bifurcation diagrams for all variables have been compiled, the only other diagram we choose
to present in Fig. 2 features apoptotic β cells. This is due to their key role – they are in a sense the heart
of the model.

Figure 2 provides an idea of how many apoptotic β cells need to be present at a given time to induce
chronic inflammation in the NOD mouse. In other words, it provides information about how little the
apoptotic wave could be, while still driving the system toward x∗

DS. So for a given phagocytosis rate
we can use it to calculate the amount of apoptotic β cells needed to push the system into the basin of
attraction of x∗

DS.
To make things more precise, let f1,hb be the HB value of f1 and let us denote the line of low-level

inflammation Ba-LI. Then we can define the domain in which solutions are attracted to x∗
H as

W = {(f1, Ba)|0 < f1 < f1,hb ∧ Ba > Ba-LI}. (5.1)

In Fig. 2 this set is outlined by the shaded area. This set will prove important later. Next we present, and
comment on, a bifurcation diagram where the phagocytosis rate of activated macrophages is used as the
bifurcation parameter.

Using f2 as the bifurcation parameter: First of all we remark that f2—the phagocytosis rate of acti-
vated macrophages—is estimated to be within the bistable region (f2 = 1 × 10−5 for NOD mice), so it
agrees with the fact that a chronic inflammation for NOD mice is reached, when the apoptotic wave
stimulates the system to exceed the threshold of unstable fixed points. Again we have taken the nat-
ural logarithm of the Ma concentration to get a clearer view of the distinction between the branch of
low-level inflammation and the healthy, or inflammation-free, state, which is stable for all values of f2.
We notice some (qualitative) similarities as well as differences between Fig. 3 and its f1-counterpart
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214 K. H. M. NIELSEN ET AL.

Fig. 3. Bifurcation diagram showing loge(Ma) versus the phagocytosis rate of activated macrophages, f2. All other parameters
are as given in Table A1. Notice that the y-axis has been modified to facilitate the overview. The three dots on the y-axis indicate
the jump in range. Solid lines consist of stable fixed points. Dashed lines indicate unstable fixed points. The uppermost line is
the disease state, and the lowest line is the disease-free state. They are separated by a state of low-level inflammation, which is
unstable. Two bifurcations occur as f2 is varied. At f2 ≈ 8.48 × 10−5 a HB occurs (indicated by filled circle), and a fold bifurcation
happens at f2 ≈ 9.22 × 10−5 (indicated by filled diamond). The system is bistable for f2 values lower than the Hopf point.

in Fig. 2. Let us start with the resemblances: the system has two stable states for f2 < 8.48 × 10−5—
a disease-free state and a disease state. Between the two is a threshold of unstable states, which, as
in Fig. 2, is interpretable as a state of low-level inflammation. At f2 ≈ 8.48 × 10−5 the disease state
undergoes a HB, making it unstable.

Eventually the two unstable branches annihilate each other in a fold bifurcation, at f2 ≈ 9.25 × 10−5,
after which only the healthy rest state remains. Finally, both figures exhibit hysteresis.

A clear difference, between using the phagocytosis rate of activated macrophages as bifurcation
parameter and using the phagocytosis rate of resting macrophages, is the magnitude by which we have
to increase the bifurcation parameter to reach a HB along the disease state; f1,hb ≈ 2.57 × 10−5 compared
with f2,hb ≈ 8.48 × 10−5. To put this into perspective, the average phagocytosis rate of activated Balb/c
macrophages is 5 × 10−5 (Marée et al., 2006).

To gain insight into the dynamics near the HB point, we estimated f2,hb, and the values of the vari-
ables close to the HB using XPPAUT. Based on these values we ran simulations in matlab for different
initial values of M and Ma to see how such perturbations behave. Figures 4 and 5 show two trajectories
in the M − Ma phase plane and M (t), respectively, for different perturbations (denoted P1 and P2), in
the M and Ma variables, away from x∗

DS, with f2 = 8.477652 × 10−5—this is the value XPPAUT gives
as the HB value of f2. Observe that the curve starting at P1 is attracted to the disease state, while the
trajectory from P2 is attracted to a limit cycle. This is also evident from Fig. 5. The solution curve from
P1 exhibits transiently growing oscillations that eventually dampen and tend to x∗

DS. The P2-solution,
on the other hand, grows to sustained oscillations with an amplitude of ≈ 5420 resting macrophages
and a period of ≈ 18 days; the limit cycle can be interpreted as a disease state with some days seeing
a higher level of inflammation than others. The fate of the two perturbations shows that phase space is
separated into sets with different long-term behaviors. An attempt at estimating the boundaries of the
different sets, through numerical investigation, revealed that the situation is quite complex. Within the
set of perturbations that tend to the stable limit cycle small islands exist, which consist of points that
tend to x∗

DS. In Appendix B we provide a figure of a larger part of the M − Ma phase plane, a plot of
how perturbations in Ba, Bn and C behave, as well as a brief discussion of the dynamics near f2,hb—a
full bifurcation analysis is beyond the scope of this paper.
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Fig. 4. A zoom of the M − Ma phase plane for f2 = 8.477652 × 10−5. P1 and P2 denote perturbations, in the M and Ma directions,
from x∗

DS. Curves have been scaled relative to x∗
DS.

Fig. 5. Plot of M (t) for the initial conditions P1 and P2. The ‘P1-solution’ settles at x∗
DS, while the P2-solution approaches a stable

limit cycle. Curves have been scaled relative to x∗
DS.

Next we analyse how the bifurcation points behave as we change both phagocytosis rates, while
keeping all other parameters fixed. The impetus for doing so comes from the therapeutic perspective:
assume that we are able to manipulate the phagocytosis rates in NOD mice. Then, even if this were the
case, Figs 2 and 3 show that if we were to abrogate inflammation via this method, we need to increase
the individual phagocytosis rates in excess of the rates observed in Balb/c mice. Thus, the question,
from a medical point of view, becomes: is there a golden mean that is physiologically reasonable?

6. Varying f 1 and f 2 simultaneously: codimension 2 analysis

As stated we may conceive of not being able to induce great enough changes in the phagocytosis rates
by themselves to arrest the inflammation. The natural cause of action is thus to investigate what happens

 at R
oskilde U

niversitetsbibliotek on February 3, 2015
http://im

am
m

b.oxfordjournals.org/
D

ow
nloaded from

 

http://imammb.oxfordjournals.org/


216 K. H. M. NIELSEN ET AL.

Fig. 6. Codimension 2 diagram with the phagocytosis rate of resting macrophages, f1, plotted against the phagocytosis rate
of activated macrophages, f2. Along the solid line are HBs, while fold bifurcations exist along the dashed line. The (f1, f2)
combinations of NOD and Balb/c mice are indicated by a circle and an asterisk, respectively. I indicates the bistable domain,
II has two unstable states and one stable—the healthy state—and in III only the healthy state exists.

as the rates are varied simultaneously. Due to the complexity of the system, an analytic codimension 2
analysis is impossible. Therefore a numerical codimension 2 analysis must suffice.

Figure 6 was produced using XPPAUT and matlab. Crossing the solid line entails a HB, while
the dashed line consists of fold bifurcations. This means that for combinations of (f1, f2) in the domain
denoted by I in Fig. 6 the system has two stable branches and one unstable, if (f1, f2) belong to domain
II the system has two unstable branches and one stable, while (f1, f2)-combinations in III leaves the
system with only one branch of stability, namely x∗

H . In Fig. 6 we have added a circle that indicates the
(f1, f2) values of NOD mice, and an asterisk that shows the phagocytosis rates of Balb/c macrophages.
We see that NOD mice lie in domain I, while Balb/c mice are in domain III. Interestingly, the Balb/c
mice would still not develop a chronic inflammation even without an increase in phagocytic capability
following activation; i.e. no inflammation would develop with the parameter combination (f1, f2) =
(2 × 10−5, 2 × 10−5).

Though the line of fold bifurcations is interesting from a mathematical point of view due to the
apparent cusp catastrophe, the same is not the case when we look at it from a medical perspective.
This is because in order to cross the line of fold bifurcations by increasing f1 or f2 (or both) we would
be moving along an unstable branch, once we enter domain II. So while this is possible in theory, it
becomes impossible in practice since the actual in vivo system will be perturbed constantly, thus we
would not be able to stay on the unstable branch. The underlying simulations of Fig. 6 were made with
the initial condition x(0) = (4.77 × 105, 0, 0, 0, 0)T, which is the (physiological) initial condition given
by Marée et al. (2006).

By defining

Is = {(f1, f2) | x(f, t) → x∗
DS for t → ∞}, (6.1)

i.e. Is is the subset of I, where x∗
DS is attracting, and

II = {(f1, f2)| x(f, t) → x∗
H for t → ∞}, (6.2)

where f = (f1, f2), we are able to give a description of the line of HBs in terms of these two domains.
Since the HB line, (f1,hb, f2,hb), is not a part of Is nor II and, furthermore, the axes are not a part of Is, we
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Fig. 7. Bifurcation diagram with the logarithm of M versus f1—the line with estimated turning concentrations, denoted M-UUB,
has been added. We have taken the natural logarithm of the concentrations to facilitate the overview. The lower unstable branch
does not merge with the healthy state as would appear.

see that Is and II are open sets. Thus, we can characterize the HB curve as follows

L = ∂Is ∩ ∂II, (6.3)

where ∂ denotes the boundary of the sets. Also notice that by these definitions we have

Is ∩ II = ∅.

7. An important feature of the system

Let M DS
a denote the stable disease branch in Fig. 2 and f1,hb be the value of f1 at the HB point. Then for

values of Ma slightly above M DS
a to the left of, but close to, f1,hb, it turns out that x(t) → xH as t → ∞.

In other words a perturbation that increases Ma may push x(t) into a domain where the system tends
towards the healthy state, x∗

H . In fact there is a demarcation curve M DS
a (f1) + Ka(f1), with Ka(f1) > 0 and

Ka(f1) → 0 for f1 → f1,hb from the left, such that whenever Ma(f1) > M DS
a (f1) + Ka(f1) for 0 < f1 < f1,hb,

then x(t) → x∗
H as t → ∞.

Put in laymen terms: very near the HB point x(t) tends to x∗
H as t tends to infinity, provided

that Ma(0) is perturbed to be slightly above M DS
a . At lower f1-values we need to use a higher Ma-

concentration to induce the same behaviour. The theme repeats itself when analysing the bifurcation
diagram that depicts M versus f1. For future reference we will call the line of ‘turning concentrations’
the upper unstable branch (UUB).

In Fig. 7 we have added the M -UUB to a bifurcation diagram of M versus f1. Notice that we have,
again, taken the natural logarithm of the concentration to ease the overview. It should be pointed out
that the line of low-level inflammation does not merge with the healthy state – it is a result of weighing
the M -UUB over details along the healthy state. Based on extensive numerical investigations, we state
the following conjecture without proof.

Conjecture 7.1 Let xi � 0, i = Ma, Bn, C, if Ba(0) ∈ W and M (0) ∈ R
+ \ (0; M -UUB), where Ba(0) is

the initial value of Ba. Then x(t) → x∗
H for t → ∞.

The reason why M (0) ∈ R
+ \ (0; M -UUB) instead of having M (0) in the range between the low-

inflammatory state and the M -UUB is that if M (0) is in the range between the healthy state and the
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low-level inflammatory state while Ba(0) ∈ W , then at some time t′, M (t′) will have traversed low-level
inflammation and as t → ∞ we have M → M DS.

By the same token, if Ba ∈ W and M ∈ [0; M -UUB), then x(t) → x∗
DS for t → ∞. Thus, no matter

how many apoptotic β cells we choose to put into the system, we still need only to exceed the M -UUB
to reverse the inflammation, which is quite remarkable. A similar statement holds for the Ma-UUB.

8. Biological interpretation: Therapeutic prospects

Modifying f1 and/or f2: The codimension 1 bifurcation diagrams illustrate what we had anticipated.
Namely that increasing the phagocytosis rates sufficiently entails a shift in long-term behavior: for f1 <

f1,hb ∧ f2 = 1 × 10−5 (or f2 < f2,hb ∧ f1 = 1 × 10−5), the system tends to a fixed point that corresponds to
chronic inflammation when physiological initial conditions are used, while for f1 > f1,hb (f2 > f2,hb), the
system tends to a fixed point that corresponds to a healthy individual regardless of the choice of initial
conditions.

From a medical standpoint the most important facet of Figs 2 and 3 is that they allow us establish
which of the phagocytosis rates it is most opportune to manipulate to stop an inflammation. Comparing
Fig. 2 with 3, we find that, if we can only adjust one of the phagocytosis rates in the NOD model, enhanc-
ing f1 seems most opportune. By this we mean that f1 needs ‘only’ to be changed to ∼ 2.57 × 10−5

to arrest and reverse any inflammation, whereas f2 must exceed a staggering 8.45 × 10−5 to induce
the same effect when f1 is kept at 1 × 10−5. Furthermore, due to the irreversibility of the system, we
would only need to enhance the phagocytic ability of the resting macrophages until they have phago-
cytized enough apoptotic β cells, as to make the concentration of activated macrophages drop beneath
the lower branch of unstable fixed points; cf. Fig. 2. Here we should remark that when the macrophage-
driven inflammation has become chronic, the pool of healthy resting β cells is still sufficient to maintain
normoglycaemia. This implies that arresting inflammation at this point in time should mean that hyper-
glycaemia does not develop – provided that clearance of apoptotic β cells happens sufficiently fast; cf.
Fig. 8. To establish how fast the chronic inflammation recedes upon altering f1, we did a simulation with
f1 = 2.56 × 10−5 < f1,hb, and ran it until the 5 concentrations had stabilized at values that correspond to
chronic inflammation. We took these values and used them as initial values for a simulation where
f1 = 2.7 × 10−5. Figuratively speaking, we froze the mouse in time, manipulated the phagocytic ability
of its resting macrophages and then unfroze it, or put another way: we bumped up the phagocytosis rate
instantaneously after inflammation had settled in.

The simulation of the time right after the phagocytosis rate has been increased is seen in Fig. 8.
It is noticeable that the inflammation is immediately reversed, and a healthy state is reached when
approximately 6 days have transpired—there are still activated macrophages present, but they only
linger for as long as it takes them to be deactivated.

Adding macrophages: The finding that adding enough (resting or activated) macrophages to the sys-
tem, after it has settled at x∗

DS, can act as a perturbation that drives the system into a domain where
x∗

H is attracting was an unexpected consequence of the mathematical analysis. The notion of medical
researchers was that adding macrophages should exacerbate inflammation—not terminate it. So our
result appeared counter-intuitive at first. Nevertheless, adding macrophages seems to be a straightfor-
ward and effective cure, as is demonstrated in Fig. 9, where we see how a one-time administration of a
bolus of resting macrophages causes the inflammation to die out within 20 days. To produce Fig. 9, we
ran a simulation with f1 = 2.5 × 10−5 and physiological initial conditions until the system had settled
at x∗

DS. Then we started a new simulation with x(0) = x∗
DS except we increased the initial condition for

resting macrophages from 1.109330 × 106 to 1.187451 × 106, i.e. an increase of 78120 macrophages.
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Fig. 8. A simulation showing the effectiveness of raising the phagocytic capability of resting macrophages in NOD mice from
f1 = 1 × 10−5 to f1 = 2.7 × 10−5 at a time where chronic inflammation has otherwise been established. Notice the extinction of
apoptotic and necrotic β cells in 5–6 days. Cytokines are not visible on the figure because their concentration is too low.

Fig. 9. Simulation showing how many days it takes an otherwise chronic inflammation to abate and disappear upon addition of
resting macrophages to a site of inflammation. Notice the extinction of apoptotic and necrotic β cells within 20 days. Cytokines
are not visible on the figure because their concentration is too low.

We see that it takes about 3 times longer for the inflammation to subside compared with that which
we saw when we simply increased the phagocytosis rate.

9. Discussion

The basis for this article is the work of Marée et al. (2006), who proposed a mathematical model of type
1 diabetes. Based on data, obtained from a mouse strain that develops T1D (NOD) and one that does
not (Balb/c), they were able to demonstrate that the difference between developing T1D or not is related
to defective macrophages (Marée et al., 2006).
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We have elaborated on their work, mathematically,

• by demonstrating that the DuCa model satisfies positivity, in the sense xi(t) � 0 for all t > 0 and
i = 1, . . . , 5, if xi(0) � 0 for all i = 1, . . . , 5 and

• by constructing a family of attracting trapping regions in (R+ ∪ {0})5.

Taken together, these results are tantamount to (weak) persistence and adds to the trustworthiness of
the DuCa model. This analysis in conjunction with our bifurcation analysis, which provides important
medical insights, as discussed below, accounts for the novelty of our work.

We based our bifurcation analysis on the phagocytosis rates f1 and f2, since these two parameters
constitute the only difference between NOD mice and Balb/c mice that do not suffer from T1D during
their lifetime. In accordance with what one would expect, we found that by increasing the phagocytosis
rates either by themselves or simultaneously, inflammation in NOD mice could be reversed. These
results are obviously not surprising. However, we have also addressed the question of whether it is at
all possible to increase the phagocytosis rates.

One hypothetical method is to introduce activated Balb/c-macrophages into the islets of Langer-
hans of an NOD mouse suffering from chronic inflammation of the β cells. This way the average
phagocytosis rate could exceed f1,hb. However, such allogenic transfer has the problem of immuno-
incompatibility, and we point instead to the result that we find to be the most interesting. Namely, trans-
fer of syngeneic macrophages, which, despite their lower phagocytic potential, could be used. These
could be harvested from non-diabetic NOD mice (resting macrophages) or from pre-diabetic or diabetic
mice (activated macrophages). The technical feasibility of this is of course not trivial though isola-
tion and injection of macrophages should be straightforward. The major hurdle would be the method
of administration, and while it is beyond the scope of this article to delve into this problem, we pro-
pose injecting them in the retroperitoneal space or administering them intravenously; we speculate that
a substantial part of injected macrophages will home to the inflamed pancreatic islets of the recipi-
ent. Injecting the macrophages directly into the pancreas seems inviable due to the delicateness of the
organ.

A natural objection that critics may hold to our strategy is that the method outlined could suffer
the drawback that there simply is not room enough for the amount of additional macrophages needed.
To this end, we refer to Poulter & Turk (1975), who give an estimate of the volume of a macrophage
to be 1450 µm3 (Poulter & Turk, 1975). This converts into 1.45 × 10−9 ml. Hence, based on the result
of Poulter & Turk (1975), there is room for 689655172 macrophages within 1 ml—at f1 = 2.5 × 10−5

we added 80000 macrophages, or approximately 0.1 µL, to bring the inflammation to an end. Thus,
the volume of supplementary macrophages does not speak against this approach as a viable means of
inducing health in NOD mice with chronic islet inflammation; especially if it can be combined with
some way of enhancing the phagocytic ability of the macrophages.

In some of the mathematical excursions above we speak about t going to infinity, which may lead
some readers to wonder whether our results have any merit beyond the mathematical realm. In other
words, we need to consider the biology of the model, and by extension, our treatment strategies are
intended to imitate. That is, it may be that our treatments work mathematically, but if the healthy state
is not reached at least within the lifespan of the average laboratory mouse, then the methods are, all in
all, useless. The median lifespan of a mouse is approximately 30 months (Blüher et al., 2003), and we
see that following either of our hypothetical intervention methods, the healthy state is reached within
days to a few weeks of treatment. So our approaches live up to this criterion.

However, a stricter, and more appropriate, criterion is that the inflammation should be able to
subside before T1D becomes overt, and while there are still enough healthy β cells left to maintain
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normoglycemia. Hyperglycemia occurs when the functional β cell mass has been reduced to 10–40%
of its original size (Seeley et al., 2008). This happens at around 30 weeks of age in NOD mice (Sreenan
et al., 1999). If our method of adding macrophages, or increasing the phagocytosis rate(s), is applied
in due time, i.e. on the path to or shortly after chronic inflammation is established, inflammation will
be cleared within 20 days, as evidenced by Figs 8 and 9. Importantly at this very early stage of dis-
ease, the population of healthy β cells remains relatively stable (Rudy et al., 1997), probably due to
increased proliferation. (Rat β cells exhibit an increase in proliferation under mild hyperglycemia Hügl
et al., 1998.) Thus, sufficiently many β cells will remain to keep serum glucose levels below hyper-
glycemic levels. After this no further therapeutic steps should be needed. The high plasticity of β cells
also suggests that it may be possible that following resolution of inflammation, mild hyperglycemia will
stimulate the remaining β cells to proliferate, and possibly replenish some of the lost cells. This also
points to a possible, natural, extension of the model; namely adding an equation describing the healthy
β cells. However, as described above, this population remains at a quasi steady state during the initial
period of macrophage-induced β cell apoptosis (and also during initial T cell infiltration). So adding
the equation to the DuCa model should not change the long-term behaviour. But it would be an inter-
esting addition in a more elaborate model. (β cells have been modelled explicitly in other models; see,
e.g., Wang et al. (2006) and Mahaffy & Edelstein-Keshet (2007) for different approaches to modelling
healthy β cells in T1D.)

In the greater scope of things, i.e. applying these ideas to humans, it is paramount that these pro-
phylactic measures are employed prior to the onset of frank diabetes, which occurs when approximately
60–90% of the β cell population has been destroyed. Put another way: identifying pre-diabetic humans
is key. Fortunately, doing so is no longer science fiction as evidenced in the article by Knip et al. (2010).
Furthermore, just like rodents, humans can also maintain blood glucose homeostasis even when a sub-
stantial portion of the functional β cells have been depleted, meaning that the time window of utilizing
our ideas is not confined to, e.g., a few weeks, but rather months or perhaps, even, years. We expect that
as our understanding of T1D and its precursors evolves, it will become easier and safer to pinpoint the
opportune moment, or period, for administration of syngeneic macrophages.

In this article we have presented, basically, two different methods of interfering with the progression
to T1D. Both approaches have been analysed in a setting prior to infiltration by T cells—the main
mediators of β cell death—which occurs some time after the establishment of persistent β cell death
driven by macrophage-derived proinflammatory cytokines. However, even after T cell-mediated β cell
destruction has been initiated, we still propose introducing additional macrophages, since the overall
increase in phagocytosis will reduce the feedback from apoptotic and necrotic β cells to priming and
activation of T cells, possibly shutting off this feedback all together.

In conclusion, while we recognize that our strategies may be some years from human trials, results
published since our first submission demonstrate that at least one of our proposed methods has merit
to it, namely the method of supplying macrophages (Parsa et al., 2012). In addition to corroborating
our results, and confirming that mathematical modelling and analysis can, in fact, provide significant
insights into diseases, it leaves us optimistic for the perspective of developing a cure that may benefit
the millions of people who, in the future, would otherwise have developed T1D.
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Appendix A. Model parameters

The parameters, their meaning and their values are given in Table A1.

Table A1 Model-parameters†, values and units for NOD mice

Parameters Meaning Value Units

a Normal macrophage influx 5 × 104 cells ml−1 d−1

b Recruitment rate of M by Ma 0.09 d−1

c Macrophage egress rate 0.1 d−1

d Ba non-specific decay rate 0.5 d−1

k Ma deactivation rate 0.4 d−1

f1 Basal phagocytosis rate per M 1 × 10−5 ml cell−1 d−1

f2 Activated phagocytosis rate per Ma 1 × 10−5 ml cell−1 d−1

e Anti-crowding rate 1 × 10−8 ml cell−1 d−1

Amax Maximal cytokine-induced β cell apoptosis rate 2 × 107 cells ml−1 d−1

kc Cytokine concentration for half-maximal apoptosis rate 1.0 nM
α Cytokine secretion rate by Ma due to Bn 5 × 10−9 nM cells−2 d−1

δ Cytokine turnover rate 25 d−1

†See (Marée et al., 2006) for references for the parameters.

Appendix B. Brief description of the dynamics near the f 2-Hopf bifurcation

In Fig. 4 we perturbed the system in the resting and activated macrophages and saw that at least one
limit cycle encircles the disease state before it changes stability. Figure 4 only provided information
about trajectories starting near x∗

DS. Here we present a bigger section of the phase space projection onto
the M − Ma phase plane (Fig. B1), but we also show what happens if we perturb the system in the
Ba, Bn and C directions (Fig. B2), while using the x∗

DS-values of M and Ma as initial conditions for
these variables. Figure B1 shows a bigger part of the M − Ma phase plane for a range of perturbations;
P = x∗

DS · (m/2, n/2, 1, 1, 1)T, m = 0, . . . , 5, n = 0, . . . , 10. A full dot indicates x∗
H , while an open ring

indicates x∗
DS. We have scaled everything relative to the disease state. It should be noted that It should

be noted that the curves apparently tending to the disease state in fact approach the stable limit cycle
encircling this state.

 at R
oskilde U

niversitetsbibliotek on February 3, 2015
http://im

am
m

b.oxfordjournals.org/
D

ow
nloaded from

 

http://imammb.oxfordjournals.org/


224 K. H. M. NIELSEN ET AL.

Fig. B1. Simulations, with f2 = 8.477652 × 10−5, for a range of initial values plotted in the M − Ma phase plane. The full dot is
x∗

H . The open ring indicates x∗
DS. Initial conditions for Ba, Bn and C were set to their x∗

DS-value. See Fig. B2 for legend.

Fig. B2. Simulations, with f2 = 8.477652 × 10−5, for a range of initial values plotted in the Ba − Bn − C phase space. Initial
conditions for M and Ma were set to their x∗

DS-value. x∗
H : healthy state; LC: limit cycle; x∗

DS: disease state.

Perturbing the system in the Ba, Bn and C directions one at a time, without perturbing M and Ma,
gives some results that seem surprising at first. For small nudges away from x∗

DS (small being relative
to the values of the respective variables at the disease state) the state remains attracting, and stable
spirals are observed—we can explain this by the negative feedback of Ma (and M ) on Ba, Bn (through
phagocytosis), as being dominant. As the perturbations grow, we eventually enter a domain where the
stable limit cycle becomes attracting; see Fig. B2. Here the positive feedback, through Ma’s participation
in cytokine production, balances the negative feedbacks. Finally, in Fig. B2, we see that we have a ‘fight
fire with fire’ situation; i.e. if we increase the initial values of Ba, Bn and/or C sufficiently, x∗

H becomes
attracting. This is perhaps even more surprising than our suggested method of using macrophages to
induce a return to the healthy state, but it can be explained by the extra inflow of macrophages that
will occur when a large amount of resting macrophages suddenly become activated. However, inducing
increased apoptosis, necrosis or injecting a bolus of proinflammatory cytokines, or a combination of
these, does not seem like a viable approach to countering a burgeoning inflammation, simply because
of the direct and collateral damage this will cause, which is not considered in the model.

If we decrease the initial values of Ba, Bn or C sufficiently, e.g. use x(0) = x∗
DS · (1, 1, 0, 1, 1)T, as

initial condition, the system will tend to the stable limit cycle; see Fig. B2. (The same goes if we choose
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the dotproduct between x∗
DS and (1, 1, 1, 0, 1)T or (1, 1, 1, 1, 0)T as initial condition.) The reason for this

is that the concentration of nectrotic β cells and cytokines (or Ba and C or Ba and Bn) is sufficient to
stabilize the positive feedback from Ma on the ‘harmful’ variables.

When we decrease f2, the basin of attraction in terms of Ba, Bn and C grows; e.g. for f2 = 7 ×
10−5 only two of the initial conditions seen in Fig. B2 tend to x∗

H , namely xDS · (1, 1, 0, 0, 0)T and
xDS · (1, 1, 6, 6, 6)T—not shown. The explanation for this is that at lower f2 values a larger number of
activated macrophages need to enter the system to reach the same phagocytic capacity that was seen
at higher f2 values. Thus, at lower f2 values we need to (instantaneously) supply a larger concentration
of Ba and/or Bn and/or C to get to that critical level of activated macrophages. As f2 is increased, the
disease state becomes unstable. However, it is a saddle point with four complex eigenvalues, the two of
which have large negative real part compared with the other eigenvalues. Solution curves starting close
to the unstable disease state for f2 > f2,hb oscillate for a period, which is much longer than the average
lifespan of a laboratory mouse, before finally tending to x∗

H . (Simulation not shown.) However, this
pseudo-stability of the disease state is only observed for a very narrow window of values in f2 and for
initial conditions very close to x∗

DS, so we do not consider this a blow to our method of increasing f2.
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