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Isomorph invariance of the structure and dynamics of classical crystals

Dan E. Albrechtsen, Andreas E. Olsen, Ulf R. Pedersen, Thomas B. Schrøder, and Jeppe C. Dyre
DNRF Center “Glass and Time”, IMFUFA, Department of Sciences, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark

(Received 7 April 2014; revised manuscript received 5 August 2014; published 5 September 2014)

This paper shows by computer simulations that some crystalline systems have curves in their thermodynamic
phase diagrams, so-called isomorphs, along which structure and dynamics in reduced units are invariant to a
good approximation. The crystals are studied in a classical-mechanical framework, which is generally a good
description except significantly below melting. The existence of isomorphs for crystals is validated by simulations
of particles interacting via the Lennard-Jones pair potential arranged into a face-centered cubic (fcc) crystalline
structure; the slow vacancy-jump dynamics of a defective fcc crystal is also shown to be isomorph invariant.
In contrast, a NaCl crystal model does not exhibit isomorph invariances. Other systems simulated, though in
less detail, are the Wahnström binary Lennard-Jones crystal with the MgZn2 Laves crystal structure, monatomic
fcc crystals of particles interacting via the Buckingham pair potential and via a purely repulsive pair potential
diverging at a finite separation, an ortho-terphenyl molecular model crystal, and SPC/E hexagonal ice. Except
for NaCl and ice, the crystals simulated all have isomorphs. Based on previous simulations of liquid models, we
conjecture that crystalline solids with isomorphs include most or all formed by atoms or molecules interacting
via metallic or van der Waals forces, whereas covalently bonded or hydrogen-bonded crystals are not expected
to have isomorphs; crystals of ions or dipolar molecules constitute a limiting case for which isomorphs are only
expected when the Coulomb interactions are relatively weak. We briefly discuss the consequences of the findings
for theories of melting and crystallization.

DOI: 10.1103/PhysRevB.90.094106 PACS number(s): 61.72.jd, 64.70.dg

I. INTRODUCTION

In many situations the physical properties of crystals are
properly described by classical mechanics [1–3]. Of course,
the fact that the specific heat vanishes when temperature is
lowered towards zero can only be explained by invoking
quantization of the phonon field, but otherwise it makes good
sense to evaluate a crystal’s structural and dynamic properties
from a purely classical description. This is obviously the case
for crystals of large particles like those of colloids [4,5] or
dust plasmas [6,7], but crystals of atoms and molecules not
significantly below the melting temperature are also generally
well described by classical mechanics [8,9]. Thus current
theories and computer simulations of melting, superheated
crystals, etc., are all formulated within a classical, Newtonian
framework [10–15].

This paper presents computer simulations of crystals
of classical-mechanical particles, in particular the standard
Lennard-Jones (LJ) system, demonstrating several cases of
invariance of structure and dynamics to a very good approx-
imation along the configurational adiabats. Recall that if r is
the distance between two particles, the LJ pair potential is
defined [16] by

vLJ(r) = 4ε

[(
σ

r

)12

−
(

σ

r

)6]
. (1)

This potential diverges as r → 0 and goes to zero as r → ∞;
the prefactor 4ε ensures that the minimum value of v(r) is −ε.
For many years the LJ potential has been the standard pair
potential for theoretical studies of liquids [17–19]. It is also
the most widely computer-simulated potential, because it has
become a standard building block in molecular models and
models of complex systems such as biomembranes and large
biomolecules [20,21].

The theory of isomorphs, which was proposed for liquids
in Ref. [22], predicts that the configurational adiabats in the
thermodynamic phase diagram of certain systems are curves of
invariance for many properties. The main finding of the present
paper is that many solids also have isomorphs; in fact it turns
out that the isomorph theory works even better here than for
liquids. The theory does not work well for crystalline sodium
chloride or for ice, however, which shows that the existence of
isomorphs is not a trivial consequence of crystallinity.

Although more simulations are needed, the picture that
emerges from the results reported below is that any liquid
with isomorphs also has isomorphs in the crystalline phase.
Thus “having isomorphs” is a material-specific property that
survives a first-order phase transition, an unusual situation in
physics.

The invariances found along isomorphs have several
important consequences. For instance, the fact that the
melting curve is itself an isomorph [22,23] implies invariance
along this curve of the reduced-unit vibrational mean-square
displacement, configurational entropy, isochoric specific heat,
radial distribution function(s), phonon spectrum, etc. Such
melting-line invariances have been known for many years
from simulations and experiments [8,24–26], but only now
get a unified theoretical explanation. In fact, melting line
invariants referring to a single phase—liquid or solid—have
always presented a challenge to theory because the melting
line is where the two phases’ free energies are identical: how
can one phase know about the free energy of another? The
isomorph theory as validated below for crystalline systems
offers a resolution of this paradox for systems with isomorphs,
a class now known as “Roskilde-simple” systems [27–32].
A further isomorph-theory prediction, which is however not
investigated here, is that the dynamics of melting, crystal
nucleation, and crystal growth in properly reduced units
are all invariant along the isomorphs. For a fixed degree of
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superheating/supercooling this implies temperature/pressure
independence of the melting and crystallization rates and
mechanisms.

The paper is structured as follows. In Sec. II we give some
details of the computer simulations carried out. Section III
presents data for the potential energies of scaled versus original
configurations, showing a clear difference between the LJ crys-
tal and a NaCl model crystal. For the LJ crystal the results allow
one to identify isomorphic state points, and Sec. IV shows data
validating the predicted isomorph invariance of structure and
dynamics along an isomorph; in contrast, the NaCl crystal does
not exhibit similar invariances. Section V shows that jumps
along an isomorph for the LJ crystal lead to instantaneous
thermal equilibration. The findings for the LJ and the NaCl
crystals are put into a broader perspective in Sec. VI, which
presents data for five other systems, three atomic and two
molecular crystals. Section VII gives a discussion.

II. SIMULATION DETAILS

All simulations were standard Nose-Hoover NV T simu-
lations carried out using the Roskilde University Molecular
Dynamics (RUMD) software package [33]. Periodic boundary
conditions were employed throughout. The first system studied
below consists of 4000 LJ particles arranged into a face-
centered cubic (fcc) 10 × 10 × 10 lattice. This is at most
densities the stable crystal structure of the LJ [34] and many
other simple systems such as that defined by the Buckingham
potential (Sec. VI). The potential was cut using the shifted-
forces method [35] with cutoff distance 3.5ρ−1/3 independent
of the LJ parameter σ , corresponding to cutoffs larger than
2.6σ at all densities simulated.

For a system of N particles in volume V , the density is
defined by ρ ≡ N/V . The simulations were carried out in
the so-called reduced units defined by the length unit ρ−1/3,
energy unit kBT , and time unit ρ−1/3√m/kBT in which m

is the particle mass. This is useful in order to avoid overflow
problems when large density and temperature variations are
involved. In practice, the density and temperature were both
kept constant equal to unity; instead the pair potential’s energy
and length parameters ε and σ were adjusted from state point
to state point. The same physics is obtained in this way as
by varying density and temperature for fixed σ and ε because
structure and dynamics in reduced units depend only on the
dimensionless parameters ρσ 3 and kBT /ε. The time step was
0.0025 in reduced units and the time constant of the Nose-
Hoover thermostat was kept constant in reduced units.

The NaCl model studied consisted of 2 × 1372 particles
placed in two interpenetrating 7 × 7 × 7 fcc lattices. The pair
potential is a LJ potential plus a Coulomb term [36],

vij (r) = 4εij

[(
σij

r

)12

−
(

σij

r

)6]
+ zizj e

2

4πε0r
. (2)

Here εij , σij , and zi have different values depending on the
three possible atom-atom interactions; see Ref. [36] for details.
Due to the long-ranged nature of the Coulomb part of the NaCl
potential [37], a shifted-force cutoff with rcut = 6.5ρ−1/3 was
used [38].

For the simulations of Sec. VI the crystals were of the
following sizes. The Wahnström binary LJ crystal consisted

of 864 small and 432 large particles, the Buckingham and
the “sum-IPL” crystals were each of 4000 particles, the
ortho-terphenyl crystal consisted of 324 molecules, and the
ice crystal of 432 molecules.

III. POTENTIAL ENERGIES OF SCALED
CONFIGURATIONS AND THE DIRECT

ISOMORPH CHECK

This section motivates the isomorph concept by presenting
simulation data for how the potential energy of a uniformly
scaled crystalline configuration relates to that of the original
configuration (taken from an equilibrium simulation). The
theory of Roskilde-simple systems is given in a series of five
comprehensive papers [22,23,39–41]; a recent brief review of
the theory and the evidence for it coming from simulations and
experiments is given in Ref. [42].

The first step in the investigation of the LJ crystal is to
identify the isomorphs in the thermodynamic phase diagram;
these are identical to the configurational adiabats [22] (see
below). Consider a fcc crystal in thermal equilibrium at
density ρ1 = 1.2σ−3 and temperature T1 = 1.0 ε/kB , which in
standard LJ units is written ρ1 = 1.2 and T1 = 1.0. The idea
is now that for an equilibrium simulation at this state point
each configuration is scaled uniformly to a different density.
In Fig. 1(a) the scaling is to the double density, ρ2 = 2.4.
Each configuration is characterized by the 3N -dimensional
configuration vector R ≡ (r1, . . . ,rN ); if the original and the
scaled configurations are denoted by R1 and R2, respectively,
the two configurations R1 and R2 have the same reduced
coordinates and R2 = 2−1/3R1.

Figure 1(a) shows a scatter plot of the potential energies
of pairs of scaled versus original configuration generated in
an equilibrium simulation at (ρ1,T1). The potential energies of
original and scaled configurations correlate strongly. That this
is not a trivial effect of the crystal structure and, for instance,
a crystal’s approximate harmonic description, is clear from
Fig. 1(b) giving similar data for the NaCl crystal model [36].
The blue dashed line in Fig. 1(a) is the prediction of the
repulsive r−12 part of the LJ pair potential (displaced vertically
by a large amount to fit the data); clearly this term alone
cannot explain the strong correlation observed [40]. Strong
correlations of the potential energies of scaled configurations
have been reported for several liquids, including various
LJ-type and molecular model liquids [43,44], and in fact even
for the 10-bead rigid-bond, flexible LJ-chain model [45].

The linear correlation of Fig. 1(a) implies that a temperature
T2 exists such that the following applies. Whenever two con-
figurations R1 and R2 of the densities ρ1 and ρ2, respectively,
have the same reduced coordinates, i.e., ρ

1/3
1 R1 = ρ

1/3
2 R2,

one has U (R2) ∼= (T2/T1)U (R1) + constant. This implies the
isomorph condition [22]

exp

(
−U (R1)

kBT1

)
∼= C12 exp

(
−U (R2)

kBT2

)
. (3)

The temperature T2 is determined from the best fit line slope of
Fig. 1(a), which is 21.14, as follows: T2 = 21.14 T1 = 21.14.

Equation (3) implies almost identical canonical-ensemble
probabilities of pairs of scaled configurations belonging to
the state points (ρ1,T1) and (ρ2,T2). As a consequence, the
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FIG. 1. (Color online) (a) and (b) Scatter plots of the potential energies of scaled configurations. (a) Results from NV T simulations of a
single-component Lennard-Jones (LJ) 10 × 10 × 10 face-centered cubic (fcc) crystal at density ρ1 = 1.2 and temperature T1 = 1.0. The figure
shows on the y-axis a scatter plot of the potential energy per particle when each configuration is scaled uniformly to density ρ2 = 2.4, versus
the potential energy of the original configuration denoted by R at density ρ1. Note that upon the compression the potential energies change
from small negative to large positive values. The blue dashed line of slope 16 = (2−1/3)−12 gives the prediction of the repulsive r−12 part of the
LJ potential plus a constant; this does not fit the data that have slope 21.14. (This figure first appeared in Ref. [42].) (b) Similar scatter plot for
simulations of a model NaCl crystal [36] in which density is also doubled. (c) Plot of virial and potential energy as functions of time in argon
units for the LJ crystal in equilibrium at the state point (ρ1,T1), demonstrating very strong correlations; (d) similar plot for the NaCl model,
showing much weaker correlations. The correlation coefficient R in (c) and (d) is defined in Eq. (4).

configurational (“excess”) entropy of the two state points
are almost identical [22]. In fact, Eq. (3) implies that the
structure and dynamics of two isomorphic state points are
almost identical when given in reduced units [22].

Two state points are termed isomorphic if they obey
Eq. (3) for their physically relevant configurations [22]. In
this way a mathematical equivalence relation is defined in
the thermodynamic phase diagram; its equivalence classes
are continuous curves termed isomorphs. The above method
of identifying isomorphic state points via a scatter plot
of scaled potential energies is referred to as the “direct
isomorph check” [22]. An isomorph is a configurational
adiabat because the excess entropy is an isomorph invariant.
The opposite does not apply in general, however; all systems
have configurational adiabats, but only some systems have
isomorphs.

The microscopic virial is defined by W (R) ≡ −1/3R ·
∇U (R) [35]. It has been shown that a system has isomorphs
if and only if it has strong virial potential-energy correla-

tions for its thermal equilibrium constant-volume fluctuations
(Appendix A of Ref. [22]). A pragmatic definition of a
Roskilde-simple system is R > 0.9 in which R is the virial
potential-energy (Pearson) correlation coefficient defined [39]
by (where �W is the deviation from the average virial, �U the
same for U , and the sharp brackets denote canonical averages)

R ≡ 〈�U�W 〉√
〈(�U )2〉〈(�W )2〉

. (4)

It follows from Euler’s theorem that systems with a
homogeneous potential-energy function, i.e., those for which
U (λR) = λ−nU (R) for some exponent n, are the only ones
with 100% virial potential-energy correlations. This means
that any realistic system’s isomorph invariants are only
approximate. Figures 1(c) and 1(d) show the normalized virial
and potential-energy equilibrium fluctuations as functions of
time for the LJ and NaCl crystals. Only the LJ crystal exhibits
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strong virial potential-energy correlations, so only for this
system is the isomorph theory expected to work [22].

It was recently shown that the properties of Roskilde-
simple systems, including the existence of isomorphs, is
a consequence of these systems’ “hidden scale invariance”
by which is meant the following: two functions of density
exist, h(ρ) and g(ρ), such that for all physically relevant
configurations one has [42,46]

U (R) ∼= h(ρ)	̃(ρ1/3R) + g(ρ). (5)

Here 	̃ is a dimensionless function of ρ1/3R, the reduced
configuration vector. For a system of particles interacting via
the pair potential v(r) = ∑

n εn(r/σ )−n, the functions h(ρ) and
g(ρ) are both given by expressions of the form

∑
n Cnρ

n/3 in
which each term corresponds to a (r/σ )−n term in v(r) [46].

The physical content of Eq. (5) is that a density change to a
good approximation results simply in a linear affine scaling of
the potential-energy surface. Since the addition of an overall
density-dependent constant to the potential energy does not
affect structure and dynamics—though it does, of course,
change the free energy and the pressure—the affine scaling
of Eq. (5) can be compensated by adjusting the temperature in
proportion to h(ρ), leading to identical canonical probabilities
of configurations that scale uniformly into one another. This
is what happens along an isomorph, resulting in reduced-
unit invariance of structure and dynamics [22,42]. Thus
Eq. (5) implies the existence of isomorphs. This equation
also implies the following thermodynamic separation identity
kBT = f (sex)h(ρ) in which sex is the excess entropy per par-
ticle [47]. Since isomorphs are configurational adiabats, this
identity implies that the isomorphs are given by the equation
h(ρ)/T = constant. We finally note [47,48] that the separation
identity kBT = f (sex)h(ρ) is mathematically equivalent to the
configuration-space version of the noted Grüneisen equation
of state, according to which pressure is a linear function of
energy with constants that only depend on density. This is the
standard equation of state for solids under high pressure [48].

IV. ISOMORPH INVARIANCE OF STRUCTURE AND
DYNAMICS: COMPARING THE LJ AND SODIUM

CHLORIDE CRYSTALS

This section presents simulations of some of the properties
predicted to be invariant along an isomorph. The purpose is to
validate the existence of isomorphs for the LJ crystal. The LJ
simulations are contrasted to simulations of the NaCl crystal
for which, based on Fig. 1, one does not expect the existence of
isomorphs. Prospective isomorphic state points were identified
using the direct isomorph-check method described above for
simulations at the following reference state points: (ρ,T ) =
(1.2,1) for the LJ crystal and (ρ,T ) = (0.5,10) for the NaCl
crystal.

Figure 2(a) shows the radial distribution function (RDF)
of the LJ crystal at different state points as a function of the
reduced pair distance r̃ defined by

r̃ ≡ ρ1/3r. (6)

The upper subpanel shows RDFs of the LJ crystal along an
isomorph, which are predicted to be invariant. We see that
this applies to very good approximation for more than a
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FIG. 2. (Color online) Radial distribution functions (RDFs) of
the LJ crystal as functions of the reduced pair distance r̃ (Eq. (6))
along various lines in the thermodynamic phase diagram. Panel (a)
(upper subpanel) RDFs calculated for state points along an isomorph,
involving more than a factor of 2 density change. The data collapse
demonstrates structural invariance. For comparison, the bottom two
subpanels of (a) give the RDFs from state points along an isochore
and an isotherm, respectively, for the same temperature/density
variation. (This figure first appeared in Ref. [42].) Panel (b) A
zoom-in on the first peak of the RDF for isomorph (left) and r−12

inverse-power-law scaling implying invariance along the line of
constant ρ4/T (right), demonstrating that isomorph invariance is not
merely a trivial consequences of the repulsive r−12 term of the LJ pair
potential.
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isomorphs (at the highest-density state point the systems has in fact
melted).

factor of 2 density change along the isomorph represented by
seven state points. For comparison, the two lower subpanels
give the reduced-unit RDFs for the same temperature/density
variations keeping density and temperature constant,
respectively.

Most of the state points studied correspond to highly
compressed solids, so one might guess that the observed
structural invariance derives trivially from the repulsive r−12

term dominating the LJ potential. If this were the case,
however, state points related by ρ4/T = constant should have
the same reduced-unit RDF [41]. Figure 2(b) shows a blow-up
of the first peak of the reduced-unit RDFs along the curve
defined by ρ4/T = constant for the same density variation
(right subpanel, same reference state point). There is poor
collapse compared to the left subpanel, which is a blow-up of
the Fig. 2(a) isomorph data. Thus the isomorph collapse is not
a trivial consequence of the LJ potential’s repulsive r−12 term,
which in fact was expected already from Fig. 1(a) where the
scatter plot does not have the slope 16 predicted from the r−12

term of the LJ potential.
Isomorph invariance of structure is not a general property

of crystals. This is evident from Fig. 3, which shows RDFs for
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FIG. 4. (Color online) (a) Normalized velocity autocorrelation
functions of the LJ crystal along an isomorph, an isochore, and an
isotherm (same state points as in Fig. 2). (b) Normalized velocity
autocorrelation functions for the NaCl crystal along a prospective
isomorph, showing no data collapse (same state points as in Fig. 3).

prospective isomorphic state points of the NaCl crystal deter-
mined by the direct-isomorph-check procedure. No structural
invariance is observed. Thus the existence of isomorphs is
not a trivial consequence of the harmonic approximation that
generally describes crystals well.

Since the potential-energy surfaces of isomorphic state
points are identical except for a linear, affine scaling [compare
the hidden-scale-invariance identity Eq. (5)], not just the
structure but also the dynamics is predicted to be invariant
along an isomorph when given in reduced units [22,42]. For
the LJ crystal we checked this by calculating the single-particle
velocity autocorrelation function. Figure 4(a) shows the results
for the state points of Fig. 2. Good collapse is found for the
isomorphic state points (upper subpanel), although the collapse
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is not quite as good as for the RDFs. The NaCl crystal shows
no data collapse [Fig. 4(b)].

Our simulations show that the phonon dynamics of
the LJ crystal is isomorph invariant. Perfect crystals
like the one simulated have no slow dynamics. In order to
test the generality of the isomorph invariance of the dynamics,
we also investigated the much slower dynamics of atoms
jumping in a defective LJ crystal obtained by removing some
particles. The vacancies thus introduced occasionally jump
to new lattice positions, a process making atomic diffusion
possible which, because it is thermally activated, becomes
slow at low temperatures and/or high densities.

Eight particles were removed from a LJ crystal, thus
introducing eight vacancies. The effect of vacancy jumps
was monitored by evaluating the mean-square displacement
(MSD) of the defective crystal’s particles as a function time.
The results are shown in Fig. 5 for state points along an
isomorph, an isochore, and an isotherm. The isomorph was
generated by the direct isomorph check method applied to
the defective crystal starting at (ρ,T ) = (1.15,1), leading to
an isomorph that is marginally different in the temperature-
density phase diagram from one of the perfect LJ crystal.
Figure 5 demonstrates that the regime of slow atomic jump
dynamics is also isomorph invariant to a good approximation.
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FIG. 5. (Color online) Reduced-unit mean-square displacement
(MSD) of the particles of an 8 × 8 × 8 fcc LJ crystal from which eight
particles were removed, making vacancy-jump dynamics possible.
The top figure shows the MSD as a function of reduced time for
state points along an isomorph identified by the direct-isomorph-
check method. The two bottom figures show MSDs calculated
for state points along the isochore and isotherm with the same
temperature/density variation. The figure shows that vacancy jump
dynamics depends strongly on temperature and density, but along
an isomorph these two effects compensate each other to a good
approximation. (This figure first appeared in Ref. [42].)

This is nontrivial, even in view of the isomorph invariance of
structure and fast dynamics of perfect crystals demonstrated
in Figs. 2 and 4, because the excitation states of vacancy
jumps—the barriers to be overcome—have a small canonical
probability and contribute little to the direct-isomorph-check
plots used to identify isomorphic state points.

V. ISOMORPH JUMPS OF THE LJ CRYSTAL

Because the canonical-ensemble probabilities of scaled
configurations of isomorphic state points are identical, a
jump between isomorphic state points is predicted to bring
the system instantaneously to equilibrium [22]. Instantaneous
equilibration after isomorph jumps has been demonstrated
in simulations of highly viscous liquids [22,44] and for the
flexible LJ-chain model [45]. Below we test whether this
applies also for “isomorph jumps” of perfect LJ crystals, for
which the dynamics takes place on the much faster phonon
time scale of order picoseconds (in argon units).

The procedure used for studying a jump in thermodynamic
phase space is the following. First one equilibrates the system
at one state point. Then one changes the density by scaling
all coordinates uniformly, scales all velocities to the new
temperature, and adjusts the temperature of the thermostat
to the new value. Finally, one observes whether or not the
system relaxes at the new state point by monitoring the time
development of a suitable quantity, in casu the potential energy.
Figure 6 shows the potential energy per particle after such
jumps from three different state points to the same state point.
The initial state points were selected to give an isochoric
(red), an isothermal (blue), and an isomorphic (green) jump
to the final state point. Only the latter shows instantaneous
equilibration, i.e., no change of the potential energy after the
jump.
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FIG. 6. (Color online) Potential energy per particle after jumps
from three different state points of the LJ crystal to the state point
(ρ,T ) = (1.5,2.81). Only the jump from a state point isomorphic to
the final state point (green curve) leads to instantaneous equilibration.
Time is given in argon units.
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VI. RESULTS FOR FIVE OTHER MODEL CRYSTALS

A number of questions arise from our findings for the LJ
and NaCl crystals. To answer some of these we present below
simulations for more systems, three atomic and two molecular
crystals.

One question is whether complex crystals may also have
isomorphs or this property is limited to simple close-packed
crystal structures like the fcc lattice. Liquid-state simulations
show that the property of strong virial potential-energy
correlations—implying isomorphs [22]—is “local” in the
sense that for Roskilde-simple systems all interactions beyond
the first coordination shell are unimportant and may be
ignored [43]. Based on this one would not expect the crystal
structure to be important. In order to illuminate this issue
we made use of the recently discovered fact [49] that the
Wahnström binary LJ system [50] crystallizes into the intricate
MgZn2 Laves phase, in which the unit cell contains no less
than twelve atoms. Laves phases are observed in some binary
metal systems [51] and, e.g., binary hard-sphere mixtures
of certain size ratios crystallize into Laves phases. Laves
phases of metallic elements have a number of intriguing
properties, for instance they are not plastically deformable
at room temperature [52].

The MgZn2 Laves phase of the Wahnström binary LJ model
is characterized as follows [49]. The smaller LJ particles
are placed in one of two different distorted icosahedral
polyhedra, both made up of six small and six large LJ
particles. The large particles sit in a 16-vertex coordination
polyhedron composed of twelve small and four large parti-
cles. The latter form a hexagonal diamond network where
each large-particle neighbor pair shares six small particle
neighbors.

Figure 7 shows results from simulations of this system.
For the LJ parameters we refer to Ref. [50]; our only
modification was to consider a perfect crystal of 2/3 small
and 1/3 large particles whereas the original Wahnström paper
considered a 50:50 composition in the supercooled liquid
state. Figure 7(a) shows direct-isomorph-check results for a
36% density increase. Figure 7(b) shows the RDF for all
particles (small and large) at two isomorphic state points
with the temperature at the high-density state point calculated
from the direct isomorph check of Fig. 7(a) (T2 = 12.12). We
see that even complex crystal structures can have isomorphs.
We moreover conclude that the reason the NaCl crystal
does not have isomorphs is not that it is a two-component
system.

Consider next whether crystalline isomorphs occur only
for crystals of particles interacting via pair potentials which
are sums of inverse-power-law (IPL) terms such as the
LJ potential. To investigate this we studied a fcc crystal
composed of particles interacting via the Buckingham pair
potential [53],

v(r) = ε

(
6

α − 6
eα(1−r/σ ) − α

α − 6

(
r

σ

)−6)
. (7)

In contrast to the LJ case this potential’s repulsive term is finite
at r = 0 (leading to a thermodynamic instability because the
attractive term diverges at r = 0, though for large values of
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FIG. 7. (Color online) (a) Direct isomorph check for the Wahn-
ström binary LJ crystal, which is a MgZn2 Laves phase structure
with a unit cell of twelve atoms. (b) All-particle RDF for the two
isomorphic state points identified on the basis of the direct isomorph
check in (a). The inset shows the crystal structure [49].

α this is no problem in practice). The system simulated is
that of α = 14 [54]. In the unit system defined by σ and ε,
Fig. 8(a) shows the direct isomorph check for a doubling of
the density starting from ρ1 = 1.2 and T1 = 1 from which we
in the usual way calculated the temperature of the isomorphic
state point at density ρ2 = 2.4 (T2 = 10.493). Figure 8(b)
shows the RDFs for these two state points supplemented by
a third isomorphic state point (upper subpanel). Clearly, for
a crystal to have isomorphs it is not necessary that the pair
potential be composed of IPL terms.

A pure IPL system has a homogeneous potential-energy
function, 100% virial potential-energy correlations, and per-
fect isomorphs [22]. Given that the LJ crystal has isomorphs
and that the NaCl crystal does not, one may speculate that the
latter system’s “problem” is that it involves not just two IPL
terms, but three. In order to test whether the number of IPL
terms is crucial for how well isomorph invariance applies, we
simulated the pair potential v(r) = ε

∫ ∞
n0

(r/σ )−ndn that adds
infinitely many IPL terms. Carrying out the integration for
n0 = 6, the parameter chosen for our simulations, leads to the
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FIG. 8. (Color online) (a) Direct isomorph check for the Buck-
ingham potential fcc crystal. This system does not have a repulsive
IPL term, but instead an exponentially repulsive term [Eq. (7)].
(b) RDFs along an isomorph and the corresponding isochore and
isotherm, demonstrating isomorph invariance of the structure.

following purely repulsive “sum-IPL” pair potential:

v(r) = ε
(r/σ )−6

ln(r/σ )
(r > σ ). (8)

This potential diverges at r = σ and can only be studied at
densities with average nearest-neighbor distance larger than

σ . We simulated fcc crystals of densities ranging from 0.2 to
0.6 in the unit system defined by σ . The results are reported in
Fig. 9, where (a) shows the direct isomorph check for a density
change from 0.4 to 0.6. Figure 9(b) shows the RDFs along the
isomorph generated from this and two other direct isomorph
checks also generated from ρ = 0.4 simulations, altogether
covering a factor of 3 density variation (upper subpanel). The
RDFs of the corresponding isochores and isotherms are shown
in the lower subpanels.

The sum-IPL system has excellent isomorphs. At low
densities the logarithmic term is almost constant and the
sum-IPL potential becomes dominated by the r−6 term, i.e.,
approaches a single-IPL potential (that trivially has perfect
isomorphs). To show that the r−6 IPL term does not dominate
at the densities studied, the lower subpanel of Fig. 9(c) gives
the density-scaling exponent γ as a function of density for the
four isomorphic state points of the upper subpanel of (b). For
the n = 6 IPL pair potential γ = 6/3 = 2, so the logarithmic
term is clearly important at the densities studied. Thus many
power laws are indeed in play here. We conclude that the
presence of several IPL terms does not necessarily imply
poor isomorphs; this is not the NaCl system’s “problem.” The
upper subpanel of Fig. 9(c) shows the virial potential-energy
correlation coefficient.

The systems studied so far have been atomic crystals.
The isomorph theory, however, is not limited to atomic
systems. We end the paper by presenting results for two
molecular crystals. First, we consider the Lewis-Wahnström
ortho-terphenyl (OTP) simple molecular model consisting of
three LJ spheres connected by rigid bonds with angle 75◦ [55].
This model is difficult to crystallize and easily supercooled.
In the crystal the three LJ spheres sit near the sites of a bcc
lattice of a crystal with cubatic orientational disorder, i.e., with
the molecules aligning randomly along the three Cartesian
axis [56]. When a system like this in a simulation is scaled to
a different density, the molecules’ bond angles and lengths are
kept constant and the distances between the molecules’ centers
of masses are scaled uniformly to the new density.

Figure 10 shows the simulation results for the intermolec-
ular atom-atom RDF along an isomorph of the OTP crystal
(upper subpanel) and along the corresponding isochore and
isotherm. The isomorph was generated the usual way from
direct isomorph checks (not shown). This time the density
change is “only” 25% and the collapse is not as good as for
the LJ crystal (it is actually similar to that found for the LJ
liquid). Nevertheless, this model exhibits good data collapse
along the isomorph. In this connection it should be kept in
mind that typical high-pressure experiments involve only a
5%–10% density change, so a change of 25% is already quite
large.

In order to put the OTP results in perspective we finally
show results for an ice model. Water has near zero virial
potential-energy correlations at ambient conditions (a fact
related to water’s density maximum at 4 ◦C [39]), so ice is
not expected to have isomorphs. We simulated the SPC/E
water model [57] with the molecules arranged into a hexagonal
crystal lattice. A prospective isomorph was generated from a
direct isomorph check plot (showing poor correlations). The
result for the oxygen-atom RDF shown in Fig. 11 demonstrates
that not all molecular crystals have isomorphs.
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FIG. 9. (Color online) (a) Direct isomorph check for an fcc
crystal of particles interacting via the purely repulsive “sum-IPL”
pair potential of Eq. (8). (b) RDFs along an isomorph, isochore, and

VII. DISCUSSION

We have studied the LJ crystal’s structure and dynamics
in some detail and demonstrated their reduced-unit invari-
ance along isomorphs, as well as instantaneous equilibration
following a jump between two isomorphic state points. The
reduced-unit vibrational density of states is also an isomorph
invariant, since it is determined by the velocity autocorrelation
function [58]. These findings validate hidden scale invariance
for the crystalline LJ system as expressed in Eq. (5), a property
that was previously studied only for liquids. The simulations
show that the isomorph theory, in fact, works even better for
the crystalline than for the liquid phase.

It is important to realize that the existence of isomorphs is
not just a high-pressure phenomenon; thus the lowest-density
state point of the LJ crystal studied (ρ = 1.1 and T = 0.6) is
close to the triple point (ρ ∼= 1.0 and T ∼= 0.7). The isomorph
invariances actually continue to negative pressures (results not
shown) as long as the system is metastable and does not phase
separate into a crystal plus empty space, which happens around
density 0.82 depending on the simulation length and system
size.

Isomorph invariance does not apply for the NaCl crystal
model. Thus the existence of isomorphs in crystals is not a
trivial harmonic effect. Why does the NaCl crystal not have
isomorphs? One difference between it and the LJ system is that
NaCl is a two-component system. Another difference is that
the LJ system’s pair potential involves only two IPL terms,
whereas the NaCl system’s involves three. Figures 7 and 9
show, however, that neither fact explains the difference. Most
likely it is due to the long-ranged nature of the NaCl system’s
strong Coulomb interactions, forces that have been shown to
weaken the virial potential-energy correlations in the liquid
phase [39,59].

For both the LJ and the NaCl systems the crystals and
liquids behave in the same way as regards the existence or
absence of isomorphs. The same is the case for the five other
models studied in Sec. VI. This is not trivial; few nonuniversal
properties survive the first-order transition separating the
liquid and solid states of matter. Is it always the case that a
liquid with isomorphs solidifies into a crystal that also has
isomorphs? This is an open question, but our simulations
indicate that the answer is probably yes because the crystal
has always turned out to have stronger virial potential-energy
correlations than the liquid. Of course, this still makes possible
the interesting situation of a crystal with isomorphs that melts
into a liquid without.

That the existence of isomorphs in crystals is not limited
to the single-component LJ system’s simple fcc crystal is
illustrated by the other crystalline systems studied briefly
in Sec. VI. In view of the simulation results of this paper

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
isotherm, demonstrating isomorph invariance of the structure. (c) The
viral potential-energy correlation coefficient (upper subpanel) and
the so-called density-scaling exponent γ = 〈�W�U 〉/〈(�U )2〉 [22]
(lower subpanel) as functions of density along the isomorph simulated
in (b). The density-scaling exponent γ is quite different from 2, the
value for an r−6 IPL potential; this shows that the logarithmic term is
important in the density range studied.
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FIG. 10. (Color online) RDFs along an isomorph and the corre-
sponding isochore and isotherm of the Lewis-Wahnström OTP crystal
in which each molecule consists of three LJ spheres connected by rigid
bonds with a 75o angle between the bonds (the RDFs refer to the LJ
particles of different molecules). The isomorph was generated in the
usual way from direct isomorph checks (not shown); the uniform
scaling of the molecules for the direct isomorph checks generating
the isomorphs keeps the bond angles and lengths fixed. The figure
demonstrates isomorph invariance of the structure, though not as
accurately as for the LJ crystal.

and previous experiments and liquid-state simulations, in
particular on supercooled liquids [43], there is good reason
to believe that most or all metals and van der Waals bonded
crystals have isomorphs and that this also applies for weakly
ionic or dipolar crystals. On the other hand, covalently bonded,
hydrogen-bonded, and strongly ionic or dipolar crystals are not
expected to have isomorphs. More work is needed to get a full
overview of the situation.

A recent reformulation of the isomorph theory [60] throws
new light on the condition for a crystal to have isomorphs.
In that formulation a Roskilde-simple system is characterized
by the property that the order of the potential energies of
configurations at one density is maintained when these are
scaled uniformly to a different density. If Ra and Rb are
two physically relevant configurations at one density, this
translates into the requirement U (Ra) < U (Rb) ⇒ U (λRa) <

U (λRb). As shown in Ref. [60] this condition implies
all the fundamental characteristics of Roskilde-simple sys-
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FIG. 11. (Color online) Oxygen-oxygen RDF along a prospec-
tive isomorph generated from direct isomorph checks (not shown)
for a 20% density change of SPC/E hexagonal ice. The figure
demonstrates that ice does not have isomorphs, a finding that is
consistent with the fact that water has almost zero virial potential-
energy correlation coefficient [39].

tems [22,42], including the existence of isomorphs identical
to the configurational adiabats, invariance of structure and
dynamics along the isomorphs, and strong virial potential-
energy correlations for constant-density fluctuations. To relate
this characterization of Roskilde-simple systems to crystals,
we assume that the crystal’s potential energy is well described
in the harmonic approximation. Adopting furthermore the
Debye approximation, there are just two state-point dependent
quantities characterizing the phonon spectrum, the transverse
and longitudinal sound velocities. If the ratio between these
is state-point independent, it is easy to see that the above
inequality is obeyed because all phonon modes scale in
the same way when density is changed. A more general
formulation is the following: if all phonon modes ωk,i have the
same Grüneisen parameter ∂ ln ωk,i/∂ ln ρ and the harmonic
approximation applies, the crystal is Roskilde-simple.

It has been conjectured that at sufficiently high pressure
all liquids have strong virial potential-energy correlations
and thus isomorphs [61]. If this is confirmed, the same
presumably applies for crystalline solids, implying that all
crystals have isomorphs at sufficiently high pressure. This
may explain the seemingly universal applicability of the
high-pressure Grüneisen equation of state (expressing a linear
relation between pressure and energy with constants that are
a function only of the density) [48], which is equivalent to
the thermodynamic separation identity characterizing a system
with isomorphs, which in its configuration-space version has
been shown to follow from Eq. (5) [47,48].

Crystals with isomorphs have a thermodynamic phase
diagram that is for many purposes effectively one- instead
of two-dimensional. For a system with isomorphs the melting
and freezing lines are themselves both isomorphs [15,22,23].
This is because the Boltzmann probabilities for crystalline con-
figurations are isomorph invariant, implying that an isomorph
cannot cross the melting or freezing lines. Note that this is
a topological argument with no reference to free energies.
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As a consequence, crystals of Roskilde-simple systems, i.e.,
systems with hidden scale invariance and obeying Eq. (5),
are predicted to have constant excess entropy and invariant
reduced-unit phonon spectra along the melting line. For such
solids it is the excess entropy rather than the free energy
that governs the reduced-unit structure and dynamics along
the melting line. This fact resolves the apparent paradox
mentioned in the Introduction of melting-line invariants
referring only to a single phase (liquid or solid) [62–64].
For instance, the Lindemann melting criterion—according
to which a crystal melts when the vibrational mean-square
displacement reaches a certain fraction of the interatomic
distance—is predicted to be invariant along the melting-line
isomorph; i.e., melting takes place for the same reduced
vibrational mean-square displacement. Such freezing/melting-
line invariances have been reported for LJ crystals [65,66] and
in experiments [8], though occasionally with some deviations
at the lowest pressures.

There are only a few experimental studies of how the
nucleation rate and mechanism as well as how the crystal
growth rate and mechanism vary with pressure and temperature
for a supercooled liquid [67–69]. The melting and freezing
lines are isomorphs in parallel to a series of isomorphs in
the coexistence as well as the supercooled liquid phases.
Consequently, the isomorph theory predicts that nucleation
and crystal growth properties depend only on the degree of
supercooling as quantified by the excess entropy, not separately
on pressure or temperature. This is predicted to apply for
metallic, van der Waals bonded, and weakly ionic or dipolar
supercooled liquids, but not for covalently bonded, hydrogen-
bonded, or strongly ionic or dipolar supercooled liquids.

This paper has demonstrated that the existence of isomorphs
is not limited to the standard, isotropic liquid state. Are
isomorphs present also in other anisotropic fluid states or, e.g.,

when a liquid is confined to certain geometries or subjected
to external fields? Although more work is needed in this
regard, there are strong indications that the answer is in
the affirmative. For instance, simulations have shown that
isomorphs exist for some liquids under nanoconfinement [70],
as well as for liquids undergoing a linear or nonlinear shear
deformation described by the so-called SLLOD equations
of motion [71]. In reference to experiments, consider the
transition between the nematic and isotropic phases of a liquid
crystal. For a system with isomorphs, just as for melting,
the nematic-isotropic transition line is an isomorph. Indeed,
it has been shown for several liquid crystals that in the
two-dimensional thermodynamic phase diagram the molecular
“flip-flop” reorientational relaxation time is invariant along the
nematic-isotropic phase transition line [72,73]. In other words,
while the transition temperature varies with pressure along the
transition line, the reorientational time does not. This is what
one expects from isomorph invariance since the transition line
is an isomorph along which the (reduced) relaxation time is
consequently invariant.

At temperatures much below melting the structure, dynam-
ics, and thermodynamics of a crystal become increasingly
dominated by quantum effects. An important question for
future work is whether there also in this region of the
thermodynamic phase diagram are simplifying features for
crystals of Roskilde-simple systems, i.e, those that have
classical-mechanical isomorphs at higher temperatures.
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