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s u m m a r y

An ensemble of 11 regional climate model (RCM) projections are analysed for Denmark from a hydrolog-
ical modelling inputs perspective. Two bias correction approaches are applied: a relatively simple
monthly delta change (DC) method and a more complex daily distribution-based scaling (DBS) method.
Differences in the strength and direction of climate change signals are compared across models and
between bias correction methods, the statistical significance of climate change is tested as it evolves over
the 21st century, and the impact of choice of reference and change period lengths is analysed as it relates
to assumptions of stationary in current climate and change signals. Both DC and DBS methods are able to
capture mean monthly and seasonal climate characteristics in temperature (T), precipitation (P), and
potential evapotranspiration (ETpot). For P, which is comparatively more variable by day, the DC approach
is insufficient at recreating projected regimes while the DBS correction method can transfer changes in
the mean as well as the variance, improving the characterisation of temporal dynamics as well as heavy
precipitation events. Climate change signals in the near-future (2011–2040) are hidden by natural vari-
ability and are therefore not significant, in the mid-future (2041–2070) the significance of climate change
signals depend on the choice of climate model, and in the far-future (2071–2100) climate change signals
are strong across all models and variables. Some models already display significant differences in climate
variables within the past timeframe for Denmark. Current climate characteristics are not necessarily sta-
tionary and the temporal positioning of a reference period might impact the magnitude of relative cli-
mate change. Reference and change period lengths over 15 years are adequate in size to overcome
natural variability and still have stationarity in the climate change signal within the periods.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Most climate models predict increases in annual precipitation
and temperature for Denmark. Projections generally show winter
precipitation increasing in mean and frequency, and reduced mean
but higher intensity precipitation and increased evapotranspira-
tion rates in summer. Globally, future changes in climate are ex-
pected to result in an intensification of hydrological conditions
(Huntington, 2006; IPCC, 2007; Loaiciga et al., 1996). Future pre-
cipitation regimes will be sensitive to changes in atmospheric tem-
perature and radiation balance, which influence the mechanisms
and conditions for precipitation generation (i.e. available atmo-
spheric moisture, atmospheric uplift and condensation) (Trenberth
et al., 2003; Wild and Liepert, 2010). Temperature increases will

result in increased availability of atmospheric water vapour con-
tent from surface evaporation (increased specific humidity), which
can decrease water availability but increase heavy precipitation
events (Bates et al., 2008). These future climate dynamics lead to
increased variability, namely more intense precipitation and more
droughts. In Denmark, changes in the quantity, timing, and deliv-
ery of precipitation is expected to result in higher rates of ground-
water recharge, flooding, and wetland inundation in the winter
months, and decreased water tables, dry root zones, and depletion
of low flows in the summer months (van Roosmalen et al., 2009).
However, there is variability between climate models on the direc-
tion and strength of the climate change signals and characteristics
of future climate dynamics.

General Circulation Models (GCMs) are numerical coupled mod-
els representing ocean–atmosphere circulation and can be used to
project changes in atmospheric variables under scenarios of cli-
mate change (IPCC, 2007). GCMs effectively capture large-scale cli-
mate features and sub-continental patterns (i.e. temperature and
precipitation), but the coarse resolution and inability of GCMs to
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resolve sub-grid processes make their outputs unrepresentative of
local climate change dynamics (Rummukainen, 2010) and there-
fore not suitable for direct forcing of a hydrological model. Regio-
nal climate models (RCMs) are simulations using lateral
boundary conditions from GCMs over a limited area to produce
higher resolution outputs (i.e. dynamically downscaled). Because
of the GCM–RCM nesting, the overall quality of dynamically down-
scaled RCM output is tied to the realistic large-scale forcing of the
underlying GCM and likewise affected by its biases (Xu et al.,
2005). The PRUDENCE ensemble project (Christensen and Chris-
tensen, 2007) found the uncertainty introduced by the driving
GCM to be greater than from the RCM or emissions scenario
(Déqué et al., 2007). The proceeding EU project ENSEMBLES pairs
multiple GCMs and RCMs to generate a matrix of transient climate
change simulations for the European region (van der Linden and
Mitchell, 2009). Compared to previous regional climate modelling
projects, ENSEMBLES has a more extensive set of GCM–RCM pair-
ings, longer transient runs to the middle or end of the 21st century,
and they are resolved at a higher resolution from 25 to 50 km. A
common RCM domain, model resolution, and set of output vari-
ables are defined making the results between climate models con-
venient to compare and ideal for use in impact studies (Christensen
et al., 2009). Dynamically downscaled RCMs outputs are still sub-
ject to systematic errors and biases (Fowler et al., 2007; Jones
et al., 2004b) and precipitation especially requires further down-
scaling and/or bias correction prior to use in hydrological simula-
tions (Hansen et al., 2006; Sharma et al., 2007). A variety of
downscaling and bias correction methods have been developed
to estimate or scale future climate variables.

In this paper, we classify bias correction methods as direct or
indirect in terms of their use of RCM outputs and linear or nonlinear
in terms of their scaling procedures, where the nonlinear direct
methods are sub-classified as parametric or nonparametric. A rela-
tively straightforward and therefore commonly applied statistical
downscaling approach is the delta change (DC) method, where
mean change factors derived by comparing GCM or RCM past and
future climate are perturbed onto a reference climate series (e.g.
Fowler et al., 2007; Graham et al., 2007; IPCC, 2007). DC methods
can be implemented at various temporal (e.g. daily, monthly, sea-
sonal, annual) and spatial (e.g. grid, basin, national) scales, can be
formulated to transfer relative or absolute changes (e.g. additive,
multiplicative factors), and can be calculated as a single factor per
variable or multiple magnitude dependent factors (Anandhi et al.,
2011; Hay et al., 2000). DC methods are indirect since RCM outputs
are not used directly and the perturbed change is usually linear, an
exception being e.g. magnitude dependent factors which perturb
change in a nonlinear way. By definition, DC methods preserve
the climate dynamics of the observed reference period, producing
locally realistic climate variables reflecting mean changes simu-
lated by the climate models, but do not utilise or retain information
on changes in precipitation dynamics simulated by RCMs in the fu-
ture period (Lenderink et al., 2007). Since change factors are per-
turbed evenly over daily data, changes in variability and regime
are not captured (i.e. frequency of wet and dry days, more frequent
precipitation events of high intensities) (Fowler et al., 2007). Bias
removal (BR), or linear scaling (Teutschbein and Seibert, 2012b),
operates similar to DC methods except mean correction factors
are found between observed and simulated values in a reference
period and are perturbed onto future RCM simulated climate out-
puts, making it a direct, linear method. BR methods can be ex-
panded to correct for variance bias with nonlinear power
transformations (Leander and Buishand, 2007; Sunyer et al.,
2012), in this case making a direct, nonlinear method. By definition,
BR methods will generate corrected RCM outputs in the reference
period that match the mean monthly values in the observations,
and this relationship is assumed to hold under future conditions.

Distribution correction methods adjust the function of RCM
outputs to match the function of observed climate variables by
deriving a transfer function from observed and simulated cumula-
tive distribution functions (CDFs). These methods fully utilise the
RCM simulation’s projected changes in precipitation regimes (i.e.
mean, variability, frequency, and intensity) by bias correcting
based on daily precipitation intensity, producing internally consis-
tent time series that have the same statistical intensity distribution
as the observations (Piani et al., 2010). After Yang et al. (2010), we
refer to this method as distribution-based scaling (DBS), but these
methods go by various names in the literature: distribution map-
ping (Teutschbein and Seibert, 2012b), statistical bias correction
(Piani et al., 2010), quantile mapping (Johnson and Sharma,
2011; Li et al., 2010; Wood et al., 2004), and histogram equalisa-
tion (Rojas et al., 2011). DBS methods are direct, nonlinear, and
parametric, and assume stationarity in climate model error over
time. Precipitation (P) intensity is well characterised by the asym-
metrical gamma distribution (Piani et al., 2010; Yang et al., 2010)
and temperature (T) by a Gaussian (normal) distribution (Teutsch-
bein and Seibert, 2012b; Yang et al., 2010) or a beta distribution (Li
et al., 2010). van Roosmalen et al. (2011) fit potential evapotrans-
piration (ETpot) to a gamma distribution, but goodness of fit criteria
were not reported.

The DBS method has been developed and documented for an-
nual P over Europe (Piani et al., 2010), seasonal P and T over Swe-
den (Teutschbein and Seibert, 2012b; Yang et al., 2010), and
seasonal P, T, and ETpot in Denmark, where previous work by van
Roosmalen et al. (2011) made limited comparisons between the
DBS and DC methods. We know of no other studies that have suc-
cessfully fitted ETpot to a distribution for bias correction purposes,
so it remains unclear how well ETpot can be bias corrected with a
DBS approach. So far no studies have compared both methods over
an ensemble of climate models through the end of the 21st century
considering all three variables P, T, and ETpot, which are needed for
many hydrological models. There is a need to benchmark the DBS
method against the more simplistic DC method in terms of relative
climate change and explore the uncertainty associated with choos-
ing a bias correction method that directly uses RCM output series
compared with the DC method of perturbing change onto observa-
tion series. It is important to continue to evaluate the DBS method
in different regimes, on variables beyond P and T, and to develop
methods for bias correcting P, T, and ETpot that retain daily covari-
ation between the variables.

More sophisticated indirect statistical downscaling methods
have been developed that utilise more information from the RCM
simulations. For example, weather typing schemes use various
classification techniques to link large-scale atmospheric variables
to surface weather variables. Conditional probability distributions
for observed statistics are associated with classes of atmospheric
circulation patterns, and climate change is estimated by the change
in frequency of the weather classes as simulated in the climate
model (e.g. Bárdossy and Pegram, 2011). In contrast to weather
classification techniques based on patterns, weather generators
are stochastic models based on the occurrence of events, where
daily climate is dictated by climate on previous days based on tran-
sition probabilities (e.g. Fowler et al., 2007). Weather typing
schemes are parametric and weather generating methods are non-
parametric, but both methods are indirect and nonlinear.

In a hydrologic modelling context, stationarity is usually dis-
cussed in terms of natural systems variability (e.g. annual stream-
flow, flood peaks) (Milley et al., 2008). Climate variables, both
observed and simulated, show significant natural variability both
on interannual and decadal time scales (especially precipitation),
where climatological reference periods of 30 years are generally
accepted to be adequate in length to encompass these natural cy-
cles. Under RCM simulated climate the resultant change signal vs.
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climate noise issue is often discussed because it can overwhelm
long term trends of climate change (Bates et al., 2008). Though
hydrologic change studies assume a non-stationary climate, the
associated bias correction methods still rely on an assumption of
stationarity in the climate change signal itself. The balance be-
tween climate change and climate variability (signal to noise ratio)
projected by the RCMs governs the appropriate change period
length. There is a need to characterise the impact of natural vari-
ability in RCM variables on the robustness of climate change sig-
nals and the ramifications on bias correction methods.

Historical data are often analysed for significance of climate
change in the 20th century, whereas projections of future climates
are often discussed in terms of magnitude and timing but not in
terms of statistical significance (IPCC, 2007). It could be useful to
evaluate climate models for statistically significant changes over
the 21st century for purposes of model comparison and/or selec-
tion for impact modelling. There is a need to quantify variability
and uncertainty on climate model inputs and between bias correc-
tion methods prior to use in an impact modelling methodology.
Hydrological outputs simulated under climate change might com-
pound the uncertainties within individual climate model predic-
tions, between various climate models, and in the choice of bias
correction and scaling methods.

The objectives of the present paper are (i) to assess the accuracy
and robustness of the DBS bias correction method by evaluating it
for an ensemble of climate models over multiple model domains;
(ii) to analyse to which extent projected climate changes are actu-
ally significantly different from the current climate; and (iii) to
evaluate reference and change period lengths to ensure distin-
guishing climate change from natural variability.

2. Data and methods

2.1. Study area

Multiple projections of future climate change are bias corrected
for Denmark, spatially distributed according to six hydrologically
distinct model domains as defined by the Danish national water re-
source model (DK-model) (Højberg et al., 2013; Henriksen et al.,
2003). The DK-model delineates seven model domains (DK1–7)
covering all of Denmark (approx. 43,000 km2), with boundaries de-
fined by the sea or topographical divides coinciding with natural
hydraulic conditions (Fig. 1). DK1 is a single domain over the island
Sjælland (7163 km2) and including Copenhagen, DK2 covers the
Southern Islands (2042 km2), DK3 covers the island Fyn
(3473 km2), and DK4–6 cover the Jylland peninsula divided into
South (7897 km2), Central (11,578 km2), and North (9934 km2)
respectively. We exclude the 590 km2 island Bornholm (DK7) from
this climate model bias correction effort due to the high proportion
of ocean to land in the grid cells covering the small island, making
the climate model outputs more representative for the surround-
ing ocean than for the island itself.

2.2. Observed climate data and processing

The Danish Meteorological Institute (DMI) provide the daily
gridded climate variables P [mm/day], T [�C], and ETpot [mm/day]
for the 20 year period 1991–2010. Observed P data is gridded to
10 km through an interpolation method of the approximately
500 rain gauges distributed evenly throughout Denmark, while T
and ETpot are gridded to 20 km based on a sparser network of cli-
mate stations (Scharling, 2000). ETpot was estimated following
the Makkink equation (Makkink, 1957) and negative values (i.e.
dew) were adjusted to zero by DMI (Scharling, 2001). It is impor-
tant to correct P prior to use in hydrological impact studies to

compensate for gauge under catch due to aerodynamic effects
and wetting losses. We use corrected precipitation data calculated
by Stisen et al. (2012) with daily correction factors for each 10 km
grid based on daily observations of wind speed and air tempera-
ture (Allerup et al., 1997). To achieve a uniform grid for all climate
variables, we further interpolate T and ETpot to the same 10 km grid
as P using an inverse weighted distance interpolation method
(Shepard, 1967). Fig. 1 illustrates the DMI 10 km grid in compari-
son to the ENSEMBLES RCM 25 km grid (as grid centroid points)
in relation to the six DK-model domains.

2.3. Climate model data and processing

A subset of climate models (GCM–RCM pairings) from the
ENSEMBLES matrix are selected based on the following criteria
for maximum comparability: highest resolution (25 km), longest
simulations to the end of the 21st century covering approximately
1951–2100 (some start in 1961 and/or end in 2099), and consistent
climate sensitivity to atmospheric CO2 (excludes the low and high
sensitivity Hadley GCMs) (Table 1). To explore climate model
uncertainty as fully as possible, we include all eligible models,
and the resultant subset of the ENSEMBLES matrix represents four
GCMs and eight RCMs in 11 model pairings (Table 2).

Direct RCM output variables were downloaded from the
ENSEMBLES data portal, including P [mm/day] and T [K] at 2 m
above ground, and the variables needed for calculating ETpot (i.e.
temperature minimum and maximum, incoming long and short
wave solar radiation, relative humidity, and wind speed) on a
25 km grid over a common European region. Post-processing of
RCM climate outputs was as follows: (1) estimate ETpot from RCM
outputs, (2) correct P for RCM wet day bias, and (3) interpolate P,
T, and ETpot to 10 km DMI grid.

Actual evapotranspiration (ETact) is a direct RCM output, but the
simplified representation of land–surface processes makes ETact

Fig. 1. The study area (Denmark) as divided by the DK-model into six hydrological
domains; the 10 km DMI grid and centroids from the 25 km ENSEMBELS RCM grid
are shown.
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values inadequate as hydrological modelling inputs. The processes
effecting ETact (i.e. relative humidity, temperature, solar radiation,
wind speed) are simulated at more realistic scales, therefore, it is
common practice to estimate ETpot using empirical formulas and
output variables from the RCMs (van Roosmalen et al., 2009;
Ekström et al., 2007). We calculate ETpot following an adapted Pen-
man–Monteith equation developed by the Food and Agriculture
Organization of the United Nations (Allen et al., 1998):

ETpot ¼
0:408DðRn � GÞ þ c 900

Tþ273:15 u2ðes � eaÞ
Dþ cð1þ 0:34u2Þ

ð1Þ

where ETpot is potential evapotranspiration (mm/day), Rn is net radi-
ation at the crop surface (MJ m�2 d�1), G is soil heat flux density
(MJ m�2 d�1), u2 is wind speed at 2 m height (m s�1), es � ea is sat-
uration vapour pressure deficit (kPa), D is slope vapour pressure
curve (kPa �C�1), and c is the psychrometric constant (kPa �C�1).
The meteorological variables are assumed to be measured at 2 m,
which is the approximate height of RCM variables with the excep-
tion of wind speed at 10 m. A conversion factor based on the loga-
rithmic wind profile is applied to adjust wind speed to 2 m (Allen
et al., 1998). Rn is calculated using RCM predictions of net incoming
short and long wave radiation. The mean saturation vapour pres-
sure (es) and the slope of the vapour pressure curve are calculated
using daily mean temperature, which is calculated as the average
of daily maximum and minimum temperature. The actual vapour
pressure (ea) is derived from relative humidity. Soil heat flux (G)
is small compared to Rn (Allen et al., 1998) and is therefore set to
zero. For consistency with DMI’s calculated ETpot, all negative values
(i.e. dew) of RCM estimated ETpot are set to zero.

It is well established that RCMs have a systematic wet day bias,
or a so-called drizzle effect, resulting in excessive low intensity
precipitation on a high number of days (e.g. Gutowski et al.,
2007). In the reference period 1991–2010, 46% of days are dry in
Denmark annually, with winter having the lowest frequency of

39% and spring having the highest frequency at 54%. The 11
ENSEMBLES RCMs average 15% dry days annually. While these
small daily amounts of drizzle may have negligible effects on mean
monthly and total annual precipitation using e.g. DC, bias correc-
tion methods based on the distribution and frequency of wet days
(e.g. DBS) would be affected by this climate model error. It is com-
mon practice to correct this wet bias so the frequency of dry days
in the climate model reference period is equivalent to the fre-
quency in the observations (e.g. Yang et al., 2010). Future data
are corrected using the cut-off value obtained in the reference per-
iod (Table 3), which can be considered the value above which mod-
elled precipitation is realistic, and below which values are
erroneous drizzle and therefore set to zero. This allows for correct-
ing the wet bias while preserving potential changes in the fre-
quency of dry days in modelled future precipitation regimes.
Across all climate models, domains, and seasons, dry day cut-off
values range from 0.08 to 1.63 mm and average 0.67 mm. The cor-
rection is applied at a temporal scale (i.e. seasonal) and spatial
scale (i.e. regional) that is consistent with the application of the
DBS bias correction to ensure the functions can train properly in
the reference period.

It is essential to have all climate variables on a uniform grid for
the forthcoming scaling methods, and we choose to interpolate
down to 10 km to preserve the higher resolution observation data.
The same inverse weighted distance interpolation method is ap-
plied to the RCM climate variables (P, T, and ETpot). This effectively
subsets the European dataset to the grids over Denmark while
interpolating the 25 km ENSEMBLES grid to the 10 km DMI grid.

2.4. Bias correction methods

Assuming RCMs reliably simulate relative changes and dynam-
ics rather than absolute values, we explore two methods of bias
correction to overcome the inadequacy of the direct data for use
in assessing hydrological impacts: a monthly DC approach and a
seasonal DBS method. The RCM transient simulations are divided
into past (1951–2010) and future (2011–2100) periods, from
which we use a reference period (1991–2010) to coincide with
the observations. Most of the climate models (8 out of 11) show
a significant positive trend in precipitation over the 90 year future
period. At 30 year time scales this trend was no longer significant,
therefore, we assume stationarity in the climate change signal
within the following designated future periods: near (2011–
2040), mid (2041–2070), and far (2071–2100). For the DC ap-
proach, change factors for each future period are calculated. The
DBS method is applied to the entire transient simulation (i.e. past
and future periods) at once, but the three future time periods are
still used in analysing the results to see how climate change

Table 1
Climate models from the ENSEMBLES project for which projections have been used in the present study.

Climate model Organisation Reference

GCM
HadCM3 Met Office Hadley Center (METO-HC), UK Collins et al. (2006)
ECHAM5 Max Planck Institute for Meteorology (MPI), Germany Roeckner et al. (2003)
ARPEGE National Centre of Meteorological Research (CNRM), France Déqué et al. (1994)
BCM2 Bjerknes Centre for Climate Research (BCCR), Norway Otterå et al. (2009)

RCM
HadRM3 Met Office Hadley Center (METO-HC), UK Jones et al. (2004)
REMO Max Planck Institute for Meteorology (MPI) Jacob et al. (2001)
RM5.1 National Centre of Meteorological Research (CNRM), France Radu et al. (2008)
HIRHAM5 Danish Meteorological Institute (DMI) Christensen and Christensen (2007)
CLM Swiss Federal Institute of Technology Zurich (ETHZ) Böhm et al. (2006)
RACMO2 Royal Netherlands Meteorological Institute (KNMI) van Meijgaard et al. (2008)
RegCM3 International Centre for Theoretical Physics (ICTP), Italy Pal et al. (2007)
RCA3 Swedish Meteorological and Hydrological Institute (SMHI) Kjellström et al. (2005)

Table 2
Matrix of ENSEMBLES climate models shown as GCM–RCM pairings.

RCM GCM

HadCM3 ECHAM5 ARPEGE BCM2

HadRM3 X
REMO X
RM5.1 X
HIRHAM5 X X X
CLM X
RAC MO2 X
RegCM3 X
RCA3 X X

482 L.P. Seaby et al. / Journal of Hydrology 486 (2013) 479–493
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evolves throughout the 21st century. The DC and DBS methods are
used mainly for bias correction purposes, though there are ele-
ments of downscaling as we go from 25 km RCM output to
10 km grid scales.

2.4.1. Delta change (DC)
The DC method consists of altering an observed (reference) cli-

mate series with change factors to obtain a new series representa-
tive of future change. For state variables (e.g. T) absolute change is
applied, whereas for flux variables (e.g. P and ETpot) relative change
factors are applied. Monthly change factors are derived and per-
turbed as follows for day and month (i, j), where i = 1, 2, . . . ,31
and j = 1, 2, . . . ,12:

PDði; jÞ ¼ DPðjÞ � Pobsði; jÞ; DPðjÞ ¼
PfutðjÞ
Pref ðjÞ

ð2Þ

ETpotDði; jÞ ¼ DETpotobs
ðjÞ � ETpotobsði;jÞ; DETpotðjÞ ¼

ETpotfut ðjÞ

ETpotref
ðjÞ

ð3Þ

TDði; jÞ ¼ Tobsði; jÞ þ DTðjÞ; DTðjÞ ¼ TfutðjÞ � Tref ðjÞ ð4Þ

where PD, ETpotD, TD are DC perturbed daily climate change vari-
ables, Pobs; ETpotobs

; Tobs are observed climate variables in the refer-
ence period, Dp, DETpot, DT are the changes in climate as simulated
by the RCMs, P; ETpot ; TðjÞ are daily climate means by month, the in-
dex ref indicates the reference period, and fut indicates a future per-
iod. Here, DC values for P, T, and ETpot are determined from the 11
RCM simulations’ output, for the three future time periods, with un-
ique sets of monthly (12) factors spatially averaged for each of the
six DK-model domains. These factors are then used to adjust the ob-
served daily climate variables within the individual months to a cli-
mate input series representing mean change of the respective
future period (near, mid, far).

2.4.2. Distribution based scaling (DBS)
Unlike the DC approach, the DBS bias correction method di-

rectly operates on RCM output in a manner that preserves the

statistical distribution of the observed precipitation in the refer-
ence period. The application follows these steps: (1) group and pre-
pare data for scaling, (2) fit probability distributions to observed
and RCM precipitation in the reference period, (3) scale RCM pre-
cipitation for entire simulation period, and (4) perform a separate
error bias method on ETpot and T.

2.4.2.1. DBS step 1: Group and prepare data for scaling. The DBS
method can be applied at various temporal scales (e.g. annually,
seasonally, monthly) and spatial scales (e.g. nationwide, regional,
single grid) which decide how the data should be grouped for fit-
ting distribution parameters and the subsequent scaling. Ideally,
the temporal scale should be short enough to preserve intra-an-
nual climate characteristics (e.g. seasonality) and long enough to
allow for potential shifts in future regimes (e.g. monthly changes).
Likewise, the spatial scale should be fine enough to retain spatial
heterogeneities in the RCM projections (e.g. local climate changes)
but large enough to be robust and meaningful when fit to a distri-
bution (e.g. more grids pooled). To retain spatial variation in the
RCM outputs at the basin scale, DBS parameters are fit for each
DK-model domain covering Denmark (DK1–6), and to maintain
the seasonal characteristics, we further divide RCM and observed
data into four seasons: winter (December–February), spring
(March–May), summer (June–August), and autumn (September–
November). For P, a subset is made of the wet days per season
which are then sorted in ascending order and divided into two
groups split the 95th percentile. From here on we refer to these
groups as 95upper and 95lower, and the reasoning behind this group-
ing is explained below.

2.4.2.2. DBS step 2: Fit a probability distribution to observed and RCM
precipitation for rainy days. Given the physical constraint of precip-
itation to be nonnegative, the statistical distribution of daily inten-
sities is characteristically asymmetric and positively skewed.
Gamma distributions are commonly used to theoretically repre-
sent precipitation intensity distributions as they are bound on
the left by zero and skewed to the right (Wilks, 2006). The gamma
distribution is defined by two parameters, the shape parameter al-

Table 3
Seasonal dry day correction cut-off values (mm/day) estimated from the reference period (1991–2010) and applied prior to downscaling RCM precipitation data (1951–2100).

Season DK-
domain

Obs freq. dry
days (%)

ARPEGE-
RM5.1

ARPEGE-
HIRHAM5

BCM2-
HIRHAM5

BCM2-
RCA3

ECHAM5-
HIRHAM5

ECHAM5-
RegCM3

ECHAM5-
RACMO2

ECHAM5-
REMO

ECHAM5-
RCA3

HadCM3-
CLM

HadCM3-
HadRM3

Winter 1 42 0.53 0.76 0.98 1.02 1.06 0.55 0.62 0.80 0.69 0.58 0.39
2 42 0.60 0.80 1.04 1.00 1.01 0.54 0.64 0.80 0.76 0.67 0.49
3 40 0.49 0.84 0.99 0.91 1.08 0.52 0.62 0.81 0.68 0.62 0.42
4 35 0.38 0.55 0.69 0.77 0.83 0.44 0.53 0.55 0.57 0.27 0.24
5 37 0.41 0.55 0.69 0.79 0.86 0.48 0.55 0.54 0.61 0.32 0.25
6 36 0.42 0.56 0.71 0.77 0.85 0.38 0.52 0.66 0.49 0.35 0.22

Spring 1 56 1.30 0.61 0.67 0.92 0.90 0.84 0.57 0.53 0.92 0.40 0.52
2 56 0.99 0.58 0.68 0.90 0.85 0.78 0.55 0.49 0.91 0.40 0.46
3 55 1.25 0.62 0.71 1.00 1.01 0.72 0.57 0.57 0.94 0.41 0.52
4 51 1.45 0.48 0.56 0.98 0.80 0.68 0.58 0.58 0.86 0.35 0.51
5 53 1.60 0.53 0.60 1.10 0.81 0.73 0.64 0.59 0.92 0.42 0.58
6 54 1.31 0.62 0.66 1.05 0.94 0.67 0.60 0.57 0.76 0.42 0.51

Summer 1 51 0.74 0.12 0.26 0.46 1.30 0.78 0.57 0.90 1.40 0.09 0.22
2 53 0.56 0.11 0.28 0.55 1.51 0.92 0.69 0.81 1.53 0.08 0.21
3 51 0.69 0.18 0.38 0.56 1.63 0.80 0.59 0.90 1.54 0.09 0.24
4 47 0.78 0.09 0.21 0.50 1.11 0.77 0.66 0.84 1.39 0.10 0.24
5 49 0.96 0.08 0.17 0.54 1.01 0.75 0.64 0.84 1.39 0.14 0.27
6 52 0.90 0.15 0.28 0.60 1.31 0.67 0.74 0.70 1.31 0.16 0.30

Autumn 1 44 0.53 0.55 0.92 1.03 1.43 0.57 0.71 1.08 1.15 0.36 0.25
2 45 0.58 0.56 0.98 0.99 1.57 0.57 0.75 1.26 1.24 0.50 0.32
3 42 0.48 0.65 1.02 0.96 1.60 0.57 0.62 0.99 1.03 0.36 0.23
4 36 0.36 0.25 0.52 0.89 0.94 0.53 0.64 0.58 0.91 0.16 0.16
5 38 0.37 0.22 0.43 0.94 0.81 0.54 0.58 0.52 0.91 0.17 0.17
6 38 0.41 0.31 0.50 0.98 0.96 0.42 0.62 0.71 0.88 0.18 0.16
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pha (a) and the scale parameter beta (b). The probability density
function (PDF) of daily P (mm/day) is as follows:

f ðPÞ ¼ ðP=bÞ
a�1 expð�P=bÞ
bCðaÞ ; P;a; b > 0 ð5Þ

where C(a) is the gamma function:

CðaÞ ¼
Z 1

0
ta�1e�tdt ð6Þ

The parameters (a, b) are fit using the method of maximum likeli-
hood for the shape parameter (b) after which the scale parameter
(a) is obtained (Wilks, 2006). The parameter set that maximises
the log likelihood function is found through an iterative process
using the multidimensional generalisation of the Newton–Raphson
method (Press et al., 2007). To minimise the number of parameters
in the scaling method and associated uncertainty, we initially at-
tempt to fit a single gamma distribution to observed P in the refer-
ence period, per season and per DK-domain. A good fit between the
observations and a gamma distribution is prerequisite, as the RCM
scaling will be trained on this relationship, ultimately transferring
the difference onto the RCM data outside of the reference period.
Therefore, the match between the observations and the fitted gam-
ma distribution was checked prior to moving onto the RCM fitting.
With a single gamma approach mean seasonal P was estimated well
(i.e. zero error) but daily intensity was not as indicated by consis-
tently high error in variance (20–40%). In general, precipitation re-
gimes are characterised by a high number of low intensity events,
which can dominate the fitting of the distribution parameters.
The high error in variance suggests that extreme high values (i.e.
upper tail) could not be represented within a single gamma distri-
bution. These findings are consistent with Yang et al. (2010), who
also expanded to a double gamma distribution partitioned at the
95th percentile, effectively isolating normal precipitation from hea-
vy precipitation. With a double gamma approach, distributions are
fit to the 95upper and 95lower groups separately, resulting in two
parameter sets per season and per DK-domain. Finally, the same ap-
proach is applied to P from the 11 RCM’s outputs in the reference
period. Table 4 provides the seasonal 95upper and 95lower gamma
distribution parameters for the 11 RCMs spatially averaged over
the six DK-domains.

2.4.2.3. DBS step 3: Scale RCM data. Though DBS parameters are
found per basin and season, DBS scaling is done per grid on a daily
basis. When scaling (=correcting) a daily P value simulated by a
RCM, FRCM, the probability of the precipitation not exceeding PRCM

in the RCM simulation in the reference period is found from the
CDF for the RCM in the reference period. Locating this probability
in the CDF for the observations provides the corresponding (i.e.
scaled) daily P value following this method:

Pcorr ¼ F�1ðaobs;bobs; Fðactrl;bctrl; PRCMÞÞ ð7Þ

where Pcorr is the bias corrected RCM daily P, F is the CDF of the
gamma distribution (Eq. (5)), and F(actrl, bctrl, PRCM) is the probability
of not exceeding the value PRCM. We assume that model biases are
the same in the reference, past, and future periods, therefore, Pcorr

can be any value in the entire transient RCM output. Fig. 2 graphi-
cally depicts the correction in Eq. (7) with y1 = Pcorr and x1 = PRCM.

To evaluate the effectiveness of the scaling method, a compari-
son of mean and variance between observed and RCM scaled P in
the reference period is made. Across all domains in Denmark and
for all climate models, error bias on the mean is within 2% and
most are within 10% on the variance. The exceptions being high er-
ror variance in the summer months for ARPEGE-HIRHAM5 (+4% to
+17%) and ECHAM5-HIRHAM5 (�4% to +11%).

2.4.2.4. DBS step 4: Error bias correction for potential evapotranspi-
ration and temperature. In the DBS application outlined by Yang
et al. (2010) a double gamma distribution is fit to P and a normal
distribution is fit to T, with emphasis on how the method retains
the daily covariation between the variables. However, ETpot was
not included in the Yang et al. (2010) study, and DBS scaling of
ETpot remains a challenge. We attempt to fit observed and simu-
lated ETpot on a seasonal basis and in each DK-domain initially to
a single gamma distribution and then a double gamma distribution
split at various percentiles (i.e. isolating the upper and lower tails),
but find that ETpot does not conform to a gamma distribution. The
motivation of this bias correction exercise is to prepare climate in-
puts for hydrological modelling, therefore, it is important that P, T
and ETpot are realistic as a set of daily inputs. Though P and T covary
on a daily basis, ETpot and T are more strongly tied given that daily T
is one of the variables used in the estimation of ETpot. Therefore, it
is important that ETpot and T are bias corrected in an alternate way,
consistent with each other to persevere their dependence, and
with a direct method so the transient series can be used alongside
scaled P. We use a standard monthly BR method to correct daily
values, where bias factors are calculated between the RCM refer-
ence period and the observed data for each day i in month j:

eETpot ðjÞ ¼
ETpotref

ðjÞ
ETpotobs

ðjÞ
; j ¼ 1;2; . . . ;12 ð8Þ

eTðjÞ ¼ Tref ðjÞ � TobsðjÞ; j ¼ 1;2; . . . ;12 ð9Þ

where ETpotref
and Tref are mean daily RCM simulated outputs and

ETpotobs
and Tobs are mean daily observed values, each calculated as

the mean of all days per month and per DK-domain, and eETpot and
eT are the monthly biases, which are then applied to the RCM out-
puts to remove mean monthly biases:

ETpotcorr
ði; jÞ ¼ ETpotRCM

ði; jÞ � eETpot ðjÞ; i ¼ 1;2; . . . ;31;

j ¼ 1;2; . . . ;12 ð10Þ

Tcorrði; jÞ ¼ TRCMði; jÞ � eTðjÞ; i ¼ 1;2; . . . ;31;

j ¼ 1;2; . . . ;12 ð11Þ

where ETpotcorr
and Tcorr are corrected RCM outputs and ETpotRCM

and
TRCM are simulated RCM outputs, and eETpot is the monthly bias factor
representing relative change for the flux variable ETpot and eT is the
absolute change for the state variable T.

3. Results

3.1. DC factors for Denmark

Across Europe, the ENSEMBLES RCMs project increases in T in
all seasons and positive P changes in northern Europe. For Den-
mark, we calculate DC factors for the climate variables P, T, and
ETpot on a monthly basis for the near, mid, and far-future, and spa-
tially averaged for the six DK-domains. DC values for net potential
precipitation Net Ppot (P � ETpot) are calculated as an indicator of
changes in both radiation balance and precipitation. Fig. 3 shows
plots of monthly DC values for all of Denmark (average of six do-
mains) in the far-future period per climate model. We include
the ensemble mean DC factors calculated as the mean of all 11 fac-
tors from each RCM. Table 5 shows annual DC factors for all climate
models calculated as the mean of all (12) monthly DC factors.

3.1.1. Temperature
Across all models and months, T is projected to increase. The

models driven by the HadCM3 GCM project the highest annual in-
creases in T (more than +3.3 �C), while the smallest increases (less
than +2 �C) are projected by the BCM2-RCA3 and ECHAM5-HIR-
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HAM5 models. The rest of the models show relatively small differ-
ences among GCM–RCM pairings, with annual increases between
+2.02 and +2.29 �C by 2100. For nine of the 11 models annual aver-
age T increases are below the ensemble average increase of
+2.34 �C. The ensemble shows the highest T increases and largest
spread (i.e. variability among models) in November, December,
and January, and the lowest increases in T and least spread in
May, June, and July.

3.1.2. Precipitation
Most models project increases in P ranging between +6% and

+19% annually. The two ARPEGE GCM driven models show an
opposite change signal, projecting decreases between �11% and
�16%. The HadCM3-HadRM3 model projects relatively no change
in annual P (�1%). The ensemble mean trend is of relative de-
creases in P from June to October (�2% to �15%) and increases
from November to May (+4% to +24%). The two BCM2 GCM driven
models deviate from the ensemble mean trend with relative in-
creases in P projected nearly every month throughout the year.
The two ARPEGE GCM driven models also deviate from the ensem-
ble mean trend with most months projecting decreases in P. Most
ECHAM5 GCM driven models project relatively moderate increases
in annual P, and monthly changes follow the ensemble mean pat-
tern of P increase in winter and decrease in summer. The ECHAM5-
HIRHAM5 model projects the highest annual increase in P (+19%)
and the ARPEGE-HIRHAM5 model projects the highest annual de-
crease in P (�16%). Though these models are paired with the same
RCM (HIRHAM5), they represent the largest spread in the ensem-
ble for relative changes in P, reiterating the importance of the GCM.

3.1.3. Potential evapotranspiration
All models project an annual increases in ETpot ranging between

+7% and +37%. The ensemble mean trend projects an increase in
every month throughout the year. The greatest relative increases
as well as variability in change factors (spread) within the ensem-
ble is in the winter months, while the smallest increases and least
variability in the change factors is in the summer months. The
model pairings with the highest annual increases of ETpot, Had-
CM3-HadRm3 (+37%) and ARPEGE-HIRHAM5 (+25%), are also at
the higher end of the ensemble for projected increases in T. The EC-
HAM5 GCM driven models project the least annual increases in
ETpot (+7% to +14%), yet these models are varied in terms of pro-
jected P and T changes.

3.1.4. Net potential precipitation (mm/day)
Though Net Ppot represents a flux, we present it in absolute

change to de-emphasise relatively large changes on small quanti-
ties (e.g. summer Net Ppot). Most models in the ensemble project
annual increases in Net Ppot, with a pattern of increase from

November to May and decrease from June to October, which clo-
sely follows projected patterns of P change. These patterns are
especially clear in Fig. 4, which shows monthly far-future DC fac-
tors for Net Ppot for GCM ensembles within the climate model pair-
ings (i.e. ARPEGE, BCM2, ECHAM5, and HadCM3 paired climate
models) and the ensemble mean. The ARPEGE GCM driven models
are clear outliers within the ensemble, projecting decreases in Net
Ppot for every month except December. The BCM2 GCM driven
models also deviate from the ensemble mean trend with increases
in Net Ppot projected throughout most of the year. The HadCM2 and
ECHAM5 GCM driven models follow the ensemble Net Ppot mean
trend more closely, but there are still months with high variability
among the models.

3.2. Validation of the DBS method

The DBS method has been calibrated to fit the probability distri-
bution of the observed P for a 20 year reference period for four sea-
sons over six domains. We calculate monthly DC factors with DBS
corrected P to compare with DC factors derived from direct RCM
output to evaluate how well the seasonal scaling retains the pro-
jected monthly change characteristics. The DC factors were essen-
tially the same between the DBS corrected and RCM direct P.
Despite being trained on seasonal data, monthly change character-
istics are not compromised in the DBS correction. We further eval-
uate the DBS correction by testing to which extent it is able to
reproduce other statistics of the observed data for which it has
not directly been calibrated. We have made two tests with focus
on annual mean P and extreme P, respectively.

In the first test we compare annual P for the entire country for
the 20 year reference period and test to which extent the DBS
method is able to reproduce the mean and the variance of the 20
annual values as in the observation data. To perform such valida-
tion test we first confirm by a chi-square test that the 20 annual
mean P values, for each of the 11 models, can be assumed to be
normally distributed. Next, we test the hypothesis that DBS scaled
P (mm/year) is not significantly different than the observations in
mean (t-test) and variance (f-test). Table 6 shows the significance
level results, where the p-values indicate the level of confidence
that mean and variance are not from different populations, along
with annual statistics on the reference period. The results show
that the hypothesis cannot be rejected for any of the models (i.e.
p-values below 0.05) and that DBS scaled P from all 11 RCMs repro-
duce the annual mean and variance of the observations. The confi-
dence levels, however, differ between models. For most models
there is very high confidence that the means are from the same
population (i.e. p-values above 0.95), while for the two HadCM3
GCM driven models there is lower confidence (p-values below
0.80). The significance levels for the test in variance are generally
lower, which is not surprising as the calibration of the double gam-
ma distributions focused on preserving the mean and variance over
the entire 20 years reference period (Table 6) but did not consider
the interannual variation.

In the second test we analyse selected percentiles in the upper
10% tail of P to evaluate how well the DBS method reproduces the
high intensity P in the observed dataset. Fig. 5 shows observed
cumulative daily P for high intensity events at selected percentiles
during the reference period with error bars indicating the range of
values estimated by DBS P in all 11 models. These selected percen-
tiles allows for analysis in the upper tail of the 95lower distribution
(i.e. 90th percentile) and the full range of the 95upper distribution
(i.e. 95–99.9th percentile). DBS scaled P from all 11 RCM models
replicates the upper tail well, with very narrow RCM ranges which
in all cases encapsulate the observed values.

Fig. 2. Graphical illustration of the DBS correction method on daily precipitation.
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Fig. 3. Monthly DC factors for the variables T, P, and ETpot in the far-future period (2071–2100) for all 11 RCMs. Climate models originating from the same GCM are depicted
with the same line colour and climate models from the same RCM are depicted with the same marker symbol, along with the ensemble mean. A 1:1 line is shown on the P and
ETpot plots dividing positive and negative change.

Table 5
Annual DC values for all variables (T, P, ETpot, and Net Ppot) in the far-future period
(2071–2100) for all 11 RCMs.

Climate model Annual D

T (�C) P (–) ETpot (–) Net Ppot (mm/day)

ARPEGE-RM5.1 2.07 0.89 1.25 �0.44
ARPEGE-HIRHAM5 2.02 0.84 1.16 �0.33

BCM2-HIRHAM5 2.26 1.13 1.19 0.18
BCM2-RCA3 1.97 1.13 1.15 0.30

ECHAM5-HIRHAM5 1.92 1.19 1.10 0.51
ECHAM5-RegCM3 2.29 1.07 1.10 0.06
ECHAM5-RACMO2 2.17 1.09 1.13 0.08
ECHAM5-REMO 2.14 1.06 1.14 �0.01
ECHAM5-RCA3 2.14 1.10 1.07 0.14

HadCM3-CLM 3.30 1.09 1.18 0.05
HadCM3-HadRM3 3.40 0.99 1.37 �0.23

ENSEMBLE mean 2.34 1.05 1.17 0.03

Fig. 4. Monthly DC values averaged for all RCM grids over Denmark in the far-
future period 2071–2100, and averaged across the four GCM ensembles (i.e. all RCM
pairings with each GCM) for the indicator variable potential net precipitation Net
Ppot (mm) (i.e. P � ETpot) characterising overall climate change by compounding
changes in radiation balance and precipitation.
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3.3. Difference between DC and DBC for future climates

To assess potential differences in mean P under both bias cor-
rection methods, we calculate DC factors between the DBS refer-
ence period and future periods for comparison with the DC
factors from direct RCM output used in the DC correction method.
Annual and seasonal DC factors for all DK-domains were approxi-
mately the same, indicating no difference in mean P changes under
both methods. This result is unsurprising, given that the DC meth-
od perturbs mean changes and DBS methods was applied to pre-
serve mean and variance.

The frequency of dry days in future periods under the DC meth-
od is identical to the observed reference period because mean
changes in P are perturbed onto wet days only. For DBS far-future
P, we calculate the frequency of dry days per season for compari-
son with the observed/DC method frequencies. For the two ARPEGE
GCM driven models, which had negative P change signals, the fre-

quency of dry days increases by +5% to +8% in winter and spring
and by +10% to +15% in summer and autumn. The two BCM GCM
driven models project a reduction in dry days by �1% to �4% in
spring and summer and an increase by +1% to +4% in autumn, with
negligible winter changes in dry day frequency. With five RCMs
paired with the ECHAM GCM, there is more variation between
these models, though they all project an increase in spring and au-
tumn dry days up to +7%. The HIRHAM5 and RCA3 RCMs project a
reduction in dry days by �3% to �5% in the summer, while the Reg-
CM3, RACMO2, and REMO RCMs project up to +2% increase in sum-
mer dry days. In winter, the HIRHAM5 and RACMO2 RCMs project
a reduction in dry days by �2%, while the RCM3, RegCM3, and
REMO RCMs project an increase in dry days up to +3%. The two
HadCM3 GCM driven models project an increase by +8% to +11%
in winter dry days and +6% in autumn dry days, with negligible dif-
ferences in spring and summer dry days.

We analyse selected percentiles in the lower 75% tail and the
upper 5% tail of P from DC and DBS in the far-future to evaluate
how the methods compare in their generation of low and high
intensity P. Because 30 year (2071–2100) DC factors are perturbed
onto a 20 year observed dataset, we select 20 years of DBS P (2080–
2099) for this comparison. In the reference period, the observed
25th percentile of P is 0.78 mm/day and the 75th percentile of P
is 5.65 mm/day. Across all climate models and methods the 25th
percentile of P in the far-future increases slightly, up to 0.87 mm/
day with the DC method and 0.82 mm/day with DBS correction.
At the 75th percentile of P, the two ARPEGE GCM driven models
deviate from the rest of the ensemble, decreasing to around
4.7 mm/day under DC and 5.4 mm/day under DBS in the far-future.
Across the rest of the models, the 75th percentile of P increases to a
mean value of 6.09 mm/day under DC and 6.33 under DBS in the
far-future.

To look at the upper tail of P, we focus on three models repre-
senting the spread of ensemble in terms of mean annual and sea-
sonal P changes. Fig. 6 shows daily cumulative P curves for the
far-future time period above the 95th percentile for three models’
DC (perturbed on 20 year series) and DBS (20 years from 2080 to
2090) result, with observed P (20 years from 1991 to 2010) shown
for reference. The ARPEGE-HIRHAM5 model projects a negative
change signal, with decreasing mean annual, seasonal, and
monthly P. With the DC method, this reduction is evenly trans-
ferred to every wet day (by month), which is why the upper per-
centiles of ARPEGE-HIRHAM5 P are all below the observations.
The DBS method transfers the same mean decrease in P, but in a
nonlinear way, by adjusting the distribution and intensity of wet
days. The upper tail percentiles of ARPEGE-HIRHAM5 under the
DBS method are estimated to be quite close to the upper tail of
the observations (i.e. no change). The BCM2-RCA3 model projects
a relatively high increase in P, and in this case the DC and DBS

Table 6
Summary statistics and significance levels (p-values) for the hypotheses that DBS scaled precipitation is able to preserve the mean (t-test) and variance (f-test) of annual
precipitation during the reference period (1991–2010).

Precipitation Mean (mm/year) Std. dev. (mm/year) Max (mm/year) Min (mm/year) t-Test (p-value) f-Test (p-value)

Observed 859 112 1016 611 – –
Climate models
ARPEGE-RM5.1 856 151 1120 611 0.93 0.20
ARPEGE-HIRHAM5 858 122 1120 604 0.97 0.71
BCM2-HIRHAM5 861 108 1112 610 0.97 0.88
BCM2-RCA3 857 102 1066 675 0.95 0.70
ECHAM5-HIRHAM5 861 88 1053 671 0.96 0.32
ECHAM5-RegCM3 860 108 1056 729 0.98 0.90
ECHAM5-RACMO2 862 115 1087 604 0.95 0.89
ECHAM5-REMO 862 101 1008 678 0.94 0.68
ECHAM5-RCA3 858 107 1023 690 0.97 0.86
HadCM3-CLM 846 102 1022 580 0.71 0.71
HadCM3-HadRM3 848 134 1053 680 0.77 0.44

Fig. 5. Observed cumulative daily precipitation for high intensity rainfall events
during the reference period (1991–2010) vs. the range of DBS scaled precipitation
projected by the 11 RCMs (error bars).
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upper tails are very similar to each other, with each percentile just
a few mm above observed P. The method by which the mean

increase in P was transferred to each day, for this model, has neg-
ligible impacts (i.e. differences between DC and DBS) to the high
intensity P. The ECHAM5-RACMO2 model is an median model in
terms of annual and monthly P increase within the ensemble.
The DC P above the 95th percentile is slightly higher than the ob-
served P, while the DBS method allows for much higher intensity
values in the upper tail. Most notably, the DBS method allows
the upper tail of this median model to surpass the model with
higher relative increase (BCM-RCA3).

3.4. Statistical significance of annual mean projected climate change

To analyse the evolution of climate change over time, including
past and future changes as simulated by the RCMs, we test for dif-
ference of annual means between the past and future periods for
DBS corrected data. We look at two past periods, 1961–1990 and
1991–2010, to see if significant climate changes have already oc-
curred. We compare the reference period 1991–2010 to the near,
mid, and far-future periods to see at what point in the 21st century
projected climate changes are significantly different from the cur-
rent RCM climate, if at all. With annual mean values following nor-
mal distributions in all past and future periods (with the exception
of P from the BCM2-RCA3 model, which is not normally distributed
in the mid-future), we can make tests of change in means between
periods as t-tests. Table 7 reports p-values for the hypothesis of no
change in annual mean, which is rejected when P < 0.05. P = 0 indi-
cates a 100% probability that the mean annual climate is different
in the two periods, 0.05 indicates a 95% probability, etc. Comparing
the two past periods, T is significantly different above 95% in six
models, while P and ETpot are significantly different above 95% in
only one model. Above 90% probability, two more models are sig-
nificantly different in T and P, and one more model in terms of
ETpot. For some models, simulated climate is already significantly
different within the past time period, and more pronounced in
variables like T which are not subject to high interannual variabil-
ity like P and ETpot.

In the future periods, T is the first variable to show strong signif-
icant differences at 100% probability for the mid and far-future in
every model, as well in the near-future for four models. P and ETpot

are more similar, with eight and nine models significantly different
above 95% probability, respectively. However, in the mid-future
period, the P signal is not as strong, with only four models signifi-
cantly different above 95% probability, while ETpot is significantly
different above 95% probability in seven models. For the future
periods, it is clear that by the end of the 21st century, mean annual
climate for all variables and in most models is significantly differ-
ent. For the variables T and ETpot, changes are significant in the

Fig. 6. Upper tail percentiles for DBS and DC precipitation in the far-future (2071–2100) displayed with observed precipitation in the reference period (1991–2010).

Table 7
p-Values for the hypotheses of unchanged mean between the reference period (1990–
2010) and four other periods (1961–1990; 2011–2040; 2041–2070; 2071–2100) for
the variables T, P, and ETpot. Significance above the 95th confidence level is shown in
bold and above the 90th confidence level is shown in italic.

Climate Models past        
1961-1990

near      
2011-2040

mid        
2041-2070

far         
2071-2100

Preciptitation (p -values)
ARPEGE-RM5.1 0.32 0.42 0.22 0.05
ARPEGE-HIRHAM5 0.09 0.50 0.08 0.00
BCM2-HIRHAM5 0.08 0.26 0.02 0.00
BCM2-RCA3 0.17 0.05 0.01 0.00
ECHAM5-HIRHAM5 0.01 0.28 0.00 0.00
ECHAM5-RegCM3 0.43 0.93 0.31 0.01
ECHAM5-RACMO2 0.75 0.66 0.13 0.01
ECHAM5-REMO 0.23 0.88 0.46 0.13
ECHAM5-RCA3 0.21 0.50 0.17 0.01
HadCM3-CLM 0.96 0.17 0.01 0.03
HadCM3-HadRM3 0.69 0.48 0.23 0.56

Temperature (p -values)
ARPEGE-RM5.1 0.04 0.00 0.00 0.00
ARPEGE-HIRHAM5 0.16 0.01 0.00 0.00
BCM2-HIRHAM5 0.03 0.65 0.00 0.00
BCM2-RCA3 0.05 0.28 0.00 0.00
ECHAM5-HIRHAM5 0.13 0.26 0.00 0.00
ECHAM5-RegCM3 0.07 0.08 0.00 0.00
ECHAM5-RACMO2 0.06 0.10 0.00 0.00
ECHAM5-REMO 0.04 0.14 0.00 0.00
ECHAM5-RCA3 0.04 0.23 0.00 0.00
HadCM3-CLM 0.18 0.00 0.00 0.00
HadCM3-HadRM3 0.03 0.00 0.00 0.00

Potential Evapotranspiration (p -values)
ARPEGE-RM5.1 0.77 0.19 0.00 0.00
ARPEGE-HIRHAM5 0.31 0.49 0.00 0.00
BCM2-HIRHAM5 0.06 0.37 0.03 0.00
BCM2-RCA3 0.92 0.97 0.02 0.00
ECHAM5-HIRHAM5 0.63 0.28 0.88 0.83
ECHAM5-RegCM3 0.99 0.00 0.00 0.00
ECHAM5-RACMO2 0.38 0.06 0.01 0.00
ECHAM5-REMO 0.28 0.31 0.68 0.13
ECHAM5-RCA3 0.38 0.31 0.37 0.21
HadCM3-CLM 0.73 0.22 0.22 0.00
HadCM3-HadRM3 0.04 0.24 0.00 0.00
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mid-future period for more models compared to P. For the near-fu-
ture, changes are logically not as strong and most models do not
have a significant difference to the reference period.

3.5. Length of reference and change period

To evaluate the stability of climate change signals in different
length reference periods, we calculate monthly DC factors of P
for 5, 10, 15, 20, and 30 year periods for the six model pairings with
the longest transient simulation (1951–2100). The analyses are
based on data for the past period 1951–2010 and the far-future
period 2071–2100 for which 72 combinations of non-overlapping
5 year periods, 18 combinations of 10 year periods, etc. were sam-
pled. Reference periods are only compared to future periods of the
same length. The underlying assumption that the past and far-fu-
ture periods do not have trends within the respective periods is
tested for all six models used in further analyses. For example,
all models demonstrate a significant positive or negative trend in
annual P over the 21st century (90 years), but the respective near,
mid, and far-future 30 year periods have no significant trend in an-
nual P. Though magnitude of the DC change factor varies by month
and model, the standard deviations are consistent between months
within a respective reference period. For each period length the
standard deviations among the monthly DC factors are calculated
as an indicator of the robustness of using a period of this length.
Fig. 7 shows a plot of the mean standard deviations from annual
DC factors for all reference period lengths, with error bars indicat-
ing the range of standard deviations across the six models. The re-
sults show that reference periods of 10 years and below have high
variability between DC factors, implying that 10 year periods are
too short to robustly assess the strength in the climate change sig-
nal. On the other hand period lengths over 15 years appear
suitable.

4. Discussion

4.1. Distribution based scaling (DBS)

We applied and evaluated the DBS method on a seasonal basis
over six domains covering Denmark and compared it with results
from the DC approach using 11 climate models from the ENSEM-
BLES project (Christensen et al., 2009; van der Linden and Mitchell,
2009). A good fit of climate data, both observed and simulated, to a
gamma distribution was crucial for obtaining an accurate scaling. A
double gamma distribution split at the 95th percentile was neces-
sary to properly fit the precipitation data. We noted a considerable
spread of dry day correction values and gamma distribution
parameters across models, domains and seasons.

To assess the accuracy and robustness of the DBS bias correction
method, we tested how well it was able to reproduce the statistical
properties of precipitation data for the 20 year reference period for
which the DBS parameters were fitted. DBS corrected P from all 11
RCMs accurately reproduces high intensity rainfall and mean an-
nual precipitation sampled from all six domains and all four sea-
sons. While hypotheses that the interannual variations were
preserved could not be rejected, they were simulated with varying
accuracy. Previous studies on the DBS methods have not reported
such tests.

We further benchmarked the DBS method against the DC meth-
od. While there is no difference in the mean monthly or annual cli-
mate change signals for a given model under the two methods, for
daily precipitation intensity the strength of the signal varied be-
tween methods. The DC approach perturbs mean changes accu-
rately, but this often results in the precipitation regime being
mischaracterised, especially in the upper tail. There are limited
studies (e.g. Teutschbein and Seibert, 2012b) that have compared
multiple bias correction methods on an ensemble of climate mod-
els, which provides an opportunity for both inter and intra model
comparisons, and this is the first study to do so for Denmark. Inter-
estingly, some models considered average (median of the ensem-
ble) for projected precipitation increase with DC, after DBS
correction, showed higher frequency and intensity of wet days
than the models that had been characterised by relatively higher
increases. Focus of previous work has been on developing the
DBS method and evaluating future precipitation, especially ex-
tremes, whereas we thoroughly evaluate the DBS bias correction
performance in the reference period the method was trained on.
A comparison of mean, variance and daily percentiles in the upper
tail between observed precipitation and the DBS corrected data
validate the method’s ability to reproduce local climate dynamics,
though mean precipitation patterns are more accurately repro-
duced than the variance. Clearly both methods are capable of pre-
serving mean changes, but the DBS method is suited for
reproducing extreme precipitation changes.

Previous DBS studies have mostly focussed on precipitation and
temperature (Piani et al., 2010; Yang et al., 2010), while van Roos-
malen et al. (2011) also used DBS to scale potential evapotranspi-
ration. We found that accurate scaling of potential
evapotranspiration with the DBS method as applied to precipita-
tion is not possible because the variable does not follow a gamma
distribution. Gamma distribution parameters fit to preserve the
mean do not also capture the variance in potential evapotranspira-
tion. This variable is challenging to scale as it is the product of
many atmospheric variables, some normally distributed (e.g. tem-
perature) and others that are not (e.g. relative humidity). Temper-
ature and potential evapotranspiration are closely tied and both
covary with precipitation on a daily basis. With DBS scaling only
performing well on precipitation, we applied an error bias correc-
tion on direct RCM outputs of temperature and potential evapo-
transpiration (calculated from RCM model outputs) to preserve
the daily covariance between all three variables.

4.2. Significance of projected climate change

Historical data are often analysed for significance of climate
change (Karlsson et al., 2013). However, we know of no other stud-
ies that have analysed the extent projected climate changes are
actually significantly different from the current climate, and if
changes simulated within the past climate are significant. The driv-
ing GCM is most influential in the climate change signal strength,
magnitude, and direction when considering the variables precipi-
tation, temperature, and potential evapotranspiration. Over the
historical period (1961–2010) climate models do simulate climate
changes already in temperature. Natural variability in precipitation

Fig. 7. Mean std. dev. of annual DC values for precipitation in six climate models
from 5, 10, 15, 20, and 30 year reference periods compared to far-future periods of
the same length. Error bars show the range in std. dev. across the six models.
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and potential evapotranspiration is stronger than any simulated
changes, resulting in no significant changes over the historical per-
iod. By the end of the 21st century, across all models and variables,
climate is significantly different from the reference periods. In the
far-future, climate change signals are clear, robust, and can be dis-
tinguished from natural climate variability. In the near and mid-fu-
ture periods, the signal to noise ratio make changes less detectable
and therefore less significant statistically.

4.3. Choice of reference period

As projected climate change in the 11 RCMs evolves throughout
the 21st century, there are clear trends of either increasing or
decreasing precipitation. Therefore, a stationary climate change
signal cannot be assumed in a 90 year time period. We evaluate
DC factors from periods ranging from 5 to 30 years to determine
the length of time needed to ensure distinguishing climate change
from natural variability. Time periods under 10 years exhibited low
signal to noise ratio (variability) evidenced by their high standard
deviations, at 15–20 year time periods there is a drastic decrease in
the standard deviations of DC factors. At time periods of 20–
30 years the climate change signals are stable and distinguishable
from natural variability, and should result in robust DC factors.

4.4. Robustness of findings

Compared to the many bias correction methods reported in lit-
erature (e.g. Johnson and Sharma, 2011; Rojas et al., 2011; Li et al.,
2010; Piani et al., 2010; Yang et al., 2010; Graham et al., 2007;
Lenderink et al., 2007; Leander and Buishand, 2007), we have ap-
plied two methods for precipitation located at opposite ends of
the spectrum in terms of complexity. The DC method is the most
simplistic (i.e. indirect, linear) and the DBS method is the most
sophisticated (i.e. direct, nonlinear, parametric). For T and ETpot

we have applied DC method and the BR method which is in the
lower-middle range of this spectrum (i.e. direct, linear).

Results from other studies show that the robustness of these
downscaling methods with respect to precipitation tend to follow
the spectrum of complexity, with DBS methods being the most ro-
bust both in terms of ability to reproduce the historical data (Berg
et al., 2012; Sunyer et al., 2012; Teutschbein and Seibert, 2012b;
Watanabe et al., 2012; Anandhi et al., 2011) and performance un-
der changed conditions (Teutschbein and Seibert, 2012a). DC
methods cannot be evaluated in the reference period but have
the least reliable corrections for changed (future) conditions, espe-
cially in dry years, and generally cannot capture variance in the
RCMs (Teutschbein and Seibert, 2012a). BR and linear scaling
methods often underestimate heavy precipitation events (Leander
and Buishand, 2007), and can be somewhat inconsistent between
models, with some corrected RCM outputs exhibiting biases of
the same magnitude as uncorrected RCM output (Teutschbein
and Seibert, 2012a). Both quantile mapping and DBS methods out-
perform these methods in terms of ability to reproduce dry day fre-
quency and wet day intensity, but DBS methods have higher
correction skills under changed conditions as they are less param-
eterised and therefore more robust. Hence our findings based on
the DBS method appear to produce results that are robust com-
pared to other possible choices of downscaling methods.

Johnson and Sharma, 2011 found increased uncertainty among
direct bias correction methods in terms of variability, noting that
future variability is constrained to that of the historical period
using DC methods. To our knowledge, none of the methods have
been tested explicitly for their ability to reproduce the interannual
variability, which is a key factor in the significance tests, though it
appears to be equally well reproduced by the various direct meth-
ods. With respect to our findings on the significance of climate

change throughout the 21st century, we argue that the results
are not affected by which downscaling method is used as long as
we keep within direct methods.

We evaluated the stability of reference periods is by calculating
change factors on DBS corrected data for systematically increasing
period lengths. We expect less sophisticated methods, like linear
scaling and the most simplistic quantile mapping methods, to
show more stability at shorter change periods lengths due to their
inability to capture variance and tendency to underestimate ex-
treme values.

5. Conclusions

This analysis of multiple climate models, bias correction meth-
ods, and time periods elucidates the nature of climate model
uncertainty. Hydrological modelling studies of climate change im-
pacts must consider these additional sources of uncertainty from
the climate model inputs. The ensemble of 11 RCMs considered
in this study vary in strength, significance, and sometimes in direc-
tion of the climate change signal. This study confirms previous
studies showing that it is unreliable to base an impact study on just
one model’s projection of climate change. Incorporating multiple
climate models, ideally from different GCMs, begins to address cli-
mate model uncertainty by understanding the range of projections
that are possible from different models. The choice of bias correc-
tion method introduces further uncertainty in climate change data.

We demonstrate that both DC and DBS methods equally retain
mean monthly change characteristics. The simplistic monthly DC
approach is adequate for capturing the smooth temporal character-
istics of temperature changes, but is insufficient at recreating pro-
jected precipitation regimes, which vary day to day and grid to
grid. The more complex daily DBS correction method is accurate
and robust, transferring changes in the mean as well as the vari-
ance, and improving the characterisation of day to day variation
as well as heavy precipitation events. Since the DBS method cor-
rects direct RCM output, the climate series is not limited to the ref-
erence period length and variations in the evolution of climate
change over the time are preserved. Compared to the DC method,
the DBS method could carry possible spatial biases in the RCM onto
the impact model.

We know of no studies that have tested the temporal signifi-
cance of past and future climate change, or systematically analysed
the robustness of change periods within RCMs. The analyses of pro-
jected climate change significance over time provide a different
perspective on climate change and assumptions about current
and future climate. With some models having significant differ-
ences in climate variables within the past timeframe, we show that
simulated current climate characteristics are not necessarily sta-
tionary within Denmark at a basin scale. The temporal positioning
of a reference period (e.g. 1961–1990 vs. 1991–2010) might impact
the magnitude of relative climate change (e.g. DC factors) from the
RCMs. The length of the reference and change periods was also
analysed to determine what size time period was adequate to over-
come natural variability and still have stationarity in the climate
change signal. A drastic decrease in the standard deviations of DC
factors was seen in periods over 15 years, with periods over
20 years continuing to decrease and level off.

While 30 year time periods prove adequate in length for robust
climate change signals, the significance tests in the future periods
show where these change signals overcame the noise of natural
variability. Overall, climate change signals in the near-future are
hidden by natural variability and are therefore not significant, in
the mid-future the choice of climate model mostly influences the
significance of climate change signals, and in the far-future the cli-
mate change signals are strong across all models and variables.
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