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Abstract A method is presented for development of satel-
lite green vegetation fraction (GVF) time series for use in
the Weather Research and Forecasting (WRF) model. The
GVF data is in the WRF model used to describe the tempo-
ral evolution of many land surface parameters, in addition
to the evolution of vegetation. Several high-resolution GVF
products, derived from high-quality satellite retrievals from
Moderate Resolution Imaging Spectroradiometer images,
were produced and their performance was evaluated in long-
term WRF simulations. The atmospheric conditions during
the 2006 heat wave year over Europe were simulated since
significant interannual variability in vegetation seasonal-
ity was found. Such interannual variability is expected to
increase in the coming decades due to climatic changes.
The simulation using a quadratic normalized difference veg-
etation index to GVF relationship resulted in consistent
improvements of modeled temperatures. The model mean
temperature cold bias was reduced by 10 % for the whole
domain and by 20–45 % in areas affected by the heat wave.
The study shows that WRF simulations during heat waves
and droughts, when vegetation conditions deviate from the
climatology, require concurrent land surface properties in
order to produce accurate results.
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1 Introduction

The presence of vegetation influences weather and climate
through its modification of the energy and water exchange
across the land–atmosphere boundary. Partitioning of net
solar radiative energy into sensible, latent, and ground heat
fluxes affects moisture and temperature fields, which in
turn can alter the structure of the planetary boundary layer
(PBL) leading to changes in cloud cover and rainfall and to
the development of thunderstorms (Stull 1988; Pielke 2001;
Pielke et al. 2007; Montandon et al. 2011). Conversely,
longer-term meteorological conditions and persistent cli-
matic changes influence the distribution of vegetation, for
example by exposing them to stresses related to excessive
heat and drought.

For Europe, climate change studies have shown that the
occurrence of heat waves and above-average high tempera-
tures in the summer months will increase during the coming
decades leading to dryer summer conditions (Teuling et al.
2010; Seneviratne et al. 2006) and, consequently, to changes
in land cover characteristics through altered vegetation sea-
sonalities. The predictions have been supported by at least
three summer heat waves during the last decade, in August
2003, in July 2006, and in June and July 2010. The periods
were associated with widespread impact on human mortal-
ity, ecosystem damages and crop failures, water shortages,
and severe thunderstorm development (Teuling et al. 2010;
Della-Marta et al. 2007).

The land cover characteristics used in regional weather
prediction and climate models can be represented and
derived in several ways. The Noah land surface model
(LSM) coupled to the Weather Research and Forecasting
(WRF) model uses green vegetation fraction (GVF) as a
tool to represent vegetation seasonalities (Skamarock et al.
2008). The horizontal distribution of vegetation canopies is
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directly represented by GVF, whereas the leaf area index
(LAI), which is linearly scaled within a certain range using
GVF, describes its vertical thickness in each grid cell. The
values of surface albedo, emissivity, and roughness are
scaled in a similar fashion. Thus, the surface energy calcula-
tions in the Noah LSM are critically dependent on the GVF
data.

The GVF climatology typically used in the Noah
LSM was derived from normalized difference vegetation
index (NDVI) composites obtained by the Advanced Very
High Resolution Radiometer (AVHRR) during 1985–1991.
Monthly global NDVI images with grid spacing of 0.144◦,
produced from averaged weekly composites subjected to
spatial smoothing for cloud reduction and for gap fill-
ing purposes, were converted into GVF using a linear
approach (Gutman and Ignatov 1998; Jiang et al. 2010). The
default climatology has been successfully applied in fore-
cast and climate studies but possesses obvious limitations.
For instance, the inherent low spatial resolution may reduce
accuracy of high-resolution simulations, while land cover
alterations of weekly or biweekly scale are not captured by
the temporal resolution (Hong et al. 2009; Jiang et al. 2010).
Additionally, impacts from interannual variability, changes
in management practices, and recent climatic changes are
not reflected in the data.

Land cover information derived from Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) NDVI data has
recently been applied in studies using the Noah LSM. Miller
et al. (2006) used a linear method (Zeng et al. 2000) to
compute monthly GVF data from a quality improved 2002
NDVI product (Moody et al. 2005). They compared veg-
etation seasonalities to the AVHRR GVF climatology for
the Continental United States and found improved sea-
sonality for evergreen needleleaf forest and more realistic
summer values for grassland. However, too high GVF val-
ues were found during the wintertime for deciduous and
mixed forests, grasslands, and croplands. Hong et al. (2009)
and Lakshmi et al. (2011) investigated the impact of dif-
ferent MODIS 2002 GVF representations in high-resolution
short-term coupled WRF/Noah simulations at 1-km2 grid
spacing to quantify the modeled energy and water response.
They derived NDVI from 8-day MODIS reflectance data,
replacing cloud contaminated pixels with a null value, and
assumed both linear and quadratic NDVI relationships to
GVF. Numerical predictions were compared to observa-
tions obtained during the 2002 International H2O Project
(Weckwerth et al. 2004). Their investigations did not result
in clear recommendations to whether the linear or quadratic
relation should be used concerning the WRF model.

A short-term simulation with high spatial resolution is
not sufficient to evaluate the performance of a new high-
resolution GVF product in the WRF model. Evaluation must
be done across spatial scales, due to the nesting capability

and during different periods in the annual cycle. A year with
large interannual variability is suitable for such investiga-
tion since the performance of the product is challenged to its
maximum. Here, a thorough investigation of the use of high-
resolution MODIS GVF in the WRF model is carried out
using simulations of the 2006 heat wave year over Europe.

The objective of this study is twofold: (1) to quantify
whether a linear or a quadratic MODIS NDVI to GVF rela-
tion is more suitable for WRF/Noah simulations and (2)
to investigate the impact of concurrent land cover infor-
mation in WRF/Noah simulations both during heat wave
events, where changes are expected to be significant, and
during periods where impacts are expected to be minor.
These aims are achieved in three steps. First, we develop
a new statistically robust filled MODIS NDVI climatology,
reflecting impacts from recent landuse and climatic changes
over Europe. High quality is ensured through an extensive
post-processing procedure that includes a combination of
existing methods and novel data-processing ideas. Second, a
comparison of the annual variation of GVF for various lan-
duse classes is carried out at a grid spacing that is close to
the best resolution offered by the AVHRR GVF data. Third,
several climate simulations using different GVF represen-
tations in WRF/Noah, including the AVHRR GVF data,
are compared to gridded temperature data to assess model
performances.

The paper is structured as follows: In Section 2, we intro-
duce the NDVI climatology procedure and the methods used
to obtain the final MODIS GVF products. Model setup
and verification data are described in Section 3, followed
by comparisons of the different vegetation seasonalities in
Section 4. Results from climate simulations are presented in
Section 5 and, finally, we discuss and conclude our findings
in Sections 6 and 7.

2 Green vegetation fraction data

2.1 Input data

We selected the MODIS instrument aboard the polar-
orbiting Aqua and Terra satelittes as our data source.
The NDVI level-3 products (MOD13A2 and MYD13A2,
Version-5) are composited every 16 days at 1-km2 resolu-
tion on a tiled Integerized Sinusoidal (IS) 10◦ grid, with
each tile covering 1,200 × 1,200 km. The data sets are
produced with an offset of 8 days to improve the tem-
poral frequency, such that the starting period is days 001
and 009 of Terra and Aqua, respectively. We use 10 years
of data from Terra, 2001–2010, and 9 years from Aqua
starting from year 2002 day 185 and ending at year 2011
day 169. To cover the majority of Europe, we gathered
nine tiles for each 8-day period and reprojected the data
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into geographic coordinates using the MODIS Reprojec-
tion Tool developed by NASA Land Processes Distributed
Active Archive Center (LP DAAC). The resultant latitudinal
coverage ranges from 40◦N to 70◦N, whereas the longi-
tudinal coverage ranges from 13◦W to 26◦E in the south
and from 29◦W to 58.5◦E in the north. The quality con-
trol (QC) information for each pixel is stored as 16-bit
data that can easily be accessed. We use the MODIS land
cover product (MOD12Q1, Type 1) containing the Interna-
tional Geosphere-Biosphere Programme (IGBP) land cover
classification, including 11 natural vegetation classes, 3
developed and mosaicked land classes, and 3 non-vegetated
land classes (Friedl et al. 2002), to assign each pixel with
a landuse class. The southern regions in Europe are usu-
ally well represented in the NDVI images even during
wintertime, except for the Alps and the Pyrenees, while
the most northern areas, approximately above 60◦N, only
have valid retrievals for a few months during the summer.
The entire domain consists of 49.2 % water and 50.8 %
land pixels with more than 75 % represented in four major
land classes: croplands (28.5 %), evergreen needleleaf for-
est (21.4 %), mixed forest (16.4 %), and open shrubland
(10.8 %).

2.2 Method

Although algorithms to retrieve high-quality MODIS NDVI
data have improved over the recent years, noise related to
clouds, snow cover, and aerosols still remains (Didan and
Huete 2006). Typically, noise generates significantly lower
NDVI values that lead to unrealistic time series, inconsistent
with the relatively slow growth and decay of the vegeta-
tion. Several noise-reduction methods have been suggested
to derive high-quality smooth NDVI time series (Viovy et al.
1992; Verhoef et al. 1996; Roerink et al. 2000; Lovell and
Graetz 2001; Jonsson and Eklundh 2002; Chen et al. 2004;
Moody et al. 2005; Ma and Veroustraete 2004; Gu et al.
2009), but the optimal approach depends on the use of the
data since no method is free of drawbacks.

We chose to use only the highest-quality NDVI data to
minimize noise in the time series. Therefore, a filled NDVI
climatology was assessed as an optimal method for gap
filling of single-year time series. To derive a filled NDVI
climatology, we adopted the idea of ecosystem-dependent
filling (ECF) (Moody et al. 2005) but combined our pro-
cedure with (1) a multiyear averaged background field,
(2) a local minimum and maximum correction filter to
remove unrealistic average values, and (3) a simple three-
point smoothing technique also applied by Gu et al. (2009).
Additionally, we applied a cyclic condition filter to avoid
large jumps at the December–January transition. The cli-
matology process is described in the next four sections and
additionally depicted in the flowchart in Fig. 1.

Fig. 1 Flowchart outlining the reconstruction process of the multiyear
MODIS NDVI climatology

2.2.1 Multiyear average

A multiyear average for each 16-day composite was cal-
culated from Aqua and Terra data inspired by Yuan et al.
(2011). The procedure counts the number of available val-
ues in each pixel during the 9 or 10 years and compute
the mean value if two conditions are met. First, only pixel
values with the highest-quality flag (QC=0) are considered
and, second, at least three pixel values are available for the
averaging; otherwise, the mean is represented by a missing
value. The conditions ensure that each mean value repre-
sents a “true” background value with minimal influence
from noise-affected values.

2.2.2 Local minimum/maximum filter

The above approach does not prevent noise in the discontin-
uous multiyear averages, especially in northern latitudes and
during the winter months. Thus, we applied an intelligent
local minimum/maximum filter to remove unrealistic values
in the time series. Initially, the filter identifies local mini-
mum/maximum values associated with gradients larger than
0.2/16 days. Then, gradients between four adjacent data
points, centered around the local minimum/maximum value,
are examined and a decision on which value to remove is
made. This decision is based on two conditions: (1) the
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value of the data point has to be a local minimum or maxi-
mum and (2) the gradients must have the highest combined
absolute gradient. The gradient threshold of 0.2 was selected
after careful heuristic considerations.

Initially, the Aqua and Terra time series were processed
separately to minimize the impacts from mistakes done by
the filter that potentially could be compensated for by com-
bining the time series as shown in Fig. 1. By mistakes, we
here refer to errors which are obvious to the human eye but
invisible to the filter. The procedure was repeated on the
combined Aqua and Terra time series using a threshold of
0.1/8 days. An example is shown in Fig. 2. The filter rec-
ognizes the encircled values as unrealistic and remove these
before filling and smoothing algorithms are applied to the
time series.

2.2.3 Filling and smoothing

We applied a simple ecosystem-dependent filling technique
to remove missing values in the climatological time series.
The method represents the ensemble phenological behavior
for each landuse class as the median of all available values
for each temporal period within three zonal regions span-
ning 10◦ (40◦–50◦, 50◦–60◦, and 60◦–70◦). The relatively
large zones ensure that the phenology curves are produced
from enough values while allowing significant latitudinal
variations for each vegetation class.

The derived ensemble phenology curves are subse-
quently smoothed with a simple three-point smoothing
algorithm:

Nse(t) = 1

2
Ne(t) + 1

4

[
Ne(t − 1) + Ne(t + 1)

]
(1)

to avoid jigsaw-like features especially during the winter
months. The subscripts “se” and “e” indicate smoothed and
raw ensemble values, respectively, while t indicates time
and N is short for NDVI.

For gap filling of the multiyear average time series, we
applied the smoothed, ensemble phenology curve trends

instead of actual values, assuming that the majority of pix-
els within the same landuse class and region show the same
phenological pattern. The method requires that at least one
value in the individual time series exists. The filling is done
in several steps. Initially, both backward filling and forward
filling are attempted starting from day 201 towards either
day 001 or 361. Afterwards, filling from day 001 to day
361 and backwards is done to fill values that were not filled
in the first pass. The method ensures that potential jumps
from filling only occur during the December–January tran-
sition and that areas with very little information about the
vegetation seasonality, such as the mountainous regions in
the Alps and Pyrenees and northern Scandinavia, obtain full
phenology curves based on the ensemble mean seasonali-
ties. After the filling, we applied the smoothing procedure
on all of the pixel time series. The final appearance of a ran-
domly selected climatological curve (solid) after filling and
smoothing has been applied to the initially discontinuous
NDVI multiyear average (dashed) as shown in Fig. 2.

2.2.4 Cyclic conditions

We used a linear algorithm to ensure cyclic conditions at the
December–January transition only allowing gradients less
or equal to 0.1/8 days. The cyclic filter was particularly
in use above 60◦N, where vegetation impacts on modeling
results anyway are minimal due to low radiation and persis-
tent snow cover conditions. If a gradient larger than 0.1 and
less than 0.2 was detected, a linear interpolation between
day 361 and day 33 replaced the original phenology curve.
For intervals larger than 0.2, we set the December–January
transition to 0.1 and scaled the remaining values linearly
between days 1 and 33. The procedure was selected in order
to maintain the curve minimum in the February–March
period, as is typically observed for the region. Finally, pix-
els solely consisting of missing values were assigned with
smoothed ensemble phenology curves matching the pixel
landuse class and zone. Less than 0.0002 % of the pixels
were filled in this manner.

Fig. 2 Time series of NDVI
from a pixel located on the island
of Gotland, Sweden. The raw
multiyear average is indicated
by the dashed marked line and
the final NDVI climatology by
solid line. Enclosed circles are
identified as unrealistic values
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2.2.5 Single-year representation

Since we can exploit the added pixel-level information pro-
vided by the climatology, the procedure to obtain an explicit
filled 2006 NDVI time series (or any year) is much sim-
pler than for the multiyear climatology. As before, we only
use good-quality data (QC=0) from 2006 but neglect the
local correction as applied for the climatology. Gap filling
is performed with trends from the climatological time series
and is thus primarily based on pixel-level phenology curves
and not on zonally averaged ecosystem-dependent curves.
Finally, the smoothing algorithm was applied to the specific
2006 NDVI values.

2.2.6 Derivation of green vegetation fraction

The NDVI climatology or the annually filled representation
of NDVI can be converted into GVF in several ways using

GVF =
( N − Ns

Nv − Ns

)p

(2)

where N represents the time-varying NDVI value at each
grid cell, Nv and Ns represent NDVI values at full green
vegetation cover and at bare soil, respectively, and p is a
constant. We use the method described by Zeng et al. (2000)
where Nv is considered a function of vegetation type and
both Nv and Ns are varying within each year. Since we con-
sider a limited area, Ns is regionally defined and computed
to Ns ≈ 0.05 for all data sets. Nv was found to vary between
0.75 and 0.90 with slightly higher values in the 2006 spe-
cific NDVI time series. The calculated values are close to
what others have found (Montandon and Small 2008).

The AVHRR GVF data was obtained using the linear
approach and by assuming Nv and Ns as spatially and
temporally constant values. The NDVI values were glob-
ally defined and estimated to Nv = 0.52 and Ns = 0.04
(Gutman and Ignatov 1998). We decided to test both the
linear and the quadratic formulation for our single-year
representations.

3 Model and verification data

3.1 Numerical model

We used the WRF Advanced Research (ARW) model ver-
sion 3.3.1 maintained by the National Center for Atmo-
spheric Research for our numerical simulations (Skamarock
et al. 2008). An overview of the selected physical parame-
terizations as well as forcing data is given in Table 1.

Sea surface temperatures are described by the Opti-
mum Interpolation Sea Surface Temperature (OISST) at

Table 1 Overview of the physical packages and forcing data used in
our simulations

Name Reference

Parameterization

Land surface Noah Chen and Dudhia (2001)

Surface layer Eta Janjic (1996)

Planetary boundary MYJ Janjic (2002)

layer

Longwave radiation RRTM Mlawer et al. (1997)

Shortwave radiation Duhia Dudhia (1989)

Microphysics WSM5 Hong et al. (2004)

Cumulus Kain-Fritsch Kain (2004)

Forcing data

Initial and boundary CFSR Saha et al. (2010)

Land surface spin-up GLDAS Chen et al. (2007)

Sea surface state OISST Reynolds et al. (2007)

Grid nudging q,T,u,v Stauffer and Seaman (1990)

0.25◦ grid spacing and daily resolution. Initial and lat-
eral boundary conditions are obtained from the Climate
Forecast System Reanalysis (CFSR) data at 0.5◦ horizon-
tal resolution made available by the National Centers for
Environmental Prediction (NCEP). Grid nudging from the
Four-Dimensional Data Assimilation (FDDA) system is
used on temperature, moisture, and wind components above
the lowest 15 model levels, but excluded within the PBL for
temperature and moisture. The nudging technique ensures
that upper-air model predictions do not drift too far away
from the reanalysis conditions. We use 41 vertical levels and
horizontal grid intervals of 18 km.

The High-Resolution Land Data Assimilation (HRL-
DAS) system (Chen et al. 2007) was used for initial spin-up
of soil moisture and soil temperature. The HRLDAS system
was adapted to use 3-hourly Global Land Data Assimilation
System (GLDAS) data and ran for a period of 2 years prior
to simulation start, on 1 January 2006. The HRLDAS sys-
tem used the Noah LSM with the AVHRR GVF data and all
runs were initialized with the predicted soil state.

The IGBP land cover distribution and the extent of our
computational domain are shown in Fig. 3. The 1-km grid
spacing of the land cover data was interpolated by the WRF
Preprocessing System (WPS version 3.3) (Skamarock et al.
2008) to 18 km using the dominant vegetation type to deter-
mine the classification at each pixel. Thus, 91.5 % of all
pixels belong in four land cover classes: 39.6 % water,
26.4 % croplands, 15.1 % mixed forest (MF), and 10.4 %
evergreen needleleaf forest (ENF). ENFs are mainly defined
to northern areas such as Sweden, Norway, and Finland
while MFs are found in areas such as the Baltics, Scotland,
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Fig. 3 IGBP landuse classes in
the 18-km WRF domain

Germany, Slovakia, and near the Alps. Croplands mainly
exist south of 58◦N.

The MODIS GVF data, described in Section 2, were lin-
early interpolated into daily files and, additionally, fields
with yearly minimum and maximum vegetation fractions
were computed. The latter files are important for correct
scaling of LAI, roughness, emissivity, and albedo and are
different for each version of the GVF data. The WPS system
horizontally interpolated all fields to 18-km grid spacing to
preserve consistency with the interpolated IGBP land cover
data. The WRF model was adapted to use the new GVF
files.

3.2 E-OBS and GPS data

To validate the model performances, we used the Euro-
pean daily high-resolution gridded data set (E-OBS, v5.0)
developed for climate change studies and for validation of
regional climate models (Haylock et al. 2008). It is based
on the European Climate Assessment and Data network of
measuring stations (ECA&D) and include minimum, max-
imum, and mean daily 2-m temperature, as well as daily
precipitation. The mean daily 2-m temperature in E-OBS
is calculated as the average of the maximum and minimum
daily temperatures obtained as being the most extreme val-
ues at hour 00, 06, 12, or 18. About 2,000 stations were used
for developing E-OBS with the highest station densities
found in the UK, Benelux, and the Alps.

Several issues with E-OBS have been identified by com-
parison to observational data sets with higher station density
(Hofstra et al. 2009; Kyselý and Plavcová 2010). The main
problems are related to the interpolation of station measure-
ments in areas with limited station density or in complex ter-
rain, where the station measurements are not representative

of their surroundings. For instance, Kyselý and Plavcová
(2010) found that temperature extremes in the Czech
Republic were substantially underestimated in E-OBS with
cold extremes being too warm and warm extremes being
too cold. The interpolation procedure results in regional
biases in both temperature and precipitation and is partic-
ularly severe for extreme values. Despite these problems,
E-OBS was considered the best solution for verification of
our numerical simulations.

In addition to E-OBS, we use precipitable water data
measured by a permanent GPS station, PTBB, located in
central Germany (Braunschweig, Niedersachsen) to ver-
ify temporal variations in water vapor in the WRF model
simulations (Bruyninx 2004).

4 Seasonality comparison

Vegetation seasonalities for forest types represented in the
WRF domain are shown in Fig. 4. In addition to ENF and
MF that were defined in Section 3.1, we use EBF and
DBF as abbreviations for evergreen broadleaf forest and
deciduous broadleaf forest, respectively. The AVHRR GVF
climatology and the MODIS GVF climatology are indicated
by Clim-A and Clim-M, respectively, while the linear and
quadratic single-year MODIS GVF products are indicated
by 2006-L and 2006-Q, respectively.

Large differences in the representations of vegetation
fraction for ENF are shown in Fig. 4(a). Clim-M, 2006-
L, and 2006-Q show higher vegetation fractions during the
whole annual cycle compared to Clim-A, with the highest
values indicated by the linear methods. The vegetation frac-
tions of Clim-M and 2006-L are in the range of 50–90 %,
while Clim-A and 2006-Q are in the range of 5–70 and



Development of satellite green vegetation fraction time series for use in mesoscale modeling

Fig. 4 Comparison of domain-
averaged GVF (in percent) for
(a) ENF, (b) EBF, (c) DBF, and
(d) MF at 18-km resolution.
Solid lines represent Clim-A and
the long dashed, short dashed,
and long-short dashed lines
represent Clim-M, 2006-L, and
2006-Q, respectively

d

c

b

a

25–85 %, respectively. The intraannual variability between
all representations is similar indicating that figures with
LAI, roughness, emissivity, and albedo will be very similar
as well (not shown).

Vegetation fractions for EBF are shown in Fig. 4(b).
Clim-M and 2006-L show little annual variation ranging
from 70 to 90 %, while Clim-A and 2006-Q indicate
larger variations of 40–90 and 50–85 %, respectively. A

decrease in GVF during June–July followed by an increas-
ing trend during August–September for all MODIS data
is not observed in Clim-A. The majority of EBF sites
are located in southern France (see Fig. 3), a region that
was also severly affected by the heat wave 2003 (Rebetez
et al. 2009). The difference in intraannual variability reflects
stresses on EBF due to heat and drought conditions. Due to
scaling of the LAI table values, the GVF variability is also
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reflected in LAI where Clim-A shows higher summer val-
ues compared to those derived from the MODIS data. The
opposite occur in the autumn where lower LAI values are
found in Clim-A (not shown).

Figure 4(c, d) shows vegetation seasonalities for DBF
and MF. Clim-M and 2006-L show the highest values while
Clim-A and 2006-Q compare well in terms of maximum
and minimum vegetation fraction. Summer values are in
the range of 75–95 %, while winter and late autumn values
range between 15 and 60 %, with lowest values shown by
Clim-A and 2006-Q. Clim-A shows slowly evolving vege-
tation cover for DBF while more rapid growth and decaying
trends are shown by Clim-M, 2006-L, and 2006-Q. Addi-
tionally, a prolonged growth period (April–October) for
both DBF and MF is indicated in the GVF data derived from
MODIS compared to Clim-A.

The seasonal evolution of GVF for open shrublands
(OS), cropland/natural vegetation (CN), and croplands
(CL) together with LAI, roughness, and emissivity for
CL is shown in Fig. 5(a–f). The intraannual variabil-
ity for OS is very similar between all GVF representa-
tions with the highest fractions shown by Clim-M and
2006-L (Fig. 5(a)). This is somewhat misleading since
OS show significant latitudinal dependency. The MODIS-
derived GVF data results in higher vegetation fractions over
Scandinavia compared to Clim-A during the entire annual
cycle, while Clim-A shows higher summer vegetation frac-
tion over the Alps and slightly lower during the winter
(not shown).

Figure 5(b) shows vegetation fractions representing CN
but indicates very similar development to MF shown in
Fig. 4(d). It reflects that the majority of CN sites are located
in the vicinity of MFs while points classified as CN but sur-
rounded by CL resemble the vegetation seasonality of CL
better (not shown).

Vegetation fractions indicating CL seasonalities are
shown in Fig. 5(c). Higher values are consistently shown
by Clim-M and 2006-L compared to Clim-A and 2006-Q
and range between 50 and 90 %, while a range of 15–
75 % is shown by Clim-A and 2006-Q. Clim-A and 2006-Q
compare well during the first half seasonal cycle, but show
significant difference in seasonal development during the
last part of the year. A large decrease in GVF during
June–July is shown by 2006-Q compared to the climatolo-
gies indicating either early harvesting or stresses related to
drought and excess temperature. 2006-Q shows a decrease
in GVF from about 75 to 50 %, but zonal averages between
50◦ and 60◦N reveal even larger decreases (not shown). A
similar decrease, although smaller in magnitude, is observed
for 2006-L.

LAI, surface roughness length, and emissivity for CL are
shown in Fig. 5(d–f) to show how differences in intraannual
variability are transferred to the scaled parameters in WRF.

f

e

d

c

b

a

Fig. 5 Comparison of domain-averaged GVF (in percent) for (a)
open shrublands, (b) cropland/natural vegetation, and (c) croplands. In
addition, (d) domain-averaged LAI, (e) surface roughness length (in
meter), and (f ) emissivity for croplands sites are shown. Otherwise
similar to Fig. 4
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Almost identical values are found for the parameters until
June, while large differences are found during summer and
autumn. The low summer vegetation fraction, accompanied
by lowering the LAI value as shown by 2006-Q, signifi-
cantly reduces the potential for transpiration in the WRF
model over croplands.

The spatial distribution of GVF during the heat wave
event in July 2006 is shown in Fig. 6. The squares (rep-
resented by letters “a” and “b”) indicate areas selected for
statistical comparison between the numerical simulations
and observed values represented by E-OBS (see Section 5).
As expected, Clim-M and 2006-L show much higher veg-
etation fractions, especially in forested areas, compared to
Clim-A, while cropland sites are more varied. The 2006-
Q map shows much lower vegetation fractions for cropland
sites compared to the other GVF representations, especially
within the squares over France and Poland and in the UK.
The colors indicate differences of the order of 50 % in some
areas between Clim-A and 2006-Q. Considering that 2006-
Q shows similar seasonal development during springtime
compared to Clim-A (see Fig. 5), it is clearly seen how
extreme events or changes in management practice can alter
the appearance of GVF.

a

b

Fig. 6 Comparison of averaged GVF (in percent) from Clim-A,
Clim-M, 2006-L, and 2006-Q during July 2006. The areas indicated
with squares over (a) France and (b) Poland are used for error statistics
in Table 2

5 Results from numerical experiments

To check the validity of our modeling setup, time series of
simulated precipitable water (PW), a vertically integrated
variable, were compared to observed data obtained from
a GPS station in central Germany. The location is close
to the center of our domain at 52.30◦N, 10.46◦E and thus
not influenced by the boundary conditions. Only observed
and predicted PWs from numerical simulations with Clim-
A and Clim-M are shown since nearly identical results are
obtained using 2006-L and 2006-Q. A very good correspon-
dence between modeled and observed PW during the whole
year is seen (Fig. 7). The differences between the modeled
PWs are small and indicate that our simulations describe the
temporal evolution of the atmospheric moisture conditions
equally well.

The accumulated precipitation fields during March,
April, and May obtained from Clim-A and Clim-M are
compared to observed precipitation from E-OBS in Fig. 8.
2006-L and 2006-Q are excluded in the comparison since
their precipitation fields only deviate slightly from those
obtained by the climatologies. Almost identical accumu-
lated precipitation amounts are found between Clim-A and
Clim-M, and the precipitation patterns are similar to those
in E-OBS, although many regions show higher predicted
accumulated values. Other periods of the annual cycle show
similar trends (not shown); thus, precipitation is largely con-
trolled by the grid-nudging technique and other physical
processes (e.g., microphysics and convection parameteriza-
tion) and not influenced by changes in GVF.

Mean 2-m temperature fields during March–May are
shown in Fig. 9 for Clim-A, Clim-M, and E-OBS. Again,
2006-L and 2006-Q are excluded from the comparison due
to their similarity with the climatologies. Clim-A and Clim-
M show very similar temperature patterns with only minor
differences over the UK, France, and Germany. The patterns
are consistent with E-OBS although cold biases of 1–4 K
are observed throughout the domain. The largest biases are
found in the northern regions, especially over Finland, but
decrease towards the south. Minimum and maximum 2-m
temperatures show similar spatial trends and biases (not
shown).

We focus now on the heat wave period in July (Fig. 10)
shows July-averaged 2-m temperatures (in kelvin) for all
simulations and E-OBS. The largest differences between
the simulated temperatures are seen in areas containing
mostly croplands; hence, the northern regions with mainly
forest show uniform temperatures. The Clim-A simulation
shows higher temperatures over Poland and Hungary, while
lower temperatures are found in central France compared to
Clim-M. The 2006-L simulated temperatures are similar to
those in Clim-M as expected but show higher temperatures
over Poland. The warmest temperatures are simulated in
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Fig. 7 Comparison of the time
series of precipitable water
(PW) at station PTBB located in
central Germany (52.30◦N,
10.46◦E). Observed PW is
represented in black while
predicted PW is indicated in
blue and red for Clim-A and
Clim-M, respectively

2006-Q compared to the other simulations, especially in
central France. All simulations still indicate a cold bias
compared to E-OBS.

Differences between the simulated mean 2-m temper-
atures during July reflect changes in their minimum and
maximum 2-m temperatures as well. The differences are
shown in Fig. 11 for the 2006 specific simulations and
Clim-A. We did not include Clim-M since the results are
almost identical to those in 2006-L and Clim-A. 2006-L
results in warmer minimum and maximum temperatures
over France and southern UK compared to Clim-A, while
mostly lower temperatures are indicated in the northern
and eastern regions. The differences range from 0 to 2 K.
Much larger temperature differences are shown by 2006-Q
compared to Clim-A. The northern forested regions show
slightly lower temperatures for both minimum and maxi-
mum temperatures, while the remaining areas show higher
temperatures. In some cases, temperature differences were
more than 2 K.

Coefficients of determination (R2), biases, and root-
mean-square errors (RMSEs) of simulated daily mean,
maximum, and minimum temperatures against E-OBS val-
ues, shown in Table 2, were calculated. The statistics
are computed separately in the areas indicated in Fig. 6

(France and Poland) and over the entire model domain.
The areas were selected because they show the largest
change in GVF among the different data sets. All GVF
representations show similar R2 values with lower values
found for minimum temperature. Both bias and RMSEs
are significantly improved by 2006-Q compared to Clim-
A, showing improvements between 20 and 45 % for mean
temperature over Poland and France. Similarly, maximum
temperature biases are reduced by 14–31 %, while mini-
mum temperature biases are reduced with more than 45 %.
Both Clim-M and 2006-L show lower biases and RMSEs
compared to Clim-A over France while poorer perfor-
mance is obtained over Poland. The statistics show that
consistent improvements are obtained using the quadratic
method to derive GVF, while the linear approach shows
mixed results. Simulated precipitation patterns did not
show any sensitivity to changes in vegetation fractions
and only small differences in accumulated amounts were
found.

Temperature results during the fall showed similar statis-
tics between the model simulations, still with lower tem-
peratures compared to E-OBS. The best performance was
shown by Clim-A although the difference to 2006-Q was
small.

Fig. 8 Accumulated
precipitation (in millimeter) for
Clim-A, Clim-M, and E-OBS
during March, April, and May
2006
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Fig. 9 Mean 2-m temperature
(in kelvin) for Clim-A, Clim-M
and E-OBS during March,
April, and May 2006. Mean
temperatures are calculated from
(Tmin + Tmax)/2

6 Discussion

The GVF products presented in Figs. 4 and 5 show signif-
icant differences in vegetation fractions during the winter-
time, while little difference in the prediction of temperature
is found due to the low radiation conditions and dormant
vegetation. However, too low winter vegetation fractions for
ENF are shown by Clim-A since more constant seasonal-
ity should be expected (Miller et al. 2006). It is therefore
possible that the MODIS-derived GVF products are closer
to reality (though 2006-Q possibly still indicates too low
values). A comparison of the zonal medians between 50◦N–
60◦N and 60◦N–70◦N for the MODIS GVF products reveals
higher winter vegetation fractions for the southern area, sug-
gesting that the ecosystem-dependent filling, mainly used
above 60◦N, plays a major role in further improvement of
the winter vegetation values.

The temperature differences among the simulations dur-
ing July (Table 2) are related to changes in the surface
energy distribution. Figure 12 shows the differences in
sensible and latent heat fluxes between the 2006 specific
GVF products and Clim-A during July. Many of the areas
covered by croplands show 30 W m−2 less latent heat flux
for 2006-Q compared to Clim-A, while sensible heat flux
is 20 W m−2 higher. The residual energy was largely con-
verted into soil heat fluxes (not shown). Similar patterns are
seen between 2006-L and Clim-A though the differences
are smaller in magnitude. The higher daytime temperatures,
specifically shown by 2006-Q, are directly related to the
increased sensible heat flux, while higher nighttime tem-
peratures occur due to increased soil temperature leading
to higher nighttime ground heat flux into the atmosphere.
Since we neither observed large differences in the rootzone
soil moisture availability, precipitation, nor cloud cover, the

Fig. 10 Mean 2-m temperature
(in kelvin) during July 2006 for
Clim-A, Clim-M, 2006-L (upper
panel), 2006-Q and E-OBS
(lower panel). Mean daily
temperatures are calculated from
(Tmin + Tmax)/2



J. Refslund et al.

Fig. 11 Difference plots
of 2006-L (left column) and
2006-Q (right column) minus
Clim-A for averaged daily min-
imum 2-m temperature (upper
row) and maximum daily 2-m
temperature (lower row) during
July 2006. Units are in kelvin

Table 2 Coefficients of determination, Bias and RMSE of 2006 July daily mean, maximum and minimum temperatures from Clim-A, Clim-M,
2006-L and 2006-Q against E-OBS values over the areas enclosed by squares in Fig. 6 and for the whole domain

Simulation Mean Max Min

R2 Bias RMSE R2 Bias RMSE R2 Bias RMSE

France

Clim-A 0.77 −2.78 2.97 0.82 −3.45 3.73 0.62 −2.17 2.55

Clim-M 0.80 −2.57 2.75 0.84 −3.30 3.56 0.64 −1.88 2.31

2006-L 0.81 −2.32 2.53 0.84 −3.06 3.34 0.66 −1.63 2.12

2006-Q 0.82 −1.53 1.88 0.86 −2.37 2.69 0.64 −0.75 1.71

Poland

Clim-A 0.75 −2.51 2.85 0.70 −3.56 3.99 0.58 −1.43 2.37

Clim-M 0.75 −3.17 3.44 0.70 −4.22 4.59 0.57 −2.09 2.84

2006-L 0.75 −2.73 3.05 0.70 −3.80 4.20 0.57 −1.63 2.55

2006-Q 0.78 −1.91 2.33 0.73 −3.04 3.49 0.57 −0.75 2.14

Domain

Clim-A 0.82 −2.14 2.13 0.82 −2.75 2.69 0.67 −1.52 2.11

Clim-M 0.80 −2.41 2.33 0.80 −3.02 2.89 0.66 −1.79 2.29

2006-L 0.81 −2.28 2.24 0.81 −2.90 2.80 0.67 −1.66 2.21

2006-Q 0.83 −1.87 1.95 0.83 −2.50 2.50 0.69 −1.22 2.01

The squares are named after their location over France and Poland. The best error statistics for each area are indicated in italics. Units are in kelvin
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Fig. 12 Difference plots of
2006-L (left column) and
2006-Q (right column) minus
Clim-A for July 2006 averaged
sensible heat fluxes (upper row)
and latent heat fluxes (lower
row). The fluxes are defined as
positive upwards in units of
watts per square meter

altered surface energy distribution is mainly due to direct
changes in GVF.

The quadratic MODIS GVF product clearly shows the
best performance in terms of temperature simulation com-
pared to the linear products at low-resolution WRF model
simulations. However, this does not necessarily ensure bet-
ter results at high resolution. The very similar range in
vegetation fractions shown by the AVHRR data and the
high-resolution quadratic GVF data, aggregated to low res-
olution through WPS, is encouraging. It suggests that good
performance across spatial scales might be expected using
the quadratic GVF product. Furthermore, the quadratic
NDVI to GVF relation was recently recommended by
Montandon and Small (2008) to avoid large overestimations
of GVF due to underestimation of bare soil NDVI. They
showed that the maximum error would occur for NDVI
values in the range of 0.2 ≤ N ≤ 0.4, which typically
are found during winter or spring, e.g., for croplands. This
critical range was also reached during the 2006 summer
heat wave for croplands; thus, overestimation of vegetation
fraction during this period is minimized with the quadratic

relationship. In addition, the use of local scenes was also
recommended to minimize underestimation of Ns, as was
done in this study.

The results of simulation with a limited-area coupled
land–atmosphere model have several sources of error,
including both boundary forcing and modeled sub-grid
physical processes that use many parameters. The contri-
bution to model error from physical processes has been
investigated in previous studies. For example, Decharme
et al. (2009) found that more advanced parameterization
of the land surface hydrology over West Africa affected
surface temperature through alteration of the surface
fluxes. However, they noted that more realistic vegetation
properties should have been used in their study, which, addi-
tionally, would have impacted the surface fluxes. Mooney
et al. (2013) found that radiation and PBL schemes influ-
ence the surface temperature predictions, although these
predictions mostly were affected by the choice of LSM. Pri-
marily cold biases over Europe were found using the Noah
LSM, while another LSM showed large positive biases.
The cold temperature bias compared to E-OBS shown in
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the present study was also reported by Garcı́a-Dı́ez et al.
(2012). They simulated the atmospheric conditions over
Europe during 2002 using the ERA-Interim reanalysis data
and by applying different PBL schemes. The simulations
were done in a reforecast mode using 12 h of spin-up.
Their results and the present study eliminate the use of
CFSR data and the MYJ PBL scheme as main causes of
the overall temperature cold bias. The main problem could
be related to the radiative balance (Manning et al. 2010;
Garcı́a-Dı́ez et al. 2012) which was only slightly changed
by updating the GVF data. Therefore, future investigations
of the impact of remotely sensed albedo on temperature in
WRF/Noah should be carried out using a similar approach
to this study. The advantages are that the grid-nudging tech-
nique minimizes changes in precipitation and cloud cover
and the continuous simulation avoids reinitialization of soil
moisture, which is important for the surface energy balance.

The longer growing season indicated by the new GVF
data is perhaps a result of higher autumn temperatures over
the northern latitudes during the last two decades that, addi-
tionally, have lead to increases in photosynthesis and res-
piration (Piao et al. 2008). However, the increased climate
variability predicted by climate models (Seneviratne et al.
2006) could significantly alter the interannual variability of
GVF, suggesting that concurrent land cover characteristics
will be more important for climate predictions in the future.
A key process in the approach presented in this paper is
the development of a NDVI climatology. Besides introduc-
ing a robust way of treating missing data and bad pixel
values, it offers attractive perspectives for future studies.
The new NDVI climatology ensures an efficient way to fill
annual GVF data sets and can be used for both climate and
seasonal forecasting purposes. In addition, it can be used
in a real-time system to extrapolate the current vegetation
conditions to the short-term future using a “deviation from
climatology” method.

7 Conclusions

A statistically robust MODIS-derived NDVI climatology,
reflecting recent landuse and climatic changes, was derived
to enable computation of concurrent GVF information. To
ensure high quality of the climatology, existing and novel
data-processing techniques were applied on 10 years of
NDVI images. A GVF climatology and two single-year rep-
resentations of GVF, using both linear and quadratic NDVI
to GVF relations, were derived and used in WRF model sim-
ulations over Europe for the 2006 heat wave year at 18-km
grid spacing.

The GVF seasonality for the most common landuse
classes in the European domain showed that the lin-
ear MODIS GVF products generally resulted in higher

vegetation fractions compared to the AVHRR GVF data,
while the quadratic GVF product showed very good agree-
ment with the magnitude and annual range of the AVHRR
data. Vegetation stresses related to the 2006 heat wave or
changes in management practice for croplands were clearly
indicated by the 2006 specific GVF products. Addition-
ally, prolonged autumnal growth periods were indicated
by the new GVF products for mainly deciduous forests
types.

The output from the numerical simulations was com-
pared to E-OBS daily gridded observational data. Compari-
son during the spring showed that all simulations produced
equally good results. However, temperatures during July
were consistently improved by the 2006 quadratic GVF
product compared to E-OBS, reducing the mean temper-
ature bias by 0.60–1.25 ◦C (20–45 %) in areas severely
affected by heat wave conditions. The reduction in bias
over the whole domain was 0.27 ◦C (10 %). Improvements
for minimum temperature were larger than those obtained
for maximum temperature. The linearly derived MODIS
GVF products showed varying results and did not per-
form as good as the quadratic GVF product during the heat
wave period. The results from a limited-area coupled land–
atmosphere model have several potential sources of error,
including the representation of the land surface. This study
has shown that specification of observed vegetation prop-
erties in a year that deviates significantly from normal can
improve predicted near-surface states.
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