
Roskilde
University

The four sides and the area
oblique light on the prehistory of algebra

Høyrup, Jens

Published in:
Vita mathematica

Publication date:
1996

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Høyrup, J. (1996). The four sides and the area: oblique light on the prehistory of algebra. In R. Calinger (Ed.),
Vita mathematica: historical research and integration with teaching (pp. 45-65). Mathematical Association of
America.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain.
            • You may freely distribute the URL identifying the publication in the public portal.
Take down policy
If you believe that this document breaches copyright please contact rucforsk@kb.dk providing details, and we will remove access to the work
immediately and investigate your claim.

Download date: 17. May. 2025



THE FOUR SIDES AND THE AREA

Oblique Light on the Prehistory of Algebra

By

JENS HØYRUP*



The present essay traces the career of a particular mathematical problem—to find the side of a

square from the sum of its four sides and the area—from its first appearance in an Old Babylonian

text until it surfaces for the last time in the same unmistakeable form during the Renaissance in

Luca Pacioli’s and Pedro Nunez’ works. The problem turns out to belong to a non-scholarly

tradition carried by practical geometers, together with other simple quasi-algebraic “recreational”

problems dealing with the sides, diagonals and areas of squares and rectangles. This “mensuration

algebra” (as I shall call it) was absorbed into and interacted with a sequence of literate

mathematical cultures: the Old Babylonian scribal tradition, early Greek so-called metric geometry,

and Islamic al-jabr. The article explores how these interactions inform us about the early history of

algebraic thinking.

As far as possible I have referred for detailed documentation to earlier publications, in

particular to my analysis of Babylonian “algebra” and its reflections in later traditions. In cases

where documentation is not discussed in depth elsewhere I have still tried to be concise, but none

the less felt obliged to present at least an outline of the full argument.

I. An Old Babylonian “square problem”

A famous cuneiform mathematical text (BM 13901)1 contains as its No 23 the following

problem

In a surface, the f[o]u[r fronts and the surf]ace I have accumulated, 41´40´´.

4, the f[ou]r fronts, yo[u inscr]ibe. The i g i of 4 is 15´.

15´ to 41´40´´ [you r]aise: 10´25´´ you inscribe.

1, the projection, you append: 1°10´25´´ makes 1°5´ equilateral.

1, the projection, which you have appended, you tear out: 5´ to two

you repeat: 10´ n i n d a n confronts itself.

The text was written in the Old Babylonian period, that is, between 2000 BC and 1600 BC,

and probably during the eighteenth century BC. Originally, it appears to have contained 24

problems of apparently algebraic character dealing with one or more squares and their sides. In its

present state, the tablet is damaged, though most problems can be safely reconstructed.

The translation is meant to render the terminology as precisely as possible, and follows

principles which I have developed for the translation of Babylonian “algebra”.2 In the present

context, only a few words’ explanation can be made. Numbers, first of all, are rendered in the

degree-minute-second notation, which means that 1°10´25´´ is to be read . (One1
10

60

25

60 60

should remember that the original text contains no indicators of absolute order of magnitude,
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merely the sequence 1 10 25.) “Accumulating” (Akkadian kamārum3) is a genuine addition of

numbers, where both addends loose their identity and merge into a sum; as here, it may be used for

additions with no concrete interpretation (length plus area). “Appending” (wasābum), on the other

hand, is a concrete additive operation, where one entity (one may think as example of one’s own

bank account) is augmented by another (the interests of the year—actually labelled “the appended”

in Akkadian) without changing its identity (it remains my account). Appending possesses an inverse

operation “tearing out” (nasāhum); the other (“comparative”) subtractive operation “a exceeds b by

x” (a eli b x iter) is only used for concretely meaningful comparisons, and is thus no real inverse of

“accumulating”.

The “ i g i ” of a number n is its reciprocal as listed in a table of reciprocals. When having to

divide by n, the Babylonians would multiply by i g i n , using an operation labelled “raising”

(našûm)—probably best to be explained as “calculation [of something] by means of multiplication”;

other multiplicative operations are “a steps of b” ( b a - r à a ) , designating the multiplication of

number by number in a multiplication table; “repeating to n” (ina n ēsēpum), which is indeed an n-

fold concrete repetition; and “making a and b hold each other” (the most plausible reading of a ù b

šutakūlum), which means arranging the lines [with lenghts] a and b as sides of a rectangle [whose

area will then be a b]. A variant of the latter operation is “making a confront itself” (a

šutamhurum), which means making a the side of a square. The reverse of the latter operation is to

find out what “makes [the area] B equilateral” (B í b - s i 8 ), that is, what length a will be the side if

B is formed as a square (arithmetically: a = √B). The “projection” (wası̄tum) 1, finally, is a line

segment of length 1 which, projecting orthogonally from another line segment [with the length] a,

transforms it into a rectangle [with the area] 1 a = a. Lengths are measured in the unit n i n d a n (1

n i n d a n = 6 m) and areas in s a r (= n i n d a n 2)

With this is mind, we can understand the text. The first line tells that we are dealing with a

surface (details in the grammar seem indeed to suggest a field). The sum of the measuring numbers

for the four sides (not just four times the side) and the area is 41´40´´. In modern notation, if s is

the length of the side, this corresponds to the equation s2 + 4s = 41´40´´, which is the reason that

this and similar Babylonian problems are generally regarded as algebra. The second line prepares a

division by 4, which takes place in line 3; in our equation, this division would express itself in a

transformation into (s/2)
2 + 1 s = 41´40´´/4 = 10´25´´. The addition of 1 in line 4 would tell us that

(s/2)
2 + 2 1 (s/2) + 1 = 1°10´25´´; finding the equilateral corresponds to the transformation s/2 + 1 =

√1°10´25´´ = 1°5´, leading us to the further conclusion that s/2 = 5´—and finally s = 10´.

The numerical steps of the solution are thus meaningful when seen in the perspective of

symbolic algebra, yet the use of the term “projection” (and the addition of a mere “1” instead of
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“12” in line 4, which is an otherwise compulsory Babylonian

Figure 1. The procedure of

BM 13901, No 23.

practice) tells us that the Babylonian calculator operated in a very

different representation—see Figure 1: Each of the four sides was

thought of as provided with a projection (that is, a “projecting

width”) 14 and thus represented by a rectangle s×1; the surface

was a square s×s; and the sum was hence represented by a cross-

shaped configuration. When the Babylonian scribe divided by 4

in lines 2–3, what he did was to single out one fourth of this

configuration, for example, the gnomon in the upper left corner.

The addition of “1 the projection” calls for a general commentary: We think of a square as being

(for instance) 4 square feet and having the side 2 feet (knowing that, strictly speaking, the square is

a complex configuration which can equally well be characterized by any of these parameters). The

Babylonians, on their part, thought of the square as being 2 feet and having an area 4 square feet.5

Appending “1 the projection” thus means fitting in the square contained by the gnomon, each of

whose sides is indeed the projection. Thereby the gnomon is completed as a square with known

area 1+10´25´´ = 1°10´25´´, which is “made equilateral” by √1°10´25´´ = 1°5´. From this, the

projection (this time, according to our distinction, viewed as the side of the completing square) is

torn out, leaving 5´ as the width of the gnomon leg. “Repeating” this to two, that is, uniting it with

its mirror image, produces the side of the original square, that which “confronts itself”.

This “cut-and-paste procedure” is “naive” in the sense that everything can be “seen”

immediately to be correct (whenever the word is used in the following it is to be read in this

technical sense and never as “gullible”). There is no attempt to prove, for example, that the gnomon

is a rectangular gnomon and contains precisely a square; such “critical” reflection (in a quasi-

Kantian sense) had to wait until Euclid. But the procedure can be seen to be correct (and can be

transformed into a “critical” proof without difficulty), and is thus justification and algorithm in one

(as is the stepwise transformation of a modern algebraic equation). It is also “analytical” in the

sense that the unknown side is treated as if it were known until it can be isolated from the complex

relation in which it is entangled. If algebra is understood primarily as the application of analysis (as

François Viète would have it), the method is clearly algebraic in nature. But if algebra is a science

of number (or, post-Noether, generalized number) by means of abstract symbols, the Old

Babylonian “algebra of measurable line segments” is not algebra. This proviso should be kept mind

in the following when I drop the quotes for reasons of stylistic simplicity, speaking simply of

Babylonian algebra.

Many features of the present problem are shared by the Old Babylonian “algebra” texts in
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general: The distinction between two additive operations—that is, operations which when translated

into modern equations become additions; the analogous distinction between two different

subtractive and no less than four different multiplicative operations; and the use of naive cut-and-

paste geometry in procedures which are their own immediate justification. Other features, however,

single out the problem of “the four sides and the area” as a remarkable exception.

If by Q we designate the quadratic area and by s the corresponding side (Qi and si, i = 1, 2, ...

when several squares are involved); by 4s “the four” sides of a square); if (a) stands for the area

of the square on the line segment a and (a,b) for that of the rectangle “held” by a and b, the

tablet contains the following problems (n` stands for n 601):

1. Q+s = 45´

2. Q–s = 14`30

3. Q–1/3Q+1/3s = 20´

4. Q–1/3Q+s = 4`46°40´

5. Q+s+1/3s = 55´

6. Q+2/3s = 35´

7. 11Q+7s = 6°15´

8. Q1+Q2 = 21´40´´, s1+s2 = 50´ (reconstructed)

9. Q1+Q2 = 21´40´´, s2 = s1+10´

10. Q1+Q2 = 21°15´, s2 = s1–
1/7s1

11. Q1+Q2 = 28°15´, s2 = s1+
1/7s1

12. Q1+Q2 = 21´40´´, (s1,s2) = 10´

13. Q1+Q2 = 28´20´´, s2 = 1/4s1

14. Q1+Q2 = 25´25´´, s2 = 2/3s1+5´

15. Q1+Q2+Q3+Q4 = 27´5´´, (s2,s3,s4) = (2/3,
1/2,

1/3)s1

16. Q–1/3s = 5´

17. Q1+Q2+Q3 = 10`12°45´, s2 = 1/7s1, s3 = 1/7s2

18. Q1+Q2+Q3 = 23´20´´, s2 = s1+10´, s3 = s2+10´

19. Q1+Q2+ (s1–s2) = 23´20´´, s1+s2 = 50´

20. [missing]

21. [missing]

22. [missing]

23. 4s+Q = 41´40´´

24. Q1+Q2+Q3 = 29´10´´, s2 = 2/3s1+5´, s3 = 1/2s2+2´30´´

We observe that No 23 is the only problem referring to “the four” sides of a square. It is also

the only problem mentioning the sides before the area. It is certainly not the only normalized mixed

second-degree problem dealing with a single square, but all the others refer to a general method (in

semi-modern terms: halving the number of sides, squaring this half, etc.). In geometric terms, a

sides are expressed as (a,s); this rectangle is bisected, and the total area Q + 2 (½a,s) is

transformed into a gnomon which is then completed; etc.—see Figure 2. The procedure of No 23,

on the other hand, depends critically on the number 4; already at this point we may observe that

this use of an amazing and elegant but non-generalizable solution makes the problem look more

like a riddle than like a normal piece of mathematics (Babylonian or modern); so does, in fact, the

presence of precisely those four sides which really belong to the square, instead of an arbitrary (and
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thus virtually general) multiple.

Figure 2. The “normal” procedure

of BM 13901 for the solution of

Q+αs = C.

Other differences are no less striking. All remaining

problems tell that they deal with squares by using the term

which at one time designates the quadratic configuration and

the length of the side; No 23 is alone in stating at first that it

deals with “a surface” or (probably) “a field”. It is also alone

in using the term translated here as “front” (pūtum), an

Akkadian term corresponding to Sumerian s a g , the “width”

of a rectangle. In normal algebraic problems the Sumerian

term is compulsory; the use of a word belonging to the

spoken vocabulary of surveyors indicates that we are

supposed to think of a real piece of land.

Even the solution is uncommon. Other problems of the

tablet dealing with a single square have the side equal to 30´

(or 30), except for one case of 20´. These are indeed the

standard values of square sides in Old Babylonian algebra

problems, which may have to do with the roundness of these numbers in the sexagesimal place

value notation used in mathematics teaching (30´ = 1/2, 20´ = 1/3).
6 All other cases where 10´ is

found are caused by the use of other favourites (ratios 4 and 7, differences 10´ and 5´). Only No 23

(at least among those problems which are conserved) is constructed from the side 10´ as a

deliberate choice. And only No 23 tells the unit of the result, as if it were to be entered into a

cadastral or similar document (cf. note 6).

The final puzzling feature does not concern the problem itself but its place: Apart from No 16

(which can be suspected of having been displaced), problems of the type αQ ± βs = C occur in the

beginning of the tablet, and the neighbours of No 23 are considerably more complex. It seems as if

the difference in method as reflected in the contrast between Figure 1 and Figure 2 was understood

as a difference between mathematical genres.
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II. The Proofs of al-jabr

No other Babylonian mathematical tablet contains a problem involving “the four” sides of a

square or making use of the peculiar method of Figure 1. In order to find parallels we have to

make a jump to the early ninth century CE.

This was the moment when the Khalif al-Ma mūn asked al-

Figure 3. Al-Khwārizmı̄’s

second proof. From B. B.

Hughes, “Gerard of Cremona’s

Translation of al-Khwārizmı̄’s

Al-Jabr,” p. 238.

Khwārizmı̄ to put together a treatise covering those parts of the

field al-jabr wa’l-muqābalah that were either “brilliant” (latı̄f) or

practically useful.7 Al-Khwārizmı̄ is thus not to be considered the

inventor of al-jabr (Latinized as algebra), and as we can read in

a treatise by the slightly later Thābit ibn Qurrah8, it was

practiced by a group of “al-jabr people,” evidently some kind of

professional calculators. Yet within another generation or two,

Abū Kāmil would regard it as al-Khwārizmı̄’s discipline—and al-

Khwārizmı̄ appears indeed (together with his contemporary ibn

Turk, from whose work only a fragment is extant) to have

reshaped the discipline, in particular the treatment of second-degree problems, which was its core.9

The problem which we translate as x2 + 10x = 39 would be formulated as follows by the al-

jabr people: A treasure together with 10 roots equals 39 dirhems. Fundamentally, the problem thus

tells that an unknown amount of money (the “treasure” or māl—more precisely “property”) together

with 10 times its [square] root (ja_dr) equals 39 dirhems (strictly speaking, the correct translation is

hence y + 10√y = 39). They would find the root by an unexplained rule: You halve [the number of]

roots (which gives 5), multiply it by itself (25), add this to the dirhems (64), take the root (8), and

subtract the half of the [number of] roots. Thus the root is 3, and the treasure is 9.

This rule is given by al-Khwārizmı̄ and repeated by Thābit ibn Qurrah. It can safely be

assumed to belong to the inherited lore of the group. Al-Khwārizmı̄’s most important innovation

was to give a geometrical proof that the traditional rule (and the corresponding rules for the cases

Treasure and number equal roots and Roots and number equal treasure) was correct. As in the

Greek texts translated by al-Khwārizmı̄’s colleagues at the Baghdad court, points and areas are

labelled by letters in these proofs. In essence, however, they only differ from the cut-and-paste

proofs which we have encountered above by being more precisely argued and hence less naive.

For the case The treasure together with 10 roots equals 39 dirhems, two different proofs are

given. The second corresponds directly to the rule, and is made on a diagram similar to Figure 2
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(see Figure 3, which renders Gherardo of Cremona’s translation).

Figure 4. Al-Khwārizmı̄’s first

proof. From B. B. Hughes,

“Gerard of Cremona’s

Translation of al-Khwārizmı̄’s Al-

Jabr,” p. 237.

The first corresponds to a procedure that differs from the one

whose correctness is to be proved: 10 is divided by 4 (21/2),

squared (61/4), multiplied by 4 (25), and added to 39. The

diagram (see Figure 4) corresponds to that of Figure 1. There is

no reason within al-Khwārizmı̄’s text to bring a diagram so

obviously at odds with what is to be proved (elsewhere, he

confesses no particular infatuation with symmetry). If the diagram

is there it must be because it comes first to his mind, or because

he expects it to come first to the reader’s mind. It must hence be

supposed to have been familiar either to al-Khwārizmı̄ or to his

“model reader”—not from the al-jabr but from some other tradition. (It is indeed also more naive

in style than the following proofs.)

III. Abū Bakr’s “mensuration algebra”

This conjecture is confirmed by another treatise, a Liber mensurationum written by one

unidentified Abū Bakr. According to terminological criteria the work will be grossly contemporary

with al-Khwārizmı̄’s.10 No manuscript of the Arabic text is known, but a careful Latin translation

was made by Gherardo of Cremona.11 Moreover, as we shall see, Leonardo Fibonacci has used the

work in his Pratica geometrie.

Formally, the work deals with practical geometry, and some of it really does. Thus, in the

beginning of the first chapter it is told how, given the side of a square, the area and the diagonal

can be calculated. Then, however, Abu Bakr goes on with “brilliant” problems of no or scarce

practical interest and mostly asking for some kind of algebraic treatment; all in all, the initial

chapter (on squares) contains the following problems:

1. s = 10: Q?

2. s = 10: d?

3. s+Q = 110: s?

4. 4s+Q = 140: su?

5. Q–s = 90: s?

6. Q–4s = 60: su?

7. 4s = 2/5 Q: su?

8. 4s = Q: su?

9. 4s–Q = 3: su? (Both solutions are given)

10. d = √200; s?

11. d = √200; Q?
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12. 4s+Q = 60: su?

13. Q–3s = 18: s?

14. 4s = 3/8 Q: su?
12

15. Q/d = 7½: su?

16. d–s = 4: s?

17. d–s = 5 (no question, refers to the previous case).

18. d = su+4: s? (no reference is made to No 16).

19. Q/d = 71/14: s?, d?

Here, Q again denotes the area and s the side of the square; d is the diagonal, 4s stands for “[the

sum of] its four sides” (or merely “its sides,” meaning the same), and su for “each of its sides”

(below, A shall be used about the area of a rectangle, and l1 and l2 about its sides). The next

chapters (rectangles regarded as “quadrates longer on one side,” and rhombi) are similarly weighted

toward algebraic problems; only then come chapters dominated by genuine geometrical calculation

(and clearly related to the Alexandrian/Heronian tradition). In order to possess a name for this

particular kind of quasi-algebra I shall speak about “mensuration algebra”—dropping again the

quotes in the following for stylistic reasons, even though the objections to this characterization of

the technique as algebra tout court are even stronger than in the case of the scribe school discipline

(cf. note 22).

Returning to the chapter on the square we observe, firstly, that “the four sides and the area”

turns up as No 4, and again with a different numerical parameter as No 12—the sides being once

more mentioned first (in the Liber mensurationum this is the common usage). Secondly, that all

problems involving sides except No 13 deal with the side or the four sides; later on, the sides of

rectangles also invariable turn up in geometrically meaningful company—the shorter or the longer

side alone, these two together, or all four together (similarly also the diagonals of rhombi). Thirdly,

that the standard square has a side equal to 10, the only real exceptions being Nos 8–9 and

12–13.13

Abū Bakr solves many of the quasi-algebraic problems in what he regards as two different

ways. One of these receives no special label and can thus be identified as a standard method, the

method habitually belonging with the tradition of mensuration algebra as he knew it. The other is

al-jabr (aliabra in Gherardo’s translation). A literal translation of Nos 3, 4 and 6 will serve as

illustration:

3. And if he [a “somebody” presented in No 1] has said to you: I have aggregated the side and

the area, and what resulted was 110. How much is then each side?

The working in this will be that you take the half of the side as the half and multiply it

by itself, and one fourth results; this then add to 110, and it will be 1101/4, whose root you

then take, which is 101/2, from which you subtract the half, and 10 remain which is the side.

Understand!

There is also another way for this according to al-jabr, which is that you posit the side as

a thing and multiply it by itself, and what results will be the treasure which will be the area.

This you thus add to the side according to what you have posited, and what results will be a
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treasure and a thing which equal 110. Do thus what you were told above in al-jabr, which is

that you halve the thing and multiply it by itself, and what results you add to 110, and you

take the root of the sum, and subtract from it the half of the root. Actually, what remains will

be the side.

4. And if he has said: I have aggregated its four sides and its area, and what resulted was 140,

then how much is each side?

The working in this will be that you halve the sides which will be two, thus multiply this

by itself and 4 results, which you add to 1<40 and what results will be 1>44, whose root you

take which is 12, from which you subtract the half of 4, what thus remains is the side which is

10.

. . . . . . . . . . . . .

6. And if he has said: I subtracted its sides from its area and 60 have remained, how much thus

is each side?

In this the working will be that you halve the sides which will be two. This you thus

multiply by itself and add it to 60, and take the root of the sum which is 8, to this you thus

add half the number of sides, and what results will be 10 which is the side.

But its working according al-jabr is that you posit the side as a thing, which you

multiply by itself, and a treasure results which is the area. From this then subtract its four

sides, which are 4 things; thus remains a treasure minus 4 things which equals 60, restore thus

and oppose, that is that you restore the treasure by the 4 things that were subtracted, and join

them to 60, and you will thus have a treasure which equals 4 things and 4 dragmas. Do thus

what you were told above in the sixth question [of al-jabr], that is that you halve the roots

and multiply them by themselves and join them to the number and take its root, and what

results will be that which is 8. To this you then join the half and 10 results, which will be the

side.

This piece of text calls for a number of commentaries. First we observe that the numerical

steps of the basic and the al-jabr methods coincide (which is actually noticed by Abū Bakr, as can

be seen by his identification “that which is 8” in No 6). The difference between the two methods

must thus depend on something else (even though, in certain other problems, the two also differ

numerically).

Al-jabr is evidently the technique explained by al-Khwārizmı̄, and Abū Bakr’s treatise on

mensuration must have been produced as a companion piece to an explanation of al-jabr—though

not to al-Khwārizmı̄’s treatise but to something in more archaic style. This appears from certain

terminological peculiarities: more precisely from the use of the terms “restoration” (Arabic al-jabr)

and “opposition” (Arabic al-muqābalah), precisely the ones that had given the technique its name.

Al-Khwārizmı̄ uses “restoration” exclusively about the elimination of a subtractive term, in the

way it is employed in Abū Bakr’s No 6; the elimination of a coefficient by division is termed

differently, without distinction between coefficients larger than and smaller than 1.14 In Abū

Bakr’s al-jabr expositions, “a treasure minus 4 things” is “restored” as “one treasure” by the

addition of 4 things, and “one fourth of a treasure” is “restored” through the multiplication by 4 (in

No 55). In Abū Bakr’s usage (which is confirmed in the standard treatment of No 4, and again in

the genuine geometrical part of the treatise, in Nos 67, 100, and 102), restoration thus repairs any

deficiency, whether subtractive or partitive (on one occasion it even repairs an excess by
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subtracting it, viz in No 55).

“Opposition” as used by al-Khwārizmı̄ is the converse of his restoration, the subtraction of an

addend on both sides of an equation. In the Liber mensurationum, the meaning once again is less

specific and mostly different. Where al-Khwārizmı̄ has the recurrent phrase “restore, and add” (the

restoration being the elimination of a subtractive term –t on one side of the equation, and the

addition the concomitant addition of an additive term t on the other), Abū Bakr has “restore, and

oppose” (Nos 5, 6, 9, etc.);15 in one place (No 22), the term covers an al-Khwārizmı̄an opposition;

and repeatedly, when an entity A is “opposed with” or “by” another entity B, the meaning is that

the equation A = B is formed (most clearly in Nos 41, 48, 49 and 50, but also in Nos 7, 24, 25, 31

and elsewhere). Summed up in one concept, “opposition” means “putting on the opposite side,”

either in an already existing equation or by establishing an equation.16

Abū Bakr is not alone in not complying with the usage which was canonized thanks to the

fame of al-Khwārizmı̄’s treatise. Even al-Karajı̄, though he defines the terms as does al-Khwārizmı̄,

uses “opposition” in Abū Bakr’s way.17 There can be little doubt that Abū Bakr’s loose parlance

is original and al-Khwārizmı̄’s stricter usage an innovation, in all probability an intentional and

premeditated innovation: the natural trend for the terminology of a mathematical culture undergoing

a process of dynamic maturation (as that of ninth to tenth-century Islam) is to increase its precision

and stringency, not to abandon its accuracy. Abū Bakr’s al-jabr is thus pre-al-Khwārizmı̄an, if not

necessarily by date then at least in substance and style (but given the triumph of al-Khwārizmı̄’s

Algebra it cannot then be too much later).

So much concerning the al-jabr method. Returning to the standard method we remember that

it did not (or did not always) differ from al-jabr in its numerical steps. None the less it was

regarded as something different by Abū Bakr. Why?

A first observation to make is the care with which the al-jabr sections explain that the treasure

represents the area of the square, and the root (or “the thing,” which is used in the same sense until

standard equations are derived)18 its side. The implication is that treasure and root/thing are not in

themselves understood geometrically but as numbers. The basic method may then differ from al-

jabr precisely by referring directly to the geometric method.

This conjecture is confirmed by several further observations. One concerns the word

“understand” (intellige in the Latin text), whose occurrences are scattered throughout the work, in

somewhat varying contexts. On two occasions, the word stands as an exhortation to penetrate a

deliberately opaque and superfluously intricate computation and to grasp why it works after all (Nos

50 and 74). In a number of questions concerned with genuine geometrical computation it asks the

disciple to look at or understand from actually appearing diagrams why the computation is correct
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(a square with diagonal in No 2; an isosceles trapezium in No 78; etc.); this recalls another

Gherardian translation from an Arabic text, according to which the Indians “possess no

demonstration [for a particular construction] but only the device intellige ergo”—where indeed

Indian geometrical texts have the phrase nyāsa, “one draws” (etc.) followed by a diagram when

they want to illustrate a rule, algorithm or algebraic identity which has just been stated.19 Finally,

the word is used repeatedly as in No 3, that is, after the presentation the standard solution (but not

the al-jabr solution) of a quasi-algebraic problem. Even though no diagrams are given on these

occasions i Gherardo’s version, the parallel to the real geometric problems suggest that here too the

exhortation may have referred originally to understanding through a diagram—in No 3 to a diagram

similar to Figure 2.

Significantly, some of the solutions which carry the “understand” are termed in a way which

shows that the original constitutive geometrical entities are thought of all the way through. One

instance is No 43, dealing with a rectangle (a “quadrate longer on one side”) and indeed a

rectangular version of “the four sides and the area”:

If indeed he has said to you: I have aggregated its four sides and the area, and what resulted

was 76; and one side exceeds the other by two. How much thus is each side?

The way to find this will be that you multiply the increase of one side over the other,

always [that is, whatever the actual excess] by 2, and what results will be 4. Therefore subtract

this from 76, and 72 will remain. Next aggregate the number of sides of the quadrate, which is

4, and join it to the increase of one side over the other, and what results will be 6. Thus take

its half, which is 3, and multiply this by itself, and 9 results, which you join to the 72, and 81

results. Then take its root, which is 9, and subtract from it the half of 6, which is 3, and the

shorter side will remain, which is 6. To this then add 2, and the longer side will be 8.

Understand.

The way according to al-jabr, however, ....

The numerical steps can be explained in several ways; algebraically, we may call the width z, and

the length thus z + 2; proceeding mechanically from here we get Abū Bakr’s al-jabr procedure. Or

we may call the two sides x and y (x = y + 2), and observe that the area plus the sides is then

x y + 2x + 2y = x y + 4y + 2 2 = (x+4) y + 4; if X = x + 4, we therefore have X y = 76 – 4 =

72, X = y + (2+4) = y + 6. The problem has thus been reduced to finding the sides of a rectangle

whose area is 76 – 4 = 72 (4 being 2 the excess times invariably 2), and whose length exceeds the

width by 2 + 4 (4 being the number of sides). This interpretation makes sense not only of the

numbers but also of most of the words of the text—including the use of the identity-conserving

“joining” of 4 to the excess, since the result is still an excess (as the Old Babylonian texts, Abū

Bakr distinguishes between additions, even if less sharply).

Still, some formulations remain unexplained, and x’s and y’s are anyhow anachronistic. The

second interpretation therefore has to be reinterpreted itself in order to become relevant. This is

done in Figure 5: Initially, the sides are thought of as provided with the standard width 1 (the
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“projection” of our Old Babylonian texts).20 The excesses are cut

Figure 5. Liber

mensurationum, the

procedure of No 43.

off, after which the sides are “aggregated,” and collectively

“joined” to the excess. The rest goes as in Figure 2: The excess of

the rectangle over the square is bisected and a gnomon is formed,

to which the quadratic complement is “joined,” etc.

That the text refers to something more than mere numbers is

confirmed by the recurrent phrase “what results/remains will

be ...”. The al-jabr sections (where we have the advantage of

knowing what goes on) demonstrate that the phrase is no mere

stylistic whim. Here the phrase also turns up time and again—but

never in places where “what results” is nothing but the outcome of

a computation. Instead of “what remains will be 72,” such

passages simply tell that “72 results”. Invariably, “what results” is

either a composite algebraic expression or equation, or a something

which is identified with something different—as in the end of No

3, where the numerical outcome of the algorithm is told to be the

side, and again toward the end of No 6.

Even within the descriptions of the standard method, we therefore have to read the phrase

“what results will be a” as “the thing which results will have the numerical value a”. But since it is

never explained, as done in the al-jabr sections, that something different represents the geometrical

entities that the problems deal with, then the “things” whose existence is presupposed must be

geometrical entities, derived by means of geometrical operations from the entities referred to in the

statement. In No 43, “the thing that is 4” will hence be the piece which is removed from the two

rectangles representing the lengths—that is, the small square that is eliminated in the second step in

Figure 5; and “the thing that is 6” will be the excess of the new length over the width.

No 38—a kind of rectangular counterpart of No 1—may be even more elucidating, because the

solution builds on a fallacy which turns out to make excellent sense in a diagram:

If indeed he has said to you: I have aggregated its longer and shorter sides and the area, and

what resulted was 62; and the longer side exceeds the shorter by two. How much, then, is

each side?

The way to find this will be that you subtract 2 from 62, and 60 remains, then add 2 to

the half of the number of sides, and 4 results. Join this to 60, and 64 results. Thus take its

root, which is 8. This, in fact, is the longer side. And if you want the shorter, subtract 2 from

8, and 6 remains, which is the shorter side.

Figure 6 shows what goes on: We start as before, but this time, taking advantage of the coincidence

between the number of sides involved and the excess (and thereby depriving the solution of any
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general validity), we produce the gnomon by moving the width to a position along the length and

splitting off the excess from the length. The gnomon is completed as a square by fitting in the

loose end of the length together with another piece (with width 1 and length) equal to “the half of

the number of sides” (that is, equal to the number of sides actually involved). The area of the

completed square being 64, its side (which equals the length according to the diagram) is 8.

The correct solution of No 43 might in principle have been

Figure 6. Liber

mensurationum, the

procedure of No 38.

obtained by other means than the use of a diagram (there are always

many ways to obtain a correct result), even though it seems difficult to

explain the precise phrasing without the geometrical cut-and-paste

interpretation. The lapses of No 38, on the other hand, can only have

resulted meaningfully from a representation where it goes without

saying, firstly that the excess of length over width equals the number of

sides involved, and secondly that the two together contain the

completing square (the number of sides translated into “projections”)—

that is, in a geometrical representation drawn or imagined in more or

less correct proportions. All in all we may confidently conclude that

Abū Bakr’s standard method was based on geometrical operations—and

that at least the method used in the problems translated above was in

naive cut-and-paste style.21 Moreover, the geometrical operations

concern the very entities which define the problems22—and these, as

pointed out in passing above, are always geometrically meaningful. They do not involve entities

like αQ or βs (or γl1 – δl2) but instead: the single area; the side, both sides, or all four sides; the

two diagonals of a rhombus; etc.

The geometrical technique of Abū Bakr’s mensuration algebra recalls what one encounters in

Old Babylonian texts, and “the four sides and the area” certainly recalls BM 13901, No 23. No

surviving Babylonian problem possesses precisely the structure of Abū Bakr’s Nos 38 and 43, but

one text (also belonging to the early phase of the development of Old Babylonian algebra) contains

a close parallel, which happens also to make use of a trick for its solution which corresponds to a

change of variable: AO 8862 No 1.23 Here, in symbolic translation, x y + (y–x) = 3`3°, y + x =

27; by addition, x y + 2y = (x+2) y = 3`30° or X y = 3`30°, y + X = 27 + 2 = 29.

Several other similarities between the Old Babylonian corpus and the standard part of Abū

Bakr’s quasi-algebraic problems can be enumerated: in particular, certain shared characteristic

methods; furthermore, a highly systematic and rather intricate shift between past and present tense

and between the first, second, and third grammatical person (there is also one significant though
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only partial divergence in this domain, which we shall discuss below). We may thus safely

conclude that the two kinds of quasi-algebra are somehow connected. How they are connected is a

question to which we shall return.

IV. Twelfth- and thirteenth-century evidence

First, however, we shall look at two later authors who still draw on the same tradition:

Abraham Bar Hiyya—better known as Savasorda, from a twisted pronunciation of his court title—

and Leonardo Fibonacci.

Savasorda’s early twelfth-century Hibbur ha-mešihah we’tišboret (Collection on Mensuration

and Partition), translated into Latin by Plato of Tivoli as Liber embadorum (Book of Areas)24, has

its main emphasis on genuine geometrical computation, in clear contrast to Abū Bakr’s work.

Equally in contrast to Abū Bakr, Savasorda also draws on the Elements, first in the initial chapter,

where he copies the definitions from Elements I and VII and a number of theorems, and later in the

work in a number of proofs. At one point (chapter 2, part 1, §7), however, he tells that before

going on with triangles and with those quadrangles whose treatment presuppose triangulation, he

will present some problems “so that by solving them, with God’s assistance you may prove

yourself a keen and swift enquirer”. First come some problems concerning squares:

§8. s = 10, d?

§9. d = √200; s?

§10. Q–4s = 21, Q? s?

§11. Q+4s = 77, Q? s?

§12. 4s–Q = 3, su? (Both solutions are given).

Without doubt Savasorda has borrowed this sequence of problems, and no doubt it is related to

what we encountered in the Liber mensurationum. It is uncertain, however, and rather implausible

that he used Abū Bakr’s manual directly. If he had done so and then made the present meagre

selection, changing furthermore the order in §§9–11 and the value of the unknown in §§10–11, it

does not seem likely that he would keep §12 unchanged (comparison between the treatments of

rectangles in the two treatises supports this conclusion). That the side of §§10–11 is precisely 7 is

also in itself noteworthy, as possibly related to the crude approximation that was behind Abū

Bakr’s Nos 16 and 18 (side 10 and diagonal 14).

Abū Bakr’s standard method appeared to be a geometrical cut-and-paste procedure referring to

geometrical diagrams, but at least Gherardo’s translation brings no diagrams beyond those that

show the square, the rectangle, the rhombus (etc.) with which the problems deal. Savasorda’s
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manual does contain diagrams demonstrating the correctness of his

Figure 7. The naive

diagram showing that

d
2 ± 2A = (l1 ± l2)

2 in a

rectangle.

solutions (on the other hand, Savasorda provides no al-jabr

solutions).25 Formally, however, these refer to the Euclidean

theorems which are reported in the introduction. It is therefore

possible that they have been associated afresh with the traditional

problems by some editor (Savasorda or a predecessor) with Euclidean

schooling or familiar with Thābit ibn Qurrah’s Verification of the

Problems of Algebra through Geometrical Demonstrations (which

proves the correctness of the standard algorithms of “the al-jabr

people” for the solution of mixed second-degree problems by means of Elements II.5–6 in a way

which is very similar to Savasorda’s). It could also be, however, that this editor simply

reformulated a number of traditional and still current naive geometrical procedures in Euclidean

style—this would be quite easy, since the Euclidean theorems in question look precisely as

“critical” recastings of a naive cut-and-paste inheritance (compare, for instance, Elements II.6 with

Figure 2; the argument is specified below, see p. 22): in other words, it is possible but not sure that

Savasorda’s diagrams descend directly from the procedures traditionally connected with his quasi-

algebraic problems.26

Leonardo Fibonacci wrote his Pratica geometrie (see note 4) in 1220, and certainly drew on

many sources. As Maximilian Curtze pointed out in the critical notes to the Liber embadorum,

Savasorda is one of them. The whole structure of the work indicates that Leonardo has read the

Liber embadorum. Quite a few of the shared features, however, derive not from direct borrowing

but from one or more shared sources.

This regards precisely the group of problems which concerns us here. As pointed out by

Curtze, Savasorda’s §§8–12 recur in the Pratica. Their order, however, has been changed, as has

some of the parameters (+n counts lines from the top, –n from the bottom of the page).

p. 58+6. s = 10, d?

p. 58–3. d = √200; s?

p. 59+5. Q+4s = 140, Q? s?

p. 59–15. Q–4s = 77, Q? s?

p. 60+10. 4s–Q = 3, su? (Both solutions are given).

The formulations, furthermore, are wholly different from Savasorda’s, even though at other places

(for example, when Abū Bakr’s No 38 is reproduced—cf. below) the phrases of a source are taken

over without any change beyond grammatical polishing. Most decisive, however, is that several of

Leonardo’s deviations from Savasorda agree with the “background tradition” as we know it from

Abū Bakr. Like the latter in Gherardo’s translation, Leonardo refers to quatuor eius latera, while
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Savasorda takes away omnium suorum laterum in unam summan collectum; and like Abū Bakr,

Leonardo’s side in the problem Q + 4s = A is 10.27

There can be no doubt that Leonardo had Gherardo’s version of the Liber mensurationum (in

full or in excerpt) on his desk while writing parts of the Pratica. A striking proof is provided by

the problem dealt with from p. 66–13 onward, which coincides with Abū Bakr’s No 38 (see above, p.

12):28

Again, the two sides with the expanse amount to 62; and the larger side exceeds the smaller

by two. How much then is each single side?

The way to find this will be that you subtract 2 from 62, and 60 remain, then add 2 to

the half of the sides, and 4 result. Join this to 60, and 64 result. Thus take their root, which is

8. That, in fact, is the longer side. And if you want the shorter, subtract 2 from 8, and 6

remain, that is the shorter side. For example: posit the smaller side as a thing, then the larger

will be a thing and two dragmas. From the multiplication of this shorter side by the longer

results the expanse. Therefore multiply the thing, that is the smaller side, by the thing and by

two dragmas, and you will have a treasure and two roots as the expanse; which, if you add to

them the two sides, namely 2 roots and 2 dragmas, will be a treasure and 4 roots and 2

dragmas, which equal 62 dragmas. Remove 2 dragmas in each place, and a treasure and 4

roots remain, which equal 60, and so on.

We see that the statement differs from Abū Bakr’s—among other things, Leonardo speaks here

about the “larger” and “smaller” side, where Abū Bakr/Gherardo has “longer” and “shorter”. In the

end, Leonardo gives a solution by means of al-jabr (which he seems to regard as an explanation,

even though completion of the al-jabr procedure would highlight the fallacy),29 where Abū Bakr

has none in this particular problem. In the description of the standard procedure, however, all he

has done is to change the grammatical number, considering “60” etc. as plurals and not singulars.

In other places, Leonardo has geometrical proofs, some of them similar to those of Savasorda.

We may look at Leonardo’s treatment of “the four sides and the area” (p. 59+5):

And if the surface and its four sides make 140, and you want to

Figure 8. Leonardo’s

diagram for “the area and

its four sides make 140”.

separate the sides from the surface. Let a quadrate ezit be put

together, and the rectangular surface ae added to it. And let ai
prolong the straight line it, and be prolong the straight line ez;

and let each of the straight lines be and ai be 4 because of the

number of the sides of the quadrate; because the surface ae
equals four sides of the quadrate et, since the side ei of the latter

is one of the sides of the surface ae; and the surface et contains

indeed the expanse of the quadrate zi, and [not] its four sides.

Therefore the surface za is 140; and that is what we have said,

namely that the treasure with four roots equal 140; and the

treasure is the quadrate et, and its four roots are the surface ae. Divide indeed the straight line

ai in two equals at the point g; and because the line ti is added to the line ai, then the

rectangular surface it on at with the square on the line gi will be equal to the quadrate on the

line gt. But the surface it on at is as the surface zt on at, since it is equal to tz. Thus the

surface zt on at with the square on the line gi equals the square on the line gt. But zt on at is

the surface za, which is 140. Which, when the square on the line gi, namely 4, is added to

them, give 144 as the quadrate on the line gt; therefore gt is 12, namely the root of 144.

Therefore, if gi, namely 2, are dropped from gt, remains it as 10, which is the side of the

quadrate et; whose expanse, namely 100, if its four sides are added, which are 40, will be 140,
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as claimed. And like this is done in all questions in which a number equals one square and

roots, namely that to this number is added the square of the half of the roots, and the root of

the sum is found; from which the half of the posited roots is removed, and the root of the

treasure which is asked for will remain; which when multiplied by itself makes the treasure.

For example: 133 dragmas equal one treasure and twelve roots. Therefore, if we add the

square on the half of the roots, namely 36, to 133, they will make 169; when 6, namely the

half of the roots, is subtracted from its root, namely from 13, 7 will remain as root of the

treasure asked for; and the treasure will be 49.

The geometrical proof is similar to Savasorda’s (and Thābit’s), and the same observations

could be made. The treatment of the problem “the two sides with the expanse amount to 62 ...”

(above, p. 16) supports the conclusion that Leonardo has no direct access to the naive procedures

which had still been known to al-Khwārizmı̄ and Abū Bakr. It is also characteristic that Leonardo

only gives an al-jabr treatment of the “four sides and rectangular area” (Abū Bakr’s No 43, where

the naive procedures were most clearly reflected in the phrasing—see above, p. 11).

This would go by itself if Leonardo’s only windows on the tradition were Savasorda and Abū

Bakr/Gherardo. Plausibly, however, he has also known at least one other version of Abū Bakr’s

manual or a close relative of this work. Gherardo, indeed, had worked on a defective manuscript, as

revealed by certain corrupt passages and by references backward to problems which in the actual

manuscript come later. Among the seemingly corrupt passages is the solution of problem No 14, “I

have aggregated the four sides [of a square], and they are 3/8 of its area.” At the corresponding

place, Leonardo has “the four sides and 3/8 of the expanse equal 771/2”. It is unlikely that Leonardo

(who was a fairly systematic writer) should have produced this problem in order to repair the defect

in Gherardo’s version, since the problem is preceded by 4s = 2/9Q, and followed by 4s = Q and 4s =

2Q. It is also remarkable that Leonardo this time mentions the sides before the area, as done by

Abū Bakr and in our Old Babylonian tablet. In the preceding treatment of the problem “sides plus

area equal 140,” Leonardo has indeed normalized the order of the members; there is certainly no

reason to expect that he would innovate in this respect when repeating an inherited problem and

return to the ancestral idiom when inserting a problem of his own making. The problem will hence

have been borrowed, if not from a different version of the Liber mensurationum, then from its

closest kin.

Savasorda, Gherardo and Leonardo have thus been in touch with at least three different

versions of the quasi-algebraic tradition to which the problem of “the four sides and the area”

belongs (as we shall see below, Pacioli seems to use material stemming from a fourth version). All

these versions, however, appear to have lost contact with the original naive-geometric techniques,

replacing (or possibly recasting) those proofs which allowed that with corresponding propositions

from Elements II, and handing down those solutions which did not allow such Euclidization (like
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Abū Bakr’s Nos 38 and 43) without geometrical support (which explains why Leonardo gave up in

front of No 38, cf. above, note 29).30

The transformation of the tradition between Abū Bakr’s and Leonardo’s time, and its gradual

assimilation to an increasingly geometrized al-jabr tradition, is also shown by another feature. Abū

Bakr, as we remember, took great care to distinguish the “standard procedure” from the al-jabr

method, and to explain how “the treasure” of the latter represented the area of the square (etc.).

Savasorda, as we saw, was even more respectful of the geometrical tradition, and does not mention

the al-jabr tradition (which would anyhow, one may presume, not have been be very informative

for his intended public); his only algebraic theory is borrowed from Elements II. Leonardo, as we

see, and as it is made even more explicit in the beginning of the section on quadrilaterals (pp. 56f),

has abolished the distinction completely. Where al-Khwārizmı̄ tells number to fall into three

classes, roots, treasures, and simple numbers without any reference to either31, Leonardo tells the

three natures of numbers and their fractions to be roots of squares; squares; and simple numbers:

this in spite of obvious al-Khwārizmı̄an inspiration for the passage in question (revealed by

characteristic phrases borrowed from Gherardo’s translation of al-Khwārizmı̄).

Savasorda’s and Leonardo’s texts thus tell us two things. Firstly, that the tradition carrying the

problem about “the four sides and the area” was still present in their world. Secondly, that it had

been reduced to a shadow; after having served al-Khwārizmı̄’s coordination of al-jabr with

geometry, and after centuries of coexistence with the Euclidization of applied geometry, it had no

mathematical standing of its own, and it only survived as a collection of venerated problems. As

Gherardo must somehow have tried to express when translating Abū Bakr’s al-jabr as aliabra,

algebra had come to encompass much more than the purely numerical technique of the pre–al-

Khwārizmı̄an al-jabr people.

V. Reconstructing the process

In the closing section we shall consider the end of the disintegration process. Since, however,

the forces at work in this phase differ from those which shaped the earlier development, it may be

convenient to discuss first what we can learn about the prehistory of algebra by following the

career of “the four sides and the area” and its cognates from the cradle through the High Middle

Ages. This we shall do, on one hand by summing up and connecting observations which were

already made above, on the other by drawing new conclusions.

The first question concerns precisely the cradle. Our earliest encounter with the tradition and
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the characteristic problem embodying it was in an odd corner of an Old Babylonian mathematical

scribe school text. Several features of the formulation of the problem, however, hinted at real

surveying practice—and our next encounter with the problem was in an Islamic handbook

concerned with that very practice. Is it likely that a problem created within the tradition of scribe

school algebra but dressed as a real problem for surveyors would be adopted by these together with

a narrow selection of other problems and continued as a tradition of mensuration algebra, while the

main body of Old Babylonian algebra would remain the exclusive property of the scribe school and

die with it? Or should we rather expect the scholar-scribes to be the debtors?

The question is a variant of a traditional problem of folklorists: Are folktales gesunkenes

Kulturgut, as the Romanticists believed, or not? Are folktales the remnants of myths and high-level

literature, or are myths created on the basis of folk tale motifs? In the final instance: Is genuine

culture produced by prophets, priests and scholars alone, and the low culture of other strata merely

derivative, misconstrued, and defective?

Several observations speak decisively against the hypothesis of a scribe school descent, and in

favour of an origin of the mensuration algebra among practical geometers. One of these is the

length of the side of the Old Babylonian version of “the four sides and the area”. As in Abū Bakr’s

and Leonardo’s corresponding problem, it is ten—but ten minutes. Now, 10 is an obvious choice in

any culture using a decadic number system; 10´, however, is not—neither a priori nor according to

the Old Babylonian tablets. Indeed, 10 in any order of sexagesimal magnitude (including 10°)

would be an untypical side length in any Old Babylonian text. It is highly improbable (to say the

least) that the queer problem should have been invented within the scribe school and been

constructed around the anomalous value of the unknown side, and then taken over by people who

by accident could correct 10´ (which they would see as 1/6) into the obvious value 10. The scribe

school mathematician, however, if borrowing a problem with the parameter 10, could reasonably be

expected to locate this number in his habitual order of magnitude, which in the tablet in question is

that of minutes.

Another observation has to do with the topic and general character of the problem. As already

hinted at, the combination of the geometrically meaningful (all four sides of a square field) with

the practically meaningless (which practitioner ever knew the sum of the sides and the area without

first knowing them separately?) gives the problem the character of a bizarre riddle. Such riddles,

when mathematical, are known as recreational problems. In pre-Modern times, they were

transmitted within environments of mathematical practitioners, where they served the purpose told

by Savasorda: “that by solving them, with God’s assistance you may prove yourself a keen and

swift enquirer”; or, in another formulation taken from a Carolingian problem collection (I quote the
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puzzle in full):

A paterfamilias had a distance from one house of his to another of 30 leagues, and a camel

which was to carry from one of the houses to the other 90 measures of grain in three turns.

For each league, the camel would always eat 1 measure. Tell me, whoever is worth anything,

how many measures were left.32

In other words, these problems—which according to their dress belong within the domain of the

practitioners in question (surveyors and caravan traders, respectively) but which are more complex

or more bizarre than the problems solved in everyday practice—serve to train the mental agility and

enhance the professional self-esteem of the members of the craft (whence the term “brilliant” used

by al-Khwārizmı̄ to characterize the useless second-degree part of al-jabr—cf. above, p. 6).33

Invariably, they have something stunning in their formulation: unless a clever trick is applied (an

intermediate stop), the camel will eat exactly everything; in another widespread problem, 100

monetary units will buy exactly 100 animals; repeated doublings run to 30 or 64, because this fits

the days of the month or the cases of a board game; etc.34

The topic—the real sides of a real field; the striking parameter—exactly all four sides; and the

solution by means of a doubly weird trick—quadripartition and quadratic completion: all three

features indicate that “the four sides and the area” was hatched not in a scribe school but in a non-

scholastic environment of practical geometers.

A third observation allows us to locate this environment tentatively in time and space. As

stated above (p. 13), Abū Bakr’s discourse is astonishingly close to what we find in Old

Babylonian school texts. There is one exception to this rule, however. Abū Bakr always has a

hypothetical “somebody” posing the question (in the first person singular, past tense). Old

Babylonian texts, instead, start directly with the question (as in BM 13901, No 23), implying that it

is the teacher who asks. One group of texts, however, starts its problems with the familiar “if

somebody has asked ...”. These texts come from Tell Harmal and Tell Dhiba i, both in the

Kingdom of Ešnunna, and belong to the earliest eighteenth century B.C.35 Ešnunna is an early

focus for that Akkadian scribal culture which arose around the mid-Old Babylonian period: late

nineteenth century Ešnunna produced the first law code in Akkadian, half a century in advance of

the Codex Hammurapi. Since algebra is an Akkadian genre with no identified Sumerian antecedent,

Ešnunna may thus be the location where the recreational lore of Akkadian-speaking practical

geometers was adopted into the curriculum of the Akkadian scribal school.

An Akkadian origin fits the side of our square field. Akkadian, as Arabic (and as the likely

intermediate carrier language of our tradition, Aramaic), is a Semitic language and has a decadic

number system. It also fits the name “Akkadian method” given to the quadratic completion in a late

Old Babylonian mathematical text; it agrees with the observation made by Robert Whiting that the

- 20 -



problems contained in a school text from the Old Akkadian period (the 22nd century BC) dealing

with area measurement are so much facilitated by familiarity with the geometric-“algebraic” rule

(R–r)2 = R2 – 2Rr + r2 that this rule is likely to have been presupposed; and it matches the presence

of a tablet with a bisected trapezium (another favourite problem following our tradition until Abū

Bakr and Leonardo) in an Old Akkadian temple.36 It looks as if already the Old Akkadian scribe

school had adopted part of the recreational lore of the Akkadian surveyors, but that the strictly

utilitarian neo-Sumerian school (21st century BC) did not transmit it.37

Since there is, anyhow, close affinity between the Old Babylonian scribe school algebra and

the tradition of mensuration algebra, it is reasonable to assume the former to have developed from

the adoption of the latter under the fecundating influence of the systematic spirit of the school. The

quadratic completion, originally another weird trick comparable to the quadripartition and the

intermediate stop, may have been the cornerstone on which the whole stupendous edifice of Old

Babylonian algebra was erected.

The overlap between the algebra of the scribe school and that of the Liber mensurationum

(and other post-Babylonian sources) allows us to draw up a list of problems which can be ascribed

with some confidence to the mensuration algebra of the early Old Babylonian epoch. Of course

(sticking to the symbols introduced on p. 8), s + Q = α and 4s + Q = β (we may even be confident

that α = 110, β = 140); probably also problems with differences (area minus side(s), and side(s)

minus area) and questions about the diagonal when the side is given, and vice versa. For rectangles,

furthermore, A = α, l1 ± l2 = β; A + (l1 ± l2) = α, l1 l2 = β; A = α, d = β (this latter problem is

found on the Tell Dhiba i-tablet). Highly likely is also the presence of problems dealing with

several squares, at least Q1 ± Q2 = α, s1 ± s2 = β (a partial alternative, less plausible however, is the

presence of the rectangle problems l1 ± l2 = α, d = β).38 Rhombi and right triangles (both of which

are used as pretexts for the formulation of quasi-algebraic problems in the Liber mensurationum)

seem to be beyond the horizon, as is anything involving non-right triangles.

Old Babylonian scribal algebra developed into a sophisticated discipline, but most of its higher

achievements were lost when the Old Babylonian era was interrupted by conquest and social

breakdown after 1600 BC, at which occasion the scribe school also disappeared. The late

Babylonian period, in particular in the Seleucid era (from 300 BC onwards), produced a certain

revival of algebraic activity, it is true; discontinuity in the use of Sumerian word signs demonstrate,

however, that much the transmission had taken place outside the scribal environment, and that a

readoption of material from the mensuration algebra tradition occurred.

In the meantime, it appears that new problem types had been invented or imported into this
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tradition. The most systematic Seleucid treatment of second-degree problems is found on the tablet

BM 34568.39 All problems except two deal with rectangles, where various combinations of sides,

diagonal and area are given.40 With a single exception, the rectangle problems recur in the Liber

mensurationum (at times with other parameters); moreover, the exception (l1 + D and l2 + d given)

is not really one, since Abū Bakr’s No 36 (l1 + d and l1 – l2 given) is reduced to the Seleucid

problem and then solved in the same way.

Interestingly, the only rectangle problem dealing with a diagonal of whose presence in the

early mensuration algebra we are sure (viz A = α, d = β, found in the Tell Dhiba i tablet) is absent

from the Seleucid anthology. Also interesting is one of the two problems in the tablet which do not

consider rectangles. It deals with a reed leaning against a wall, and is equivalent to the rectangle

problem d – l1 = α, l2 = β (Abū Bakr’s No 31). Nothing with the same mathematical substance is

found in the Old Babylonian corpus. The dress, on the other hand, is familiar, but originally it

covered a problem translatable into the much more trivial d = α, l1 = α – β.

On the whole, the Seleucid tablet thus looks like a listing of new problems; the reed problem

may be meant to demonstrate how this fascinating new wine could be poured into an old cherished

bottle, thereby lending new quality to both. In any case, and quite in contradiction to the traditional

view, the tablet demonstrates the discontinuity of Babylonian mathematics in spite of apparent

continuity.41

Also at variance with widespread convictions, but the other way round, is the perspective we

get on the core of Elements II if we correlate propositions 1 to 10 of the Euclidean work with what

we have come to know about mensuration algebra.42 Postponing for a moment propositions 1 to 3,

the rest can be seen as quasi-Kantian critiques of the familiar procedures: prop. 4 is used, e.g, by

Leonardo when he finds the sum of the sides of a rectangle from the diagonal and the area, while

Savasorda (proceeding like the Tell Dhiba i text) finds their difference via prop. 7;43 prop. 6

explains the solution of all problems Q ± αs = β (including “the four sides and the square”) and

A = α, l1 – l2 = β (and Leonardo quotes it on these occasions); prop. 5 has a similar relation to

rectangular problems A = α, l1 + l2 = β and to αs – Q = β (again noticed by Leonardo); prop. 7,

beyond the use made of it by Savasorda, explains the rule which seemed to be presupposed already

in an Old Akkadian school text (cf. above, p. 21); prop. 8 does not seem to enter any problem

directly which we have discussed so far; but it may be connected to the configuration of “four sides

and area” (showing that, if we add the four sides to a square (s), we do not get a square (s+2)—

instead, we have to add the four sides of the average square (s+1); conversely it can be linked

with the concentric inscription of one square into another (also familiar from Old Babylonian
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practical geometry). Propositions 9 and 10, finally, which like prop. 8 serve nowhere else in the

Elements (and which must therefore have been supposed to possess a value of their own),44 solve

the problems where the sum of two square areas and either the sum or the difference between their

sides are known45 (Leonardo also makes appeal to prop. 10 a couple of times).

The proofs of propositions 9 and 10 are obviously of the Greek and not the naive type. The

others, however, fall into two sections, of which the second is in essence a cut-and-paste proof, and

the first explains why the various constituents of the diagram are really squares, rectangles etc.

Section 1, we may say, takes care that the subsequent cut-and-paste section is not naive.

Propositions 1 to 3 have a similar function. Prop. 1 is a general “critique of mensurational

reason,” justifying the cutting and pasting of rectangles; propositions 2 and 3 apply this insight to

the particular situations where sides (provided with a “projection,” it goes by itself) are added to or

subtracted from a square.

Elements II.1–10, we may hence conclude, is closely connected to the cut-and-paste

mensurational algebra and is precisely, as formulated above, a critique. We may observe,

furthermore, that the whole group of propositions points back to the stock of problems and

procedures which seems to have been present already in Old Babylonian times. There is no trace of

the new problem types from the Seleucid tablet.

Arguments can be given that the kind of area geometry which was canonized in Elements II

was developed in the fifth century BC in connection with a theoretical investigation inspired by

surveyors’ geometry and algebra.46 If this is really so, then there is some reason to believe that the

new problems reached or arose in the Near Eastern and Mediterranean world after 500 BC, but

before 200 BC. We may think, either of the contacts resulting from Alexander’s conquests, or of

the general establishment of cultural interaction along the Silk Road.47

It may be added that the small group of second-degree problems in Diophantos’s Arithmetica I

also refer to what appears to be the original core of the mensuration algebra: a rectangle with given

area and given sum of (prop. 27) or difference between (prop. 30) the sides; and two squares with

given sum of the sides and given sum of (prop. 29) or difference between (prop. 29) the areas.

The next occasion on which the tradition of mensuration algebra turns up in familiar sources is

at its encounter with the numerical al-jabr practice, and when al-Khwārizmı̄ draws upon its cut-

and-paste technique in order to demonstrate the correctness the al-jabr calculations. These

geometrical proofs were already discussed above and need not be taken up again. Only one

observation should be added: when teaching the addition and subtraction of binomials involving

roots, al-Khwārizmı̄’s standard exemplification of the root—that is, we must presume, the first

square root which his reader is expected to recognize as not reducible to a number—is √200, the
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diagonal of our familiar 10×10-square. Unless this concurrence is purely accidental (which is not

likely—cf. also note 13 on the possibility to distinguish chronological strata in the mensuration

tradition by means of changing approximations to this length), the practice from which al-

Khwārizmı̄ borrowed his proofs thus appears to have been fairly well-known.

Mensuration algebra did not disappear as an independent tradition after al-Khwārizmı̄’s

integration of its methods with al-jabr. As we have seen, at least three or four different versions

could be found in the Islamic world in the twelfth and thirteenth century. But as we have also seen,

it had lost its raison-d’être as a separate mathematical tradition. In this as in other fields, Islamic

mathematics initiated an integration of theoretical and practitioners’ mathematics which was, in the

Modern epoch, to transform the latter enterprise into applied [theoretical] mathematics. Gherardo,

as a faithful translator, would still render Abū Bakr’s sharp distinction between (geometrical)

standard method and (numerical) al-jabr. Leonardo the mathematician, however, did not see the

point, or saw no point in doing so.

VI. The End of a Tradition

However much the tradition of mensuration algebra had become superfluous from a theoretical

point of view, it did not die easily in Christian Europe once it had been adopted. Thus, in the

geometrical part of his Summa de arithmetica, Luca Pacioli tells that

even though rather much has been said about the rule of algebra in the part on arithmetic:

none the less, something must be said about it here.48

What needs to be said turns out to be precisely what Leonardo tells in his Pratica geometrie. The

treatment is so close to Leonardo that misprints in Pacioli’s lettering of diagrams can be corrected

from Leonardo’s text (this was how I stumbled upon the affinity between the texts). But there are

certain puzzling exceptions to his faithfulness: Thus Leonardo, as we remember, did not speak

about “the four sides and the area” but about “the area and its four sides” making up 140. Pacioli,

however, returns to the original pattern. Since this pattern was as foreign to Renaissance algebra as

to Old Babylonian algebra, Pacioli can not be expected to have reinvented the ancestral formula on

his own: it must have been around. As it has sometimes been suspected, Italian Late Medieval

algebra, however much it was indebted to Leonardo, must have received impulses from the Islamic

world through supplementary channels.49

The last appearance of the set of problems once belonging to the tradition of mensuration

algebra is in Pedro Nunez Libro de algebra en arithmetica y geometria from 1567 (at least the last
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which I know about—but my reading of Renaissance sources is far from complete). Part III,

chapter 7 has the heading “About the practice of algebra in geometrical cases or examples, and

firstly about squares”.50 It is obvious that Nunez has profited much from Pacioli, as also told in

his concluding address to the reader (fol. 323v). In our now customary abbreviations, the examples

about squares are the following:

1. s = 3: Q?

2. Q = α: s?

3. s = 3: d?

4. d = 6: s?

5. d+s = 6: d? s?

6. d s = 10: d? s?

7. d–s = 3: d? s?

8. s (d–s) = 15: s? d?

9. d (d–s) = 14: s? d?

10. s+Q = 90: s? Q?

11. d+Q = 12: Q? s?

12. s+d+Q = 37: s? d? Q?

13. Q s = 10: s? Q?

14. d Q = 12: s? Q?

These translations are misleading in so far as they conceal the real format of the examples. This

format follows that of the Euclidean Data (and of Jordanus de Nemore’s De numeris datis)—for

instance, No 11 tells that “if the diameter and the area of the square together are known, then each

is known separately”. Only afterwards the numerical example is introduced. In this respect, the text

is thus developing toward theory. It has also dropped the opaque solutions by unexplained

numerical algorithms (the rudiments of naive cut-and-paste procedures), and starts directly with the

algebraic solution.

But the themes are traditional. Nunez, when advertising the capabilities of algebra, feels the

need to demonstrate that this wonderful technique is able to resolve both the traditional problems

and even more complex problems of the same kind (like No 12). He only presents one example for

each problem type, and thus drops “the four sides”. For the last time, however, “the side” appears

before the area in No 10, betraying the Bronze Age descent—and for the last time (before Viète

changed the terms in which the problem of homogeneity was discussed) it is explained that what is

added to the area is another area, “a root” being the side provided with a “projection 1” (cf. also

Nunez’ fol. 6r).

Within a generation, Viète was to show the capability of algebra to elucidate much more

complex problems. If algebra was still in need of commercials, much more impressive applications

than artificial mensuration geometry were now at hand. After somewhat more than three thousand

years, “the area and the four sides,” as the totality of mensuration algebra, could leave the world so

quietly that nobody noticed its death, and nobody remembered that it had ever existed.
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“opposition” thus suggests that this terminology was formed around some kind of material

representation of equations (as we shall see, al-Khwārizmı̄’s usage must be secondary), most
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Urkunden zur Geschichte der Mathematik im Mittelalter und der Renaissance, pp. 1–183

(Abhandlungen zur Geschichte der mathematischen Wissenschaften, vol. 12–13. Leipzig: Teubner,

1902). In the footnotes to the edition, Curtze also traced the parallels between Savasorda’s text and

Leonardo’s Pratica geometrie.

25. It is thus wholly wrong even though a generally accepted view that the treatise is “the earliest

exposition of Arab algebra written in Europe” (Levey, “Abraham bar Hiyya ha-Nasi,” Dictionary of
Scientific Biography, vol. I, pp. 22f, quotation p. 22 (New York: Scribner, 1970)).

26. Savasorda’s treatment of his §18 might be taken as an argument against his being familiar with

traditional cut-and-paste procedures. Here he finds the difference between the sides of a rectangle

from the area and the diagonal by means of the rule that d2 = 2A+(l1–l2)
2, which is stated in §14

and argued there from Elements II.7. After that he solves the problem from the area and the

difference between the sides. If he had thought of the naive diagram probably underlying his rule,

however, it might also have told him that (l1+l2)
2 = d2+2A, which would have simplified the

solution (cf. Figure 7). However, an early Old Babylonian problem from Tell Dhiba i to which we

shall return (p. 20 and later) applies precisely the same method as Savasorda. Both authors (and the

whole tradition) may thus have used the problem to show the combination of several standard

methods.
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It is noteworthy that the proof of Elements II.7 builds on the sub-diagram MGCJ of Figure 7

(without diagonals), while that of Elements II.4 (from which follows that (l1+l2)
2 = d2+2A, of which

Leonardo Fibonacci makes use when solving the corresponding problem) employs the complete

diagram (without the lines EJ and KH and without diagonals).

27. We may also mention Leonardo’s counterpart of Savasorda’s §18 (cf. above, note 26), where

Leonardo (like Abū Bakr) finds the sum of the sides, and refers in his proof to Elements II.4.

28. The two translations have been made so as to show precisely the extent and character of the

agreements/disagreements between the two texts, in vocabulary as well as in the choice of

grammatical forms. For the sake of creating one-to-one-correspondences, the translation “expanse”

has been used for embadum, a term for the area which Leonardo share with Savasorda/Plato.

29. In the completion of the al-jabr procedure, the 4 to be added to 60 are to be found as the

square on half the number of roots, not as 2 plus this half. The root (and thus the shorter side),

furthermore, is found as √64 minus half the number of roots, and the longer side finally as the

shorter plus 2 the difference between the sides.

All this will certainly have been recognized by Leonardo. In all probability, his “and so on”

serves to conceal that he does not understand what goes on.

30. There is a vague possibility that Leonardo still had access to the habitual diagrams for a

number of complex problems involving the diagonal of a rectangle (e.g., l1+l2+d = 24, A = 48,

Pratica geometrie p. 68 (cit. n. 4), where he introduces diagrams which generalize the one which

was shown in Figure 7. But he may also have developed these diagrams anew, since they follow

without too much difficulty from the procedure.

31. Hughes, “Gerard of Cremona’s Translation,” p. 233 (cit. n. 7).

32. Propositiones ad acuendos iuvenes, problem 52, version II, ed. M. Folkerts, “Die älteste

mathematische Aufgabensammlung in lateinischer Sprache: Die Alkuin zugeschriebenen

Propositiones ad acuendos iuvenes,” Österreichische Akademie der Wissenschaften, Mathematisch-
Naturwissenschaftliche Klasse. Denkschriften (Wien, 1978), 116. Band, 6. Abhandlung, here p. 74.

Emphasis added.

33. This relation between professional mathematical practice and recreational mathematics is a focal

theme in my “Sub-Scientific Mathematics. Observations on a Pre-Modern Phenomenon,” History of
Science, 1990, 28: 63–86.

34. This characteristic has a double explanation: A riddle is always better the more surprising its

formulation. Moreover, as long as the parameters of a problem are not noteworthy, they are likely

to change when transmitted within a semi-oral culture; once somebody has chosen a remarkable

parameter it is likely to be remembered, both because this follows from remarkability per se, and

because it makes the riddle as a whole better.

Mathematical riddles are hence liable to be born striking, and to conserve this characteristic

when they are transmitted. If by accident they are born without marked parameters, a kind of

attraction law guarantees that they will acquire them soon (or that they will be forgotten).

A particular variant of the quest for the extraordinary was mentioned above: The presence in

the Liber mensurationum of deliberately opaque and perplexing problem solutions, which the

disciple is asked to look through.

35. The texts were published by Taha Baqir, in “Some More Mathematical Texts from Tell

Harmal,” Sumer, 1951, 7: 28–45, and in “Tell Dhiba’i: New Mathematical Texts,” Sumer, 1962,

18: 11–14, pl. 1–3, respectively.
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36. See my “Algebra and Naive Geometry,” p. 326 (cit. n. 2); R. M. Whiting, “More Evidence for

Sexagesimal Calculations in the Third Millennium B.C.,” Zeitschrift für Assyriologie und
Vorderasiatische Archäologie, 1984, 74: 59–66, here p. 65f; and J. Friberg, “Mathematik,” in
Reallexikon der Assyriologie und Vorderasiatischen Archäologie, vol. VII, 531–585, here p. 541

(Berlin & New York: de Gruyter, 1990).

37. Since no traces of genuine second-degree algebra are found in the Old Akkadian school texts,

we may also surmise that the discovery of the quadratic completion (the “Akkadian method”) took

place somewhere between the 22nd and the 19th century BC.

38. BM 13901 Nos 8 and 9 deal with two squares, about which the sum of the areas and the sum

of/difference between the sides are stated. The square sum of the sides sides (20´ and 30´) is no

square, and thus the problems cannot be transformed into rectangle-diagonal problems without a

change of parameters. Evidently it is not excluded that surveyors’ rectangle-diagonal problems have

been adopted and transformed, and the parameters then changed. However, reflections of our

tradition in classical sources (in particular Elements II, cf. below) and the unquestionable presence

of two-square problems where Q1 – Q2 is given speak in favour of the two-square assumption with

given sum. A sequence of problems about the same two squares in the late Old Babylonian text

TMS V (one of which coincides with BM 13901 No 8) speaks about the smaller square as located

concentrically within the larger one—a configuration that refers to geometrical practice (E. M.

Bruins & M. Rutten, eds., Textes mathématiques de Suse. Paris: Paul Geuthner, 1961, here pp. 46f).

One of the problems (col. III, l. 4, unmentioned and untranslated in the edition) tells the difference

between the areas and the difference between the sides.

39. Ed. Neugebauer, MKT III, pp. 14–17 (cit. n. 1).

40. l1 and l2; l1 and d; l1+d and l2; l1+l2 and A; l1+l2 and d; l1+d and l2; l1+d and l2+d; l1+l2+d and A.

41. This discontinuity can be traced on several levels beyond those already mentioned (Sumerian

word signs and problem types): the structure of the terminology; the construction of problems from

integral solutions and integral coefficients (evidence that the problems have been borrowed rather

directly from the mensuration tradition, without much further systematization or tinkering); and a

tendency to construct solutions from sum and difference rather than semi-sum and semi-difference

(as had been the Old Babylonian habit, and as Abū Bakr would mostly still do in the old

problems).

42. For convenience I translate the propositions into symbols (it should be remembered that such a

translation is always somewhat arbitrary—cf. the two different translations of prop. 7):

1. (a,p+q+...+t) = (a,p) + (a,q) +...+ (a,t).
2. (a) = (a,p) + (a,a–p).

3. (a,a+p) = (a) + (a,p).

4. (a+b) = (a) + (b) + 2 (a,b).

5. (a,b) + (a–b/2) = (a+b/2).

6. (a,a+p) + (p/2) = (a+p/2).

7. (a+p) + (a) = 2 (a+p,a) + (p) ; or, alternatively, (a) + (b) = 2 (a,b) + (a–b).

8. 4 (a,p) + (a–p) = (a+p).

9. (a) + (b) = 2[ (a+b/2) + (b–a/2)].

10. (a) + (a+p) = 2[ (p/2) + (a+p/2)].

We observe that prop. 6 coincides with prop. 5 if only b = a + p. Prop. 5 corresponds,

however, to the situation where the sum of the two sides is known (as in prop. 9, a and b result

from the splitting of a line in unequal segments), and where they are thus drawn in continuation of

each other in the proof; prop. 6, on its part, is adapted to the situation where one exceeds the other

by p, and the proof thus draws them in superposition. Precisely the same relation holds between
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prop. 9 and prop. 10, while prop. 4 and prop. 7 are similarly but not identically correlated.

43. Cf. note 26. It should perhaps be stressed once more that Savasorda’s and Leonardo’s use of

propositions from Elements does not mean that they were employed within the tradition of

mensuration algebra in the form we (and Leonardo and Savasorda) know them, only that they were

still close enough to this tradition to be serviceable.

44. Strictly speaking, prop. 9 is cited, but in what seems to be an interpolated lemma. As pointed

out by Ian Mueller, propositions 8 and 10 might have been cited in the same way, as justifications

of unproved assumptions—Philosophy of Mathematics and Deductive Structure in Euclid’s
Elements, p. 301 (Cambridge, Mass., & London: MIT Press, 1981). It seems as if the kind of

knowledge contained in the three propositions was too familiar to require explicit citation once it

had been proved.

45. They also solve problems about rectangles where the diagonal and either the sum of or the

difference between the sides are known. As argued above (see note 38), at least one of these groups

(most likely the two-square problems) will have belonged to the early phase of the mensuration

algebra.

46. See my “Dýnamis” (cit. n. 5), where further references to work by earlier authors (not least

Wilbur Knorr) on this question are given.

47. Since the second-degree problems which turn up in the first century (CE) Chinese Nine
Chapters on Arithmetic (Chiu chang suan shu. Neun Bücher arithmetischer Technik, ed. trans. Kurt

Vogel, pp. 91f (Braunschweig: Friedrich Vieweg & Sohn, 1968)) are related to the “new” Seleucid

problems (and the dress of one of them, the leaning reed, an obviously borrowing), conquest can

hardly be the only factor involved.

48. Part II, fol. 15r (cit. n. 4).

49. Another suggestive deviation from Leonardo is Pacioli’s version of Abū Bakr’s No 38 (above,

p. 12): It is more correct than the Gherardo translation, which had been repeated so faithfully by

Leonardo. Pacioli, indeed, finds the completing square 4 as “half the number of sides squared” (fol.

19r). Since the Gherardo/Leonardo text is meaningless as it stands, it is highly unlikely that Pacioli

could have used this version and just improved it. If he had done so (for example, supported by an

al-jabr analysis), he could have produced a fully correct solution: instead, his explanation still

presupposes tacitly that the excess and half the number of sides coincide.

We may infer that Pacioli’s source for the pattern “sides and area” is thus not likely to have

been the Gherardo version of the Liber mensurationum.

50. P. Nunez, Libro de Algebra en Arithmetica y Geometria, fol 277vff (Anvers: En casa de los

herederos d’Arnaldo Birckman, 1567).

- 32 -


	I. An Old Babylonian “square problem”
	II. The Proofs of al-jabr
	III. Abu¯ Bakr’s “mensuration algebra”
	IV. Twelfth- and thirteenth-century evidence
	V. Reconstructing the process
	VI. The End of a Tradition
	Notes

