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Abstract
The “unknown heritage” is the name usually given to a problem type in whose archetype a

father leaves to his first son 1 monetary unit and 1/n (n usually being 7 or 10) of what remains, to
the second 2 units and 1/n of what remains, etc. In the end all sons get the same, and nothing remains.

The earliest known occurrence is in Fibonacci’s Liber abbaci, which also contains a number of
much more sophisticated versions, together with a partial algebraic solution for one of these and
rules for all which do not follow from his algebraic calculation. The next time the problem turns
up is in Planudes’s late 13th-c. Calculus according to the Indians, Called the Great. After that the simple
problem type turns up regularly in Provençal, Italian and Byzantine sources. It seems never to appear
in Arabic or Indian writings, although two Arabic texts (one from c. 1190) contain more regular
problems where the number of shares is given; they are clearly derived from the type known from
European and Byzantine works, not their source. The sophisticated versions turn up again in
Barthélemy de Romans’ Compendy de la praticque des nombres (c. 1467) and, apparently inspired from
that, in the appendix to Nicolas Chuquet’s Triparty (1484). Apart from a single trace in Cardano’s
Practica arithmetice et mensurandi singularis, the sophisticated versions never surface again, but the
simple version spreads for a while to German practical arithmetic and, more persistently, to French
polite recreational mathematics.

Close analysis of the sources shows that Barthélemy cannot have drawn his familiarity with
the sophisticated rules from Fibonacci. It also suggests that the simple version is originally either
a classical, strictly Greek or a medieval Byzantine invention, and that the sophisticated versions must
have been developed before Fibonacci within an environment (located in Byzantium, Provence, or
possibly in Sicily?) of which all direct traces has been lost, but whose mathematical level must have
been quite advanced.
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A starting point

In the final collection of mixed problems in the Vatican manuscript of Jacopo
da Firenze’s Tractatus algorismi (Vat. Lat. 4826),1 we find the following (fol.
54v–55r):

Io vo a uno giardino, et giongho a’ppede de una melarancia. Et coglione una. Et poi
coglio el decimo del rimanente. Poi vene un altro dopo me, et coglene doy, et anchora
el decimo de rimanente. Poi vene un altro et coglene 3, et anchora el decimo de
rimanente. Poi vene un altro et coglene 4 et el decimo de rimanente. Et così venghono
molti. Poi quello che vene da sezzo, cioè dercto, coglie tucte quelle che retrova. Et
non ve ne trova né più né meno che abiamo auti li altri. Et tanto ne colze l’uno quante
l’altro. Et tanti homini quanti erano, tante melarancie ebbe per uno. Vo’ sapere quanti
homini forono, et quante melarancie colseno per uno, et quante ne colzeno fra tucti
quanti. Fa così, tray uno de 10, resta 9, et 9 homini forono, et 9 melarancie colseno
per uno. Et colzero in tucto 81 melarancie. Et se la voli provare, fa così.

El primo ne colze I, restano
80. El decimo è octo, et ày che illo n’ebbe 9, restano
72. El secondo 2, restano 70, el decimo è 7, et ebe ne 9, restano
63. El terzo 3, restano 60, el decimo è 6, et ebe ne 9, restano
54. El quarto 4, restano 50, el decimo è 5, et ebe ne 9, restano
45. El quinto 5, restano 40, el decimo è 4, et ebe ne 9, restano
36. El sexto 6, restano 30, el decimo è 3, et ebe ne 9, restano
27. El sectimo 7, restano 20, el decimo è 2, et ebe ne 9, restano
18. Ell’octavo 8, restano 10, el decimo è 1, et ebe ne 9, restano

9. El nono, cioè quello da sezzo, colze quelle 9, né più né meno, che non ve
n’erano più. Siché vedi che ella è bene facta. Et sta bene. Et così se fano le
simiglianti ragioni.

1 This treatise was written in Montpellier in 1307. In spite of its Latin title and incipit,
it is written in Tuscan (the orthography being somewhat coloured by the Provençal
linguistic environment).

Two other manuscripts claim to contain the same treatise, Florence, Ricc. 2236
(undated) and Milan, Trivulziana, Ms. 90 (c. 1410) (see [Van Egmond 1980: 148, 166]; Van
Egmond’s dating of the Florence copy is misleading, since it merely repeats the date of
Jacopo’s original as it appears in the incipit). The Vatican manuscript is from c. 1450 but
a meticulous copy of a meticulous copy, and linguistic and textual as well as mathematical
homogeneity shows the Vatican manuscript to be quite close to the common archetype
for all three manuscripts, whereas the other two descend from an abbreviated adaptation,
probably adjusted to the curriculum of an abbacus school – see [Høyrup 2006: 7]. The
final collection of supplementary problems is absent from the Florence and Milan
manuscripts, as are the chapters on algebra.

- 1 -



In translation:2

I go to a garden, and come to the foot of an orange. And I pick one of them. And
then I pick the tenth of the remainder. Then comes another after me, and picks two
of them, and again the tenth of the remainder. Then comes another and picks 3 of
them, and again the tenth of the remainder Then comes another and picks 4 of them
and the tenth of the remainder. And thus come many. Then the one who comes last,
that is, behind, picks all that which he finds left. And finds by this neither more nor
less than we others got. And one picked as much as the other. And as many men
as there were, so many oranges each one got. I want to know how many men there
were, and how many oranges they picked (each) one, and how many they picked
all together. Do thus, detract one from 10, 9 is left, and there were 9 men, and 9
oranges (each) one picked. And they picked in all 81 oranges. And if you want to
verify it, do thus,

the first picked I of them, left
80. The tenth is eight, and you have that this one got 9, left
72. The second 2, left 70, the tenth is 7, and he got 9, left
63. The third 3, left 60, the tenth is 6, and he got 9, left
54. The fourth 4, left 50, the tenth is 5, and he got 9, left
45. The fifth 5, left 40, the tenth is 4, and he got 9, left
36. The sixth 6, left 30, the tenth is 3, and he got 9, left
27. The seventh 7, left 20, the tenth is 2, and he got 9, left
18. The eighth 8, left 10, the tenth is 1, and he got 9, left

9. The ninth, that is, the last one, picked these 9, neither more nor less, as there
were no more. So that you see that it is well done. And it goes well. And
thus are done the similar computations.

A modern reader encountering a problem of this kind for the first time is usually
stunned. As Euler says about it in his didactical Élémens d’algebre [1774: 489],
“this question is of a quite particular nature, and therefore deserves attention”.3

As we see, the rule works – still in Euler’s words, “it fortunately happens that
...” – and the rule holds for any aliquot part φ = 1/n . Moreover, as we shall see,
if only the absolutely defined contributions form an arithmetical progression
and φ is any fraction and not too large it still works, in the sense that one can
still find an initial amount T such that all shares except the last are equal.

2 As all translations in the following where no translator is identified, this one is due to
the present author.
3 [Tropfke/Vogel et al 1980: 582–588] discusses it under the general heading of Schachtelauf-
gaben, “[nested] box problems”, together with problems with the structure

(...((x+a1)φ1+a2)φ2+...)φn+1+an = R ,
admitting however that it is of “a particular kind”. Actually, the mathematical structure
is wholly different. Normal box problems are easily solved by stepwise reverse calculation;
in the present case, this is impossible.
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Jacopo probably did not know why his rule functioned – when he knows,
he is fond of giving pedagogical explanations, and here he only presents the
complete calculation as a verification. However, the original inventor must have
known why, one does not stumble on the structure in question by accident.

We cannot know where the idea came from,4 but the arrangement of dots
in Figure 1 (reduced for convenience to φ = 1/6 ) is a possibility:

Figure 1

If we remove 1 small (grey) dot from a square pattern of n×n dots, what is left
can be grouped as n+1 strips of n–1 (black) dots. Removal of one of these strips
( 1/n+1 of what is left) leaves a rectangular system of n×(n–1) dots. Removing 2
small (grey) dots from this rectangle leaves n+1 strips of n–2 (black) dots, and
removing one of these strips (still 1/n+1 of the remainder) leaves a rectangle
n×(n–2) dots, etc. In symbols, and for p = 0, 1, 2, ...,

(n–p)×n = (n–[p+1])×n+(p+1)+(n–[p+1]).
This is obviously an argument of the same kind as those based on pebble
counters or psephoi used in early classical arithmetic. Contemporary readers
accustomed to working on paper with a square grid may prefer the version in
Figure 2, in which the summary to the right shows that the square is divided

4 A direct arithmetical solution is possible, but it could never give rise to the idea. It only
works because the overdetermined problem does possess a solution, and it cannot be
generalized to similar but different situations; moreover, it only finds the sole possible
solution without showing that this is indeed a solution:

Since the last visitor of the garden (say, no. N) leaves nothing, the remainder rN of
which he takes the fraction 1/d must be 0 (if not, (1– 1/d )rN would be left over. But since
each visitor picks as many apples as his number before taking 1/d of the remainder,
no. N gets N apples, and so therefore do all the others. But the second-last visitor
(no. N–1) only picks N–1 apples before taking the fraction 1/d of the remainder rN–1.
Therefore this fraction must be 1 (he has already picked N–1, but should have N),
and in consequence rN–1 is N+1. N+1/d is thus 1, whence N must be d–1.

No source or historian’s discussion I have looked at contains the least hint that its author
had seen this.
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into the sum of two triangular numbers, one of which – namely 1+2+...+n –
consists of the absolutely and the other – namely (n–1)+(n–2)+...+1 – of the
relatively defined contributions.

Figure 2

Leonardo Fibonacci

We shall return to the reasons that this argument may indeed be the one
from which the problem was constructed. Initially, however, we shall have to
look at other texts where problems of this kind turn up – beginning with the
earliest source for them, Leonardo Fibonacci’s Liber abbaci from 1228 [ed.
Boncompagni 1857: 279–281]. Fibonacci first presents his reader with two versions
dealing with an unknown heritage distributed to an unknown number of heirs
(this, not fruit-picking, is the habitual dress for the problem), next with a
sequence of structurally similar but more sophisticated pure-number problems.5

Fibonacci’s first inheritance version shares the structure of Jacopo’s fruit-
picking problem (apart from the fraction being 1/7 and the number of sons thus
6, each receiving 6 bezants). The method is also similar. However, Fibonacci does
not give the information that the amount which each son receives equals the
total number of sons, although his explanation presupposes it (which allows us
to conclude that his source for the problem was even closer to Jacopo):

For the seventh which he gave to every one you retain 7; from which detract 1, 6
remain; and so many were his sons; which 6 multiplied by itself makes 36; and so
many were his bezants.

In the second inheritance problem, each son receives first 1/7 of what is at disposal
and afterwards respectively 1 bezant, 2 bezants, etc.; it is then stated (but no
argument given) that 6 sons get 7 bezants each. The reader must be expected
to identify 7 as the denominator of the fraction, and 6 as 7–1. Finally Fibonacci
explains that if the absolutely defined contributions in the two cases had been
instead 3 bezants, 6 bezants, etc., the number of sons would still have been 6,

5 A full French translation of this part of the Liber abbaci is found in [Spiesser 2003:
711–718]. [Sigler 2002: 399–401] contains an English translation.
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and the total possession 3×36 bezants and 3×42 bezants, respectively.
Even in the case where the fraction is taken first, a “proof”

Figure 3

by means of pebble counters is possible – see Figure 3. Here, a
number n×(n+1) is split into two triangular numbers of order n,
one of which represents the successive absolutely defined, the
other the relatively defined contributions.

In the ensuing pure-number versions, the fractions and
absolute contributions are more intricate. In order to facilitate the
further discussion we shall henceforth designate by (α,ε|φ) the type where
absolutely defined contributions α+εi (i = 0, 1, ...) are taken first, and a fraction
φ of the remainder afterwards; (φ|α,ε) designates the type where a fraction φ
of what is at disposal is taken first and absolutely defined contributions α+εi
(i = 0, 1, ...) afterwards. In this notation, Fibonacci’s problems are the following
(the inheritance problems are in the left column, the other columns contain the
number problems)

(1,1| 1/7 )
( 1/7 |1,1)
(3,3| 1/7 )
( 1/7 |3,3)

(1,1| 2/11 )
(4,4| 2/11 )
( 2/11 |1,1)
( 2/11 |4,4)

(2,3| 6/31 )
( 6/31 |2,3)

(3,2| 5/19 )
( 5/19 |3,2)

The problems in the second column (where α = ε) are treated by the same
rules as those of the first column, in the sense that the fraction 2/11 is tacitly dealt
with as 1/5½ . The trick is not explained, however, we only find the prescription
(for the first problem)

Divide 11 by 2, which are above 11, 5 1/2 result; from which take away 1, 4 1/2 remain;
and so many were the shares; which multiplied together, were 20 1/4 for the divided
number.

For the problem (2,3| 6/31 ) in the third column, the solution is found by means
of the regula recta, that is, first-degree rhetorical algebra in which the unknown
is referred to as a thing. Fibonacci puts the number to be divided equal to this
thing, and finds by successive computation the first two shares, which he knows
to be equal. Resolving the resulting equation he finds the number to be T =
56 1/4 , the number of shares to be N = 4 1/2 , and each share ∆ = 12 1/2 . He has thus
found the only possible solution, but his algebraic computation does not show
that the subsequent shares will be as required, that is, that this is indeed a
solution. Fibonacci makes no hint at this deficiency, but he performs a complete
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calculation step by step (similar to Jacopo’s) which verifies that the first four
shares are 12 1/2 , after which 6 1/4 remains for the final 1/2 -share. Finally Fibonacci
claims to “extract” the following rule from the calculation6 (φ = p/q ):

(1a) T = ,
[(ε–α) q (q–p)α] (q–p)

p 2

(1b) N = ,
(ε–α)q (q–p)α

εp

(1c) ∆ = .
ε (q–p)

p

At closer inspection, the rule turns out not to be extracted. If one follows the
algebraic calculation step by step, it leads to

(2a) T =
q 2(α ε)–(q–p)qα–(q–p)pα–(α ε)pq

p 2

which (by means which were at Fibonacci’s disposal) can be transformed into

(2a*) T =
[q (α ε)–(p q)α] (q–p)

p 2

but not in any obvious way into the rule which Fibonacci pretends to extract –
if anything, attempts at further manipulation would rather lead to the reduction

(3a) T = .
[εq–αp] (q–p)

p 2

The implication appears to be that Fibonacci adopted a rule whose fundament
he did not know, and that he pretended it to be a consequence of his own (correct
but partial) solution.7

6 Obviously Fibonacci uses the specific numbers belonging to the problem when stating
the rule, but since he identifies each number in the rule by pointing to its role in the
computation, the symbolic formulae map his rule precisely and unambiguously.
7 This case of minor fraud is not without parallel in Fibonacci’s works. In the Pratica
geometrie [ed. Boncompagni 1862: 66], Fibonacci copies from Gherardo da Cremona’s
translation of Abū Bakr’s Liber mensurationum [ed. Busard 1968: 94] a fallacious solution
to a rectangle problem –w = α, ( ,w) = β (the words are so close that Fibonacci’s
copying is beyond question, here as in several other places). Afterwards Fibonacci
undertakes an explication by means of algebra (which Abū Bakr does not give in this
case even though he does so in others). When arriving to the point where the mistake
becomes evident (but where Fibonacci appears not to know how it has come about nor
how to repair it) he concludes the exposition with the words “et cetera”.
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This inference is corroborated by what happens when Fibonacci treats the
problem (3,2| 5/19 ). Here, α cannot be subtracted from ε (the outcome is negative),
and therefore Fibonacci (who knew well how to make elementary operations
with negative numbers even though he did not fully accept them) replaces (1)
by

(4a) T = ,
[(q–p)α–(α–ε)q] (q–p)

p 2

(4b) N = ,
(q–p)α–(α–ε)q

εp

(4c) ∆ = .
ε (q–p)

p

If Fibonacci himself had reduced the algebraic solution (2a), why should he have
chosen an expression which is neither fully reduced nor valid for all
cases? Neither (2a) nor (2a*) nor (3a) depends on whether α<ε or α>ε.

For the case ( 6/31 |2,3), Fibonacci just states and applies these rules

(5a) T = ,
[(ε–α) q (q–p)α] q

p 2

(5b) N = ,
(ε–α)q (q–p)α

εp

(5c) ∆ = ,
εq
p

and for ( 5/19 |3,2)

(6a) T = ,
[(q–p)α–(α–ε)q] q

p 2

(6b) N = ,
(q–p)α–(α–ε)q

εp

(6c) ∆ = .
εq
p

Once again, if (1a) had really resulted from the algebraic solution, why should
(5) and (6) be set forth without being derived from the pertinent algebraic
operations (which are evidently not the same as before)?

We must conclude that not only what we shall henceforth call the “simple
versions” of the problem (Jacopo’s, and those in the first column of the scheme
on p. 5, those where ε = α and where φ is an aliquot part) and their rules were
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“around” but also the much more sophisticated versions and rules in columns
2–4 of the scheme. The question then presents itself, where?

As is well known, most of the “recreational” problems found in the Liber
abaci and in the various abbacus treatises are widely disseminated, turning up
in Indian, Persian and Arabic problem collections, some also in the Greek
Anthology, in Ananias of Shirak’s collection, or in the Carolingian Propositiones
ad acuendos iuvenes, some even in ancient or medieval Chinese treatises. Not so
in the present case. [Tropfke/Vogel et al 1980: 587f] and [Singmaster 2000] only
list Byzantine and (Christian-)Occidental occurrences, and I have not been able
to find parallel examples in sources from elsewhere, whether published before
or after 1980. (Two Arabic “corrected” versions and their implications are
discussed below, p. 18.)

Maximos Planudes

Three Byzantine occurrences are known: one in Maximos Planudes’s late
thirteenth-century Calculus According to the Indians, Called the Great [ed., trans.
Allard 1981: 191–194]; another one in a problem collection from the early
fourteenth century [ed., trans. Vogel 1968: 102–105]; the last one in Elia Misrachi’s
book on arithmetic from c. 1500 ([ed., trans. Wertheim 1896: 59f]. The cases treated
are (1,1| 1/7 ) (all three) and (1,1| 1/10 ) (Elia Misrachi alone). All follow the simple
rule we know from Jacopo and Fibonacci, and in so far they are uninformative.
It may be observed, however, that the fourteenth-century problem deals with
apples served at lunch, not with a heritage – Jacopo was thus not quite alone
in deviating from the inheritance dress.8 More important is that Planudes –
whose testator dies before he has finished his will, which Planudes takes to
explain that the number of heirs is unknown – brings the problem as an
illustration of the following arithmetical observation (almost a theorem):9

When a unit is taken away from any square number, the left-over is measured by

8 There is no reason to conclude from the common fruit theme that Jacopo and the
Byzantine text were connected, in particular since the general settings (garden/lunch)
are different. “Box problems” (see note 3) about apples were common; though roughly
contemporary, the two authors (or their sources) probably made independent but
analogous changes of the usual dress (Jacopo repeatedly uses familiar dresses for problem
types with which they usually do not go together).
9 I try to make a very literal translation, conserving all quasi-logical particles even when
they offend the modern ear; a somewhat less literal French translation accompanies
Allard’s edition of the Greek text.
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two numbers multiplied by each other, one smaller than the side of the square by
a unit, the other larger than the same side by a unit. As for instance, if from 36 a
unit is taken away, 35 is left. This is measured by 5 and 7, since the quintuple of
7 is 35. If again from 35 I take away the part of the larger number, that is the seventh,
which is then 5 units, and yet 2 units, the left-over, which is then 28, is measured
again by two numbers, one smaller than the said side by two units, the other larger
by a unit, since the quadruple of 7 is 28. If again from the 28 I take away 3 units
and its seventh, which is then 4, the left-over, which is then 21, is measured by the
number which is three units less than the side and by the one which is larger by
a unit, since the triple of 7 is 21. And always in this way.

This description does not refer explicitly to counters, but it is noteworthy that
the whole passage fits the above geometric explanation of Jacopo’s problem to
the slightest detail. Without support by either symbolic algebra or a geometric
representation it is also difficult to see that the “theorem” holds for “any square
number”, and only the geometric diagram makes it evident that the procedure
will continue in such a way that exactly nothing remains in the end.10 It is also
to be observed that the quasi-theorem and the illustrating problem come exactly
at the point where Planudes goes beyond Indian calculus.

In the next section (which closes the treatise) Planudes treats the problem
to “find a figure equal in perimeter to another figure and a multiple of it in
area” – that is, for a given n to find two rectangles11 (a,b) and (c,d) such
that a+b = c+d, n ab = cd (a, b, c and d being tacitly assumed to be integers). Two
solutions are given, the second being stated to be Planudes’s own invention –
which implies that the first solution was not (as indeed we shall see). In this
borrowed solution, the following choice is made (n being taken to be 4):

a = n–1 b = (n3–1)–(n–1)
c = n2–1 d = (n3–1)–(n2–1)

Planudes maintains that this solution is only valid for n = 4, 3 and 5. This is not
true, Planudes must either have calculated badly or relied on bad information.
In any case, he proposes the following alternative of his own (where t is
arbitrary):

10 A corresponding calculations in symbols based on the corresponding sequence of
identities n (n–p+1) = (n+1) (n–p) can of course show it, but with much less ease. A purely
verbal argument like that of Planudes and unsupported by a diagram would hardly give
the idea.
11 Actually, χωριον, here translated “figure”, may have the more specific meaning
“rectangular area”.
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a = t b = n (n+1) t
c = (n+1) t d = n2 t

As Allard [1981: 235] points out, the second solution coincides with the first if
t is replaced by n–1. Planudes is not likely to have noticed this, but it may explain
how he guessed his own scheme for the correct solution for n = 3.

The statement of the problem and the first solution are found in almost
exactly the same words in the pseudo-Heronic Geometrica Ch. 24 [ed., trans.
Heiberg 1912: 414–417], cf. [Sesiano 1998: 284–286]. The manuscripts (“S” and
“V”) from which this section of the conglomerate is taken are of Byzantine date
(the eleventh respectively fourteenth century), and the use of the late form
πολυπλασιαζω instead of the classical πολλαπλασιαζω points to an origin of
the text certainly no earlier than the second century CE, perhaps considerably
later. The shape of the problem, however, is ancient, not medieval: even though
it is not found in Diophantos’s Arithmetic, the stylistic similarity is unmistakeable.
The problem is likely to come from that already existing tradition of “theoretical
arithmetic” within which Diophantos tells to have found his names and
abbreviations for powers of the unknown [ed. Tannery 1893: I, 4].

This does not prove that even Planudes’s “theorem” for the inheritance
problem goes back to Antiquity, but the vicinity and the absence of a claim that
he invented it himself suggests it to have been at least traditional.

In his edition of Elia Misrachi’s text, Wertheim [1896: 60] suggests that the
problem might be inspired by one which is found in a late fourteenth- or early
fifteenth-century Byzantine manuscript (the cod. Cizensis) containing also
Nicomachos’s Introduction and Philoponos’s scholia to that work (for which reason
Wertheim may have thought it ancient, even if he does not say so). This problem
[ed. Hoche 1866: 153f] deals with the legacy of a father with three sons and three
daughters, who has disposed as follows:12

– The first son puts into the chest as many coins as it already contains and
then takes 250 coins;

– then the second son does as much;
– then the third son does as much;
– then the first daughter puts into the chest as many coins as she finds there,

and takes 125 coins;
– then the second daughter does as much;
– finally, the third daughter does as much, after which nothing remains.
The text gives the solution (originally, the chest contained 232+ 1/3 + 1/12 + 1/192 gold

12 I am grateful to C. M. Taisbak for assisting me in the interpretation of the text.
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coins) but does not explain how it is reached.
Beyond the occurrence solely in a manuscript from c. 1400, other reasons

speak against an early dating of the problem. Firstly, the term for the coin is
the medieval χρυσινος (known only from the fourth century CE onward – the
ancient form is χρυσιον); secondly, according to Taisbak, the syntax is Byzantine
and not ancient. The present problem might therefore well be a secondary
derivation from the problem type we have dealt with so far – a reduction to the
normal “box problem” type allowing a solution by stepwise reverse calculation.
In any case, the striking feature of equal shares is absent from it (indeed, the
youngest son and the youngest daughter get the greatest shares); the basic
unknown-heritage problem could therefore at most have borrowed the dress of
an unknown heritage: the mathematical structure must have been an independent
discovery.

The mathematics of the full problem

Before we go on with the analysis of further sources, it may be convenient
to have an exhaustive mathematical analysis at hand; it should be kept in mind
that this is a mathematical analysis, and not an interpretation of any source.

Let us assume that a total T is distributed into shares (δ1, δ2, ..., δn, ...) in this
way:
– The first share δ1 receives a1, and furthermore a fraction φ of what is left after

a1 has been given.
– The second share δ2 receives a2, and furthermore a fraction φ of what is left

after subtraction of the first share and of a2.
. . .

– The n-th share δn receives an, and furthermore a fraction φ of what is left after
subtraction of the preceding shares and of an.
. . .

We want to find the condition imposed on the sequence a1, a2, ..., an, ... by the
request that δ1 = δ2 = ... = δn = ... = ∆ (admitting that the last share may be
fractional; furthermore, we ask for the value of the total T, of the value ∆ of the
single share, and of the number N of shares.13

13 If we go beyond the mathematics of the thirteenth and fourteenth centuries and admit
negative numbers, we may instead investigate for instance three sequences S(n), a(n),
and U(n), coupled through the conditions

U(n) = S(n)–a(n) , S(n+1) = S(n)–a(n)–φU(n) ,
with n running through the domain of all integers (negative as well as positive, φ being
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Before the n-th take, Sn is at disposition (S1 = T). The n-th share is then
δn = an+φ(Sn–an) = φSn+(1–φ)an .

After it has been removed, the remainder is
Sn+1 = Sn–δn = (1–φ)Sn–(1–φ)an = (1–φ) (Sn–an) ,

and the n+1-th share becomes
δn+1 = φSn+1+(1–φ)an+1 .

Since we have required that δn = δn+1 = ∆, which implies that Sn–Sn+1 = ∆, we find
that

(1–φ) (an+1–an) = φ(Sn–Sn+1) = φ∆ ,
whence also an+1–an must be constant and equal to ε = φ/1–φ ∆. The absolutely
defined contributions must therefore constitute an arithmetical progression, an =
α+(n–1) ε

For a given set of values for T = S1, φ and α = a1 follows
∆ = δ1 = α+φ(T–α) = φT+(1–φ) α ,

ε = a2–a1 = φ/1–φ ∆ = φ/1–φ (φT+[1–φ]α) .
If the resulting ∆ does not exceed 1/2 T, this gives us at least 2 full shares; the
sequence can be constructed stepwise until the remainder becomes less than ∆
(a strict proof of this asks for complete induction, but it should be possible to
dispense with that tedium here).

However, the texts do not start from given values of T, φ and α but from
φ, α and ε. From this they find T, ∆ and N. We may do as much. From ε =
φ/1–φ ∆ follows

(7c) ∆ = 1–φ/φ ε .
But since ∆ = δ1 = φS1+(1–φ)a1 = φT+(1–φ) α,

φT = (1–φ) ( ε/φ –α) ,
(7a) T = 1–φ/φ ( ε/φ –α) ,

and finally

an arbitrary real number), and ask for the condition that δ(n) = S(n)–S(n+1) be constant.
Further investigation of the properties of this system might perhaps present us with some
interesting mathematics (though I doubt it), but it would lead us away from the problem
of our texts.

The wider class of coupled progressions does contain interesting objects. For instance,
self-references are removed from the “Fibonacci series” if it is dissolved into three
cyclically coupled sequences S, T, and U, where

U(i) = S(i)+T(i) , S(i+1) = T(i)+U(i) , T(i+1) = U(i)+S(i+1) .
This observation, and the fact that the side-diagonal-algorism for a square consists by
its very nature of two coupled progressions S and D,

S(i+1) =, D(i+1) = 2S(i)+D(i) ,
suggests a link to continued fractions.
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(7b) N = = = – = .
T
∆

1–φ

φ
( ε

φ
–α)

1–φ

φ
ε

1
φ

α
ε

ε–φα
φ ε

The condition that at least two full shares can be found (that is, N ≥ 2, all
parameters taken to be positive) is then that

(8) φ ≤ ,
1

2 α

ε

which is clearly fulfilled in all examples we have seen.
In order to compare with Fibonacci’s rules, we put φ = p/q . Thereby the

formulae become

(9c) ∆ = ,
q–p

p
ε

(9a) T = ,
(q–p) (εq–αp)

p 2

(9b) N = .
εq–αp

εp

We may also express φ as 1/d , in agreement the trick Fibonacci used to treat cases
in the second column (p. 5), for instance (1,1| 2/11 ). Then the formulae look much
simpler:

(10c) ∆ = (d–1) ε ,
(10a) T = (d–1) (dε–α)
(10b) N = d– α/ε ,

From (10b) we see that if φ is an aliquot part (and d thus integer), N is integer
if and only if ε divides α. For other cases we see from (9b), presupposing that
p/q is reduced to minimal terms and thus that p and q are mutually prime, that

Nε = –α .
εq
p

If α and ε are integer (as they always are in the texts), this can only be fulfilled
if p divides ε, ε = µp. Inserting this we see that

Nµp = µq–α ,
whence

α = µ (q–Np) .
For a given value of φ reduced to minimal terms p/q , all types leading to an
integer solution for N are thus (q,p| p/q ) and those types which can be obtained
by trivial means from it by multiplying all the absolutely defined contributions
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q+ip by the same constant µ and/or by starting from a different point in the
sequence µq+i (µp) (taking care that N remain in the requested domain, e.g.,
N ≥ 2.14 Since no sources contain a problem with non-integer d leading to an
integer value for N, this was probably not known to the medieval calculators

All of this concerns the situation where the absolutely defined contributions
are taken first and the fraction of the remainder afterwards. All calculations are
similar in the case where the fraction is taken first. The corresponding formulae
become:

(12c) ∆ = T+α ,

(12a) T = ,
ε–αφ

φ2

(12b) N = .
ε–αφ

εφ

(13c) ∆ = ,
εq
p

(13a) T = ,
q (εq–αp)

p 2

(13b) N = .
εq–αp

εp

(14c) ∆ = dε ,

(14a) T = ,d 2 ε–dα
(14b) N = d– α/ε .

Since the formulae for N are the same, the condition for the number of shares
being integer and being at least 2 are unchanged.

After this modern reconstruction one may ask how corresponding calculations
could be made with the tools at hand in late Antiquity or the Middle Ages.
Problems of the types (ε,ε| 1/d ) and ( 1/d |ε,ε) can of course be solved by means
of counters for any integer value of ε, not only for ε = 1, just by taking the value
of each counter to be ε instead of 1; so can problems of the types (nε,ε| 1/d ) and
( 1/d |nε,ε) – the procedures are exactly the same as in the previous case, just with
omission of the first n–1 steps; anybody familiar with the operations on the

14 For φ = 6/31 , (α,ε) may thus be any one of the sets (1,6), (7,6), (13,6) and (19,6) or their
multiples (µ, 6µ) etc.
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square pattern might discover that.15 Even for cases where d is non-integer
and/or ε does not divide α it is possible to construct pebble justifications once
the solution is known (on the condition of accepting fractional pebbles); but it
is difficult to see how such pebble proofs could be found if one did not know
the solution already.16 What then?

The first step will be to show that the equality of shares implies that the

15 On the other hand, anybody familiar just with the rule for the case (1,1| 1/d ) might also
observe that the solution to the case (n,1| 1/d ) is obtained from the former case by omission
of the first n–1 heirs. Solutions to the case (ε,ε| 1/d ) is of course obtained from that for
(1,1| 1/d ) by simple proportionality, no new proof being needed; the same holds for the
relation between the cases (nε,ε| 1/d ) and (n,1| 1/d ).
16 For the relatively simple case d = 4 1/2 , α = 1, ε = 3 (whence ∆ = 3 1/2 3 = 10 1/2 , n =
4 1/2 – 1/3 = 4 1/6 , the square-grid diagram corresponding to the pebble justification looks as
follows:

Each row is equal in area to ∆, and the number of rows is N = 4 1/6 . If we remove α =
1 in the first row, 9 1/2 are left. The lower 3 1/6 rows can be divided into three columns with
area 3 3 1/6 = 9 1/2 , and a narrow column with area 1 1/2 3 1/6 = 4 3/4 = 1/2 9 1/2 . The 9 1/2 left
over in the upper row is thus, as it should be, 1/d of the remainder. When it is removed,
we are left with the lower 3 1/6 rows. α+ε = 4 is removed from the upper of these, leaving
6 1/2 in the same row and 3 1/2 times 6 1/2 in the following; etc.

After having gone through this operation I suppose that the reader, firstly, will find
it unlikely that somebody should invent this diagram unless it be done (as here) from
the already known result; and, secondly, will doubt that Fibonacci’s formulae (or those
we shall encounter below in the Compendy de la praticque des nombres) were derived from
such diagrammatic considerations. One could ask for no better example of an a posteriori
synthesis which is of no help whatsoever in the reconstruction of a corresponding analysis.

I also expect the reader to find new sympathy for Plato’s insistence (Republic
525d–526a, ed., trans. [Shorey 1930: 162–165]) that it is a bad habit to transfer to the realm
of theoretical arithmetic that breaking of the unit with which shopkeepers were conversant.
“Visual” mathematics, seductive as it is in simple cases, becomes much more difficult
than formal calculation as soon as intricacies arise; symbolic algebra conquered for good
reasons.
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absolutely defined contributions constitute an arithmetical progression. A possible
means for showing this is used amply in the Liber abbaci, namely the line diagram
(but not used for these problems). Let us first try (Figure 4) the more intricate
case where the absolutely defined contribution is taken first; for convenience
I shall use letter symbols, but pointing and words could do the same:

Figure 4

AB represents Sn, that is, the amount that is at disposition when the n-th share
is to be taken, n being arbitrary (but possible).17 This share is AD, consisting
of AC = an and CD = φCB. The following share is DF, consisting of DE = an+1 and
EF = φEB. Since AD = DF = ∆, CB = CD+DB, and EB = EF+FB, we find that

an+1–an = φ(CB–EB) = φ(CD–EF)+φ(DB–FB) = φ(an+1–an)+φ∆ ,
whence

(1–φ) (an+1–an) = φ∆
and further (in order to avoid a formal algebraic division) the proportion

∆ : (an+1–an) = (1–φ) : φ .
By means, for instance, of Euclid’s Data, prop. 2 [trans. Taisbak 2003: 254], “If
a given magnitude [here ∆] have a given ratio [here (1–φ):φ] to some other
magnitude [here an+1–an], the other is also given in magnitude” (or applying
simply the rule of three), we find that an+1–an has the same value irrespective
of the step where we are. In consequence, the absolutely defined contributions
have to constitute an arithmetical progression.

If the fraction is taken first, we may use the line diagram in Figure 5:

Figure 5

17 The reason Fibonacci offered no proof of this kind may be that the structures of
secondary logic (“for any ...”, “for all ...”, etc.) were not integrated in his mathematical
standard language and therefore did not offer themselves readily for the construction
of proofs. The present line-diagram proof, if made during or before his times, is likely
not to have looked at an arbitrary step but to have started from the first and then given
an argument by quasi-induction. Fibonacci, making the calculation in numbers that change
from step to step, could not generalize his result.
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In this case, φAB+an = φDB+an+1, and therefore an+1–an = φ(AB–DB) = φ∆, which
again means that the absolutely defined contributions must form an arithmetical
progression.

In both cases, once we are so far it is legitimate to construct the rules from
the equality of the first two shares only. This can be done by somewhat laborious
but simple first-degree algebra – Fibonacci shows one way to do it, but there
are alternatives. It can also be done by means of two false positions (see note
19), and probably by still other methods. Possibly, one might reconstruct the
way that was actually followed in order to find the rules from the detailed make-
up of these. I have not been shrewd enough to do so.

Fourteenth-century abbacus writings

In its basic inheritance shape, the problem turns up in quite a few fourteenth-
century abbacus treatises. The earliest of these is the Livero de l’abbecho [ed.
Arrighi 1989: 116].18 Here we find a problem of type (7,1| 1/24 ) dealing with a
heritage consisting of an unknown number of sheep. The rule that is given is
that “we should strike off one from the fraction, and 1/23 remain, and we shall
strike off 7 from 24, and 17 remain” (which gives 17 sons and 23 sheep for each
son). These rules are clearly not derived from Fibonacci’s rule (4b) for the intricate
case, which would give the number of sons as (24–1) 7–(7–1) 24. Instead they
may come from the observation that the outcome corresponds to that of the
distribution (1,1| 1/24 ), the six first shares being omitted; but the mathematical
quality of the rest of the treatise does not make it likely that the compiler was

18 On the words of its compiler, this treatise purportedly written “secondo la oppenione
de maiestro Leonardo de la chasa degli figluogle Bonaçie da Pisa” has been believed to
be extracted from the Liber abbaci, and from internal evidence it has been supposed to
be from 1288–1290. The internal evidence consists of loan documents which turn out to
be copied from elsewhere (whether original documents or an earlier abbacus treatise
cannot be decided), for which reason the real date must be somewhat later (hardly much,
the language seems rather archaic). As regards the link to Fibonacci, the treatise does
contain a number of advanced problems borrowed from the Liber abbaci; but these are
external decoration, the stem of the treatise is independent of Fibonacci (the Liber abbaci
as well as any other work he may have written, as revealed by linguistic analysis), and
repeatedly the compiler reveals not to understand what he copies from Fibonacci [Høyrup
2005a]. The problem about the unknown heritage is located in a final collection of mixed
questions, some of which are taken from the Liber abbaci and others not.

The problem type is not represented in the Columbia algorism [ed. Vogel 1977], which
now appears to be the earliest extant abbacus text (from c. 1280 or not much later, albeit
the manuscript we possess is a fourteenth-century copy), cf. [Høyrup 2005a: 27 n.5].
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able to get that idea on his own.
Paolo Gherardi’s Libro di ragioni, written in Montpellier in 1327, contains a

problem of type (1,1| 1/10 ) [ed. Arrighi 1987: 37f]; the story deals with a father
who gives 1 mark of gold and 1/10 of the gold that remains in his box to the first
son, etc. The numbers are thus like those of Jacopo, but already the return to
the traditional inheritance story shows that Jacopo is not the source – or at least
not the only source.

The Libro de molte ragioni [ed. Arrighi 1973: 199], a conglomerate from Lucca
from c. 1330, has another inheritance story with the same numbers (1,1| 1/10 ),
sufficiently different (both at the level of the story and in the formulation of the
rule) to exclude any direct link.

In the Istratti di ragioni [ed. Arrighi 1964: 140f] – a problem collection written
down in c. 1440 but claiming to go back to Paolo dell’Abbaco (c. 1340) and in
any case likely to contain material from this age – we find two variants, namely
(1000,1000| 1/10 ) and ( 1/6 |10,10). The former (about bizanti) is solved by the usual
rule (the denominator of the fraction minus 1), the latter (about fiorini) by a
double false position (using only the equality of the first two shares).19

Arabic pseudo-kin

Due to the kind assistance of Mahdi Abdeljaouad (personal communication),
I have come to know about two Arabic problems obviously inspired from the
simple version of the problem type we are discussing. Both replace it by
something closer to the orthodox “box problem” (though not changing it as
radically as the late Byzantine analogue discussed on p. 10), yet without taking

19 The formulation runs thus:
We shall find a number such that, when 1/6 is detracted and then 10, and from the
remainder again 1/6 and then 20, one [detraction] is as much as the other; and
therefore posit that this number be 60, seize 1/6 of 60, it is 10, and 10 more, you get
20; you have when you detract 20 from 60, 40 remain, and now seize 1/6 of 40, which
is 6 2/3 , and 20 more, you get 26 2/3 . So that you see that he has 6 2/3 more than the first.
And now posit another number, and let us posit that it is 120, and therefore seize
1/6 of 120, it is 20, and 10 more, you get 30. You have that the remainder is 90, now
seize 1/6 of 90, which is 15, and 20 more, you get 35. You have that to the second
falls 5 more than to the first; so that you will say: and for 20, 5 more. And now
follows the rule you have heard several times in this book,

according to which the true total heritage is = 300 fiorini. The single share is
6 2

3
120–5 60

6 2

3
–5

then found as 1/6 300+10 = 60, and the number of sons as 300/60 = 5.
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advantage of the change.
One comes from Ibn al-Yāsamı̄n’s Talqı̄h al-afkār fı̄’l amali bi rušūm al-ghubâr

(“Fecundation of thoughts through use of ghubār numerals”) – written in
Marrakesh in c. 1190. It runs as follows:20

An inheritance of an unknown amount. A man has died and has left at his death
to his six children an unknown amount. He has left to one of the children one dinar
and the seventh of what remains, to the second child two dinars and the seventh
of what remains, to the third three dinars and the seventh of what remains, to the
fourth child 4 dinars and the seventh of what remains, to the fifth child 5 dinars and
the seventh of what remains, and to the sixth child what remains. He has required
the portions be identical. What is the sum?

The solution is to multiply the number of children by itself, you find 36, it is
the unknown sum. This is a rule that recurs in all problems of the same type.

The other is found in the al-Ma ūna fı̄ ilm al-hisāb al-hawā ı̄ (“Assistance in the
science of mental calculation”) written by Ibn al-Hā im (1352–1412, Cairo, Mecca
& Jerusalem, and familiar with Ibn al-Yāsamı̄n’s work):21

An amount of money has been diminished by one dirham and the seventh [of what
remains]; by two dirhams, and then the seventh of what remains; then three dirhams
and the seventh of what remains; then four dirhams and the seventh of what remains;
then five dirhams and the seventh of what remains. In the end, six remain.

Take the square of the six that remain, it is the amount which was asked for.

The number of portions is thus given in both versions; none the less, both still
use the same rule as the “Christian” version of the simple problem. As we
observe, Ibn al-Yāsamı̄n omits the information that the last portion is determined
according to the same rule as the preceding ones, whereas Ibn al-Hā im does
not require the portions to be equal. Both informations are indeed superfluous.

We also observed that Ibn al-Hā im’s version is not overdetermined; it can
be solved backwards step by step, in this way:

The fifth portion is 5+ 1/7 A, where A+5 is what is left after the taking of the
fourth portion; but this remainder is also the sum of the fifth and sixth portions.
Hence,

A+5 = 6+5+ 1/7 A,
from which follows A = 7. The fourth portion is 4+ 1/7 B, where B+4 is what is
left after the taking of the third portion; but this is also the sum of the fourth,
fifth and sixth portions; etc.

20 My translation from Mahdi Abdeljaouad’s French translation.
21 Still my translation from the French.
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Obviously, a similar backward calculation could be made for varying fractions
and for absolutely defined contributions that are not in arithmetical progression.
However, the rule is only valid for a constant fraction 1/N+1 , where N is the given
number of portions, and if the absolutely defined contributions are 1+(i–1). There
is hence no doubt that Ibn al-Hā im’s problem descends from the “Christian”
problem and results from an attempt to assimilate it to a more familiar structure.

Ibn al-Yāsamı̄n’s problem is overdetermined, but the evident way to solve
it would still be a backward calculation: if S is what is left when the fifth share
is to be taken, the fifth share is 5+ 1/7 (S–5), and the sixth share is what is left, i.e.,
S–5– 1/7 (S–5). From their equality follows that S is 12, each share thus 6, and the
total 6 6. The rule, once again, is valid but not naturally adapted to the actual
problem.

The conclusion is that mathematicians from the Maghreb or al-Andalus22

had come to know about the problem type already before the Liber abbaci was
written; but their use of a rule which is better adapted to the “Christian” version
of the problem shows that this latter version with its unknown value of N was
not derived from the “Islamic” box-problem versions but was indeed the original
form. Whether Ibn al-Hā im knew the problem from the Maghreb mathematicians
or through other channels cannot be decided at present. In any case, the aberrant
character of the two Arabic problems are strong evidence that Fibonacci and
Planudes did not get their problem from the Arabic world – if it was known and
accepted there, why should our two authors need to make it more familiar by
making N a given magnitude? Ibn al-Yāsamı̄n confirms that the problem type
which inspired him was indeed familiar (in a place that might inspire him and
where he expected to find readers) before the Liber abbaci was thought of.

Provence and Barthélemy de Romans

The problem type (1,1| 1/8 ) turns up in a manuscript of the Trattato di tutta
l’arte dell’abacho from 1340 (Rome, Accademia Nazionale dei Lincei, Cors. 1875,
fol. 85v). The rule is once again that the number of sons is found by subtracting
one from the denominator – “if he had said 1/9 to them, you would subtract one
from 9, but because he said 1/8 , subtract one from 8, 7 remains, and 7 were the
sons”. It is likely but not certain that the author picked up the problem in

22 Ibn al-Yāsamı̄n’s “all problems of the same type” seems to prove that he was not the
only mathematician in his area to know about them. He had been active in Morocco and
in Muslim Spain; he may have encountered the derived problem type in either place.
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Avignon, where the original was written around 1334.23 In any case the genre
is well represented in treatises written in Provence in the early fourteenth century
(Jacopo in 1307, Paolo Gherardi in 1327), being absent only from the Liber habachi
[ed. Arrighi 1987], written around 1310, almost certainly in Provence and almost
certainly not by Paolo Gherardi.24 It is absent from most other fourteenth- and
fifteenth-century treatises from the Ibero-Provençal area I know about – thus
from the Castilian Libro de arismética que es dicho alguarismo [ed. Caunedo del Potro
& Córdoba de la Llave 2000: 133–213], from Francesc Santcliment’s Summa de
l’art d’aritmètica from 1482 [ed. Malet 1998]; from Francés Pellos’s Compendion
de l’abaco from 1492 [ed. Lafont & Tournière 1967]; and (as far as can be concluded
from the description in [Sesiano 1984b]) from the “Pamiers algorism”.25

However, it is represented in the mid–fifteenth-century Traicté de la praticque
d’algorisme by four problems – according to the description in [Spiesser 2003:
154] of the types (1,1| 1/10 ), (ε,ε| 1/10 ), ( 1/10 |1,1) and ( 1/10 |ε,ε); in Barthélemy de
Romans’ Compendy de la praticque des nombres;26 and in the problem collection

23 For this dating, see [Cassinet 2001]. The problem is not in what appears to be a draft
autograph of the treatise (Florence, Biblioteca Nazionale Centrale, fond. prin. II,IX.57),
but since this draft does not represent the finished treatise its author may well have added
even the actual problem afterwards (other material with no parallel in the main draft
but in the same hand as the main treatise has been added in the Lincei manuscript; when
metrologies are referred to in these problems, they are the same as in the main treatise,
and of Provençal rather than Tuscan type).
24 The date being rather late and the orthography purely Tuscan, it is not certain whether
we should count as genuinely Provençal an occurrence of a problem (1,1| 1/7 ) in Francesco
Bartoli’s Memoriale, written down in Avignon before 1425 and copied from unidentified
abbacus material [ed. Sesiano 1984a: 138]. We may notice, however, that Bartoli’s problem
shares with Paolo Gherardi’s version (and with no other) that everything is measured
in weight units of gold, not in coin (here ounces, in Gherardi marks of gold).

Bartoli’s rule is the usual one – that subtraction of 1 from 7 gives both the number
of sons and the amount each one receives; maybe the Papal courtly environment is the
reason that his testator is a count.
25 It is also absent from two twelfth-century Latin works prepared in Iberian area where
it could have been expected to turn up if it had been known, the Liber augmenti et
diminutionis [ed. Libri 1838: I, 304–369] and the Liber mahamaleth (at least in as far as can
be determined from the description of the latter work in [Sesiano 1988].
26 Barthélemy probably wrote this treatise around 1467, but what we possess is a revised
redaction from 1476 due to Mathieu Préhoude – see [Spiesser 2003: 26, 30]. Barthélemy
himself presents his work as an extension of an earlier treatise from his own hand
(possibly the just-mentioned Traicté de la praticque d’algorisme) aimed at giving his readers
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which Nicolas Chuquet attached to his Triparty en la science des nombres.
No known source ever treated the genre as fully as Barthélemy de Romans’

Compendy. Maryvonne Spiesser [2003] not only offers an edition of the text (pp.
391–423) and a translation into modern French (pp. 543–579) but also a substantial
commentary (pp. 139–156), of which I shall take advantage so as to concentrate
on what is important in the present context; page references to the treatise refer
to Spiesser’s edition.

In general, Barthélemy prefers to present first the general principles of a
matter, and afterwards the examples. Thus also to some extent here, but with
the proviso that this part of the text falls in two major sections, each of which
contains general principles and examples.

Barthélemy gives the genre a name not known from earlier sources and
probably his own invention, progressions composees;27 he also gives a name to
the quantity 1/φ = q/p = d, the vray denominateur or “true denominator”. Since this
entity was used by Fibonacci in a way that suggests the idea not to be his own
and since the name is close at hand it is less certain that even this term was
Barthélemy’s invention.

Barthélemy starts by distinguishing between deux manieres, “two modes”,
in the first of which the absolutely defined contributions (les nombres de la
progression) are taken first and the fraction of what remains (la partie ou les parties
que l’on veut du demourant) afterwards; in the second, the “part or the parts” are
taken first, and afterwards “the numbers that make the progression” from what
remains. Then the “true denominator” is explained and exemplified, and it is
pointed out that in the first mode, four numbers are fundamental: the true
denominator (d), “the number that is one less than the denominator” (d–1), “the
number which makes the progression” (ε) and the “number by which the
progression starts” (α); he does not forget to say that the latter two may be equal,
but they should none the less be treated as different. He also points out that three
hidden numbers are sought for, “the number that can be divided by this
progression” (T), “how much there will be in each place” (∆) and “how many
places there will be in the progression” (N); he claims as a general fact that T >

profounder understanding.
27 Firstly, the topic is never grouped together with arithmetical progressions in other
sources; secondly, there are some suggestions in Barthélemy’s text that he might be
accustomed to find it together with the double false position, in agreement with the
occasional use of this method to solve the problems – see below.
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∆ > N.28

Thereby he has come to the enunciation of a “general rule” for progressions
of the first kind:

(15c) ∆ = (d–1) ε ,
(15a) T = ([d–1]ε–α) d+α ,
(15b) N = T/∆ .

(15c) coincides with (10c), and (15a) easily reduces to (10a), whereas Fibonacci’s
(4a) reduces to ([d–1]α–[α–ε]d) (d–1) if we introduce into it the true denominator
d. The rule is illustrated by three examples of types (3,3| 1/7 ), (2,3| 2/11 ) and
(3,2| 3/13 ). The first example is told to deal with the division of a number in
agreement with the progression – in the end it turns out that a division among
N “men” is thought of; the two others only speak about “making a progression”.
We notice that in the first problem, α = ε, in the second α > ε, in the third α < ε.
This principle is pointed out by Barthélemy. He also observes, however, that
the first deals with “one part”, the second with “two parts”, the third with “three
parts”; this is wholly unimportant as long as the “true denominator” is used,
and could be a reminiscence of the similar distinction (though only between “a
part” and “parts”) in Boethian arithmetic.

Then Barthélemy points out that the problems where α = ε “can be done
by another practice, for which this is the appurtenant rule”:

(16b) N = d–1 ,
(16c) ∆ = (d–1) ε ,
(16a) T = N2 ε ,

This rule is then applied to a final example of the first mode, (3,3| 2/9 ), and it
is pointed out that the outcome would have been the same if rule (15) had been
applied. From Barthélemy’s words and argument it is fairly obvious that he did
not arrive at the specific rule by reducing the general one; but is seems likely
that he himself formulated as a rule a practice that he had only encountered in
the shape of particular problems (since the inheritance problems are all of this
type, many with ε = 1 but others with ε = 10, ε = 100 or ε = 1000, this is quite
possible). He does not bother the reader with any argument that one set of rules
can be derived from the other by reduction, and the formulation of a such an
argument would indeed be quite cumbersome in the absence of algebraic
symbolism (provided Barthélemy had the idea, which is far from certain –

28 As we have seen, this is not strictly true – if α = ε = 1, N = ∆. But for all other integer
positive values of α and ε (the only ones considered by Barthélemy and our other authors)
it is true for acceptable values of d.
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mathematical intuitions are rarely more than one step in advance of that which
established familiar terminology and concepts can grasp).

For the “second mode” this rule, valid for the case α = ε, is given first:
(17b) N = d–1 ,
(17c) ∆ = d ε ,
(17a) T = (d–1) d ε ,

which is then applied to the cases ( 1/7 |2,2) and ( 2/11 |3,3). Nothing is said about
this rule corresponding to a practice, but that may be because the corresponding
general rule has not yet been presented – indeed, when all the rules with
appurtenant examples have been explained, they are spoken of as les praticques
precedants. In any case there is no doubt that this is the counterpart of the
simplified rule (16) for the case (ε,ε|d).

There may be a good reason for giving separately the rule for the case α =
ε. Afterwards, indeed, separate rules are given for the cases α < ε and α > ε –
and these rules have to be stated separately, because they are of the same type
as Fibonacci’s (5) and (6) though not exactly the same – respectively

(18a) T = ,
[(ε–α) q (q–p)α] q

p 2

(18b) N = ,
(ε–α)q (q–p)α

εp

(18c) ∆ = ,
εq
p

and

(19a) T = ,
[(q–p)α–(α–ε)q] q

p 2

(19b) N = ,
(q–p)α–(α–ε)q

εp

(19c) ∆ = .
εq
p

The examples are ( 1/7 |3,5), ( 2/9 |3,5), ( 6/31 |2,3), ( 1/6 |5,3), ( 2/11 |5,2) and ( 5/19 |5,3).
The totally different approaches to the two modes, one by means of the true

denominator and the other one (except when ε = α) by means of p and q, suggests
that all the rules presented here are borrowed (this is also suggested by
Maryvonne Spiesser [2003: 152]). The discrepancy between Barthélemy’s treatment
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of the two modes makes it implausible that the Liber abbaci was his source.29

What comes from this point (p. 402) onward is likely to be Barthélemy’s own
original contribution. First he offers a systematic exposition of the principles of
rules (18) and (19) together with their counterparts for the first mode (almost
coinciding with (1) and (4) as set forth in the Liber abbaci) and summarizes
everything in a single rule (even here, the ambiguities of a verbal expression
makes him insert an example ( 6/31 |3,3)); next, “for the practice of this rule and
in order to see rapidly how one should make the necessary multiplications for

29 Maryvonne Spiesser [2003: 156] finds it to be a “very plausible” hypothesis that the
Liber abbaci was the direct source – a conclusion which I endorsed in [Høyrup 2005b]
because of the lack of evidence for alternatives. Since the present broader investigation
of the question shows that non-Fibonacci solutions even to the sophisticated versions
must have circulated, this argument can no longer be considered valid. Spiesser takes
the shared occurrence of uncommon fractions like 5/19 and 6/31 as supplementary evidence
for an intimate connection; however, Barthélemy’s range of non-aliquot-part fractions
( 2/11 , 3/13 , 2/9 , 6/31 , 5/19 , 3/11 , 4/15 , 5/21 , 6/25 , 4/27 ) goes far beyond what we find in Fibonacci
( 2/11 , 5/19 , 6/31 ) but remains within the same vaguely defined family – all denominators
are odd, most are prime, the values fall between 0.148 and 0.272 (all but one between
0,181 and 0.272), the numerators being evidently larger than 1; no denominator except
13 occurs in more than one fraction. If we restrict ourselves to those of Barthélemy’s
fractions which appear in the part of his text discussed so far, that is, the part which seems
to build upon borrowed rules and therefore perhaps also on borrowed examples ( 2/9 ,
2/11 , 3/13 , 5/19 , 6/31 ), the characteristics are even more narrowly defined: all values fall
between, 0.181 and 0.263, no denominator appears more than once and all denominators
are prime. Strikingly, all but two non-reducible fractions with denominators below 37 which
fulfil these (partly mathematical, partly aesthetic) criteria are used – the exceptions being
5/23 and 7/29 . If both Fibonacci and Barthélemy drew on a fund of problems defined by
these criteria, simple statistics shows us that the coincidences are not striking: if Fibonacci
were to select 3 from the list of 7 possible fractions, the probability that all three would

fall within the range of 5 values used by Barthélemy is ≈ 28%. The uniformity5
3 ÷ 7

3
of the possibly borrowed examples in Barthélemy’s text shows that such aesthetic and
mathematical criteria were efficient (his own probably added examples, though widening
the limits of the permissible a bit, also confirms that the criteria were felt, since his
deviations from the canon that is implicit in the first part are quite modest).

Further, if Barthélemy had really borrowed from Fibonacci problems with φ equal
to 2/11 , 5/19 and 6/31 , one should also expect him to have borrowed the appurtenant sets
(α,ε) – but this only happens in 1 of 9 instances (1 of 7 if we count pairs (α,ε|φ) and
(φ|α,ε) with coinciding parameters as a single instance), namely for the case ( 6/31 |2,3).
Given how often the set (α,ε) = (2,3) is used, this is once again no more than could be
expected from a random distribution.
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the three numbers that should be divided by the

Figure 6

three dividers to get the three hidden numbers”,
he shows “how the necessary numbers can be put
into a diagram”, as shown in Figure 6 – at first in
general form, with the numbers described in
technical verbal terms defined by Barthélemy (here
replaced by our usual symbols).

A new sequence of numerical examples follows
in which the diagram is used, all in pairs represent-
ing the two modes.30 At a certain point (p. 413)

Figure 7

he shows how the diagram applies to the rules
based on a “true denominator”. He explains that
the three numbers in bottom (not counting those
in [ ]) are integers and the others actually fractions,
a denominator equal to p being tacitly understood,
and that there is only one divisor (viz εp, which
reduces to ε, p and p2 being both reduced to 1). The
exposition corresponds to what is shown here in
Figure 7, and so do the diagrams used in the
subsequent numerical examples.31

The whole treatment of division according to
progressions is made under the general heading
of “two false positions”, whose rule is simply
stated (p. 390) as plus et plus, meins et meins, sus-
trayons. Plus et meins, adjoustons – “More and more, less and less, we shall
subtract. More and less, we shall add”. The meaning is that if both initial guesses
lead to an excess or to a deficit, the rule with addition is to be used. If one leads

30 The three divisors written in [ ] in the diagram – sometimes as here to the right,
sometimes to the left – are not in the general diagram but only in the particular examples.
31 Maryvonne Spiesser [2003: 148] finds that “the author gets lost and loses us in an
exposition that seems to lead nowhere” in this change between two representations of
the problem. Once we have accepted that both sets of rules offered in the first part of
the chapter are inherited, one might rather find the present discussion to be a praiseworthy
(and, on the conditions of the terminological difficulties, mathematically blameless)
verification that the two approaches are equivalent. This time Barthélemy does not satisfy
himself with a control that the two ways lead to the same numerical result (as earlier
on, when the equivalence of rules (15) and (16) were argued, see p. 23, and as commonly
done in the abbacus tradition).
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to an excess and the other to a deficit, the variant with subtraction should be
used. The rule itself (weighing the two guesses in inverse proportion to their
error) is not presented, instead Barthélemy goes directly first (briefly) to “simple”
(that is, arithmetical) and then to the composite progressions discussed here.

On p. 420 Barthélemy returns to the topic of the heading and legitimizes
it by a claim that distributions according to progressions cannot be made by
means of the rule of three or a single false position but only by a double false
position. As regards the proportional distribution according to a given arithmeti-
cal progression this is evidently false. However, Barthélemy asks for something
different, namely the starting point α of an arithmetical progression
α+(α+ε)+...+(α+4ε) with given sum (e.g., 60) and given ε (e.g., 3), and then he
is right. After that he submits the composite progressions to the double false.
His method is not the one used in the Istratti di ragioni (see above, p. 18) and
not independent of the rules that he has already set forth (and hence it presents
no alternative to these). Indeed, ∆ is first found by (15c) or (17c), depending on
the mode; afterwards, two guesses for T are used, and for each the first share
(α+φ (T–α) or φT+a, depending on the mode) is calculated; from the two errors
the true value of T can then be determined. In order to show how convenient
guesses depend on the value of φ, two examples follow – (2,3| 2/7 ), for which
the guesses are T1 = α = 2, T2 = α+q = 9, and ( 1/4 |5,3), with guesses T1 = q = 4,
T2 = 2q = 8).32

The first, general part of the discussion of the use of the double false position
is illustrated by a truncated version of the diagram (Figure 8), containing what

32 Thereby, the complete list of Barthélemy’s examples is:

(3,3| 1/7 )
(2,3| 2/11 )
(3,2| 3/13 )
(3,3| 2/9 )
( 1/7 |2,2)
( 2/11 |3,3)

( 1/7 |3,5)
( 2/9 |3,5)
( 6/31 |2,3)
( 1/6 |5,3)
( 2/11 |5,2)
( 5/19 |5,3)

( 6/31 |3,3)
(3,3| 3/11 )
( 3/11 |3,3)
(2,2| 4/15 )
( 4/15 |2,2)
(3,5| 6/31 )
( 6/31 |3,5)

(2,3| 5/21 )
( 5/21 |2,3)
(5,3| 6/25 )
( 6/25 |5,3)
(3,2| 4/27 )
( 4/7 |3,2)
(3,3| 3/11 )

( 3/11 |3,3)
(3,5| 6/31 )
( 6/31 |3,5)
(5,3| 6/25 )
( 6/25 |5,3)
(2,3| 2/7 )
( 1/4 |5,3)

The two columns to the left contain what is likely to be borrowed material, the
three to the right what he probably constructed himself in order to illustrate the
general rule and the use of the diagram.The somewhat wider limits for the choice
of φ was already discussed; everywhere, we notice, α and ε are chosen among
the numbers 2, 3 and 5.
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is needed for the determination of ∆. Already for this

Figure 8

reason – but also because of the rather pointless intro-
duction of an alternative that is no proper alternative,
we must presume Barthélemy to be responsible for the
chimaera in question. However, the precedent of the
Istratti di ragioni makes it plausible that the use of the
rule of double false for such problems was known; this
would also explain why Barthélemy dealt with the topic under a heading with
which it has preciously little to do, and where the fragile connection that does
exist is only shown in the very end.

Chuquet

Apart from Barthélemy, nobody dedicates as much space to the genre as
does Chuquet. The place where he does so is in the problem collection attached
to his Triparty from 1484. The problems, as listed in [Marre 1881: 448–451], are
of the following types:

(1,1| 1/10 )
(2,1| 1/7 )
(2,3| 1/8 )

(2,3| 2/11 )
(3,2| 3/13 )
( 1/7 |2,2)
( 2/11 |3,3)

( 1/7 |3,5)
( 2/9 |3,5)
( 6/31 |2,3)

( 1/6 |5,3)
( 2/11 |5,2)
( 5/19 |5,3)

The first problem in the left column is the one we encountered repeatedly, one
of the two paradigmatic types – the other being (1,1| 1/7 ); the second problem
belongs to the same kind as the one found in the Livero de l’abbecho. The third
still has an integer denominator and looks simple, but this appearance is already
deceitful: the parameters lead to a non-integer value of ∆. None of these are
found in Barthélemy’s text. The rest are identical with problems in the Compendy
which Barthélemy is likely to have borrowed. Of these presumably borrowed
problems only one is omitted by Chuquet – namely (3,3| 2/9 ); moreover, Chuquet
brings them in exactly the same order as Barthélemy. This can only have one
of two explanations: either Chuquet copied from Barthélemy, or both build (with
or without written intermediaries) on the same written source – no oral tradition
would conserve the order of 10 problems intact when this order is not dictated
by some inner principle. Given that Chuquet stops exactly at the point in
Barthélemy’s list where the latter appears to begin his own contributions, a
shared source might seem to be the most likely explanation. On the other hand,
Chuquet was familiar with other parts of the Compendy – he refers to Barthélemy
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by name when discussing his solution to a problem coming shortly before the
composite progressions [ed. Marre 1881: 442], and Chuquet may have chosen
to stop where Barthélemy goes into a “theoretical” exposition which he did not
agree with. All in all, the shared source is a superfluous hypothesis which should
fall victim to Occam’s razor.

Indeed, Chuquet’s treatment of the material also differs from Barthélemy’s.
Firstly, all Chuquet’s problems are dressed in the traditional way, as dealing
with a father distributing the unknown contents of a chest to an unknown
number of children; even when N is not integer, Chuquet speaks of it as “the
number of children”. Secondly, he appears to enunciate only one rule,33 after
the second problem:

Multiply the number which is 1 less than the denominator of the common part by
the number which makes the progression. Which multiplication [i.e., product] you
put aside, because it is the number of deniers which each one shall receive. Then
subtract from this multiplication the number which the first one takes when he goes
to the box, that is the number by which the progression begins. And multiply the
remainder by the denominator of the common part, to which multiplication join the
number by which the progression begins, because the addition [i.e., sum] is the
number of deniers in the box. Which number divide by the multiplication which was
put aside, that is, by the share which each one gets, and you have the number of
children.

In symbols once more:
(15c) ∆ = (d–1) ε ,
(15a) T = ([d–1] ε–α) d+α ,
(15b) N = T/∆ ,

that is, Barthélemy’s “general rule” for the first case (above, p. 23); Chuquet,
however, speaks of d simply as the denominator, not as any “true denominator”,
and at this place in his text only integer values for d have in fact occurred.

What can be concluded is, firstly, that Chuquet knew the genre not only from
the Compendy but also from elsewhere; secondly, that he was not very fond of
Barthélemy’s ways to transform it into some kind of coherent theory – as we
know, he had his own ways.34 He actually closes the sequence by the remark

33 “Appears” because Marre’s transcription is incomplete, leaving out the calculations;
however, since Marre includes one rule he would probably have included others if they
had been there. This inference was confirmed to me by Stéphane Lamassé (personal
communication), who has inspected the manuscript.
34 There is indeed a fundamental difference between Barthélemy’s and Chuquet’s aims.
Barthélemy’s schemes are similar in spirit to the schemes used in Indian medieval
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[ed. Marre 1881: 451] Toutes telles raisons facilement se peuent faire par la rigle des
premiers, “all such calculations can easily be done by the rule of algebra”.

As we have seen, it is not quite easy to make a genuine complete algebraic
solution. Whether Chuquet thought of making it is uncertain; he may well have
been satisfied with incomplete solutions like the one offered by Fibonacci.

The Aftermath in Italy

The “unknown heritage” did not disappear after Chuquet, its appeal caused it
to be repeated in several Italian problem collections in the outgoing fifteenth
and the sixteenth century.35

One of these collections is Filippo Calandri’s De arimethrica opusculum from
1491, republished in 1518. Here [Calandri 1518: i 5] we find an inheritance
problem of type ( 1/10 |1000,1000), with mere indication of the answer. Another
one is Francesco Ghaligai’s Summa de arithmetica from 1521 (later editions under
the title Praticha d’arithmetica), which has the problems (1000,1000| 1/7 ) and
( 1/7 |1000,1000) and gives the usual simple rules [Ghaligai 1572: 65r].36 Both deal
with an inheritance; for later use we observe that Ghaligai’s testator is a padre
di famiglia, a paterfamilias, and that the equality of the shares is only discovered
by his children after his death – two details which are not found in any of the
examples mentioned so far except in part with Chuquet, who has a père de

mathematics, schemes which Nesselmann [1842: 302] saw as a kind of genuine symbolic
algebra but which do not allow embedding and therefore can express only that which
is already known as an algorithm – Barthélemy’s transformation of the scheme when
he replaces p/q with 1/d is the maximal flexibility it allows and already strains it. Chuquet’s
use of underlining with parenthesis-function and his arithmetization of the designation
of roots and powers of the unknown, on the other hand, is a first step in the development
of productive symbolization (the term “productive” understood as in linguistics).
35 Among the abbacus works which I have looked through without finding it, Piero della
Francesca’s Trattato d’abaco [ed. Arrighi 1970], Benedetto da Firenze’s Tractato d’abbacho
[ed. Arrighi 1974] and Luca Pacioli’s Summa [1494] should be mentioned. It is also absent
from Pedro Nuñez’ Libro de algebra [1567].
36 “Do thus, always subtract 1 from 7, that is 1/7 , 6 remains, and so many were the sons,
which 6 multiply by itself, it makes 36, and this multiply by s. 1000, it makes s. 36000,
and so much money was in the box; and in order to know how much is due to one, divide
s. 36000 by 6, s. 6000 results”; and “subtract again 1 from 7 that have signified 1/7 , 6
remain, and so many were the sons, then multiply 6 by 7, it makes 42, ...”.
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famille.37

Even the various rules for the sophisticated cases must still have been
accessible in Italy (though perhaps in corrupt versions) well into the sixteenth
century in ways we do not know about – in the Practica arithmetice et mensurandi
singularis [1539: fol. FF iir], Cardano deals with the case (1/7 |100,100) not according
to the usual rule but in agreement with this one:38

(20b) N = q–p ,

(20a) T = .
[(q–p)q] α

p 2

(20a) would result if α = ε was inserted in Fibonacci’s rule (5a) though with a
different order of the factors, which in itself makes the Liber abbaci an unlikely
source. However, (20b) is a mistake39 for

(20b*) N = .
q–p

p

This mistake makes it utterly implausible that Cardano should have used
Fibonacci’s work directly. Nor, as we see, can he have used any of the two
recently printed works where the problem type is present – Filippo Calandri’s
and Ghaligai’s.

37 Later on in the sixteenth century, Tartaglia presents the simple problem both in the
Quesiti et inventioni [1546: 98r–v] ((1,1| 1/8 ), saying that it had been proposed to him in 1524
by one fra Raphaelle) and in the General trattato [1556: I, 245v–246f] (1,1| 1/6 ) – told here
about a merchant who finds a purse and distributes the ducati it contains to his sons).
In both works, the rule is said to be that the subtraction of 1 from the denominator gives
the number of sons as well as the amount each one receives; also in both works, the
outcome of variations of the denominator ( 1/7 being the alternative in the former work,
1/7 and 1/13 in the latter) is explained.
38 The story is singular: “Some dying man left sons and aurei, not knowing how many,
and ordered that when the first returned, he should receive 1/7 of the total and 101 [sic,
error for 100] more, and the second ...”. The equality of the shares is only discovered as
the sons have returned, implicitly thus after the death of the testator.
39 Since the division by 12 is dutifully performed in (20a), we are really entitled to speak
of a mistake.
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Elsewhere

In a personal communication, Maria do Céu Silva has kindly informed me
about two sixteenth-century Portuguese occurrences of the simple version. The
first is in Gaspar Nicolás’ (or Nycolas’) Tratado da pratica Darismetyca from [1519:
fol. 59v–60v], the other in Bento Fernandes’ Tratado da arte de arismética from [1555:
fol. 102r]. Both deal with an inheritance, and the formulations suggest them to
be mutually independent. Nicolás deals with the case (1,1| 1/7 ), with the
alternative (1,1| 1/9 ), Fernandes with (1,1| 1/14 ). Both make a complete verification
of the result similar to what was offered by Jacopo and by none of the later
Italian authors we have considered, and Nicolás even introduces it with the same
phrase,40 but already the inheritance dress shows that Jacopo is not their source.
Nor are they based directly on any of the occurrences discussed above, but both
share characteristic phrases with the Trattato di tutta l’arte dell’abacho (above, p.
20) – phrases which are also somewhat similar to what we find with Chuquet.41

Fernandes shares with Ghaligai the idea that the equality of the shares is
discovered after the death of the testator.42

These similarities suggest that the Portuguese writers draw on an Ibero-
Provençal rather than Italian traditions (for this problem – in other respects it
is highly probable that Fernandes drew on Italian material [do Céu Silva 2006].
The German occurrences of the problem are more likely to be based on Italian
inspiration.

The first of these is among the supplementary problems which Friedrich
Amann inserted in the Algorismus Ratisbonensis, ms. Clm 14908 [ed. Vogel 1954:

40 Jacopo, “se la voli provare”, Nicolás, “se qyuseres prouar”. Fernandes has “como podeis
prouar”.
41 Where Trattato de tutta l’arte starts “A man has his sons, I do not know how many [non
so quanti], and gives them denari, I do not say how many”, Nicolás’ problem runs “There
is a man who has sons, I do not say how many [nam dygo quantos], and he also has
cruzados, I do not say how many”. Chuquet, in the same vein but not quite the same,
tells that “there is a paterfamilias, who has children, one does not know [on nescet] the
number. And there is in his chest a sum of deniers, of which one does not know the
amount [le compte]”.

Where the Trattato tells about the absolutely defined contributions that they “grow
[crescie] for each one florin”, Fernandes state that “grow [vay crecendo] for each son one
cruzado”. Chuquet has “en augmentant tousious la porcion de ses enfanss de 1 denier”.
42 As we remember, Ghaligai shares the “paterfamilias” with Chuquet, who however only
lets the children “discover” the equality of their shares (in fact, Chuquet does not speak
of a testament but of money distributed from a chest).
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64f] in 1461.43 Friedrich (like Chuquet) does not speak of an inheritance but
of a distribution of money (florins) from a wechselpanck. He gives two examples,
one of type (1,1| 1/10 ) (sons) and one of type (1,1| 1/6 ). He gives the usual rule,
but after the second problem he adds the rule for (a slightly corrupted version
of) the problem type ( 1/6 |0,1), namely N = ∆ = d – correct but not found in any
other source.

In 1467–68, Magister Gottfried Wolack held a lecture in Erfurt University
which is the earliest public presentation of abbacus mathematics we know about
in Germany (unless we count the copying of manuscripts of the Algorismus
ratisbonensis as such); its Latin manuscript appears to have had a certain
influence.44 As a “tenth rule called of equality of parts ” he presents a problem
of type (1,1| 1/10 ) [ed. Wappler 1900: 52f], must either be a slightly paraphrasing
translation of Friedrich Amann’s first problem or build on a close source for this
problem; Wolack’s rule is also formulated in very similar words.

Since Johannes Widmann knew Wolack’s manuscript very well [Wappler
1900: 54f], Wolack could be behind the appearance of the same type in Johannes
Widmann’s Behend und hüpsch Rechnung vff allen Kauffmanschaften from 1489
(partial facsimile reproduction in [Tropfke/Vogel et al 1980: 589]. Widmann’s
formulation, however, is quite different from what we find in Amann and
Wolack – Widmann starts by explaining that the intention of the testator was
to give the same to all his children. Widmann, on his part, is certainly the direct
or indirect source for Christoff Rudolff [ed. Stifel 1615: 416] – Widmann’s unusual
initial explanation and other particulars are borrowed. But Rudolff (whose aim
it is to show the efficiency of coss, algebra) does not refer to a rule, instead he
offers an algebraic solution (based on the equality of the first two shares, and
as usually not controlling the validity of the solution).45

After Rudolff and Stifel, no German author seems to have been interested

43 For the description of the various manuscripts of the Algorismus and the dating of this
particular part of the relevant manuscript, see [Vogel 1954: 10–12, 14]. For the identification
of the frater Fridericus who wrote the manuscript with Friedrich Amann (and not with
Friedrich Gerhart), see [Gerl 1999].
44 At least in 1900, three manuscripts existed (Leipzig, Dresden, Munich); moreover, it
was studied by Johannes Widmann, who may even have used it for his teaching. See
[Wappler 1900: 47, 54f].
45 This is at least what is found in Michael Stifel’s “improved and expanded” edition (1553);
I have not been able to inspect Rudolff’s original from 1545, but [Tropfke/Vogel et al
1980: 588] signals no difference between the two versions; in both editions, the problem
is no. 110.
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in the unknown heritage. In France it had a more persistent success after having
been taken up by mathematically interested humanists (as the Germans, they
stick to the simple versions). The earliest examples I know about are in Buteo’s
Logistica from 1560 and Bachet’s Problemes plaisans et delectables qui se font par les
nombres from 1612 (I used second edition from 1624). Buteo as well as Bachet
and Ozanam, the latter in 1694, take up some of the typical Ibero-Provençal
formulations (not the same!), suggesting that the whole French branch did not
depend on Italian inspiration.

Buteo [1560: 286–288], unprecedented but quite reasonably, thinks the testator
must be a vir logisticus, a calculator; his testament is of the type ( 1/6 |100,100).
Quite exceptionally, the first share is that of the youngest heir; the equality of
shares is discovered only after the testator has passed away – suggesting that
the heirs/readers are supposed to expect the youngest to have received the least,
with only 100 aurei beyond the 1/6 which everybody gets (no writer for merchants
and merchant sons had ever expected such mathematical naivety!).

Buteo, well versed in much more than abbacus mathematics and the abbacus
norm for what constituted an adequate explanation, starts by pointing out that
if each had received only 1/6 , the number of heirs would have been 6; under the
actual circumstances, however,

the rule is that you always remove a unit from the name of the fraction, which is
6, 5 remains for the number of sons.46 And hundred aurei in addition can be nothing
but the sixth of the share. This will therefore be 600 aurei. Multiply 600 by 5, the
number of sons, it results that there were 3000 aurei in the money.

As we see, no argument is given for the rule N = d–1; the assertion “hundred
aurei ... can be nothing but” uses that ∆ = 1/5 T = 1/6 T+100 (whence ∆ = 5/6 ∆+100,
and therefore 100 = ∆– 5/6 ∆ = 1/6 ∆). Finally it is added that the fraction cannot
exceed 1/3 , because there can be no less than two heirs, and that the denominator
of the fraction always exceeds the number of heirs by a unit.

Bachet’s problem [1624: 221–226] is of the type (1,1| 1/7 ), dealing with “a man
who is going to die”; the equality is discovered after his death. After stating
the rule (N = ∆ = 7–1) he gives a proof that it works, very similar to that of

46 The vocabulary shows Buteo to be rooted ideologically in the particular environment
of French lawyer humanism – arithmetica is regarded as vulgar/vernacular for logistica
(the title of the work), an aliquot part is a particula instead of pars, its denominator
particulae nomen instead of denominatio, the number one to be detracted is a monas and
no unitas, an amount of money (or the chest containing the money?) is as(!). Molière’s
précieuses ridicules had spiritual grandfathers who were taken very seriously in their times
(and afterwards) – but Buteo, prudish as a linguist, was a good mathematician.
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Planudes but using (as elsewhere in the work) the particular letter formalism
developed by Jordanus de Nemore.47 After the proof Bachet points out that
one may choose a different denominator (if only the same fraction is used for
all children, and if only the numerator is 1 – otherwise, the problem is told to
be impossible) or take different absolute contributions, if only (in our terminol-
ogy) α = ε; then N is still d–1, but ∆ becomes α (d–1). The proof of the cor-
responding rule is left to the reader.

After that, the rule for the case ( 1/7 |1,1) is stated, and it is said that the proof
is analogous. Bachet goes through the generalization to cases ( 1/d |α,α), and once
more states (in our terminology) that d must be integer and α = ε.

Already closer to the Enlightenment and its use of science as polite leisure
is Ozanam’s Récréations mathématiques et physiques from 1694. The genre is
represented once [Ozanam 1778: I, 185], namely by the type (10000,10000| 1/7 ).
The testator, as with Chuquet and Ghaligai, is a père de famille; as with Ghaligai,
Buteo and Bachet, the equality of the shares is discovered after the death of the
testator.

Ozanam does not state the usual rule, nor any other. Instead, his explanation
runs as follows:

One finds, by the analysis, that the possession of the father was 360000 livres; that
there were six children, and that each of them received 60000 livres. Indeed, the first
taking 10000, the remainder of the possession is 350000 livres, the seventh part of
which is 50000 which, with 10000, makes 60000 livres.The first child having taken
his share, 300000 livres remain; from which sum, when the second has taken 20000
livres, the remainder is 280000, the seventh part of which is 40000 which, with the
above 20000, still makes 60000 livres. And so on.

It is possible (but barely) that the calculation which follows upon the phrase
“indeed” (en effet) is meant to represent the “analysis” referred to initially (which
would evidently be a misuse of this high-flown concept but might sound well
in the ears of that public upon which Ozanam depended for his living); it is also
possible that he did perform some kind of analysis or thought of Bachet’s proof
(which indeed is no analysis but a synthesis a posteriori) but did not find it
adequate for the same public; most likely the term is an empty claim. In any
case it presents us with no evidence that Ozanam understood the matter better

47 Bachet may have known it from Lefèvre d’Étaples’ edition of Jordanus’s Arithmetica
demonstrata [1514]. The formalism should not be mistaken for an algebraic symbolism,
since each operation leads to the introduction of a new letter. In the present case, B is
thus 7, B–1 becomes A, A–1 becomes C, A A becomes F, B C becomes G, etc. The
symbolism allows generality of the argument, not algebraic manipulation.
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than, say, Jacopo da Firenze.
As mentioned initially, Euler deals with “this question [which] is of a quite

particular nature and therefore deserves attention” in the Élémens d’algebre [1774:
488–491]. Unlike all writers on the topic since the fifteenth century except Bachet,
Euler gives a mathematical argument for the solution. In a problem of type
(100,100| 1/10 ), he introduces the variables z (our T) and x (our ∆), concluding
that the successive remainders are z, z–x, z–2x, ..., z–5x, ..., finds the successive
shares according to the prescription, and detects that the successive differences
between these are “fortunately” all equal to 100– x–100/10 . Since they should be 0,
he finds x = 900 (etc.).

Euler certainly could make a theoretically complete and coherent analysis
which did not to appeal to the good luck of a strongly overdetermined problem –
but apparently he could not do it in a way that would fit an elementary treatise.

Theoretically complete analyses (still only of the simple version) turn up in
the nineteenth century. Labosne [1859: 158] gives one in his paraphrase of Bachet,
but there are others. Most illuminative is perhaps the treatment of the matter
which is offered by Pierre Louis Marie Bourdon in his Élémens d’algèbre from
1817 (a university textbook). Bourdon starts [1831: 66–71] by an easier version,
almost the same as the box-problem version proposed by Ibn al-Hā im (see above,
p. 19, 43): The number of children is given (3), the fraction is an abstract 1/n , the
absolutely defined contributions (assigned before the fraction) are the equally
abstract a, 2a and 3a.48 Afterwards [Bourdon 1831: 71–73] comes the problem
(a,a| 1/n ), which Bourdon points out to be overdetermined; as all algebraic
predecessors, Bourdon constructs an equation from the equality of the first two
shares; afterwards, he shows the validity of the solution he obtains by an
algebraic version of Planudes’s quasi-induction – no impressive advance in an
abundant half-millennium.

48 It is not told explicitly, as by Ibn al-Hā im, that the last share consists of nothing but
the absolutely defined contribution; but since nothing remains after the taking of 1/n , this
should be evident. Since the calculation runs over more than five pages (whereas my
complete backward calculation of Ibn al-Hā im’s six-child version could be made on a
A6-sheet of paper), this is hardly a proof of the superiority of Bourdon’s algebra.
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Whence?

We may have given up the Comtean belief in general guaranteed progress.
None the less, we are accustomed to believe in over-all progress in mathematical
insight since the thirteenth century, caused by at least three factors:
– The general intellectual climate engendered by increased schooling and

literacy at all levels;
– the recovery and digestion of the ancient mathematical legacy;
– the creation of new tools, first of all symbolic analysis.
The story surrounding the unknown heritage is a strange exception to this rule
of progress, though admittedly concerned with a trifle which cannot change the
overall picture significantly.

Indeed, our very first source for the genre – the Liber abbaci – also shows
it in its fullest bloom, in the double sense of possessing already all the rules even
for the sophisticated versions and of presenting a partial algebraic solution for
one of these (showing it could be made for all cases). In the fifteenth century,
Barthélemy also knew the rules for simple as well as sophisticated versions but
offered no reasoned solution (apart from one depending on the rules); the Istratti,
from the same century but probably going back to c. 1340, offer a partial solution
of one of the simple cases by means of a double false position; dealing with a
simple case, Euler does as well as Fibonacci on one of the simple cases, and uses
a method which would also work for the sophisticated ones (although Euler does
not say so and does not mention these) – but like Fibonacci’s, Euler’s approach
only “fortunately happens” to work for the overdetermined problem. Well before
Euler, Cardano had demonstrated to know some mutilated version of the full
rules but not the reason they worked – which indeed his version of the rules
would not have done for non-integer d.

Bodily organs which over time are gradually reduced by the combined force
of mutations and selection are known as rudiments – and rudiments point back
to a situation where their counterparts were fully efficient. Speaking of “effi-
ciency” when we deal with a useless mathematical riddle may be unwarranted,
but Fibonacci’s and Barthélemy’s rules are much too complicated to have been
found by trial and error. Those who found them must have been good at
mathematics – very good indeed, given that they found them without having
symbolic calculation at their disposal. Whatever technique they used must have
been quite refined, and thus carried by a competent environment – which should
allow us to characterize them in a vague sense not only as “very good at
mathematics” but as “very good mathematicians”.
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This leaves us with a first difficult question: Since the problem type appears
to be unknown in the Arabic world (except for a clearly derivative, distorted
import) and left no traces in pre-1500 Spain which we know about, where and
in what epoch should we search for this environment and for these very good
mathematicians?

All we can safely conclude is that they must be anterior to Fibonacci and
Ibn al-Yāsamı̄n, and that Fibonacci had access to their results. Among the places
where Fibonacci declares [ed. Boncompagni 1857: 1] to have pursued the study
of abbacus matters – in his boyhood Bejaïa, and afterwards “Egypt, Syria, Greece,
Sicily and Provence” – only Greece (i.e., Byzantium) and Provence fall outside
the Arabic orbit with certainty, while Sicily had a mixed Arabic-Byzantine
heritage).49 The frequency with which the problem turns up in writings from
early fourteenth-century Provence and the links between these, Chuquet and
the Portuguese writers suggests that the encounter could have happened here,
while Planudes’s presentation of a proof that might reflect the original invention
of the problem suggests the simple version to have been transmitted within the
Byzantine orbit; Ibn al-Yāsamı̄n’s problem makes it plausible that the problem
was present somewhere in the Western Mediterranean before 1190. However,
neither Planudes nor the writings from fourteenth-century Provence contain any
trace of the sophisticated variants, which could suggest Sicily to be their cradle
but proves nothing. Barthélemy’s familiarity with two complete sets of rules could
seem to speak in favour of Provence as an important focus, not least because
Italian sources from the 140 years that separate him from Fibonacci tell us nothing
about the sophisticated types. Nor do the Italian sources give any information,
however, about the way Cardano acquired his partial knowledge of the
sophisticated rules, which none the less he did acquire.50

All in all, the most certain result we get from the analysis is a general
admonition that known written sources may perhaps provide us with an
adequate picture of what went on in mathematics in the Christian cathedral
school and incipient university environment and of that level of Arabic and
Byzantine mathematics that was linked to madrasa learning, recognized
scholarship and astronomy; but they do not thereby provide us with anything

49 Fibonacci is also known to have drawn verbatim on the scholarly translations into Latin
from the twelfth century even though he does not mention them (see, for instance, above,
note 7), but no Latin source of this kind appears to be relevant for the question.
50 However, the faint echo of Chuquet and the Portuguese we find in Cardano’s story
(“not knowing”, etc.) may imply that this apparent objection is not really one.
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like a complete canvas of what went on in mathematics. Even if we limit our
interest to advanced matters, much remains to be known – if it can be known
at all.

Who used pebbles?

The formulation of “a first difficult question” promises that there will be
at least one more question. The first question asked for the environment where
the sophisticated versions of our problem were formulated and solved; the second
one is a return to the question of the first origin of the simple version.

Planudes’s “theorem” corroborates the hypothesis that the invention was
based on pebble counters placed in a square pattern. It constitutes no absolute
proof, but let us take the hypothesis for granted for a while. Should we then
make the further inference that we are confronted, if not necessarily with a
Pythagorean discovery then at least with a discovery belonging within the circuit
of early Greek theoretical arithmetic? This is the second question.

Prima facie, the answer need not be affirmative. Pebble arguments were
certainly used within that environment – but not exclusively, as we shall see.
Evidence that the general Greek public (and not only some closed Pythagorean
circle) could be supposed to be familiar with them in the early decades of the
fifth century BCE is offered by Epicharmos Fragment B 2 (ed. [Diels 1951: I, 196],
a passage from a comedy fragment dated c. 475 BCE or earlier), which refers to
the representation of an odd number (“or, for that matter, an even number”)
by a collection of ψηφοι, pebble counters, as something trivially familiar.

Evidence that might seem to link the simple versions of our problem to
Pythagoreanism is an observation made by Iamblichos in his commentary to
Nicomachos’s Introduction51, and by various modern editors and commentators
to Greek arithmetical writings52 – namely that 10×10 laid out as a square and
counted “in horse-race” as shown in Figure 9 demonstrates that

10×10 = (1+2+...+9)+10+(9+...+2+1) ,
whence

10×10+10 = 2S10 ,
Sn being the triangular number of order n. Rearranging and generalizing we get

51 Ed. [Pistelli 1975: 7525–27], cf. [Heath 1921: 113f].
52 The diagram described by Iamblichos is identical with what we find in J. Dupuis’s
edition of Theon of Smyrna’s Expositio [1892: 69 n. 14] and in Ivor Bulmer Thomas’s
commentary to an excerpt from Nicomachos [1939: I, 96 n. a].
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Figure 9
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That the sum of two consecutive triangular numbers
is a square number can be found in other authors
close to the neo-Pythagorean and Platonizing cur-
rent;53 it is unlikely that anybody interested in figurate numbers should miss
the point. The expression of the sum S10 in a way that depends on this observa-
tion is more interesting. In order to see that we shall leave the Greek cultural
area for a moment.

In the cuneiform tablet AO 648454 (a mixed anthology text dated to the early
second century BCE, thus to the Seleucid epoch), we find among other things
summations of series “from 1 to 10”. In obv. 1–2, 1+2+...+29 is found, in obv.
3–4 Q10 = 1+4+...+102 is determined. The latter follows the formula

Q10 = ,10

i 1
i 2 (1 1

3
10 2

3
) 55

which can be interpreted as a special case of the formula

Qn = ,n

i 1
i 2 (1 1

3
n 2

3
) S

n

Sn being still the triangular number of order n. The determination of the factor

is described in precise detail; we may therefore be confident that the1 1

3
n 2

3

unexplained number 55 was indeed found as S10 in an earlier problem of the
original text from which the anthology has borrowed its two summations.

P. British Museum 10520,55 a Demotic papyrus probably of early Roman
date begins by stating that “1 is filled up twice to 10”, that is, by asking for the
sums

S10 = and P10 =10

i 1
i 10

i 1
S

i

and answering from the correct formulae

53 For example, Theon of Smyrna, Expositio I.xxviii, ed., trans. [Dupuis 1892: 68f].
54 Ed. [Neugebauer 1935: I, 96–99].
55 Ed., trans. [Parker 1972].
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This does not overlap with the series dealt with in AO 6484, but the four
summations are sufficiently close in style to be reckoned as members of a single
cluster. Moreover, the cuneiform formula for Qn follows from the Demotic
formula for Pn when combined with the observation that i2 = Ti+Ti–1.

The two texts just cited postdate the Epicharmos fragment by centuries. Their
use of a formula apparently derived from a pebble-based argument might in
principle represent a borrowing of results obtained by early Greek arithmeticians.
However, the total absence from the same texts of anything else which reminds
of Greek theoretical mathematics makes such a borrowing unlikely. Independent
adoption of the same type of Greek material in Egypt and in Mesopotamia is
also hard to imagine, given the general absence of such borrowings from both
the Seleucid cuneiform and the Demotic mathematical traditions.

Another piece of evidence also speaks against a Greek invention. The
determination of

Q10 = 12+22+...+102 as (1 1

3
10 2

3
) 10

i 1
i

turns up again in the pseudo-Nicomachean Theologumena arithmeticae (X.64, ed.
[de Falco 1975: 86], trans. [Waterfield 1988: 115]), in a quotation from the mid–
third-century bishop and computist Anatolios of Alexandria (in a passage dealing
with the many wonderful properties of the number 55). Anatolios, however, gives

the sum in abbreviated form, as “sevenfold” , that is, in a form from which10

i 1
i

the correct Seleucid formula cannot be derived; this in itself does not prove that
earlier Greek arithmeticians did not know better; but it shows that the Seleucid-
Demotic cluster cannot derive from the form in which the formula was known
to Anatolios. In addition, the absence of the formula from any earlier Greek
source derived from the theoretical or Pythagorean tradition (including Theon
of Smyrna and Nicomachos) suggests that the learned Anatolios has picked it
up elsewhere.

All in all, the only argument in favour of a Greek theoreticians’ discovery
of these summation formulae is that their shape points with high certainty toward
a derivation or proof based on pebbles, and only if this observation is combined
with the axiom that no mathematics not inspired by the Greeks can have been
based on proofs. If this axiom is given up, we may conclude the other way
around: that (heuristic) proofs based on pebbles were no Greek or Pythagorean
invention but part of the heritage which the Greeks adopted from the cultures
of the Near East – most likely from that practitioners’ melting pot of which the
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various shared themes and formulae of Seleucid (or earlier Babylonian) and
Demotic mathematics bear witness.56 If this is true, and if the inheritance
problem was inspired by pebble arithmetic, then the idea might, according to
the arguments given so far, just as well have arisen in the wider Near Eastern
area as in a Greek environment.

However, an argument ex silentio supports a Greek invention.57 Such
arguments are usually weak, but the present one is not without force. Triangular
and square numbers and the corresponding pyramid numbers Pn and Qn turn

up together (and always together with the sum ) in Indian sourcesn

i 1
i 3 T 2

n

and in al-Karajı̄’s Fakhrı̄.58 Higher polygonal numbers, on the other hand, are
absent from these sources (of which the Indian ones, Āryabhata as well as
Brahmagupta and Bhāskara II, are more systematic than can be expected from
the surviving random fragments of clay tablets and papyri), although they
normally go together with the triangular and square numbers and their pyramids
in Greek and Greek-derived writings. This difference makes it natural to suppose
that the higher polygonal numbers represent a Greek theoretical elaboration,
whereas triangular and square numbers and their pyramids are part of a shared
Near Eastern heritage which was to spread widely.

The Seleucid and Demotic mathematical sources also contain a number of
quasi-algebraic geometric problems; even these spread widely, at least to India
(more precisely to Jaina mathematics as we known it through Mahāvı̄ra), Arabic
practical geometry and Greco-Roman agrimensors.59 The total absence of
anything similar to our inheritance problem therefore speaks against its presence
in the shared heritage of Near Eastern calculators.

Admittedly, the problem is also absent from such Greek and Greek-derived
sources where it might have been expected to turn up – the arithmetical epigrams
of Anthologia Graeca XIV [ed. Paton 1979: V, 25–107] and Ananias of Shirak’s
problem collection [ed. Kokian 1919]. But absent from these – probably because
they were too difficult – are also a number of problem types which we know

56 See [Høyrup 2002].
57 Cf. also above, p. 10, on the apparently “traditional” character of Planudes’s problem
and proof.
58 See [Clark 1930: 37] (Āryabhata), [Colebrooke 1817: 290–294] (Brahmagupta), [Colebrooke
1817: 51–57] (Bhāskara II), and [Woepcke 1853: 61] (Fakhrı̄).
59 A detailed exploration of this theme would lead much too far, but see [Høyrup 2001,
2002, 2004].
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from their traces in Diophantos’s Arithmetica I and elsewhere to have been known
in the Greek world – the “purchase of a horse” etc.60 Like these, the “unknown
heritage” may simply have been too difficult to be included. But the invention
might also be medieval – the fact that Byzantine mathematical scholarship was
not at the level of ancient theoretical mathematics – see, e.g., [Tihon 1988] – does
not prove that mathematical intelligence was absent from all strata of Byzantine
society.

All answers to our second question remain hypothetical, but it appears that
the most plausible hypothesis is that the simple version of the problem type was
invented either in Greek Antiquity or in medieval Byzantium (and perhaps
transmitted from there to Sicily or Provence for further sophistication). However,
any discovery of the genuine problem type (not the box version) in a medieval
Indian, Persian or Arabic source would force us to evaluate probabilities anew.
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