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Isomorphs, hidden scale invariance, and quasiuniversality

Jeppe C. Dyre*

DNRF Center “Glass and Time,”IMFUFA, Dept. of Sciences, Roskilde University, P. O. Box 260, DK-4000 Roskilde, Denmark
(Received 21 June 2013; revised manuscript received 16 August 2013; published 24 October 2013)

This paper first establishes an approximate scaling property of the potential-energy function of a classical
liquid with good isomorphs (a Roskilde-simple liquid). This “pseudohomogeneous” property makes explicit
that—and in which sense—such a system has a hidden scale invariance. The second part of the paper gives a
potential-energy formulation of the quasiuniversality of monatomic Roskilde-simple liquids, which was recently
rationalized in terms of the existence of a quasiuniversal single-parameter family of reduced-coordinate constant-
potential-energy hypersurfaces [J. C. Dyre, Phys. Rev. E 87, 022106 (2013)]. The new formulation involves a
quasiuniversal reduced-coordinate potential-energy function. A few consequences of this are discussed.

DOI: 10.1103/PhysRevE.88.042139 PACS number(s): 05.20.−y, 66.20.−d

I. INTRODUCTION

Traditionally, a liquid is termed simple if it consists of
pointlike particles interacting via radially symmetric pair
potentials [1–13]; a prime example is the Lennard-Jones
system. Computer simulations during the past 20 years have
revealed, however, that a number of such systems, e.g., the
Gaussian core model, the Lennard-Jones Gaussian model, and
the Jagla model, have quite complex properties (see Ref. [14]
and its references). On the other hand, many molecular models
exhibit simple behavior in simulations, and experiments on
van der Waals bonded molecular liquids show that these are
generally regular with no anomalous behavior. These facts led
us recently with Ingebrigtsen and Schrøder to suggest defining
a simple liquid as one with strong correlations between the
equilibrium virial and potential-energy fluctuations in the
canonical (NV T ) ensemble [15], a condition that is obeyed by
Lennard-Jones type liquids and many other systems [15–17].
In this definition the degree of simplicity generally depends on
the thermodynamic state point in question; in fact all realistic
systems lose simplicity approaching the critical point and
gas states. We originally used the term “strongly correlating
liquids”, but that often led to confusion with strongly correlated
quantum systems. Terming the class “simple liquids” has
been criticized for the risk of mistaking it for the traditional
simplicity concept, so we now refer to the class in question as
“Roskilde-simple liquids” [18–20].

Appendix A of Ref. [21] established a constitutive theorem
giving three characterizations of Roskilde-simple liquids. It
states that a system has strong equilibrium NV T virial
potential-energy correlations if and only if it has good iso-
morphs, which are curves in the thermodynamic phase diagram
along which structure and dynamics are invariant in reduced
units [21]. Moreover, this happens if and only if the system has
curves in the phase diagram (the isomorphs) along which the
reduced-coordinate constant-potential-energy hypersurfaces
are invariant. The latter property led to the introduction of
NV U dynamics [22–24], which is defined as geodesic motion
on the constant-potential-energy hypersurface. This is a novel
molecular dynamics that in the thermodynamic limit for virtu-
ally all structural and dynamic properties gives results, which
are identical to those of conventional Newtonian dynamics.

*dyre@ruc.dk

Only systems for which the potential energy is an Euler
homogeneous function have 100% virial potential-energy cor-
relation and perfect isomorphs, and for all realistic Roskilde-
simple liquids the isomorph concept is only approximate.
Extensive computer simulations have shown, however, that the
predicted isomorph invariants apply to a good approximation
for a wide variety of systems [15,17–21,25–30]. A few
experimental predictions of the isomorph theory have been
confirmed, as well [29,31,32].

This paper first discusses the case of general Roskilde-
simple liquids, including mixtures [21,28,30] and molecular
systems [17]. A simple approximate scaling property of
the potential-energy function is established from which the
fundamentals of the isomorph theory are easily derived. The
second part of the paper deals with the quasiuniversality of
monatomic Roskilde-simple liquids. Recently, we showed [14]
that the several intriguing quasiuniversalities reported during
the past 50 years may all be regarded as consequences of
one single quasiuniversality: the family of reduced-coordinate
constant-potential-energy hypersurfaces is quasiuniversal. It
is shown below that this implies that all Roskilde-simple
liquids have basically the same potential-energy function.
More accurately, the potential energy of one such liquid, U1,
is to a good approximation a linear function of the potential
energy of any other, U1

∼= αU2 + β, in which the two constants
are functions of density. From this one may derive all the
quasiuniversalities.

The paper starts by giving preliminaries and summarizing
the theory of isomorphs (Sec. II). Section III demonstrates the
pseudohomogeneous nature of the potential-energy function
of a Roskilde-simple liquid by establishing an approximate
scaling expression. Based on this Sec. IV discusses the
hidden scale invariance of Roskilde-simple liquids. Section V
restricts the discussion to monatomic liquids and arrives at
a new formulation of quasiuniversality. A few consequences
of this are presented in Sec. VI. Finally, Sec. VII gives some
concluding remarks.

II. BACKGROUND

A. Notation

We consider a classical-mechanical system of N particles
of mass m in volume V . Sections III and IV deal with the
general case, whereas the discussion of quasiuniversality in
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Secs. V and VI is restricted to systems of identical particles.
The density ρ is defined by

ρ ≡ N

V
. (1)

An example of a Roskilde-simple liquid is the well-known
Lennard-Jones (LJ) system defined by the pair potential v(r) =
4ε[(r/σ )−12 − (r/σ )−6], but we do not generally assume
pairwise additive forces. Periodic boundary conditions are
used throughout. Whenever thermodynamic quantities are
referred to, these are always excess quantities, i.e., having
been subtracted the value of the same quantity for an ideal gas
at the same density and temperature [13].

If the particle positions are denoted by r1,...,rN , the
collective 3N -dimensional position vector R is defined by

R ≡ (r1, . . . ,rN ). (2)

An important ingredient in the formulation of quasiuniversality
is the use of reduced units. While studies of the LJ liquid
traditionally introduce dimensionless lengths and energies by
scaling with respect to the pair-potential parameters σ and ε,
the isomorph theory—as well as quasiuniversality—refer to
the physics given in macroscopically reduced units. These are
defined as follows: the length unit is ρ−1/3, the energy unit is
kBT , where kB is Boltzmann’s constant and T the temperature,
and the time unit is ρ−1/3√m/kBT (for Brownian dynamics a
different time unit applies [21]). As an example, the reduced
collective position vector is defined by

R̃ ≡ ρ1/3R. (3)

Any thermodynamic state point is characterized by its
constant-potential-energy hypersurface � defined by � ≡
{R | U (R) = 〈U 〉} in which 〈U 〉 is the average potential energy
at the state point in question. The corresponding reduced-
coordinate constant-potential-energy hypersurface is given by

�̃ ≡ {R̃ | U (ρ−1/3R̃) = 〈U 〉}. (4)

B. Isomorphs

This section reviews the concept of isomorphs introduced
in 2009 in Ref. [21]. An isomorph is a curve in the thermody-
namic phase diagram of certain systems—the Roskilde-simple
liquids—along which several properties in reduced units are
invariant to a good approximation.

By scaling of all coordinates a given typical microcon-
figuration of a thermodynamic state point at one density
corresponds uniquely to a microconfiguration at another
density; in the case of a molecular system the centers of
masses are scaled while each molecule’s size and orientation
is left unchanged [17]. Two thermodynamic state points are
isomorphic if such pairs of scaled microconfigurations have
the same canonical probability. In fact, not all pairs must
satisfy this; it is enough that all physically relevant pairs
of microconfigurations have the same probability to a good
approximation. Here the term “physically relevant” does not
refer merely to having a reasonable probability—for instance,
in a highly viscous liquid a configuration corresponding to
a large energy barrier, which is quite unlikely, is physically
relevant if the barrier is a bottleneck for flow.

Formally, two thermodynamic state points with density
and temperature (ρ1,T1) and (ρ2,T2) are isomorphic if a
constant C12 exists such that whenever two physically relevant
microconfigurations of the state points, R1 ∈ (ρ1,T1) and R2 ∈
(ρ2,T2), have the same reduced coordinates, i.e., ρ

1/3
1 R1 =

ρ
1/3
2 R2, one has

exp

(
−U (R1)

kBT1

)
= C12 exp

(
−U (R2)

kBT2

)
. (5)

This defines a mathematical equivalence relation in the
thermodynamic phase diagram. The equivalence classes are
continuous curves, which are the system’s isomorphs. The
only systems that obey Eq. (5) exactly are those for which
the potential energy is a homogeneous function, i.e., obeys
U (λR) = λ−nU (R) for some n, for instance systems with
inverse-power-law (IPL) pair potentials for which two state
points are isomorphic whenever ρ

n/3
1 /T1 = ρ

n/3
2 /T2. In this

case C12 = 1, but for realistic systems it is found that C12 �= 1.
One can rewrite the isomorph definition as follows to

express explicitly that the two microconfigurations have the
same reduced coordinate R̃:

exp

(
−U

(
ρ

−1/3
1 R̃

)
kBT1

)
= C12 exp

(
−U

(
ρ

−1/3
2 R̃

)
kBT2

)
. (6)

As shown in Ref. [21] the defining identity Eq. (5) implies
that several quantities are invariant along an isomorph when
given in reduced units. Examples of isomorph invariants are the
excess entropy, the isochoric specific heat, the instantaneous
shear modulus, the diffusion constant, the viscosity, etc. In
fact, the entire dynamics in reduced units is invariant along
an isomorph; in particular, normalized time-autocorrelation
functions, etc., are all invariant. Likewise, structure is invariant
in reduced units—not just the radial distribution function, but
all higher-order distribution functions, as well. Examples of
quantities that are not isomorph invariant are the reduced-unit
free energy, pressure, and bulk modulus. The fact that many
quantities are isomorph invariant means that the thermody-
namic phase diagram is effectively one dimensional with
respect to these quantities. Of course, since isomorphs are
approximate, so are the isomorph invariants.

Finally, we mention the concept of an “isomorph jump”
[21]: if a system is in thermal equilibrium at one state point,
and density and temperature are suddenly changed to those of
another, isomorphic state point, the system is instantaneously
in thermal equilibrium at the new state point, even if its
relaxation time is very large. Thus an isomorphs acts as a
kind of wormhole in the thermodynamic phase diagram.

Which systems have good isomorphs? Recall that the virial
W (R) ≡ −(1/3)R · ∇U (R) gives the contribution to pressure
from interactions, i.e., pV = NkBT + 〈W 〉. Appendix A of
Ref. [21] proved a constitutive theorem stating that the
following three conditions are equivalent for a given system.

(1) The system has strong correlations between the equi-
librium, constant-volume fluctuations of virial and potential
energy.

(2) The system has good isomorphs.
(3) The system has curves in the thermodynamic phase

diagram (the isomorphs) along which the reduced-coordinate
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constant-potential-energy hypersurfaces �̃ are invariant to a
good approximation.

Based on extensive computer simulations, Ref. [15] sug-
gested a fourth equivalent condition, namely that interactions
beyond the first coordination shell may be ignored without
changing the physics. The criterion R > 0.9 for the virial
potential-energy correlation coefficient [33] was used in most
of our papers as a pragmatic delimitation of the class of
Roskilde-simple liquids, but of course the theory does not
break down at one particular value of R.

Except for systems with a homogeneous potential-energy
function, no systems have isomorphs in the whole thermo-
dynamic phase diagram. Nevertheless, extensive computer
simulations have shown many realistic systems to be Roskilde
simple, for instance [15], the Lennard-Jones (LJ) system
and its generalizations to mixtures and to exponents other
than 6 and 12, simple molecular liquids like the asymmetric
dumbbell or the Wahnström OTP model, the Buckingham
liquid, and the “repulsive” LJ system (i.e., with plus instead of
minus between the two IPL terms). Recently, it was shown
that the 10-bead flexible LJ chain model also has good
isomorphs [34], which provides a highly nontrivial example of
a Roskilde-simple liquid. The isomorph theory works very well
for the crystalline phase; thus an LJ crystal has more than 99%
WU correlations [35,36], which is an anharmonic effect that
survives in the (classical) zero-temperature limit [35]. In all
these cases the theory was checked by tracing out isomorphs in
the thermodynamic phase diagram and testing for the predicted
invariants. The methods used for generating isomorphs in
simulation have been detailed elsewhere [21,27,37].

For real liquids, we believe that van der Waals bonded
and metallic liquids are generally Roskilde simple, whereas
covalently bonded liquids (e.g., molten silica) and hydrogen-
bonded liquids (e.g., alcohols) are generally not, because
strong directional bonding appears to ruin the theory (the
flexible LJ chain model is a striking exception to this, though).
The theory may break down for van der Waals liquids of
highly elongated molecules [38]. On the other hand, while
we previously suggested that ionic liquids are rarely Roskilde
simple, it now seems likely that many such systems with not too
strong Coulomb forces, e.g., room-temperature ionic liquids,
may well be so. In experiment, glass-forming Roskilde-simple
liquids are characterized by a Prigogine-Defay ratio close to
unity [31,39]; moreover, such liquids obey density scaling and
isochronal superposition [21], which are characteristic features
of van der Waals liquids.

Note finally that a Roskilde-simple liquid has simple
thermodynamics. Thus if s is the excess entropy per particle,
temperature separates as follows [27]:

kBT = f (s)h(ρ). (7)

This equation is mathematically equivalent [27] to the
configuration-space version of the well-known Grüneisen
high-pressure equation of state expressing that pressure is a
linear function of energy with a proportionality constant that
depends only on density. A consequence of Eq. (7) is that,
since excess entropy is an isomorph invariant, the isomorphs

are given by

h(ρ)

kBT
= const. (8)

For a Roskilde-simple liquid the solid-liquid coexistence
curve is an isomorph, implying invariance along this curve of
a number of quantities like the excess entropy, the reduced
viscosity, the reduced radial distribution function, etc. [21,25].

C. Approximate nature of isomorphs and isomorph invariants

As mentioned, with the exception of systems with a
homogeneous potential-energy function, which do not exist in
the real world, isomorphs are only approximate. Any quantity
that is defined by reference to thermodynamic state points
gives rise to a set of level curves in the two-dimensional
thermodynamic phase diagram. If the system is a Roskilde-
simple liquid, these curves are almost identical for all the
isomorph invariant quantities. Which set of these curves to
designate “isomorphs” is a matter of taste, but we have
consistently defined the configurational adiabats to be the
isomorphs.

Having emphasized the approximate nature of the isomorph
theory, the question is for which systems it works and how
well. Here the virial potential-energy correlation coefficient
R is useful. The only case of exact isomorphs, that of a
homogenous potential-energy function, is characterized by
R = 1. By continuity one expects that the closer R is to unity,
the better are the isomorph invariants. This is confirmed by
simulations. Moreover—also by continuity—the closer R is to
unity, the better an approximation it is to replace the system in
question by an inverse power law (IPL) pair potential system;
this is also confirmed by simulations [30].

No realistic systems are Roskilde simple in the entire fluid
part of the thermodynamic phase diagram. The isomorph
theory breaks down when the critical point is approached
(where a different kind of simplicity takes over, of course), as
well as in the ordinary gas phase. Moreover, the theory quickly
breaks down when entering the region of (metastable) states
of negative pressures. A typical Roskilde-simple liquid has
good isomorphs at all its condensed-phase liquid state points,
including the high-temperature, high-pressure supercritical
state points not too far from the liquid-solid coexistence line,
as well as in the crystalline and the supercooled liquid phases.

III. CHARACTERIZING THE POTENTIAL-ENERGY
FUNCTION

This section derives a scaling-type characterization of
a Roskilde-simple liquid’s potential-energy function. In
Sec. III B we proceed to derive from this the constitutive
theorem, the thermodynamic separation identity Eq. (7), as
well as a previously established expression for the density-
scaling exponent.

A. Pseudohomogeneous nature of U(R)

This subsection shows that the potential-energy function of
a Roskilde-simple liquid is characterized by a dimensionless
function 	̃(R̃) and two functions of density with dimension
energy, h(ρ) and g(ρ), such that for any physically relevant
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microconfiguration R of a thermodynamic state point with
density ρ one has

U (R) ∼= h(ρ)	̃(R̃) + g(ρ). (9)

As becomes clear in Sec. III B, the function h(ρ) is the same
as that appearing in the thermodynamic separation identity
Eq. (7).

The reduced-coordinate constant-potential-energy hyper-
surfaces �̃ defined in Eq. (4) are high-dimensional Riemannian
manifolds that are in general parametrized by the two thermo-
dynamic coordinates. For a Roskilde-simple liquid, however,
these hypersurfaces are given by just one parameter (Sec. II B)
[21]. This is indicated by writing [where the parameter λ is in
one-to-one correspondence with h(ρ)/(kBT ), compare Eq. (8)]

�̃(λ). (10)

The excess quantities S and CV are both determined by the
manifold �̃(λ) [14]: in the microcanonical ensemble the excess
entropy S is the logarithm of the area of �̃(λ); the proof that
the excess isochoric heat capacity CV is also encoded in �̃(λ)
is given in Ref. [14]. Combining the facts that S = S(λ) and
CV = CV (λ) with the identity CV = (∂S/∂ ln T )ρ , one has for
variations at constant density ρ if φ(λ) ≡ S ′(λ)/CV (λ)

d ln T = φ(λ)dλ. (11)

Integrating this leads to ln T (λ,ρ) − ln T (λ0,ρ) = ∫ λ

λ0
φ(λ)dλ.

Thus the ratio T (λ,ρ)/T (λ0,ρ) is independent of ρ,
which means that for any ρ1 and ρ2 one has
T (λ,ρ1)/T (λ0,ρ1) = T (λ,ρ2)/T (λ0,ρ2). Consequently, if
H (ρ1,ρ2) ≡ T (λ0,ρ1)/T (λ0,ρ2), one has for all λ

T (λ,ρ1) = H (ρ1,ρ2)T (λ,ρ2). (12)

Now suppose that R̃ ∈ �̃(λ). If R̃0 is an arbitrary point on
a reference manifold �̃(λ0), the potential-energy change from
manifold �̃(λ0) to �̃(λ) at constant density ρ1 is given by∫ λ

λ0
CV (λ)dT (λ) in which CV (λ) depends only on the manifold

�̃(λ) and not on the density. The potential-energy change is
therefore given by

U
(
ρ

−1/3
1 R̃

) − U
(
ρ

−1/3
1 R̃0

) =
∫ λ

λ0

CV (λ)
∂T (λ,ρ1)

∂λ
dλ. (13)

Although Eq. (13) refers to single microconfigurations, it
calculates the potential-energy difference by a thermodynamic
integration argument. This unusual procedure makes sense be-
cause all microconfigurations on a constant-potential-energy
hypersurface of course have the same potential energy. From
Eqs. (12) and (13) we conclude that

U
(
ρ

−1/3
1 R̃

) − U
(
ρ

−1/3
1 R̃0

)
= H (ρ1,ρ2)

[
U

(
ρ

−1/3
2 R̃

) − U
(
ρ

−1/3
2 R̃0

)]
. (14)

Note that from this one recovers Eq. (12) via the well-known
configurational temperature expression [40–42]

kBT = 〈(∇U )2〉
〈∇2U 〉 . (15)

Since the reference quantities U (ρ−1/3
1 R̃0) and U (ρ−1/3

2 R̃0)
are functions of ρ1 and ρ2, we conclude from Eq. (14) that one

can write for a suitable function G(ρ1,ρ2)

U
(
ρ

−1/3
1 R̃

) = H (ρ1,ρ2)U
(
ρ

−1/3
2 R̃

) + G(ρ1,ρ2). (16)

If ρ0 is a reference density, Eq. (12) implies
T (λ0,ρ1)/T (λ0,ρ0) = H (ρ1,ρ0) and T (λ0,ρ2)/T (λ0,ρ0) =
H (ρ2,ρ0). Defining h(ρ) ≡ H (ρ,ρ0) this implies via Eq. (12)
that H (ρ1,ρ2) = h(ρ1)/h(ρ2) [using a different reference
density corresponds to multiplying h(ρ) by a constant].
Combining this with Eq. (16) we conclude that whenever
ρ

1/3
1 R1 = ρ

1/3
2 R2(≡ R̃), one has

U (R1) ∼= h(ρ1)
U (R2)

h(ρ2)
+ G(ρ1,ρ2). (17)

In order to emphasize the approximate nature of the theory we
have replaced the equality sign by a ∼= sign.

Define

	̃(R̃) ≡ U
(
ρ

−1/3
0 R̃

)
h(ρ0)

. (18)

Because the function h(ρ) is only defined within an overall
multiplicative constant, the same applies for 	̃(R̃). Substitut-
ing into Eqs. (17) ρ1 = ρ and ρ2 = ρ0 and combining with
Eq. (18) we finally arrive at Eq. (9) in which g(ρ) ≡ G(ρ,ρ0).

Two equivalent ways of writing Eq. (9) are

U (R) ∼= h(ρ)	̃(ρ1/3R) + g(ρ) (19)

and

U (ρ−1/3R̃) ∼= h(ρ)	̃(R̃) + g(ρ). (20)

For a homogeneous potential-energy function, for instance a
system of IPL pair potentials ∝ r−n, one has U (ρ−1/3R̃) =
ρn/3	̃(R̃), i.e., h(ρ) ∝ ρn/3 and g(ρ) = 0. Equation (20) is a
generalization of this, and one may thus say that Roskilde-
simple liquids are characterized by a “pseudohomogeneous”
potential-energy function that obeys Eq. (20).

As an illustration we show in Fig. 1 results [27] from
simulations of a system of 1000 particles interacting via the
“repulsive” LJ pair potential defined v(r) = (r−12 + r−6)/2.
The repulsive LJ fluid extrapolates between an n = 6 IPL
behavior at very low densities to an n = 12 IPL behavior
at very high densities; this system has R > 0.99 apparently
everywhere in the phase diagram. The left panel of Fig. 1
shows instantaneous values of the potential energy scaled
to different densities for each of five temperatures marked
by separate colors, plotted versus the instantaneous potential
energy at ρ = 1 where the simulation was carried out. The fact
that these scatter plots are highly elongated demonstrates that
the proportionality of Eq. (17) is a good approximation. The
lines were calculated from the expression h(ρ) = Aρ2 + Bρ4

(see Refs. [27] or [29]; this expression is also derived below
from quasiuniversality), in which only the ratio A/B is
relevant. This number was determined from simulations at
the state point (ρ,T ) = (1,1) marked by the arrow. The
right panel shows the variation along the isomorph through
(ρ,T ) = (1,1) of the so-called density-scaling exponent γ ≡
(∂ ln T/∂ ln ρ)S [21], which from Eq. (7) is given by

γ = d ln h

d ln ρ
. (21)
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FIG. 1. (Color online) Results from a simulation of 1000 particles
of the repulsive LJ fluid defined by the pair potential (r−12 + r−6)/2.
The left panel shows the potential energies of pairs of instantaneous
microconfigurations, where the potential energy of a given microcon-
figuration at the simulated density 1.0 is denoted U (1.00) and that of
the same microconfiguration scaled to density ρ is denoted U (ρ) (ρ =
0.5; 1.6; 2.0). This was done for T = 0.6; 0.8; 1.0; 1.2; 1.4 (black, red,
green, blue, yellow). The black lines have slopes determined from
the fluctuations calculated at the state point (ρ,T ) = (1,1) marked
by an arrow (see the text). The right panel shows the density-scaling
exponent γ predicted from h(ρ) for state points along one isomorph
(full curve) compared to γ calculated at each state point (red crosses).
The arrow again marks the state point (ρ,T ) = (1,1). Reprinted with
permission from T. S. Ingebrigtsen, L. Bøhling, T. B. Schrøder, and J.
C. Dyre [J. Chem. Phys. 136, 061102 (2012)] (Copyright 2012, AIP
Publishing LLC).

The full curve gives γ calculated from h(ρ) = Aρ2 + Bρ4 [27]
and the red crosses mark γ calculated from the fluctuation
expression γ = 〈WU 〉/〈(U )2〉 [21].

B. Deriving the isomorph theory from the pseudohomogeneous
property of U(R)

Equation (9) boils down the physics of a Roskilde-simple
liquid into one equation. It is an approximate identity that
does not apply for all R, but for the physically relevant
microconfigurations of state points corresponding to typical
condensed-liquid states, i.e., not too far from the solid-liquid
coexistence line, as well as all crystalline states [36]. This
section shows how the fundamentals of the isomorph theory—
the three constitutive properties characterizing a Roskilde-
simple liquid, the thermodynamic separation identity Eq. (7),
and Eq. (21)—all follow in a straightforward manner from
Eq. (9).

(1) The virial W (R) ≡ (−1/3)R · ∇U (R) determines how
much the potential energy changes per relative density change
if a microconfiguration is scaled uniformly [43], i.e., if its
reduced coordinates are kept constant. It is easy to show that

W (R) =
(

∂U (R)

∂ ln ρ

)
R̃

. (22)

From Eq. (9) we thus get W (R) ∼= (dh/d ln ρ)	̃(R̃) +
dg/d ln ρ. Eliminating 	̃(R̃) in this expression via Eq. (9)

leads to

W (R) ∼= γ (ρ)U (R) + φ(ρ), (23)

in which γ (ρ) ≡ d ln h/d ln ρ [Eq. (21)] and φ(ρ) =
−γ (ρ)g(ρ) + dg/d ln ρ. Equation (23) implies that virial and
potential energy are strongly correlated. In particular, for the
constant-density equilibrium fluctuations at one state point one
has W (R) ∼= γ U (R) [16,35], in which γ depends only on
the density [21].

(2) Equation (9) further implies the existence of isomorphs.
Consider two densities, ρ1 and ρ2. For any positive number
K one can define two temperatures T1 and T2 by kBT1 =
K h(ρ1) and kBT2 = K h(ρ2). Then Eq. (17), which trivially
follows from Eq. (9), implies Eq. (5), i.e., the two state
points (ρ1,T1) and (ρ2,T2) are isomorphic. The constant K

identifies the isomorph; thus an isomorph is given by Eq. (8).
In fact, since isomorphic state points have the same excess
entropy, K is a function of this, K = f (s), which leads to
the thermodynamic separation identity Eq. (7). We note that
it is possible to derive a differential-geometric expression for
the function f (s). Substituting Eq. (19) into Eq. (15) leads to
kBT = h(ρ)〈(∇̃	̃)2〉/〈∇̃2	̃〉, which implies

f (s) = 〈(∇̃	̃)2〉
〈∇̃2	̃〉 . (24)

In this expression the ensemble averages may be calculated as
canonical averages or as configuration-space microcanonical
averages, i.e., by integrating over the manifold �̃.

(3) To derive the third part of the constitutive theorem,
we note that in terms of the function 	̃(R̃) via Eq. (9) the
manifolds �̃ are given by

�̃ = {R̃|	̃(R̃) = const}. (25)

Consequently, this family is parametrized by a single number.

IV. HIDDEN SCALE INVARIANCE

The underlying cause of isomorph invariance is what we
have termed hidden scale invariance [44,45]. Consider for
simplicity a system of particles interacting via the pair potential
v(r). By dimensional analysis an energy ε and a length σ

exist such that one can write v(r) = ε φ(r/σ ), in which φ is a
dimensionless function. In the case of an IPL pair potential
one has φ(x) = x−n. Scale invariance is the mathematical
homogeneity condition φ(λx) = λ−nφ(x). Physically, scale
invariance implies that there is no characteristic energy or
length of the potential—the only relevant quantity is their
combination εσn that is the prefactor of r−n. We shall now
see how these two properties generalize to Roskilde-simple
liquids’ potential-energy functions.

For any system, any reduced quantity Ã is dimensionless
and therefore a function of the two dimensionless variables
ρ̃ ≡ ρσ 3 measuring the density and T̃ ≡ kBT /ε measuring
the temperature: Ã = Ã(ρ̃,T̃ ). For a Roskilde-simple liquid
a function f (ρ̃,T̃ ) exists that determines Ã in the following
way: Ã(ρ̃,T̃ ) = Ã[f (ρ̃,T̃ )], in which the function f (ρ̃,T̃ ) is
common to all the isomorph invariants of the given system.
This function’s level curves in the phase diagram are the
isomorphs, obviously.
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The above means that the physics of a Roskilde-simple
liquid does not depend separately on energy scale or spatial
range of the potential, but only on a combination of these
two quantities. In this sense the system has a hidden scale
invariance, reminiscent of the well-known scale invariance of
critical phenomena. Hidden scale invariance is only approxi-
mate, of course, but so is the standard scale invariance close
to the critical point. The difference is that the latter involves a
power-law scaling that becomes more and more accurate as the
critical point is approached, whereas hidden scale invariance
involves a more general form of scaling that nowhere becomes
exact.

For any system of classical particles one can write for some
dimensionless function Ṽ

U (R) = εṼ (R/σ ), (26)

where ε sets the energy scale of the interactions and σ their
length scale. The hidden scale invariance of a Roskilde-simple
liquid manifests itself in Eq. (19). In this approximate identity,
by dimensional analysis (see, e.g., Ref. [46] and its references)
the function h(ρ), which has dimension energy, may for
some dimensionless function h̃ be written h(ρ) = εh̃(ρσ 3)
and likewise for g(ρ). Thus

U (R) ∼= ε[h̃(ρσ 3)	̃(ρ1/3R) + g̃(ρσ 3)]. (27)

This provides a precise definition of hidden scale invariance.
Structure and dynamics in reduced units are determined
entirely by the function 	̃(ρ1/3R) that has no intrinsic length
scale. At the same time, the overall energy scale is not set
by ε, but by the combination of the microscopic energy and
length scales ε h̃(ρσ 3), just like the prefactor in the IPL
case. In particular, the physics at the state point (ρ,T ) is
determined by the single number εh(ρσ 3)/kBT = h̃(ρ̃)/T̃ ,
which leads to Eq. (8) characterizing an isomorph. For small
density variations the function h(ρ) can be approximated by a
power law, h(ρ) ∼= ργ , bringing hidden scale invariance close
to conventional scale invariance.

V. QUASIUNIVERSALITY

This section gives a potential-energy formulation of qua-
siuniversality, supplementing the recent formulation in terms
of the manifolds �̃(λ) being quasiuniversal [14]. We consider
only single-component liquids of atomic particles, i.e., with
no intermolecular structure. The most important case is that
of particles interacting via pairwise additive forces, but this
assumption is not necessary.

A. Quasiuniversal properties

We first briefly summarize the quasiuniversalities reported
in the literature during the past 50 years, which were to a
large extent justified via computer simulations. The reader is
referred to Ref. [14] for more details and further references.
The quasiuniversalities include the following.

(1) Different IPL systems’ close similarities with respect to
structure and dynamics, similarities that extend to all Roskilde-
simple liquids [47–60].

(2) The Young-Andersen approximate scaling principle,
stating that if two liquids at two state points have the same

reduced-unit radial distribution function, they have the same
reduced-unit dynamics [61,62].

(3) Quasiuniversality of the translational versus orienta-
tional order-parameter maps of Debenedetti and co-workers
[63–65].

(4) Excess entropy scaling, stating that the reduced-unit
diffusion constants of different liquids have an approximately
universal dependence on the excess entropy per particle
[66–69].

(5) The Lindemann melting criterion [70] and seven other
quasiuniversal melting or freezing rules [14].

(6) Quasiuniversality of Roskilde-simple liquids’ specific-
heat temperature dependence [19], all conforming to the
Rosenfeld-Tarazona expression CV ∝ T −2/5 [67].

(7) Quasiuniversal isochoric fragility [71–73].
All quasiuniversalities have exceptions, but it appears that

these always involve systems that are not Roskilde simple. The
following properties of monatomic Roskilde-simple liquids
were derived from the �̃ formulation of quasiuniversality of
Ref. [14], i.e., that the manifolds �̃(λ) are quasiuniversal.

(1) The thermodynamic separation relation Eq. (7) is partly
quasiuniversal,

kBT = f0(s)h(ρ) , (28)

in which the function f0(s) is common to all Roskilde-simple
liquids, whereas h(ρ) is not.

(2) Additivity: if U1(R) and U2(R) are potentials of two
monatomic Roskilde-simple liquids, so is U1(R) ± U2(R)
whenever this is a well-defined system, i.e., with a potential-
energy function that has a lower bound.

(3) Quasiuniversal interdependence of any two isomorph
invariants, generalizing excess entropy scaling.

(4) A single microconfiguration is enough to determine
all isomorph invariants of a given thermodynamic state point
without knowing the Hamiltonian.

B. Quasiuniversality and hidden scale invariance

Some of the above quasiuniversalities manifest themselves
in the fact that a single number determines the physics.
This is the case, for instance, for excess entropy scaling or
the reduced vibrational mean-square displacement controlling
melting in the Lindemann criterion. Likewise the collapse of
order-parameter maps for different liquids to a quasiuniversal
curve implies that the translational order parameter determines
the rotational. Finally, the standard liquid-state perturbation
theories for the radial distribution function regard a liquid
as a hard-sphere system to zeroth order [74]—here the hard-
sphere packing fraction is the single parameter controlling the
physics.

Suppose that quasiuniversality applies and is reflected in
the fact that some parameter, X, determines the physics.
Then the curves of constant X in the thermodynamic phase
diagram have invariant physics. These curves generally in-
volve both density and temperature variations. This implies
hidden scale invariance for quasiuniversal liquids in the sense
that neither the energy nor the length scales of Eq. (26)
separately determine the physically relevant energy, which is
instead given by a combination of those quantities. In other
words, quasiuniversality suggests hidden scale invariance.
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This explains why quasiuniversality appears to be limited
to Roskilde-simple liquids. It also suggests—albeit in no
way implies, of course—the opposite, that all monatomic
Roskilde-simple liquids are quasiuniversal.

C. Potential-energy formulation of quasiuniversality

Reference [14] showed that all the above listed quasiuni-
versal properties can be derived from the fact (or assumption)
that all monatomic Roskilde-simple liquids have the same
reduced-coordinate constant-potential-energy hypersurfaces
�̃(λ). Combining this with Eq. (9) suggests that these liquids
have in common the functions 	̃(R̃), because according to
Eq. (19) this would immediately imply that they have the
family �̃(λ) in common.

A possible argument against this is the following. If, for
instance, systems 1 and 2 obey 	̃1(R̃) = exp[	̃2(R̃)], they
have the same system of constant-potential-energy hypersur-
faces, but not proportional potential-energy functions. This
would never happen in reality, though, because it would violate
the fact that interactions are local in three-dimensional space.
Assuming that the potential energy is a sum of independent
contributions from different parts of space, by a generalization
of the proof leading to Eq. (9) it is possible to show [20]
that, indeed, the function 	̃(R̃) is common to all monatomic
Roskilde-simple liquids. This means that one can write

U (R) ∼= h(ρ)	̃0(R̃) + g(ρ), (29)

in which the function 	̃0(R̃) is quasiuniversal, whereas h(ρ)
and g(ρ) are not.

Equation (29) is not to be interpreted in a strict sense.
Thus one aspect of the potential-energy function is not
quasiuniversal, namely the form of the interaction between
two particles forced into close contact. For the case of a
pair-potential liquid, the probability of some small separation
r between two particles is roughly exp[−v(r)/kBT ], which
clearly violates quasiuniversality. This affects the steepness of
the pair distribution function g(r) below its first maximum and
the height of its first maximum. We have found in simulations
that the collective physical properties are virtually unaffected,
however, and these are the ones in focus here.

The correct interpretation of Eq. (29) is that all quasiuni-
versalities may be derived from this equation. Moreover, all
physics that is not quasiuniversal, e.g., the equation of state,
the reduced pressure, the reduced free energy, the reduced bulk
modulus, etc., relate to the fact that the functions h(ρ) and g(ρ)
are system specific.

VI. SOME CONSEQUENCES OF EQS. (9) AND (29)

As mentioned, it is straightforward to show that all of the
quasiuniversalities listed in Sec. V A follow from Eq. (29). Re-
garding novel consequences, note that the isomorph concept,
as well as that of strong virial potential-energy correlations,
both relate to properties of equilibrium thermodynamic state
points. Roskilde-simple liquids’ quasiuniversality, however,
applies beyond thermal equilibrium. Below brief examples of
this are given, but first we consider the analytical structures of
the nonuniversal functions h(ρ) and g(ρ).

A. Analytical structures of h(ρ) and g(ρ)

It was shown in Refs. [27] and [29] that for a Roskilde-
simple liquid with pair potential v(r) = ∑

n εn(r/σ )−n, the
function h(ρ) is given by an expression of the form h(ρ) =∑

n Cnρ
n/3, in which the only nonzero terms are those that

correspond to terms in v(r). This follows from Eq. (7), but
as shown below it also follows from quasiuniversality, which
further implies the same analytical structure for g(ρ).

Consider first an IPL pair-potential system, vn(r) =
εn(r/σ )−n; its corresponding functions are denoted hn(ρ) and
gn(ρ). For fixed R̃ the potential-energy scales with density
as U (R) ∝ ρn/3. Comparing this to Eq. (29) we conclude
that hn(ρ)	̃0(R̃) + gn(ρ) ∝ ρn/3 for several values of 	̃0(R̃).
This implies hn(ρ) ∝ ρn/3 and gn(ρ) ∝ ρn/3. For dimensional
reasons we can thus write hn(ρ) = αnεn(ρσ 3)n/3 and gn(ρ) =
βnεn(ρσ 3)n/3 in which αn and βn are numerical constants.

In the general case, v(r) = ∑
n εn(r/σ )−n, the potential

energy is a sum of IPL terms, U (R) = ∑
n Un(R). For

each IPL term we have according to Eq. (29) Un(R) ∼=
hn(ρ)	̃0(R̃) + gn(ρ). Adding these we get U (R) ∼=
h(ρ)	̃0(R̃) + g(ρ) in which h(ρ) = ∑

n αnεn(ρσ 3)n/3 and
g(ρ) = ∑

n βnεn(ρσ 3)n/3. Thus the functions h(ρ) and g(ρ)
both inherit the analytical structure of v(r).

The free-energy variation along an isomorph is determined
by the constant C12 of Eq. (5). It follows from Eq. (29) that
C12 is determined by g(ρ). Thus quasiuniversality provides a
prediction for the free energy’s variation along an isomorph. It
would be interesting to check this by simulation, e.g., for the
LJ system for which g(ρ) = Cρ4 − Dρ2.

B. Extending the isomorph concept

Isomorphs are defined by reference to the canonical
ensemble and to the physically relevant microconfigurations
of thermodynamic equilibrium states [21]. Equation (9) not
just applies for microconfigurations that are typical at some
definite temperatures, however. For instance, Eq. (9) can be
used to rationalize computer simulations of zero-temperature
plastic flows of LJ-type liquids, because the function h(ρ) sets
the energy scale of the flow events [75]. Another application
of Eq. (9) is for extending the isomorph concept to nonlinear
flows described by the SLLOD equation of motion [18]. In
this case the relevant phase diagram acquires a third dimension
defined by the shear rate. The density-temperature relation of
the SLLOD-generalized isomorphs turn out not to involve the
shear rate [18], however, a nontrivial fact that follows from
Eq. (9).

C. Quantum liquids

Consider a Roskilde-simple liquid with potential-energy
function U (R). The Schrödinger equation referring to density
ρ1 is written(

− h̄2

2m
∇2

R1
+ U (R1)

) ∣∣�(1)
n

〉 = E(1)
n

∣∣�(1)
n

〉
. (30)

Likewise at density ρ2 we write(
− h̄2

2m
∇2

R2
+ U (R2)

) ∣∣�(2)
n

〉 = E(2)
n

∣∣�(2)
n

〉
. (31)
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Multiplying Eq. (30) by h(ρ2)/h(ρ1) and using Eq. (9) leads
to (

− h̄2

2m

h(ρ2)

h(ρ1)
∇2

R1
+ U (R2) + h(ρ2)g(ρ1,ρ2)

) ∣∣�(1)
n

〉
∼= E(1)

n

h(ρ2)

h(ρ1)

∣∣�(1)
n

〉
. (32)

Comparing Eqs. (31) and (32) and using ρ
1/3
1 R1 = ρ

1/3
2 R2,

which implies ∇2
R1

= (ρ2/ρ1)−2/3∇2
R2

, shows how to relate
the spectrum at density ρ2 to that at density ρ1 (where the
eigenvalue dependence of mass and density are given explicitly
and m′ ≡ m h(ρ1)ρ−2/3

1 /[h(ρ2)ρ−2/3
2 ]):

En

(
m′,ρ2

) ∼= h(ρ2)

h(ρ1)
En(m,ρ1) − h(ρ2)g(ρ1,ρ2). (33)

The corresponding (unnormalized) eigenfunctions obey
(where ρ

1/3
1 R1 = ρ

1/3
2 R2)

�(1)
n (R1) ∼= �(2)

n (R2). (34)

Equation (33) can be written in a symmetric form as follows:

En (m1,ρ1) − E0 (m1,ρ1)

h(ρ1)
∼= En (m2,ρ2) − E0 (m2,ρ2)

h(ρ2)
,

(35)

in which

m1

m2
= h(ρ1)ρ−2/3

1

h(ρ2)ρ−2/3
2

. (36)

Thus changing density gives a new spectrum, which is the old
spectrum displaced and scaled for a system with a different
mass. In other words, if the solution to the Schrödinger
equation is known for one density, it is known for all
densities.

Equation (35) applies for any Roskilde-simple liquid. Due
to quasiuniversality the ratio appearing in Eq. (35) will be the
same for all Roskilde-simple liquids.

VII. CONCLUDING REMARKS

This paper established a precise formulation of the hidden
scale invariance of Roskilde-simple liquids [Eq. (9)] and
showed how this leads to a simple potential-energy formulation
of the quasiuniversality of such single-component atomic
liquids [Eq. (29)].

According to Eq. (9) the reduced-unit structure and dynam-
ics are controlled by the dimensionless term 	̃(R̃), which does
not involve any microscopic length or energy. It is not trivial
that many realistic systems to a good approximation have this
form of generalized or “hidden” scale invariance, in which the
intrinsic length scale σ of the potential plays no role. This does
not mean that σ is physically insignificant—for instance, the σ

of the LJ pair potential gives the typical interparticle distance
at low and moderate pressure.

We argued briefly above that quasiuniversality implies the
hidden scale invariance that lies behind the isomorph concept.
Quasiuniversality is (presumably) restricted to the class of
monatomic Roskilde-simple liquids. The isomorph concept
remains central because it generalizes to multicomponent and
molecular systems [17], for instance apparently quite complex
systems like the flexible LJ chain [34].

What is the connection between different monatomic
Roskilde-simple liquids’ isomorphs? Each system’s isomorphs
are labeled by the (excess) entropy. The actual shape of
the isomorphs in the thermodynamic phase diagram is not
quasiuniversal; it depends on the nonuniversal functions h(ρ)
and g(ρ). But quasiuniversality implies that a unique mapping
exists between different systems’ isomorphs such that for
isomorphs with the same (excess) entropy all other isomorph
invariants are also identical.
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