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Scaling and Universality of ac Conduction in Disordered Solids

Thomas B. Schrøder* and Jeppe C. Dyre
Department of Mathematics and Physics (IMFUFA), Roskilde University, Postbox 260, DK-4000 Roskilde, Denmark

(Received 2 August 1999)

Recent scaling results for the ac conductivity of ionic glasses by Roling et al. [Phys. Rev. Lett. 78,
2160 (1997)] and Sidebottom [Phys. Rev. Lett. 82, 3653 (1999)] are discussed. We prove that Side-
bottom’s version of scaling is completely general. A new approximation to the universal ac conductivity
arising in the extreme disorder limit of the symmetric hopping model, the “diffusion cluster approxima-
tion,” is presented and compared to computer simulations and experiments.

PACS numbers: 66.30.Dn, 05.60.–k, 72.20.– i
Disordered solids have ac electrical properties remark-
ably in common [1–6]. These solids, in fact, have so
similar frequency-dependent conductivity s�v� that ionic
conduction cannot be distinguished from electronic. Even
the temperature dependence of s�v� is “quasiuniversal.”
The class of disordered solids with quasiuniversal ac
behavior is large, including polycrystalline and amor-
phous semiconductors, organic semiconductors, ionic
conductive glasses, ionic viscous melts, nonstoichiometric
crystals, ionic or electronic conducting polymers, metal
cluster compounds, transition metal oxides, etc. Each
class contains hundreds of different solids and there is a
huge amount of literature on their ac conductivities.

It is usually possible to scale ac data at different tem-
peratures for one solid into one single curve. This so-called
master curve gives the dimensionless ac conductivity s̃ �
s�v��s�0� as a function of dimensionless frequency ṽ.
The existence of such a master curve is referred to as the
“time-temperature superposition principle” (TTSP).

The common ac features of disordered solids are the fol-
lowing [6]: At low frequencies conductivity is frequency
independent. Around the dielectric loss peak frequency vm

[7] ac conduction sets in, and for v ¿ vm, s�v� is close
to a frequency power law with exponent ,1.0. As tempera-
ture is lowered, the exponent goes to 1.0. In a log-log plot
the ac conductivity is much less temperature dependent
than the dc conductivity. A final ubiquitous observation is
the Barton-Nakajima-Namikawa (BNN) relation [2,8–11]
connecting dielectric loss peak frequency, dielectric loss
strength De [7], and dc conductivity: s�0� � pDee0vm,
where p is a numerical constant of order 1.

To construct the ac master curve frequency must be di-
vided by vm. Because the dielectric loss strength is only
weakly temperature dependent while s�0� and vm are both
Arrhenius, the BNN relation implies vm � s�0�. Thus,
the existence of a master curve is conveniently summa-
rized into

s̃ � F

µ
C

s�0�
v

∂
, (1)

where C may depend on variables like charge carrier con-
centration n, temperature T , high frequency dielectric con-
stant, etc.
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In a series of papers towards the end of the 1950s Taylor
analyzed the dielectric properties of ionic glasses in accor-
dance with the Debye equation with a spread of relaxation
times [12]. He showed that the dielectric loss [7] for all
glasses fell on a single plot against scaled frequency. In
1961 Isard relabeled Taylor’s axis by plotting dielectric
loss against log of the product of frequency and resistivity
and thus essentially arrived at ac scaling in the form given
in Eq. (1) [13]. Since then Eq. (1), which we shall term
“Taylor-Isard scaling,” has been used for several ionic as
well as electronic conducting disordered solids to construct
ac master curves from measurements at different tempera-
tures [14–22].

Recently, there has been renewed interest in scaling
and universality of ac data for ionic conductive glasses
[22–26]. In 1997 Roling, Happe, Funke, and Ingram
showed that the Taylor-Isard scaling constant C is propor-
tional to n�T for sodium borate glasses [23]. Last year,
however, Sidebottom showed that in general scaling is not
achieved by C ~ n�T ; instead two different ionic conduc-
tive glasses and one highly viscous ionic liquid just above
the glass transition all obey the following scaling rela-
tion [25]:

s̃ � F

µ
e0De

s�0�
v

∂
. (2)

In this Letter we prove that Eq. (2) is correct whenever
scaling is possible at all (TTSP obeyed). A new analyti-
cal approximation to the universal ac conductivity of the
so-called symmetric hopping model is presented and com-
pared to computer simulations. Finally, the experimental
master curves discussed by Sidebottom are compared to
the universal ac hopping conductivity.

First, however, we comment on the scaling principle of
Roling and co-workers, C ~ n�T in Eq. (1) [23], and Side-
bottom’s interpretation of its occasional violations [25].
If q is charge, fH jump rate, and d jump length, Side-
bottom bases his arguments on the expressions s�0� ~

nq2d2fH�kBT and De ~ nq2d2�kBT . Clearly, to obtain
ṽ frequency should be divided by fH , leading to C ~ n�T
if the jump length d is constant. Since d could change
as concentration changes, Sidebottom argues that in gen-
eral one cannot expect C ~ n�T but should rather have
© 2000 The American Physical Society
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C ~ nd2�T — the potential n dependence of d is, how-
ever, taken care of by Eq. (2) in which the unknown jump
length is eliminated by scaling with the measured De.

In our opinion Sidebottom’s arguments are largely cor-
rect, but Eq. (2) is much more general than it appears from
his reasoning. Consider hopping of completely noninter-
acting charge carriers on a cubic lattice. In this model
conductivity is nq times charge carrier mobility and for
given lattice jump frequencies the mobility scales with
d2, as Sidebottom has it. However, if the lattice is ho-
mogeneous, with just one jump frequency, conductivity
is frequency independent— in order to have strongly fre-
quency-dependent conductivity, lattice jump frequencies
must cover many decades. In this case the expressions
used by Sidebottom for s�0� and De do not apply— there
simply is no unique jump rate fH . Still, we find in our
simulations that Eq. (2) is obeyed. This leads to the ques-
tion: When does Eq. (2) apply?

Equation (2) apparently expresses two pieces of infor-
mation: (a) TTSP is obeyed, and (b) the scaled frequency
is given by ṽ � �e0De�s�0��v. We now prove, how-
ever, that (a) mathematically implies (b): TTSP implies
the existence of some function s̃�ṽ� where ṽ is the scaled
frequency. Expanding to first order in ṽ leads to s̃ �
1 1 iṽA [where A is real because s��v� � s�2v�].
Since s � s̃s�0� we have s � s�0� 1 iṽAs�0� for
v ! 0. On the other hand, from the definition of De

[7] one has s � s�0� 1 ivDee0 for v ! 0. Equat-
ing these two asymptotic expressions for s leads to ṽ �
A21�Dee0�s�0�� v. We have thus shown that s̃ is a func-
tion of A21�Dee0�s�0�� v. This implies that s̃ is a func-
tion of �Dee0�s�0�� v, i.e., Eq. (2) [27]. In practice the
scaling expressed by Eq. (2) simply means that frequency
is scaled such that the imaginary part of the normalized ac
conductivity is equal to scaled frequency as v ! 0.

A simple model for ac conduction in disordered solids
is the symmetric hopping model [28–32]. It considers
random walks of noninteracting particles on a cubic lattice
with random symmetric Arrhenius nearest-neighbor jump
rates (g0e2bE , where b � 1�kBT and E is the spatially
randomly varying energy barrier). According to the effec-
tive medium approximation (EMA) this model approaches
universality in the extreme disorder limit: As b ! `,
s̃ as a function of a well-defined scaled frequency ṽ

becomes independent of both b and of the energy barrier
probability distribution [31]. This predicted ac universality
was confirmed by computer simulations in two dimensions
at imaginary frequencies, although the EMA universality
prediction s̃ lns̃ � iṽ turned out to be inaccurate [31].
In Fig. 1 we present results from computer simulations of
the symmetric hopping model in three dimensions at real
frequencies. These simulations were done on samples with
periodic boundary conditions solving the master equation
utilizing a new algorithm [33]. Figure 1a shows s̃0— the
real part of s̃ —for the box distribution of energy barriers.
The frequency axis is scaled according to Eq. (2). As b

increases, s̃0 converges to a single curve. Figure 1b shows
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FIG. 1. Numerical results for the symmetric hopping model
in three dimensions with periodic boundary conditions [33].
Reported results are averages over 100 different N 3 N 3 N
cubic lattices. (a) Real part of the dimensionless ac conductiv-
ity, s̃0�ṽ�, for the box distribution of energy barriers [p�E� �
1, 0 # E # 1], where ṽ is given by Eq. (2); b � 20 �N � 14�,
b � 40 �N � 24�, b � 80 �N � 32�, and b � 160 �N � 64�.
As b increases, the data converge to a universal curve. (b) The
apparent exponent n � d lns̃0�d lnṽ plotted versus s̃0. Data
are shown for five different energy barrier distributions at b’s
given by b � 160p�Ec� �N � 64� where Ec is the “percola-
tion energy” [34,37]. The universal curve is independent of
the energy barrier distribution. The numerical data are com-
pared to three analytical approximations: EMA (s̃ lns̃ � iṽ
[31]), PPA [ln�1 1

p
iṽs̃ � �

p
iṽ�s̃ [34] ], and DCA with

d0 � 1.35 [Eq. (3)]. The universal curve lies between EMA
and PPA and is well approximated by DCA with d0 � 1.35.

the apparent exponent n � d lns̃�d lnṽ as a function
of s̃0 for different energy barrier probability distributions
at large b’s, proving ac universality for the hopping
model. Figure 1b also compares the simulations to three
analytical approximations, the EMA universality equation
s̃ lns̃ � iṽ [29,31], the percolation path approximation
(PPA) [34–36], and a new phenomenological “diffusion
cluster approximation” (DCA), which we describe below.

In the extreme disorder limit hopping conduction takes
place on the “percolation cluster” formed from lattice
311
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links with largest jump rates until percolation [31,37].
The PPA idea [34,37] is to regard the conducting paths
on the percolation cluster as strictly one dimensional.
On the other hand, the idea behind EMA is to replace
the inhomogeneous lattice by an effective homogeneous
medium determined self-consistently [29,30]. Our
hopping simulations show that s̃0�ṽ� is somewhere
between PPA and EMA. Most likely, this is because
both approximations ignore the fact that conduction
takes place on some complex subset of the percolation
cluster. This “diffusion cluster” must be smaller than
the backbone (defined by removing dead ends of the
percolation cluster, fractal dimension � 1.7 [33,38]) and
larger than the set of red bonds (those that, when cut,
stop the current, fractal dimension � 1.1 [33,38]). At
present this is all we know about the diffusion cluster,
and its dimension d0 is regarded below as a fitting pa-
rameter. To derive the DCA equation we use EMA in d0
FIG. 2. Experimental data for ac conduction of three ionic systems scaled according to Eq. (2) ( f � v�2p) (reproduced from
Ref. [25]): (a) �Na2O�x�GeO2�12x (Sidebottom [25]); (b) 0.4Ca�NO3�2-0.6KNO3 (Howell et al. [40]); (c) �K2S�x�B2S3�12x (Patel
[41]). The experimental data are compared to the universal ac conductivity of the symmetric hopping model (numerical data, full
squares) and DCA [Eq. (3) with d0 � 1.35]. [The DCA prediction is empirically scaled to agree with the numerical data for the
hopping model; it cannot be scaled using Eq. (2) since DeDCA � `, a low-frequency artifact of this approximation.] Comparing
computer simulations to the experimental data it should be noted that there are no adjustable parameters: In the extreme disorder
limit the model predictions become independent of both b and of energy barrier probability distribution.
312
dimensions. In the extreme disorder limit EMA implies
[31,39] lns̃ ~ sG̃ where sG̃ is defined by �2p�d0sG̃ �R

2p,ki,p dk �iv��iv 1 2s�d0 2
P

coski��	. When-
ever 1 , d0 , 2 one finds sG̃ ~ �iv�s�d0�2 at relevant
[31] frequencies. Thus, after rescaling frequency we arrive
at the DCA equation,

lns̃ �

µ
iṽ
s̃

∂d0�2

. (3)

As is clear from Fig. 1b, the solution to this equation for
d0 � 1.35 gives an excellent fit to the universal ac hopping
conductivity.

In Fig. 2 the three sets of data discussed by Sidebottom
[25] are compared to the hopping model simulations in
the extreme disorder limit (filled squares) and to the DCA
(full line). For all three systems we find a frequency range
where experimental data agree well with the symmetric
hopping model.
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The symmetric hopping model is a highly idealized
model. The model ignores Coulomb repulsions and it
allows an arbitrary number of charge carriers at each site.
This is unrealistic, but it should be noted that the model
is mathematically identical to that obtained by linearizing
(with respect to the electric field) a hopping model with
energy disorder and self-exclusion (i.e., Fermi statis-
tics) [29].

To summarize, we have proved that Sidebottom’s scal-
ing version Eq. (2) applies whenever scaling is possible at
all (TTSP obeyed), i.e., that the Taylor-Isard scaling con-
stant C of Eq. (1) is always proportional to De. A new ana-
lytical approximation to the universal ac conductivity of
hopping in the extreme disorder limit, the diffusion clus-
ter approximation (DCA), has been presented and shown
to give an excellent fit to simulations. Finally, we have
shown that DCA (and thereby the extreme disorder limit of
the symmetric hopping model) agrees well with the three
sets of ionic data discussed by Sidebottom [25] in a fre-
quency range depending on the system.

*Present address: Center for Theoretical and Computa-
tional Materials Science, National Institute of Standards
and Technology, Gaithersburg, MD 20899.
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