
Roskilde
University

Landscape equivalent of the shoving model

Dyre, Jeppe; Olsen, Niels Boye

Published in:
Physical Review E (Statistical, Nonlinear, and Soft Matter Physics)

Publication date:
2004

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Dyre, J., & Olsen, N. B. (2004). Landscape equivalent of the shoving model. Physical Review E (Statistical,
Nonlinear, and Soft Matter Physics), 69(4). http://milne.ruc.dk/~dyre/2004_PRE_69_042501.pdf

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain.
            • You may freely distribute the URL identifying the publication in the public portal.
Take down policy
If you believe that this document breaches copyright please contact rucforsk@kb.dk providing details, and we will remove access to the work
immediately and investigate your claim.

Download date: 12. Jul. 2025

http://milne.ruc.dk/~dyre/2004_PRE_69_042501.pdf


PHYSICAL REVIEW E 69, 042501 ~2004!
Landscape equivalent of the shoving model

Jeppe C. Dyre and Niels Boye Olsen
Department of Mathematics and Physics (IMFUFA), Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark

~Received 5 November 2002; revised manuscript received 7 May 2003; published 30 April 2004!

It is shown that the shoving model expression for the average relaxation time of viscous liquids, according
to which the activation energy is proportional to the instantaneous shear modulus, follows largely from a
classical ‘‘landscape’’ estimation of barrier heights from curvature at energy minima. Although the activation
energy in this reasoning involves both instantaneous bulk and shear moduli, the bulk modulus contributes less
than 8% to the temperature dependence of the activation energy. This reflects the fact that the physics of the
two models are closely related.
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The physics of highly viscous liquids approaching t
calorimetric glass transition continue to attract attent
@1–9#. A major mystery surrounding these liquids is the
non-Arrhenius behavior. Ift is the average relaxation tim
and t0 the microscopic time~of the order of 10213 s), the
temperature-dependent activation~free! energyDE(T) is de-
fined @10–12# by

t~T!5t0 expS DE~T!

kBT D . ~1!

Only few viscous liquids show Arrhenius temperature dep
dence of the average relaxation time, i.e., have cons
DE(T). Most viscous liquids have an activation ener
which increases upon cooling.

The shoving model@13# starts from the standard pictur
of a viscous liquid: At high viscosity almost all molecula
motion goes into vibrations around potential energy minim
Only rarely do rearrangements take place which move m
ecules from one to another minimum. This view was form
lated already by Kauzmann in his famous 1948 review@14#,
and it was the starting point of Goldstein’s ‘‘potential ener
picture’’ @15# which was later confirmed by computer sim
lations @16#. On the short-time scale of the barrie
transition—expected to last just a few picoseconds—the
rounding liquid behaves as a solid with bulk and sh
moduli equal to the instantaneous~i.e., high frequency! bulk
and shear moduli. Just as in free volume theories, the s
ing model assumes that molecular rearrangements take p
when a thermal fluctuation leads to extra space being cre
locally. One may think of the surroundings as being shov
aside to make the rearrangement possible~although this
cause-effect reasoning violates time-reversal symmetry!. If
there is spherical symmetry, the surroundings are subject
pure shear displacement@7,13,17#. Thus the work done is
proportional to the instantaneous shear modulusG` and one
finds @13# ~whereVc is by assumption temperature indepe
dent!

DE~T!5G`~T!Vc . ~2!

This expression@18# fits data for the non-Arrhenius behavio
of several molecular liquids@13#; in combination with the
Tool-Narayanaswami formalism the shoving model has b
1539-3755/2004/69~4!/042501~4!/$22.50 69 0425
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applied also to structural~i.e., nonlinear! relaxations@19#. It
is the high-frequency shear modulus which appears in
~2! because the transition is fast~compare, e.g., the analo
gous appearance of short-time friction constant in the Gro
Hynes theory@20#!.

The basic assumptions of the shoving model may be s
marized as follows@7#:

~a! The main contribution to the activation energy iselas-
tic energy.

~b! The elastic energy is located in thesurroundingsof the
rearranging molecules.

~c! The elastic energy isshearenergy, i.e., not associate
with any density change.
The purpose of this paper is to give an alternative justifi
tion of Eq. ~2! and discuss the interrelation between the t
approaches.

We start by reviewing a classical argument estimating
height of the barrier between two potential energy minim
from the curvature around the minima. This argument
used, e.g., in the Marcus theory for electron transfer re
tions @21,22#. In 1987 Hall and Wolynes applied this reaso
ing in their theory of free energy barriers in glasses@23–25#.
Consider first the one-dimensional situation with two minim
separated the distancea ~Fig. 1!. The thin curves give the
potential estimated by second-order expansions around
minima. The figures show two situations where the minim
are the same distance apart, but the potential is scaled g
from ~a! to ~b!. In both cases the barriers estimated from t
parabolic approximation are considerably larger than the
tual barriers. The estimated and actual barriers are pro
tional, however, which is enough for the arguments of t
paper. To express the estimated barrier, consider the lo
barrier~which at low temperatures determines the relaxat
rate of a two-level system!. At the minimum~to the right! we
expand the potential as follows:U5U01(L/2)x2 wherex
is the distance from the minimum. According to statistic
mechanicŝ x2&5kBT/L. If the intersection of the two pa
rabolas is the distanceb from the minimum, the estimated
lower barrier is given by

DE5
L

2
b25

kBT

^x2&

b2

2
.

Comparing this situation to that of Fig. 1~b!, whereb is the
same, we conclude that
©2004 The American Physical Society01-1
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DE~T!}
kBT

^x2&
. ~3!

How does the above reasoning apply to the multidim
sional configuration space where the hills and valleys of
energy landscape live? At low temperatures a viscous liq
thermally ‘‘populates’’ only deep minima in configuratio
space. A transition between two deep minima most lik
consists of a whole sequence of transitions between inter
diate shallow minima@3#. Nevertheless, there is one or mo
bottlenecks in this sequence. Our basic assumption is th
different temperatures the bottleneck transitions are the s
type of local rearrangements and thus with~virtually! same
distance between the two minima in configuration spa
They occur, however, as temperature changes in diffe
surroundings, so the minima involved are different and h
differing ^x2&. The relevant mean-squarex fluctuation is to
be taken in the direction between the minima. The final
sumption needed is that this quantity istypical for the
minima, i.e., equal to the average over all directions. Con
quently, the relevant mean-squarex fluctuation may be
evaluated simply as the vibrational mean-square fluctua
averaged over all directions. We estimate this quantity by
ensemble average over all minima,^x2&. Note that, since the
configuration space average^x2& is equal to the single-atom
mean-square displacement, this quantity is experiment

FIG. 1. Comparison of two cases of two potential ener
minima with the same distance between, but different curvature
the minima. The full curve is the potential energy, while the th
curve gives the potential esitmated by second order Taylor ex
sions around the minima. According to a classical reasoning u
e.g., in the Marcus theory for electron transfer reactions, the ba
height may be estimated by extrapolating from the minima. T
estimated barriers are clearly much larger than the actual barr
however, going from~a! to ~b! the estimated and actual barriers a
proportional. This is enough to arrive at Eq.~1!.
04250
-
e
id

y
e-

at
e

e.
nt
e

-

e-

n
ts

lly

accessible in, e.g., incoherent neutron scattering where it
ters into the Debye-Waller factor exp(2Q2^x2&), whereQ is
the scattering vector@26#.

Recently, Starr, Sastry, Douglas, and Glotzer arrived
Eq. ~3! from the free volume perspective@27#. Their work
includes a direct numerical confirmation for a glass-formi
polymer melt by calculating the free volumev f and subse-
quently showing, withv f as ‘‘mediator,’’ that the temperature
dependencies of̂x2& andt are consistent with Eq.~3!.

The next step is to relatêx2& to the instantaneous bul
and shear moduli. On short-time scales a viscous liquid
haves like a solid@14–16,28#. In particular, it has well-
defined vibrational eigenstates. We assume that the e
phonon spectrum scales with the long wavelength limit
the phonon dispersion relation. For a one-dimensional s
there is only one elastic constantC. The aboveL is propor-
tional to C and consequently,̂ x2&}T/C. In a three-
dimensional isotropic solid there are two elastic consta
For each wave vector there are three phonon degrees of
dom, two transverse and one longitudinal. The relevant tra
verse elastic constant is the isothermal (5 adiabatic! shear
modulus, while the relevant longitudinal elastic constant
the isothermal (Þ adiabatic! longitudinal modulusM defined
@29# by M5K1(4/3)G, whereK and G are the bulk and
shear isothermal moduli. Averaging over the two types
phonons one finds that the vibrational mean-square fluc
tion is given by ^x2&}T(2/G11/M ). This applies for a
solid. It applies at short times for a viscous liquid as well,
G and M are identified with the liquid’s instantaneous is
thermal moduli. Thus inserting the expression for^x2& into
Eq. ~3! we get

1

DE~T!
}

2

G`~T!
1

1

M`~T!
. ~4!

Unfortunately, it is not possible to test Eq.~4! directly be-
cause there are no measurements of the instantaneous
thermal bulk modulus.

There are several ways to quantify the temperature va
tion of DE(T), a liquid’s ‘‘fragility’’ @30#. The standard ap-
proach utilizes the quantitym introduced by Plazek, Ngai
Böhmer, and Angell @31#: m5d log10(t)/d(Tg /T)uT5Tg

,

whereTg is the calorimetric glass transition temperature d
fined by t(Tg)5103 s. Simple Arrhenius behavior corre
sponds tom516; most glass-forming liquids have fragilitie
between 50 and 150. As an alternative Tarjus and co-work
proposed to measure the degree of non-Arrhenius behavi
any given temperature by the normalized activation ener
DE(T)/DE(T→`) @12#. It is not obviousa priori, however,
that scaling to the high-temperature limit is physically re
evant. Inspired by the Gru¨neisen parameter@26# and
Granato’s recent work on interstitialcy relations for the v
cosity@32# we suggest that a useful unbiased measure of h
much the activation energy changes with temperature is
logarithmic derivative,d ln DE(T)/d ln T. Because the activa
tion energy increases asT decreases, it is convenient t
change sign. We thus define thetemperature index IDE of the
activation energy by

I DE52
d ln DE~T!

d ln T
. ~5!
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It is straightforward to show thatm516@11I DE(Tg)#.
We proceed to expressI DE in terms of temperature indice

of instantaneous moduli~same definition!. First, note that the
temperature indexI of a sum,f 11 f 2, is a convex combina-
tion of the temperature indicesI j of f j : I 5a1I 11a2I 2,
wherea j5 f j /( f 11 f 2). Equation~4! thus implies

I DE5
2G`

21

2G`
211M`

21
I G`

1
M`

21

2G`
211M`

21
I M`

. ~6!

Similarly, M`5K`1(4/3)G` implies

I M`
5

K`

M`
I K`

1
4

3

G`

M`
I G`

. ~7!

Substituting Eq.~7! into Eq. ~6! leads to

I DE5~12a!I G`
1aI K`

, ~8!

where

a5
M`

21

2G`
211M`

21

K`

M`
. ~9!

It is straightforward to show@33# that one always has

a,0.08. ~10!

Thus more than 92% of the temperature index of the act
tion energy derives from the instantaneous shear modu
The minute influence of the bulk modulus comes about
cause of the following three factors:

~1! There are two transverse phonon degrees of freed
but only one longitudinal.

~2! Longitudinal phonons are associated with a larg
elastic constant than transverse phonons and thus giveless
than one-third contribution to the activation energy@Eq. ~4!#.

~3! G` affects also the longitudinal phonons.
ds
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We conclude that simplifying@34#, but not unreasonable
assumptions in the landscape approach lead to a predic
for the non-Arrhenius behavior which in practice is going
be hard to distinguish from that of the shoving model. T
really interesting question is what is the relation between
physicsof the two approaches? At first sight they seem qu
different. There are, however, similarities leading us to co
clude that the physics are actually closely related: The fi
shoving model assumption~the main contribution to the ac
tivation energy iselastic energy! is equivalent to the land-
scape assumption of a potential where the curvatures a
minima determine the activation energy. The second shov
model assumption~the elastic energy is in thesurroundings
of the reorienting molecules! is consistent with the landscap
assumption that the vibrational mean-square fluctuation
typical, because vibrational eigenstates in an isotropic s
involve all atoms. And the final shoving model assumpti
~the elastic energy is mainlyshearenergy! is consistent with
Eq. ~10!. Finally, we would like to remind that the origina
shoving model derivation of Eq.~2! assumed spherical sym
metry @13#. In more realistic scenarios there must be so
volume change in the surroundings of the reorienting m
ecules and thus some contribution to the activation ene
from the instantaneous bulk modulus. While it is difficult
give absolute bounds on the magnitude of the bulk contri
tion, it is noteworthy that Granato—supported by many o
ers ~see Ref.@35#, and its references!—finds that for defect
creation in a crystal the work is overwhelmingly that of
shear deformation. In our view there is no reason why t
should not apply for amorphous structure as well.

The reasonings of Ref.@35# and this paper introduce
new theme into condensed matter physics which may be
ferred to asshear dominance, according to which when both
bulk and shear modulus appear in a problem the shear m
lus usually plays a much more important role than the b
modulus.

This work was supported by the Danish Natural Scien
Research Council.
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V.K. Malinovsky, and N.V. Surovtsev, Europhys. Lett.35, 289
~1996!; C.M. Roland and K.L. Ngai, J. Chem. Phys.104, 2967
~1996!; D. Quitmann and M. Soltwisch, Philos. Mag. B77,
287 ~1998!; M.M. Teeter, A. Yamano, B. Stec, and U. Mo
hanty, Proc. Natl. Acad. Sci. U.S.A.98, 11 242~2001!.

@26# C. Kittel, Introduction to Solid State Physics, 7th ed.~Wiley,
New York, 1996!.

@27# F.W. Starr, S. Sastry, J.F. Douglas, and S.C. Glotzer, Phys.
Lett. 89, 125501~2002!.

@28# J.C. Dyre, Phys. Rev. E59, 2458~1999!.
@29# L.D. Landau and E.M. Lifshitz,Theory of Elasticity, 2nd ed.

~Pergamon, Oxford, 1970!.
@30# C.A. Angell, in Relaxations in Complex Systems, edited by

K.L. Ngai and G.B. Wright ~U.S. GPO Washington, DC
1985!, p. 3.

@31# D.J. Plazek and K.L. Ngai, Macromolecules24, 1222~1991!;
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