Roskilde
University

Landscape equivalent of the shoving model

Dyre, Jeppe; Olsen, Niels Boye

Published in:
Physical Review E (Statistical, Nonlinear, and Soft Matter Physics)

Publication date:
2004

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Dyre, J., & Olsen, N. B. (2004). Landscape equivalent of the shoving model. Physical Review E (Statistical,
Nonlinear, and Soft Matter Physics), 69(4). http://milne.ruc.dk/~dyre/2004 PRE_69 042501.pdf

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain.
* You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact rucforsk@kb.dk providing details, and we will remove access to the work
immediately and investigate your claim.

Download date: 12. Jul. 2025


http://milne.ruc.dk/~dyre/2004_PRE_69_042501.pdf

PHYSICAL REVIEW E 69, 042501 (2004
Landscape equivalent of the shoving model

Jeppe C. Dyre and Niels Boye Olsen
Department of Mathematics and Physics (IMFUFA), Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
(Received 5 November 2002; revised manuscript received 7 May 2003; published 30 Apil 2004

It is shown that the shoving model expression for the average relaxation time of viscous liquids, according
to which the activation energy is proportional to the instantaneous shear modulus, follows largely from a
classical “landscape” estimation of barrier heights from curvature at energy minima. Although the activation
energy in this reasoning involves both instantaneous bulk and shear moduli, the bulk modulus contributes less
than 8% to the temperature dependence of the activation energy. This reflects the fact that the physics of the
two models are closely related.
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The physics of highly viscous liquids approaching theapplied also to structurdl.e., nonlinear relaxationg19]. It
calorimetric glass transition continue to attract attentionis the high-frequency shear modulus which appears in Eq.
[1-9]. A major mystery surrounding these liquids is their (2) because the transition is fa&ompare, e.g., the analo-
non-Arrhenius behavior. It is the average relaxation time gous appearance of short-time friction constant in the Grote-
and 7, the microscopic timeof the order of 10%3s), the  Hynes theory20]).

temperature-dependent activatidree) energyAE(T) is de- The basic assumptions of the shoving model may be sum-
fined [10-17 by marized as follow$7]:
(a) The main contribution to the activation energyelas-
AE(T) tic energy.
7(T)= 1o ex;{ kB—T) . 1) (b) The elastic energy is located in teerroundingsof the

rearranging molecules.

(c) The elastic energy ishearenergy, i.e., not associated
ith any density change.
he purpose of this paper is to give an alternative justifica-
tion of Eq.(2) and discuss the interrelation between the two
approaches.

We start by reviewing a classical argument estimating the
height of the barrier between two potential energy minima
from the curvature around the minima. This argument is
used, e.g., in the Marcus theory for electron transfer reac-
tions[21,22. In 1987 Hall and Wolynes applied this reason-
ing in their theory of free energy barriers in glasg23—-25.
Consider first the one-dimensional situation with two minima
separated the distan@e(Fig. 1). The thin curves give the
I;:_)otential estimated by second-order expansions around the
Iminima. The figures show two situations where the minima
are the same distance apart, but the potential is scaled going

moduli equal to the instantaneo(i., high frequencybulk . ;
and shear moduli. Just as in free volume theories, the shO\';[om (a) to (b). In both cases the barriers estimated from the

ing model assumes that molecular rearrangements take pIaBérlagom? app[?ﬁlmat;_on "’t‘r% con dS|detrab|beIarger than the ac-
when a thermal fluctuation leads to extra space being creatéHal arriers. ihe estimated and actual barriers are propor-

locally. One may think of the surroundings as being shove&'onal' however, which is e_”ough for t_he arguments of this
aside to make the rearrangement possit#hough this paper. To express the estimated barrier, consider the lower

cause-effect reasoning violates time-reversal symmetfy barrier (which at low temperatures determines the relaxation

there is spherical symmetry, the surroundings are subject to rate of & two-level ;yste}nAt the minimum(to thi righy we

pure shear displacemefit,13,17. Thus the work done is ©xPand the potential as followsl = U+ (A/2)x" wherex

proportional to the instanténe,ous shear mod@usand one is the distance from the minimum. According to statistical
. 2 _ . .

finds[13] (whereV, is by assumption temperature indepen—meChan'qu )=kgT/A. If the intersection of the two pa-

Only few viscous liquids show Arrhenius temperature depen-
dence of the average relaxation time, i.e., have consta
AE(T). Most viscous liquids have an activation energy
which increases upon cooling.

The shoving mode[13] starts from the standard picture
of a viscous liquid: At high viscosity almost all molecular
motion goes into vibrations around potential energy minima
Only rarely do rearrangements take place which move mol
ecules from one to another minimum. This view was formu-
lated already by Kauzmann in his famous 1948 reviiéwj,
and it was the starting point of Goldstein’s “potential energy
picture” [15] which was later confirmed by computer simu-
lations [16]. On the short-time scale of the barrier
transition—expected to last just a few picoseconds—the su

den} rabolas is the distance from the minimum, the estimated
lower barrier is given by
AE(T)=Gu(T)Ve. (2 apo A ket
2 <x2> 2

This expressiofi18] fits data for the non-Arrhenius behavior
of several molecular liquid§13]; in combination with the Comparing this situation to that of Fig(l), whereb is the
Tool-Narayanaswami formalism the shoving model has beesame, we conclude that
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2 @ accessible in, e.g., incoherent neutron scattering where it en-
5 ters into the Debye-Waller factor expQ%x?)), whereQ is
g the scattering vectdr26].
- Recently, Starr, Sastry, Douglas, and Glotzer arrived at
a Eqg. (3) from the free volume perspectif@7]. Their work
b includes a direct numerical confirmation for a glass-forming
9 I A | polymer meIt_ by ca_llculatmg the_ free volume and subse-
& guently showing, withys as “mediator,” that the temperature
Configuration space dependencies dfx?) and 7 are consistent with Eq3).
The next step is to relatex?) to the instantaneous bulk

b and shear moduli. On short-time scales a viscous liquid be-
& haves like a solid14—16,28. In particular, it has well-
) defined vibrational eigenstates. We assume that the entire
3 phonon spectrum scales with the long wavelength limit of
~ the phonon dispersion relation. For a one-dimensional solid
3 there is only one elastic constadt The aboveA is propor-
b tional to C and consequently({x®)=T/C. In a three-
8 dimensional isotropic solid there are two elastic constants.
& ! a | For each wave vector there are three phonon degrees of free-

dom, two transverse and one longitudinal. The relevant trans-
verse elastic constant is the isothermal @diabatig shear
FIG. 1. Comparison of two cases of two potential energymodulus, while the relevant longitudinal elastic constant is
minima with the same distance between, but different curvatures athe isothermal ¢ adiabati¢ longitudinal modulusv defined
the minima. The full curve is the potential energy, while the thin[29] by M=K+ (4/3)G, whereK and G are the bulk and
curve gives the potential esitmated by second order Taylor exparshear isothermal moduli. Averaging over the two types of
sions around the minima. According to a classical reasoning usegghonons one finds that the vibrational mean-square fluctua-
e.g., in the Marcus theory for electron transfer reactions, the barrietion is given by (x?)xT(2/G+1/M). This applies for a
height may be estimated by extrapolating from the minima. Thesolid. It applies at short times for a viscous liquid as well, if
estimated barriers are clearly much larger than the actual barrier§& and M are identified with the liquid’s instantaneous iso-
however, going from(a) to (b) the estimated and actual barriers are thermal moduli. Thus inserting the expression @3?) into

Configuration space

proportional. This is enough to arrive at Ed). Eq. (3) we get
1 2 N 1 @)
keT AE(T)  G(T)  M(T)
aem L - M GM " MAT)
(x%) Unfortunately, it is not possible to test E@l) directly be-

cause there are no measurements of the instantaneous iso-
thermal bulk modulus.

How does the above reasoning apply to the multidimen- There are several ways to quantify the temperature varia-
sional configuration space where the hills and valleys of thdion of AE(T), a liquid’s “fragility” [30]. The standard ap-
energy landscape live? At low temperatures a viscous liquigproach utilizes the quantityn introduced by Plazek, Ngai,
thermally “populates” only deep minima in configuration Bohmer, and Angell[31]: m=dlogio(7)/d(Tg/T)|r-7,,
space. A transition between two deep minima most likelywhereT, is the calorimetric glass transition temperature de-
consists of a whole sequence of transitions between interméined by (T,)=10° s. Simple Arrhenius behavior corre-
diate shallow minima3]. Nevertheless, there is one or more sponds tan=16; most glass-forming liquids have fragilities
bottlenecks in this sequence. Our basic assumption is that gktween 50 and 150. As an alternative Tarjus and co-workers
different temperatures the bottleneck transitions are the sanpgoposed to measure the degree of non-Arrhenius behavior at
type of local rearrangements and thus w(tirtually) same  any given temperature by the normalized activation energy:
distance between the two minima in configuration spaceAE(T)/AE(T—) [12]. It is not obviousa priori, however,
They occur, however, as temperature changes in differenhat scaling to the high-temperature limit is physically rel-
surroundings, so the minima involved are different and havewvant. Inspired by the Gneisen parametef26] and
differing (x*). The relevant mean-squaxefluctuation is to  Granato’s recent work on interstitialcy relations for the vis-
be taken in the direction between the minima. The final ascosity[32] we suggest that a useful unbiased measure of how
sumption needed is that this quantity fgpical for the  much the activation energy changes with temperature is its
minima, i.e., equal to the average over all directions. Conseogarithmic derivatived In AE(T)/d In T. Because the activa-
quently, the relevant mean-square fluctuation may be tion energy increases &b decreases, it is convenient to

evaluated simply as the vibrational mean-square fluctuatioghange sign. We thus define ttenperature indexg of the
averaged over all directions. We estimate this quantity by itictivation energy by

ensemble average over all minin{a?). Note that, since the
configuration space average?®) is equal to the single-atom __dIinAE() 5)
mean-square displacement, this quantity is experimentally AE dinT
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We conclude that simplifyin34], but not unreasonable,

We proceed to expresse in terms of temperature indices assumptions in the landscape approach lead to a prediction

of instantaneous modulsame definition First, note that the
temperature indek of a sum,f,;+f,, is a convex combina-
tion of the temperature indicely of f;: I=a;l;+ asl,,
wherea;=f;/(f,+f,). Equation(4) thus implies

2G ¢t Mt

e Mt e et ©
Similarly, M ,=K_+ (4/3)G., implies
I =&|K+EE|G. 7
> My, " 3 M, °»
Substituting Eq(7) into Eq. (6) leads to
he=(1-a)lg talgk , (8)
where
M.t K.
“aem ?
It is straightforward to shoW}33] that one always has
«<0.08. (10

for the non-Arrhenius behavior which in practice is going to
be hard to distinguish from that of the shoving model. The
really interesting question is what is the relation between the
physicsof the two approaches? At first sight they seem quite
different. There are, however, similarities leading us to con-
clude that the physics are actually closely related: The first
shoving model assumptioithe main contribution to the ac-
tivation energy iselastic energy is equivalent to the land-
scape assumption of a potential where the curvatures at the
minima determine the activation energy. The second shoving
model assumptioifthe elastic energy is in theurroundings

of the reorienting moleculgss consistent with the landscape
assumption that the vibrational mean-square fluctuation is
typical, because vibrational eigenstates in an isotropic solid
involve all atoms. And the final shoving model assumption
(the elastic energy is mainkhearenergy is consistent with

Eq. (10). Finally, we would like to remind that the original
shoving model derivation of Eq2) assumed spherical sym-
metry [13]. In more realistic scenarios there must be some
volume change in the surroundings of the reorienting mol-
ecules and thus some contribution to the activation energy
from the instantaneous bulk modulus. While it is difficult to
give absolute bounds on the magnitude of the bulk contribu-
tion, it is noteworthy that Granato—supported by many oth-
ers(see Ref[35], and its referencgs-finds that for defect
creation in a crystal the work is overwhelmingly that of a
shear deformation. In our view there is no reason why this

Thus more than 92% of the temperature index of the activaghouid not apply for amorphous structure as well.
tion energy derives from the instantaneous shear modulus. ¢ reasonings of Ref35] and this paper introduce a
The minute influence of the bulk modulus comes about behew theme into condensed matter physics which may be re-

cause of the following three factors:

ferred to asshear dominangeaccording to which when both

(1) There are two transverse phonon degrees of freedony, ik and shear modulus appear in a problem the shear modu-

but only one longitudinal.

lus usually plays a much more important role than the bulk

(2) Longitudinal phonons are associated with a largery,qqulus.

elastic constant than transverse phonons and thuslgsse
than one-third contribution to the activation enef&y. (4)].
(3) G., affects also the longitudinal phonons.

This work was supported by the Danish Natural Science
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