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Abstract
Ten ‘themes’ of viscous liquid physics are discussed with a focus on how
they point to a general description of equilibrium viscous liquid dynamics
(i.e., fluctuations) at a given temperature. This description is based on
standard time-dependent Ginzburg–Landau equations for the density fields,
stress tensor fields, potential energy density field, and fields quantifying
molecular orientations. One characteristic aspect of the theory is that density
has the appearance of a non-conserved field. Another characteristic feature
is the long-wavelength dominance of the dynamics, which not only simplifies
the theory by allowing for an ultra-local Hamiltonian (free energy), but also
explains the observed general independence of chemistry. Whereas there are
no long-ranged static (i.e., equal-time) correlations in the model, there are
important long-ranged dynamic correlations on the alpha timescale.

1. Introduction

Glass-forming liquids approaching the calorimetric glass transition become extremely viscous,
with viscosity 1013–1015 times than that of ambient water. These extreme viscosities reflect the
fact that molecular motion has almost come to a standstill. Most molecular motion is vibrational
in these liquids; thus a computer simulation of a liquid close to the calorimetric glass transition
with present-day computers would not be able to distinguish it from a disordered solid. A long
time ago, Kauzmann and Goldstein recognized that most motion is vibrational [1, 2]; in fact,
by around 1930 the German glass scientist Simon already seems to have been aware of this [3].
Molecular reorientations do take place at rare occasions by a sudden and (presumably) fairly
localized jump from one solid structure to another, resulting in a reordering of the molecules.
Kauzmann described these rare flow events as ‘jumps of molecular units of flow between
different positions of equilibrium in the liquid’s quasicrystalline lattice’ [1], thus emphasizing
the fact that the liquid is much like a solid. In a series of papers [4–7] we have suggested the
word ‘solidity’ for this property and conjectured that viscous liquids are qualitatively different
from less viscous liquids and more to be thought of as ‘solids that flow’.

In the present paper we summarize several postulates, claims, conjectures—more
neutrally: ‘themes’—relating to viscous liquid dynamics in general and to solidity in particular.
Some of these themes are fairly uncontroversial, but several of them challenge the prevailing
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views in the research field. After presenting the themes we summarize a proposal for describing
viscous liquid dynamics at a given temperature. Finally, a brief discussion is given.

2. General themes

This section summarizes some points which, although perhaps not generally agreed upon,
should not be very controversial for the general glass community.

Theme 1: The three non’s. Much of the attraction of the study of viscous liquids and
the glass transition lies in the universal physical properties of highly viscous liquids [8–12].
Glass formation is a universal property: it is generally agreed that (with liquid helium as the
outstanding exception) all liquids form glasses if cooled rapidly enough to avoid crystallization.
From purely macroscopic measurements, after a temperature scaling it is not possible to
distinguish chemically quite different liquids (covalently bonded, ionically bonded, bulk
metallic glass formers, hydrogen bonded, van der Waals bonded). With only a few exceptions,
each of these classes of liquid generally has non-exponential relaxation functions (linear as
well as nonlinear), non-Arrhenius temperature dependence of the average relaxation time with
an activation energy that increases upon cooling, and nonlinearity of responses after even small
temperature jumps (e.g., 1%).

Theme 2: Separating the non-exponential problem from the non-Arrhenius problem. Most
theories for viscous liquid dynamics and the glass transition attempt to explain both the non-
exponentiality and the non-Arrhenius temperature dependence in one single theory. This is
motivated by the generally accepted view that fragility correlates with the β exponent of the
stretched exponential [13], thus indicating a deep connection between the two ‘non’s. In our
view—to a considerable extent based on measurements performed in our laboratory during
the last 20 years on simple, organic glass-forming liquids—there is no such clear correlation.
Whether or not one accepts this, it seems to be a reasonable strategy to approach a difficult
problem by ‘slicing the Gordian Knot’, and this is what we propose to do. Thus we here
ignore the non-Arrhenius problem (see, e.g., the recent review [12]) and focus exclusively on
describing the viscous liquid’s equilibrium fluctuations at a given temperature. A description is
sought in which the dynamic parameters are unspecified functions of temperature.

Theme 3: Inherent dynamics. As mentioned, there is a consensus that the dynamics of
highly viscous liquids consist of rare jumps over large potential energy barriers, ‘flow events’.
Moreover, the consensus is that it is a good approximation to assume that the vibrational
dynamics decouple from, and are independent of, the configurational dynamics resulting from
flow events. The standard picture is that the configurational dynamics freeze in the glass (with
the exception of beta processes that, however, are unable to induce a macroscopic flow or relax
a macroscopic stress), whereas the vibrational dynamics continue in the glass. This picture of
the glass transition explains the fact that the specific heat and thermal expansion coefficient
are smaller in the glass than in the liquid, because the configurational degrees of freedom only
contribute to these quantities in the liquid phase. This old explanation is undoubtedly basically
correct. (There is one problem, though: it is usually assumed that the phonon spectrum has
a similar temperature dependence in the liquid and in the glass, which is incorrect. This has
misled people to think that the configurational contribution to the specific heat may be estimated
by subtracting the glass specific heat (extrapolated to liquid temperatures) into the liquid phase.
This is wrong because the high-frequency elastic constants are usually much more temperature
dependent in the liquid than in the glass [12]. Consequently, the vibrational entropy is much
more temperature dependent in the liquid phase than in the glass.)

The above picture was confirmed during the last ten years by numerous computer
simulations. The picture that emerges is one where the potential energy minima in the
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high-dimensional energy landscape play a crucial role. This was already the vision of Goldstein
in 1969 [2], and it was further elaborated in works by Stillinger and Weber [14]. The latter
authors introduced the concept of an ‘inherent structure’, the basin of attraction in configuration
space of a given potential energy minimum. The low-temperature dynamics are thought of as
vibrations around the potential energy minima, interrupted by occasional jumps between basins.
The latter jumps are obviously the flow events, the dynamics of which have been referred to as
‘inherent dynamics’ [15].

Theme 4: A small number. Viscous liquids approaching the calorimetric glass transition
are characterized by an extremely small number. To see this, note first that any liquid
has several diffusion constants, for instance the heat diffusion constant, the single-particle
diffusion constant determining the long-time mean-square displacement, the so-called coherent
diffusion constant determining the long-time decay of long-wavelength density fluctuations,
and the kinematic viscosity of the Navier–Stokes equation (viscosity over density, the transverse
momentum diffusion constant). In ‘ordinary’ liquids with viscosity similar to that of ambient
water these diffusion constants are all within one or two orders of magnitude of 10−7 m2 s−1.
This is easy to understand from elementary kinetic theory, according to which a diffusion
constant is the mean-free length of the diffusing entity squared over the mean time between
collisions: taking as typical microscopic parameters for these quantities 1 Å and 0.1 ps,
respectively, one gets the number 10−7 m2 s−1. This estimate, however, completely breaks
down for highly viscous liquids. The heat diffusion constant is relatively unaffected by
viscosity. The single-particle diffusion constant becomes extremely small. The kinematic
viscosity follows viscosity and becomes extremely large. Thus the ratio between the single-
particle diffusion constant and the kinematic viscosity goes from roughly 1 to roughly 10−30.
Such an extremely small number is most unusual in condensed matter physics. Usually in
physics small numbers imply a simplification of some kind. Thus there is hope that the correct
theory of viscous liquid dynamics is fairly simple. Because the high viscosity directly reflects
the high energy barriers for flow events, this also seems to have been Goldstein’s view when
he wrote in his 1969 paper: ‘I am only conjecturing that whatever rigorous theory of kinetics
we will someday have, processes limited by a high potential barrier will share some common
simplifications of approach’ [2].

3. Themes pointing towards a theory for the dynamics

The above themes presumably are relatively uncontroversial. We proceed to discuss some
more speculative themes that, taken together, point towards a specific theory of viscous liquid
dynamics.

Theme 5: Polymers are different. Polymers have a glass transition below which the
structure is frozen, just as is the case for the liquid–glass transition. Roughly half of all
published data for the glass transition and the dynamics just above Tg are for polymers. There is
one crucial aspect, however, in which the polymer glass transition differs from the liquid–glass
transition, namely in the fact that polymers do not flow above the transition. Here one is in the
rubbery regime which is still characterized by very long relaxation times due to entanglement
effects. In contrast, glass-forming liquids do not have relaxation times much larger than the
alpha relaxation time. In fact, one of their very characteristics is a notable sharp long-time cut-
off in the relaxation time distribution. This cut-off is seen experimentally in the observation that
the low-frequency side of linear relaxation functions (e.g., the dielectric relaxation, frequency-
dependent shear and bulk modulus measurements) is always virtually Debye. This is not the
case for polymers. In our opinion this difference is important, and the polymer glass transition
should be treated as a separate issue. In this connection it is interesting to note that plastic
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crystals, although they also do not flow above Tg, seem to behave much more like glass-forming
liquids [16].

Theme 6: Back to three dimensions. The energy landscape approach is a popular way of
treating viscous liquids (see, e.g., the recent excellent review by Sciortino [17]). The idea is
to focus on the motion in configuration space, justified by the fact that the potential energy
function completely determines the dynamics. As mentioned, at high viscosity the slow (alpha)
dynamics may be identified with the inherent dynamics taking the system from one energy
minimum to another [15]. The barriers impeding this motion are saddle points in configuration
space. This description is general and undoubtedly correct, but the question is how useful it
is. The problem is that the energy landscape is exceedingly complex. In condensed matter
physics most phenomena play out differently in two, three and four dimensions. We do not
know whether this is also the case for viscous liquid dynamics, but it seems to be a good guess.
If this is so, the obvious question is how dimensionality is reflected in the energy landscape.
This question is not easy to answer, and it seems not to have been discussed in the literature.
Most landscape papers are general and their reasoning could equally well be applied to, e.g.,
the protein problem. But if dimensionality does matter, these treatments may miss important
characteristics of the problem. The simplest cure seems to be to go back to three dimensions in
the modelling.

Theme 7: Solidity. The basic idea of inherent dynamics is that the slow dynamics of
viscous liquids basically consist of jumps between potential energy minima in configuration
space. A potential energy minimum defines a state of mechanical equilibrium, i.e., a state in
which the force on each molecule is zero. Such a state may be thought of as a disordered solid.
Thus we propose to regard a viscous liquid as it develops in time as a sequence of disordered
solids with flow events giving instantaneous transitions between two (very similar) solid states.
Due to the fact that the velocity of sound is finite, this point of view strictly speaking is only
realistic below the solidity length l which, if c is the (high-frequency) sound velocity, τ the
average relaxation time, and a the intermolecular distance, is given [4] by

l4 = cτa3. (1)

Just above the calorimetric glass transition the solidity length l is close to 10 000 Å.
In the remainder of this paper we shall limit the discussion to the dynamics below the

solidity length. The basic idea of regarding a viscous liquid as a time-sequence of disordered
solids may be summarized as follows:

Viscous liquid ∼= Solid that flows. (2)

The conjecture is that viscous liquids are qualitatively different from the less-viscous liquids
studied in conventional liquid-state theory [18, 19].

Theme 8: Solidity implies apparent density and momentum non-conservation. Flow events
may be regarded as instantaneous on length scales below the solidity length. We now argue
that, despite the fact that molecules obviously cannot just appear or disappear, in a correct
description of the inherent dynamics, density must be treated as a non-conserved field. A given
flow event takes the system from one potential-energy minimum to another. Far from the flow
event centre the displacements are small, obviously, but nevertheless they cannot be ignored.
By solving the standard equations of solid elasticity one finds that the leading term of the
displacement field far away is a radially symmetric term that varies with distance from the flow
event r as r−2 [7]. This is a zero-divergence displacement field and thus there are no density
changes far from the flow event. That may sound counterintuitive, but what happens is that for
any given spherical shell surrounding the flow event the same number of molecules passes this
shell and any other shell (inwards or outwards). A flow event may be regarded as the analogue
of Hilbert’s hotel, the infinite hotel that even when totally occupied can always house one extra
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guest (by asking each guest to move to one higher room number). Numbering the flow events
consecutively after the time they take place, tμ, if rμ is the centre of the μth flow event and
the number bμ measures its magnitude, the above considerations translate into the following
dynamic equation for the density ρ(r, t) in a coarse-grained description [7]:

ρ̇(r, t) =
∑

μ

bμδ(r − rμ)δ(t − tμ). (3)

This equation does not account for correlations between different flow events, so it does not
constitute a theory. Equation (3) is just a description of equilibrium density fluctuations in
viscous liquids, a description that reflects the solidity-based fact that density has the appearance
of a non-conserved field. Moreover, the description is too rough for a useful theory which—as
we shall see—must include the tiny density changes in the far field of a flow event (as well as,
of course, correlations between different flow events).

Momentum conservation is equally irrelevant in viscous liquids because the transverse
momentum diffusion constant, the so-called kinematic viscosity of the Navier–Stokes equation,
is enormous. Just above the calorimetric glass transition this quantity is approximately a factor
1015 larger than, for example, in ambient water. Even at the somewhat higher temperature
where the alpha relaxation time is one second, transverse momentum diffuses more than one
kilometre on the alpha relaxation timescale. Thus momentum is continuously exchanged with
the sample holder, and a description based on momentum conservation may be misleading. For
instance, Newton’s second law implies that the centre of mass does not move during a flow
event. It was recently proposed that, in fact, the total displacement of all molecular positions
�R is an important characteristic of a flow event [7]1.

Theme 9: k-vectors are important because long-ranged elastic effects cannot be ignored.
A mechanical disturbance of a solid at one point gives rise to elastic deformations spreading to
infinity; this is how the solidity of viscous liquids implies that density acquires the appearance
of a non-conserved field. Thus the rough description of equation (3) can come about only
in a theory that incorporates long-ranged elastic interactions. The common approach of
regarding the liquid as a collection of non-interacting regions [20–23] misses this point and
does not properly reflect solidity. One theory which does include long-ranged interactions is
the frustration-based approach of Tarjus and co-workers [24].

Theme 10: Long-wavelength dominance of the dynamics. We now proceed to answer the
question: What are the simplest dynamics consistent with the above nine themes? We choose
a field-theoretic description—field theory is used in virtually every part of modern physics, so
that seems to be an obvious starting point. Which fields should be included? This question
is answered below, but the one field that appears in every field-theoretic description of liquids
is the density field; for the moment we limit the reasoning to this field. Which dynamics
should it obey? The simplest choice is a standard time-dependent Ginzburg–Landau equation
(giving a Langevin equation for each degree of freedom). If β is the inverse temperature, H
the ‘Hamiltonian’ (free energy), and ξ∗

k (t) = ξ−k(t) a Gaussian white noise term, in k space
the equation looks as follows:

ρ̇k = −�k
∂(β H )

∂ρ−k
+ ξk(t). (4)

1 Nick Bailey pointed out that the definition of the total molecular displacement induced by a flow event, �R, as
the sum of all position changes is not unambiguous. Thus the sum of all position changes depends on the boundary
conditions, even in the limit where the boundaries are moved to infinity. A solution to this problem is to define �R
indirectly via the k component of the density change δρk as follows (where ρk is defined in [7], N is the number of
molecules, and the averaging is over different positions of the flow event): N〈|δρk|2〉 = b2 + (�R · k)2 for k → 0.
Independence of the boundary condition is ensured by introducing a convergence factor lim
→0 exp(−
r), where r
is the distance to the flow event, and by letting 
 → 0 only after the volume goes to infinity.
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We have not assumed that the rate constant �k is independent of k. This is because, if the rate
constant is not k-dependent, there is little chance to reproduce the observed relatively broad
relaxation time distributions in a simple theory with few free-energy minima.

How does �k look? From a Taylor expansion one would expect that at small k

�k = �0 + Dk2. (5)

We shall assume that equation (5) applies not only for small k vectors, but for all k. If density
behaved as a conserved field, by definition one would have �0 = 0 [25]. Equation (4) gives
the effective description of the flow-event-induced density changes. It is understood that we
consider a volume with a fixed number of particles and that the k vectors are those consistent
with periodic boundary conditions. The fact that there are only a finite number of molecules
translates into a cut-off in k-space with maximum k vector, kc, given by kc ∼ 1/a, where a is
the average intermolecular distance. In order for equation (5) to give relaxation rates covering
several decades for the allowed k vectors, the following inequality must be obeyed:

D � �0a2. (6)

This inequality expresses an assumption of long-wavelength dominance of the dynamics in
the sense that density fluctuations on length scales much larger than a decay on the alpha
timescale. This provides a simple way to understand the rough universality of viscous liquid
dynamics (i.e., their surprisingly weak dependence of chemistry). Another consequence of
long-wavelength dominance of the dynamics is that the Hamiltonian may be taken to be ultra-
local; i.e., terms in the Hamiltonian reflecting spatial density correlations may be ignored.
This gives a considerable simplification, which is justified by the fact that observed density
correlations are short ranged and thus presumably unimportant when the system is coarse-
grained on a length scale longer than a.

4. General theory of viscous liquid dynamics: a proposal

The above themes inspire an approach to viscous liquid dynamics [5, 6, 12] that may be
summarized in four points.

(i) The relevant degrees of freedom are fields φ(1)(r), . . . , φ(n)(r) defined as: (a) the densities
of the liquid’s different molecules, (b) for each molecule a field quantifying the density of
the configurational variable reflecting the molecular symmetry, (c) the five components of
the traceless stress tensor (the pressure variable is redundant because pressure fluctuations
are not independent of density fluctuations), (d) the potential energy density.

(ii) The Hamiltonian H —the free energy—is ultra-local and a sum of invariant (scalar) terms
up to some even order.

(iii) For each field the dynamics are described by a time-dependent Ginzburg–Landau equation:

φ̇
( j)
k = −�

( j)
k

∂(β H )

∂φ
( j)
−k

+ ξ
( j)
k (t), (7)

where ξ
( j)
k (t) is a standard Gaussian white noise term.

(iv) For each density field the coefficients of equation (7) are given by expressions of the form
�

( j)
k = �

( j)
0 + D( j)k2, where D( j) � �

( j)
0 a2; for all remaining fields the coefficients are

k-independent: �
( j)
k = �

( j)
0 .

A consequence of the ultra-locality assumption is that the dynamics at any given
temperature are determined from the thermodynamics. The thermodynamics split into
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vibrational and configurational (inherent) contributions [17], and the inherent part of the free
energy defines the Hamiltonian. Thus, except for the unknown temperature dependence and
relative weight of the coefficients of the Langevin equations, the above approach implies that
equilibrium fluctuations are completely determined by the inherent thermodynamics. Note
that the ultra-locality assumption is equivalent to assuming that the static structure factor is
independent of the k vector and equal to its k → 0 limit. Clearly, this theory appears as
crude compared to many others, but this follows from assuming that the dynamics on the alpha
timescale are dominated by density fluctuations occurring over much longer length scales than
the intermolecular distance a.

The rough description equation (3) is inaccurate because it does not incorporate the density
changes in the surroundings of a flow event, and because it is not a theory, but just a description
of the fluctuations. Different flow events cannot be uncorrelated in this description, however,
because otherwise the density at a given point would increase or decrease without limits. An
obvious question is how correlations are taken into account in equation (4). The answer is that
a time-dependent Ginzburg–Landau equation automatically ensures consistency with statistical
mechanics, and that the gradient term implies that flow events resulting in a free-energy increase
are less likely (per unit time) than those resulting in a free-energy decrease. This induces
correlations between flow events and automatically limits density fluctuations at any given
point in space to those consistent with the macroscopic compressibility.

5. How does the theory compare to experiment?

The above scheme is general. It does not lead to specific experimental predictions because the
details of the dynamics depend on the Hamiltonian. For a given Hamiltonian the equations of
motion (equation (7)) allow calculation of the dynamic structure factor (at wavelengths long
enough that the static structure factor may be regarded as constant), as well as of the frequency
dependence of the dielectric constant, bulk modulus, shear modulus, and specific heat.

The simplest non-trivial Hamiltonian has a second-order free-field term and a perturbing
third-order term. This case has been solved to second order in the perturbation [6, 7]. Both for
the dielectric loss and for the loss part of the bulk modulus, the theory predicts losses varying
with frequency as ω−1/2 for ωτ � 1, where τ = 1/�0 is the alpha relaxation time, whereas
the losses are predicted to follow the Debye prediction (∝ ω) on the low-frequency side of
the loss peak (ωτ 	 1). This prediction appears to be consistent with experiment (but more
work is needed). Most data are fitted by stretched exponentials with exponents β in the range
0.3–0.7. Moreover, based on data for ten organic liquids it was reported in 2001 that whenever
time–temperature superposition applies accurately (whenever low-lying Johari–Goldstein beta
processes do not interfere with the alpha process), the high-frequency loss is close to ω−1/2 [26].

6. Outlook

The themes proposed here as central for understanding viscous liquid dynamics point to
a simple framework for the dynamics, a framework based on a standard time-dependent
Ginzburg–Landau equation. Ultra-locality of the Hamiltonian simplifies things considerably;
it follows from the assumption of long-wavelength dominance of the dynamics, an assumption
that may be justified by various theoretical arguments [5, 7]. The latter, of course, would
also be consistent with a more accurate Hamiltonian that includes the well-known static
correlations over short length scales. The proposed framework appears to be simpler than many
contemporary theories (as mentioned, most theories attempt to simultaneously solve both the
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non-Arrhenius and the non-exponential problem). Therefore, it seems worthwhile to pursue
this approach until it may be proven inadequate.
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