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Pressure-energy correlations in liquids. II. Analysis and consequences
Nicholas P. Bailey,a� Ulf R. Pedersen, Nicoletta Gnan, Thomas B. Schrøder, and
Jeppe C. Dyre
DNRF Center “Glass and Time,” IMFUFA, Department of Sciences, Roskilde University,
P.O. Box 260, DK-4000 Roskilde, Denmark

�Received 3 July 2008; accepted 25 August 2008; published online 14 November 2008�

We present a detailed analysis and discuss consequences of the strong correlations of the
configurational parts of pressure and energy in their equilibrium fluctuations at fixed volume
reported for simulations of several liquids in the previous paper �N. P. Bailey et al., J. Chem. Phys.
129, 184507 �2008��. The analysis concentrates specifically on the single-component Lennard-Jones
system. We demonstrate that the potential may be replaced, at fixed volume, by an effective power
law but not simply because only short-distance encounters dominate the fluctuations. Indeed,
contributions to the fluctuations are associated with the whole first peak of the radial distribution
function, as we demonstrate by an eigenvector analysis of the spatially resolved covariance matrix.
The reason the effective power law works so well depends crucially on going beyond single-pair
effects and on the constraint of fixed volume. In particular, a better approximation to the potential
includes a linear term, which contributes to the mean values of potential energy and virial, but little
to their fluctuations, for density fluctuations which conserve volume. We also study in detail the zero
temperature limit of the �classical� crystalline phase, where the correlation coefficient becomes very
close, but not equal, to unity, in more than one dimension; in one dimension the limiting value is
exactly unity. In the second half of the paper we consider four consequences of strong
pressure-energy correlations: �1� analyzing experimental data for supercritical argon we find 96%
correlation; �2� we discuss the particular significance acquired by the correlations for viscous van
der Waals liquids approaching the glass transition: For strongly correlating viscous liquids
knowledge of just one of the eight frequency-dependent thermoviscoelastic response functions
basically implies knowledge of them all; �3� we reinterpret aging simulations of ortho-terphenyl
carried out by Mossa et al. �Eur. Phys. J. B 30, 351 �2002��, showing their conclusions follow from
the strongly correlating property; and �4� we briefly discuss the presence of the correlations �after
appropriate time averaging� in model biomembranes, showing that significant correlations may be
present even in quite complex systems. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2982249�

I. INTRODUCTION

In the companion paper1 to this work, referred to as Pa-
per I, we detailed the existence of a strong correlation be-
tween the equilibrium fluctuations of the configurational
parts of pressure and energy in several model liquids. Recall
that �instantaneous� pressure p and energy E have contribu-
tions both from particle momenta and positions,2

p = NkBT�p1, . . . ,pN�/V + W�r1, . . . ,rN�/V , �1�

E = K�p1, . . . ,pN� + U�r1, . . . ,rN� , �2�

where K and U are the kinetic and potential energies, respec-
tively, and T�p1 , . . . ,pN� is the “kinetic temperature,”2 pro-
portional to the kinetic energy per particle. The configura-
tional contribution to pressure is the virial W, which for a
translationally invariant potential-energy function U is
defined2 by

W = −
1

3�
i

ri · �ri
U , �3�

where ri is the position of the ith particle. Note that W has
dimension energy. In the case of a pair potential Upair

=�i�jv�rij�, the expression for the virial becomes2

Wpair = −
1

3�
i�j

rijv��rij� = −
1

3�
i�j

w�rij� , �4�

where w�r��rv��r�.
It is the correlation between U and W that we are inter-

ested in, quantified by the correlation coefficient

R =
��W�U�

	���W�2�	���U�2�
. �5�

Paper I documented the correlation in many systems, show-
ing that this is often quite strong, with correlation coefficient
R�0.9, while in some other cases it was found to be weak or
almost nonexistent. The latter included in particular models
with additional significant Coulombic interactions. The pur-
pose of this paper is twofold. First we give a comprehensivea�Electronic mail: nbailey@ruc.dk.
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analysis of the source of the correlation in the simplest
“strongly correlating” model liquid, the standard single-
component Lennard-Jones �SCLJ� fluid. Paper I presented
briefly an explanation in terms of an effective inverse power-
law potential. Here we elaborate on that in greater detail and
go beyond it. Second we discuss a few observable conse-
quences and applications of the strong correlations. These
range from their measurement in a real system to applica-
tions to systems as diverse as supercooled liquids and
biomembranes.

In Sec. II we present a detailed analysis for the SCLJ
case, first in terms of an effective inverse power law with
exponent 
18. This accounts for the correlation at the level
of individual pair encounters by assuming that only the re-
pulsive part of the potential, corresponding to distances less
than the minimum of the potential rm, is relevant for fluctua-
tions, and that this may be well approximated by an inverse
power law. The value 18 is significant since this explains the
“slope” � defined as

� �	���W�2�
���U�2�

, �6�

observed to be 
6 for Lennard-Jones systems �Paper I�. The
slope is exactly n /3 for a pure inverse power-law potential
with exponent n, a case with perfect W ,U correlation �Paper
I�. Section II continues with a discussion of the SCLJ crystal,
which is also strongly correlating. This would seem to invali-
date the dominance of the repulsive part since only presum-
ably distances around and beyond the potential minimum are
important, at least at low and moderate pressure. In this case
the correlation can be explained only when summation over
all pairs is taken into account, thus the correlation emerges as
a collective effect. There is a connection between the slope
obtained in this way and that given by the effective inverse
power law, in fact, they are quite similar. The third subsec-
tion in Sec. II gives a more systematic analysis of which
regions dominate the fluctuations in the liquid phase using an
eigenvector decomposition of the spatially resolved covari-
ance matrix. This matrix represents the contributions to the
�co-�variances of potential energy and virial from different
pair separations. It is demonstrated that the region around the
minimum of the potential plays a substantial role. The final
subsection in Sec. II provides a synthesis of the insights from
the previous subsections, resulting in an “extended effective
power-law approximation,” which includes a linear term.
The main point is that a linear term in the pair potential will
contribute to the mean values, but not to fluctuations, of W
and U, if the volume is constant.

In Sec. III we discuss some consequences, starting by
considering whether the instantaneous correlations can be re-
lated to a measurable quantity in the normal liquid state, and
demonstrating this with data for supercritical argon, finding a
correlation coefficient of 0.96. Next we focus on conse-
quences for highly viscous liquids, where time-scale separa-
tion implies that instantaneous correlation between virial and
potential energy can be related to a correlation between the
time-averaged pressure and energy. The third subsection dis-

cusses consequences for aging, while the fourth briefly dis-
cusses connections with recent work by Heimburg and Jack-
son on biomembranes.

Finally, Sec. IV concludes with an outlook reflecting on
the broader significance of strong correlation and its impli-
cations for the understanding of liquids, particularly in the
context of viscous liquids �which has been our main motiva-
tion throughout this work�.

II. ANALYSIS

A. The effective inverse power law

In this section we consider the SCLJ system in the hope
that it is simple enough that a fairly complete understanding
of the cause of strong correlations is possible. Recall that
R�0.9 for a wide range of states �Paper I�. In order to un-
derstand the numerology better we consider a generalized
Lennard-Jones potential, denoted by LJ�a ,b� �a�b�,

vLJ
a,b�r� � ��/r�a − ��/r�b, �7�

although the standard LJ�12,6� case will be used for most
examples. Starting from the idea that short distances domi-
nate fluctuations and that the observed correlations are sug-
gestive of a power-law interaction, we show that at a given
density, the LJ potential may be approximated by a single
effective inverse power law over a range from a little less
than � �where vLJ changes sign� to around rm, the location of
the potential minimum �rm=21/6� for LJ�12,6��, covering an
energy range of approximately −� to +2�, where � is the
well-depth. At first sight, one might expect that if this were at
all the case, the effective power would be less than a, some-
how a mixture of the two exponents a and b. It was noticed
by Ben-Amotz and Stell,3 however, that the repulsive core of
the LJ�12,6� potential may approximated by an inverse
power law with an exponent of 
18, in agreement with our
data �Paper I�. To see how we get an exponent greater than a,
note that the exponent n in an inverse power law can be
extracted from different ratios of derivatives,

vPL�r� = Ar−n + B , �8�

where B is a constant. This implies that

n =
− rvPL� �r�

�vPL�r� − B�
=

− rvPL� �r�
vPL� �r�

− 1 =
− rvPL� �r�

vPL� �r�
− 2 = ¯

�9�

since successive differentiation gives factors of n, then n+1,
etc. For a potential v�r�, which is not an inverse power law,
these expressions provide different definitions of a local ef-
fective power-law exponent �assuming v�r�→0 as r→��,

n�0��r� � − rv��r�/v�r� ,

n�1��r� � − rv��r�/v��r� − 1,

�10�
n�2��r� � − rv��r�/v��r� − 2,

n�p��r� � − rv�p+1��r�/v�p��r� − p .
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A plot of the first four of these is shown in Fig. 1 for
LJ�12,6�. All converge to a=12 at short r, as they must. All
increase with increasing r until the denominator vanishes,
but more slowly, the higher the order p. In particular, when
n�p� diverges it is straightforward algebra to show that n�p+1�

has the value a+b+ p. So n�0� diverges at r=� where the
potential is zero, and is therefore unsuitable for characteriz-
ing the range which we expect to dominate the fluctuations,
from energy +� to energy −� �it is also sensitive to the pres-
ence of an additive constant, unlike the others�. Instead we
use n�1�, which at r=� �the zero of v and the divergence of
n�0�� takes the value a+b, or 18 for the LJ�12,6�. Taking the
factor 3 in the denominator of the virial into account, this
would explain the slope 
6 observed in the simulations �Pa-
per I�. However first we should see how well an inverse
power law with this exponent actually fits the LJ potential.
We denote the point matching point r0. With the exponent
fixed, we are free to choose the multiplicative constant A and
the additive one B to match the slope and value at r=�=r0;
the resulting expression is �4 /3���r /��−18−1�. This is plotted
in Fig. 2�a� along with vLJ. We can match at different values
of r by finding the expression for n�1��r� for the generalized
LJ potential,

n�1��r� = b +
a − b

1 − �b/a��r/��a−b , �11�

which becomes 6+12 / �2− �r /��6� for LJ�12,6�.4

The fact that we can choose a function �an inverse power
law in this case� to match a given function and its first two
derivatives is nothing special by itself; after all, a Taylor
series does the same. Examples of matching power laws and
Taylor series up to fourth order, at different values of r0, are
shown in Fig. 2�b�, where the errors vLJ�r�−vPL�r� or
vLJ�r�−vTaylor�r� are plotted. The magnitude of the errors are
similar in the range of r shown but note that in Taylor series
it was necessary to match third derivatives at r0 to achieve

this, so the inverse power-law description is more compact.
Moreover the power-law representation is much more useful
when it comes to representing the fluctuations of total energy
and virial because an inverse power law �and therefore the
error� flattens out at a constant value at larger r, whereas the
polynomial nature of the Taylor expansion means that away
from the point of expansion, the error diverges rapidly
�Fig. 2�a��.

We can test the validity of the power-law approximation
for representing fluctuations in W and U as follows. For the
purpose of computing the energy and virial of a configura-
tion due to a pair interaction, all necessary information is
contained in the instantaneous radial distribution function
�RDF� �Ref. 2�

g�r,t� �
2

N	
�
i�j


�r − rij�t��/�4�r2� , �12�

where 	=N /V with N and V being the number of particles
and the system volume, respectively. From this U and W may
be computed as

FIG. 1. Effective power-law exponents defined by derivative ratios of dif-
ferent orders �Eqs. �10�� for the standard Lennard-Jones potential LJ�12,6�.
All converge to 12 at small r; they diverge when the derivative in the
denominator vanishes, which happens for larger r, the higher the order of
this derivative. The term “effective inverse power law” in this paper refers to
a power law chosen to match n�1� at some point r0�rm
1.12�, the potential
minimum where n�1� diverges. A convenient choice is to match at r=�,
giving 18. In Secs. II B and II C we show that n�2��r� plays an important role
in the understanding of fluctuations associated with pair distances close to
the potential minimum �rm
1.12��.

FIG. 2. �Color online� �a� The Lennard-Jones potential vLJ�r� fitted by an
effective power-law potential vPL�r�=Ar−n+B covering the most important
part of the repulsive part of the potential. The exponent n was chosen to be
18, which optimizes agreement at r0=�, where the effective power law
exactly matches not just vLJ but also its first two derivatives. Also shown are
the Taylor series expansions of vLJ�r� about r=rm up to third and fourth
orders. The RDF g�r�−1 �at T=80 K,p=0� is also shown as a convenient
reference for thinking about where contributions to potential energy and
virial fluctuations come from. �b� Error made in approximating vLJ�r� with
different effective power laws matched at different points r0 and with Taylor
expansions up to third order about the same point.

184508-3 Pressure-energy correlations in liquids. II J. Chem. Phys. 129, 184508 �2008�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



ULJ�t� =
N

2
	�

0

�

dr4�r2g�r,t�vLJ�r� , �13�

WLJ�t� = −
N

6
	�

0

�

dr4�r2g�r,t�wLJ�r� . �14�

Now, ULJ�t� is rewritten as an inverse power-law potential
plus a difference term, ULJ�t�=UPL�t�+Udiff�t�, where

UPL�t� =
N

2
	�

0

�

dr4�r2g�r,t�vPL�r� , �15�

Udiff�t� =
N

2
	�

0

�

dr4�r2g�r,t��vLJ�r� − vPL�r�� , �16�

and similarly WLJ�t�=WPL�t�+Wdiff�t�. We do not include the
additive constant with the power-law approximation; for
practical reasons the potential function should be close to
zero at a cutoff distance rc �adding a constant to vPL would
only add an overall constant to UPL�. We refer to UPL�t� and
WPL�t� as “reconstructed” potential energy and virial, respec-
tively, to emphasize that the configurations are drawn from a
simulation using the LJ potential, but these quantities are
calculated using the inverse power law. In Fig. 3, we show a
scatter plot of the true and reconstructed values of U and W
for the same state point �p=0, T=80 K� as was shown in
Figs. 1 and 2�a� of Paper I. Here the inverse power-law ex-
ponent was chosen to minimize the variances of the differ-
ence quantities ���Udiff�2� and ���Wdiff�2�. These are mini-
mized for n=19.3 and 19.1, respectively, so we choose the
value 19.2, which corresponds to matching the potentials at
the distance of 1.015�. Note that what are actually plotted
are the deviations from the respective mean values—the
means �ULJ� and �UPL�, for example, do not coincide. How-
ever the fluctuations are clearly highly correlated, and the
data lie quite close to the blue dashed lines, marking slope
unity. Specifically, the correlation coefficients are 0.946 for
the potential energy and 0.984 for the virial. We can also

check how much of the variance of ULJ is accounted for by
UPL, ���UPL�2� / ���ULJ�2�, and similarly for W. This is a sen-
sible quantity because the “PL” and “diff” parts are almost
uncorrelated for the choice n=19.2 �cross terms account for
less than 1% of the total variance in each case�. We find 92%
for U and 95% for W. Thus we see that the power law gives
to a quite good approximation the fluctuations of W and U.
The correlation follows from this with � given by one-third
of the effective inverse power-law exponent, or 6.4 for this
state point. The measured slope �Eq. �6�� was 6.3, corre-
sponding to an effective exponent of 18.9, about 2% smaller
than the 19.3. A simpler way to determine the exponent
would be three times the slope, although for some applica-
tions it could be advantageous to optimize the fit as de-
scribed here.

B. Low-temperature limit: Anharmonic vibrations
of a crystal

We turn our attention now to the fact that the correlation
persists even for the crystallized samples �seen in Paper I in
the lower left part of Fig. 4 and in Fig. 6�. This is not trivial
because the physics of solids, both crystalline and amor-
phous systems, is generally dominated by fluctuations about
mechanically stable structures, and therefore presumably
�except perhaps at very high pressure� by the form of the
potential near its minimum rm, i.e., including distances larger
than the minimum. Thus the idea of the effective inverse
power law would seem to be inappropriate here, in particular,
since the effective exponent n�1� diverges at rm—and there is
apparently no reason why one should get a correlation as
strong as in the liquid and with so similar a slope. In fact,
there is an interval of r between rm and the minimum of the
pair virial −w�r� /3 where v�r� increases and −w�r� /3 de-
creases, which would lead, if anything, to a negative corre-
lation between W and U, when considering individual pair
interactions. Moreover, one would expect that a harmonic
approximation of the potential near the ground-state configu-
ration would be an accurate representation of the dynamics
in the low-temperature limit, but as we will see, the har-
monic approximation actually implies negative W, U corre-
lation, which is not observed. In this subsection we show
why the strong positive correlation persists, and why the
slope � changes little going from liquid to crystal �at con-
stant volume�. Although the classical dynamics of a crystal is
apparently of little importance, since in reality quantum ef-
fects dominate, it turns out to be very instructive to consider
the low-temperature �T→0� classical limit since what we
find has significance also in the liquid phase �Sec. II C�. The
key ideas are �1� that the positive correlation emerges only
after summing over all interactions—it is therefore a collec-
tive effect rather than a single-pair effect, and �2� the con-
straint of fixed volume—it is important to recall from Paper
I that the virial-potential-energy correlation only appears un-
der fixed-volume conditions; different volumes give approxi-
mately the same slope but different offsets �Fig. 4 in Paper I�.

FIG. 3. �Color online� Scatter plot of true and reconstructed potential energy
and virial fluctuations �dimensionless units� for the LJ liquid, where the
reconstructed values UPL and WPL were calculated from the true configura-
tions, assuming an inverse power-law potential with exponent of 19.2; mean
values have been subtracted off. The state point is the same as in Fig. 1 of
Paper I �zero average pressure, NVT ensemble�. The correlation coefficients
are displayed in the figures; the dashed lines indicate slope unity. The fact
that actual and reconstructed fluctuations correlate strongly, and with slopes
close to unity, support the idea that the W ,U correlation is derived from an
effective inverse power-law potential dominating fluctuations.
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1. The one-dimensional crystal

For maximum clarity we start by considering the sim-
plest possible case, a one-dimensional �1D� crystal with pe-
riodic boundary conditions and only nearest-neighbor inter-
actions. We also suppose that the lattice spacing ac is equal
to the minimum of the potential; this assumption is not made
in the subsequent treatment of the three-dimensional �3D�
crystal. In a crystal the particles stay close to their equilib-
rium positions. It therefore makes sense to expand the pair
energy �we have in mind a general pair potential with a
single minimum� as a Taylor series, leaving out constant
terms but keeping third order terms,

U = �
i
�1

2
k2�ri,i+1 − rm�2 +

1

6
k3�ri,i+1 − rm�3

�
1

2
k2S2 +

1

6
k3S3, �17�

where ri,i+1 is the distance between particles i and i+1, kp is
the pth derivative of the pair potential at r=rm, and we in-
troduce the notation

Sp � �i�ri,i+1 − rm�p.

The virial is

W = −
1

3�
i
�k2ri,i+1�ri,i+1 − rm� +

k3ri,i+1

2
�ri,i+1 + rm�2 ,

�18�

which, by writing ri,i+1=rm+ �ri,i+1−rm�, can be rewritten as

W = −
1

3
�k2rmS1 + k2S2 +

k3rm

2
S2 +

k3

2
S3 . �19�

Note that U involves S2 and S3 while W also has a first-order
term with S1. Evaluating the sum S1 is very simple: ri,i+1 can
be expressed in terms of displacements from the equilibrium
positions ui as ri,i+1=rm+ui+1−ui, giving for S1

S1 = �
i

�ui+1 − ui� . �20�

Such a sum of consecutive relative displacements gives the
change in separation of the two end particles. However the
total sum must vanish because by periodic boundary condi-
tions the “end particles” are the same particle �it does not
matter which one�, therefore S1=0. In fact, periodic bound-
ary conditions are not necessary, only that the length is fixed.
Since both U and W involve at lowest order S2, which is
positive semidefinite, at sufficiently low temperature we may
drop the S3 terms. Combining Eqs. �17� and �19� we find

W = −
1

3

k2 + k3rm/2
k2/2

U =
n�2��rm�

3
U , �21�

where we have written the coefficient in terms of the p=2
effective power-law exponent defined in Eq. �10�. For LJ�a,
b� the coefficient evaluates to �a+b+1� /3, which is 6.33 for
LJ�12,6�, similar to the observed slope. This short calculation
demonstrates the main point: summing over all interactions
makes the first-order term in the virial vanish, and the

second-order term is proportional to the second-order term in
the potential energy. It is also worth noting that for a purely
harmonic crystal we can take k3=0, in which case Eq. �21�
implies that there is perfect negative correlation, with a slope
of −2 /3.

2. The three-dimensional crystal

We now generalize this to 3D crystals, which means al-
lowing for transverse displacements. The calculation in-
volves breaking overall sums into sums over 1D chains
within the crystal. We also relax the condition that the lattice
constant coincides with the potential minimum, which is
only realistic at low pressures. We still assume only nearest-
neighbor interactions are relevant �this will be justified in the
next subsection�. Generalization to a disordered �amorphous�
solid5 should be possible, since we observe the correlation to
hold also in that case. The calculation would necessitate,
however, some kind of disorder averaging, which is beyond
the scope of this paper.6

We start by considering a simple cubic �sc� crystal of
lattice constant ac, with interactions only between nearest
neighbors, so that the equilibrium bond length is ac for all
bonds. The fact that such a crystal is mechanically unstable
is irrelevant for the calculation. We shall see later that the
result applies also to, for instance, a face-centered-cubic �fcc�
crystal. We have the same kind of expansions about r=ac as
above for U and W, except a linear term is now included
since we no longer assume that ac=rm. An index b is used to
represent nearest-neighbor bonds, and as for the 1D case, we
define

Sp � �
b

�rb − ac�p. �22�

We then have for U and W

U = �
p=1

�
kp

p! �
bonds b

�rb − ac�p = �
p=1

�
kp

p!
Sp, �23�

3W = �
p=1

�

−
kp

�p − 1�! �
bonds b

rb�rb − ac�p−1

= − �
p=1

�
kpac

�p − 1�!
Sp−1 − �

p=1

�
kp

�p − 1�!
Sp

= − k1acS0 − �
p=1

� � kp

�p − 1�!
+

kp+1ac

p!
Sp, �24�

where kp is the pth derivative of the pair potential at r=ac. It
is convenient to define coefficients Cp

U and Cp
W of the dimen-

sionless quantities Sp /ac
p,

Cp
U �

kpac
p

p!
, �25�

Cp
W � − � kpac

p

�p − 1�!
+

kp+1ac
p+1

p!
 . �26�

Dropping the constant term −k1acS0 in W, since it plays no
role for the fluctuations, we then have
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U = �
p=1

�

Cp
USp

ac
p , �27�

3W = �
p=1

�

Cp
WSp

ac
p . �28�

The ratio of the corresponding coefficients is given by the
pth order effective inverse power-law exponent,

Cp
W/Cp

U = − �p +
kp+1ac

kp
 = n�p��ac� . �29�

Thus for in the limit of small ac, where these are all similar
and close to the repulsive exponent in the potential �Fig. 1�,
the two expansions will be proportional to each other to an
infinite order. Also worth noting for later use is that the Cp’s
in each series increase with p. For example,

C2
U/C1

U =
k2ac

2k1
= −

1

2
�n�1��ac� + 1� , �30�

C2
W/C1

W =
k2ac + k3ac

2/2
k1 + k2ac

= −
1

2
�n�1��ac� + 1�

n�2��ac�
n�1��ac�

. �31�

For ac between � and rm, for LJ�12,6�, the absolute values of
these ratios lie in the intervals 9.5–� and 6.7–9.5,
respectively.

From dimensional considerations the variance of Sp is
proportional to N�u

2p, where �u
2�T is the variance of single-

particle displacements. At low T, therefore, we expect the S1

terms to dominate, which causes a problem since k1 changes
its sign at rm, corresponding to the divergence of n�1�. In 1D
this was avoided by the exact vanishing of S1. In 3D S1 does
not vanish exactly but retains terms second order in displace-
ments, and so contributes similarly to S2. It turns out �see
below� that S1 and S2 /ac have similar variances and signifi-
cant positive correlation, but in view of Eqs. �30� and �31�
this is not even necessary for a strong W, U correlation—the
coefficients of the S1 are relatively small so that it is still the
S2 terms that dominate. That is essentially the explanation of
the strong correlations in the crystal, but we now continue
the analysis in more detail in order to investigate how good it
becomes in the limit T→0. These general considerations will
be of use again in the following subsection, where we make
a similar expansion of the fluctuations in the liquid state.

We need to evaluate S1 and S2 in terms of the relative
displacements ub of the pair of particles involved in bond b.7

We keep only terms up to second order in displacements
since we are interested in the limit of low temperatures, so all
S3 terms in the expansion are dropped. In a sc crystal, all
nearest-neighbor bonds are parallel to one of the coordinate
�crystal� axes. Consider all bonds along the x-axis. These
may be grouped into rows of collinear bonds. The sum along
a single row is almost analogous to the 1D case except
that the bond length rb now also involves transverse
displacements,

Sp
row = �

b,row
�rb − ac�p. �32�

We write rb explicitly in terms of the relative displacements
and expand the resulting square root, dropping terms of
higher order than the second in u,

rb − ac = ��ac + ub,x�2 + ub,y
2 + ub,z

2 �1/2 − ac

= ac�1 +
2ub,x

ac
+

ub,x
2

ac
2 +

ub,y
2 + ub,z

2

ac
2 1/2

− ac

= ac�1 +
1

2
�2ub,x

ac
+

ub,x
2 + ub,y

2 + ub,z
2

ac
2 

−
1

8
�2ub,x

ac
2 − ac

= ub,x +
ub,y

2 + ub,z
2

2ac
. �33�

Now, the sum over bonds in a given row of the parallel
displacements ub,x vanishes for the same reasons as in the 1D
case. However when we sum the contributions to S1 over the
row, there are also second-order terms coming from the
transverse displacements. Extending the sum to all bonds
parallel to the x-axis, we have part of S1, denoted as S1

x,

S1
x = �

b,x

ub,y
2 + ub,z

2

2ac
= �

b,x

�ub,��2

2ac
, �34�

where � indicates the component of the relative displace-
ment vector perpendicular to the bond direction. Writing it
this way allows us to easily include the bonds parallel to the
y- and z-axes, and the total S1 is given by

FIG. 4. �Color online� Plots of predicted W ,U correlation coefficient for
T→0 for a crystal of LJ�12,6� particles for different degrees of correlation
between the quantities S1ac and S2, and of low-temperature simulation data.
The first three curves �counting from the bottom� assume that the variances
of S1ac and S2 are equal, and that their correlation coefficients RS are 0, 0.5,
and 0.75, respectively. The fourth curve �up triangles� results from consid-
ering an sc lattice and assuming individual particles have uncorrelated
Gaussian-distributed displacements, leading to specific values for the vari-
ances and covariance of S1ac and S2. The fifth �left triangles� shows the
same estimate for a fcc lattice. The right triangles are data from an NVT
simulation of a perfect fcc crystal at T=0.0002 K. The conclusion from this
figure is that R does not tend to unity as T→0, although it becomes ex-
tremely close. The inset shows the corresponding slopes � �Eq. �6��.
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S1 = �
b

�ub,��2

2ac
. �35�

Next we calculate S2 to second order in the relative displace-
ments ub. Starting with S2

x, the part containing only bonds in
the x-direction, using Eq. �33� we get

S2
x = �

b,x
ub,x

2 = �
b,x

�ub,��2, �36�

where � means the part of the relative displacement that is
parallel to the bond. Including all bonds,

S2 = �
b

�ub,��2. �37�

Now we can return to our expressions for the potential-
energy fluctuations �Eqs. �23� and �24��, keeping only terms
in S1 and S2,

�U = k1S1 +
k2

2
S2 =

k1

2ac
�

b

�ub,��2 +
k2

2 �
b

�ub,��2. �38�

Similarly, for the virial

3W = − k2acS1 −
k3ac

2
S2 − k1S1 − k2S2

= − � k1

2ac
+

k2

2
�

b

�ub,��2 − �k2 +
k3ac

2
�

b

�ub,��2.

�39�

3. Statistics of S1 and S2

It is clear that the � and � sums are not equal, although
they must be correlated to some extent. If written in terms of

single-particle displacements rather than relative displace-
ments for bonds, a term such as �ub,��2 for a bond in the
x-direction becomes

�uR+acî,x − uR,x�2 = uR+acî,x
2 + uR,x

2 − 2uR+acî,xuR,x, �40�

where R is a lattice vector used to index particles. Summing
over bonds gives

S2 = 2�
R

�uR�2 − 2 � �para. cross terms� , �41�

where the cross terms are products of the parallel compo-
nents of displacements on neighboring particles. For S1 we
have something similar,

S1ac = 2�
R

�uR�2 − 2 � �perp. cross terms� , �42�

where here the cross terms involve transverse components.
Since the term �R�uR�2 appears in both S1 and S2, these are
correlated to some extent, but not 100% since different cross
terms appear �note that if it were 100%, then W and U would
both be proportional to S2�S1 and also correlated 100%�.
Before considering as to what extent they are correlated, let
us see how much of a difference it makes. Suppose the quan-
tities S1ac and S2 have variances �1

2 and �2
2, respectively, and

are correlated with correlation coefficient RS. Using the co-
efficients introduced in Eqs. �25� and �26�

Uac
2 = C1

U�S1ac� + C2
US2,

�43�
3Wac

2 = C1
W�S1ac� + C2

WS2.

From this we obtain an expression for the W ,U correlation
coefficient by forming the appropriate products and taking
averages,

R =
C1

UC1
W�1

2 + C2
UC2

W�2
2 + �C1

UC2
W + C1

WC2
U��1�2RS

	�C1
U�2�1

2 + �C2
U�2�2

2 + 2C1
UC2

U�1�2RS
	�C1

W�2�1
2 + �C2

W�2�2
2 + 2C1

WC2
W�1�2RS

. �44�

This estimation of R is plotted in Fig. 4 as a function of
lattice constant for RS=0, 0.5 and 0.75, for the case �1=�2.
Clearly the value of RS makes little difference in the region
of interest, ac
rm or less, where R is above 0.99. Note that
all curves drop dramatically as the lattice constant ap-
proaches the inflection point �k2=0� of the potential �the pre-
cise value at which R becomes zero depends on the statistics
of S1ac and S2�. In this regime, however, higher-order terms
in displacements, including S3, S4, etc., become more impor-
tant, and because of Eq. �29� their inclusion tends to restore
R to a high value �we have not calculated their effect in
detail�. Also plotted is the estimation of R obtained by as-
suming that particle displacements are uncorrelated and
Gaussian distributed with variance �u

2 for each �Cartesian�
component, corresponding to an Einstein model of the vibra-
tional dynamics. In this case tedious but straightforward al-

gebra allows the means and �co-�variances of S1ac and S2 to
be calculated explicitly for a given lattice. The results for sc
and fcc are given in Table I. Notice that the variance of S2 is
somewhat larger than that of S1ac, while their means are
equal. This can be traced to the fact that the latter contains

TABLE I. Statistics of S1ac and S2 assuming uncorrelated particle displace-
ments with variance �u

2 for each Cartesian component, for sc and fcc lattices.

sc fcc

�S1ac� 6N�u
2 12N�u

2

�S2� 6N�u
2 12N�u

2

var�S1ac� 30N�u
4 108N

var�S2� 36N�u
4 120N

cov�S1ac ,S2� 24N�u
4 96N

RS 0.73 0.84
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twice as many cross terms as the former, and a factor of 1 /2,
so the contribution from such terms to the mean is the same
in both cases, while the contribution to the variance is
smaller for S1ac. From the �co-�variances we find the corre-
lation coefficient RS=0.73 and RS=0.84 for the sc and fcc
cases, respectively. These are also plotted in Fig. 4. A more
exact calculation would take into account the true normal
modes of the crystal but would yield little of use: Data from
the crystal simulations at very low temperature, also plotted
in Fig. 4 agree within estimated numerical errors with both
the sc and fcc estimates. The key point of this figure—that R
is close to but less than 1—apparently would change little by
taking the true crystal dynamics into account. In particular, it
is important to note that if R=1 exactly, then this would be
true no matter what kind of weighted average of configura-
tions is taken �what kind of ensemble�, so a value less than
unity in the Einstein approximation is sufficient to disprove
the hypothesis that R→1 as T→0.

4. The role of the coefficients C1,2
U,W

Since the detailed statistics of S1 and S2 have little effect
on the W ,U correlation, it must be mainly due to the numeri-
cal values of the coefficients C1,2

U,W. We can estimate the ef-
fect of these by assuming that S1ac and S2 have equal vari-
ance and are uncorrelated �RS=0�. Then according to Eq.
�44� the W ,U correlation coefficient is

R =
C1

UC1
W + C2

UC2
W

	�C1
U�2 + �C2

U�2	�C1
W�2 + �C2

W�2
, �45�

which has the form of the cosine of the angle between two
vectors CU��C1

U ,C2
U� and CW��C1

W ,C2
W�. Thus the close-

ness of R to unity indicates that these vectors are nearly
parallel. The tangents of the angles these vectors make with
the C1 axis in �C1 ,C2�-space are given by Eqs. �30� and �31�;
clearly the two angles become equal in the limit of small ac,
where n�1� and n�2� converge. On the other hand, for ac
rm

where k1=0 and n�1� diverges, the two vectors are

CU = �0,k2/2�ac
2,

�46�
CW = − �k2,k2 + k3ac/2�ac

2

= − k2ac
2�1,1 − 1

2 �n�2� + 2��

= k2ac
2�− 1,

n�2�

2
 .

Clearly CU is parallel to the C2 axis, while CW deviates from
it by an angle of the order of 2 /n�2�
1 /10. The W ,U corre-
lation coefficient is then R=cos�1 /10�
1− 1

2 �1 /10�2


0.995, in agreement with the bottom curve �circles� in the
main part of Fig. 4. In this case �ac=rm, k1=0, S1ac and S2

uncorrelated with equal variance�, we can obtain a simple
expression for the slope

� =	�C1
W�2 + �C2

W�2

�C1
U�2 + �C2

U�2

=
k2

3
	1 + �n�2�/2�2

�k2/2�2

=
2

3
	1 + �n�2�/2�2 


n�2�

3
�47�

consistent with the result from the 1D case.
Thus when we look at the “collective” correlations in the

crystal, we naturally get a slope involving the effective
power-law exponent n�2�. Since the latter evaluated at the
potential minimum is similar to n�1� at the zero of the poten-
tial, the slope is similar to that seen in the liquid phase. On
the other hand, it is more typical to think about crystal dy-
namics starting from a harmonic approximation, adding in
anharmonic terms when necessary for higher accuracy. How
does it work here? If we set k3=0 as well as k1=0, so we
consider the purely harmonic system with the nearest-
neighbor distance at the minimum of the potential, then we
have CU= �0,k2 /2� and CW=−�k2 /3��1,1�. These are not
close to being parallel, so the correlation will be weaker
�coming mainly from that of S1 and S2� but more particularly,
it will be negative, thus qualitatively different from the an-
harmonic case. Thus the presence of the k3 affects the results
at arbitrarily low temperature, so the harmonic approxima-
tion is never good enough. This is reminiscent of thermal
expansion, which does not occur for a purely harmonic crys-
tal. In fact, the Grüneisen parameter for a 1D crystal with
nearest neighbor interactions may be shown8 to be equal to
1+n�2��ac� /2.

Finally we consider the more realistic fcc crystal. First
note that Eqs. �35� and �37� are unchanged as long as ac is
now interpreted as the nearest-neighbor distance rather than
the cubic lattice spacing: Each position in a fcc lattice has 12
nearest neighbors, four located in each of three mutually or-
thogonal planes. Taking the xy and parallel planes first, the
neighbors are located along the diagonal directions with re-
spect to the cubic crystal axes. As before we can do the sum
first over bonds forming a row, then over all parallel rows.
For a given plane there are two orthogonal sets of rows, but
the form of the sums in Eqs. �35� and �37� includes all bonds.
The results of the calculation of �co-�variances of S1 and S2

in the Einstein model of the dynamics are changed in a way
that, in fact, increases their mutual correlation and therefore
the W ,U correlation, as shown in Table I and Fig. 4.

To summarize this subsection, the correlation in the crys-
tal is an anharmonic effect that persists in the limit T→0. It
works because �1� the constraint of fixed volume causes the
terms in U and W that are first order in particle displace-
ments to cancel and �2� the coefficients of the “transverse”
second-order terms are small compared to those of the “par-
allel” ones, a fact which can be traced to the resemblance of
the potential to a power law at distances shorter than the
potential minimum. “Small” here means of the order of
1 /10, which leads to over 99% correlation because R is es-
sentially the cosine of this quantity. In one dimension there
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are no transverse displacements and the correlation is 100%
as T→0; in more than one dimension as T→0 the correla-
tion is very close to unity but never 100%.

To gain a more complete insight into the fluctuations, we
next present an analysis that clarifies exactly the contribu-
tions to fluctuations from different distances, without ap-
proximations, now again with the liquid case in mind.

C. Fluctuation modes

In the last two subsections we considered single-pair ef-
fects �associated with r�rm� and collective effects �associ-
ated with r
rm�, respectively. In this section we focus on
contributions from particular pair separations without keep-
ing track of which actual particles are involved. We identify
the contributions to U and W coming from all pairs whose
separation lies within a fixed small interval of separations r;
fluctuations in the number of such pairs generate fluctuations
in the contributions. By considering all intervals we can sys-
tematically analyze the variances and covariances of U and
W in terms of pair separation, which is the purpose of this
section.

The instantaneous values of U and W are given by Eq.
�13� and �14�, generalized to an arbitrary pair potential. By
taking a time �or ensemble� average we get the correspond-
ing expressions for �U� and �W� in terms of g�r���g�r , t��,
the usual thermally averaged RDF. Now we consider the
variances ���U�2� and ���W�2�, and the covariance
��U�W�. Starting with, for example, �U�t�
=4�	N /2�0

�drr2v�r��g�r , t�, where �g�r , t��g�r , t�−g�r�,
averaging and taking everything except �g�r , t� outside the
average, we have

���U�2� = �4�	N/2�2�
0

�

dr1r1
2�

0

�

dr2r2
2v�r1�v�r2�

��g�r1,t��g�r2,t�� , �48�

���W�2� = �4�	N/2�2�
0

�

dr1r1
2�

0

�

dr2r2
2w�r1�w�r2�

��g�r1,t��g�r2,t�� , �49�

��U�W� = �4�	N/2�2�
0

�

dr1r1
2�

0

�

dr2r2
2v�r1�w�r2�

��g�r1,t��g�r2,t�� . �50�

Clearly the quantity, which contains the essential statistical
information about the fluctuations, is ��g�r1 , t��g�r2 , t��, the
covariance of the RDF with itself. Its magnitude is inversely
proportional to N, so that ���U�2� is proportional to N, as it
should be. The variances of U and W and their covariance
are integrals of this function with different weightings. To
make further progress, we integrate the integrands for the
variances over M M “blocks” in r1, r2-space. This is
equivalent to considering the energy, say, as the following
sum of M interval energies,

U�t� = �
a=1

M

Ua�t� , �51�

where the interval energy Ua�t� is defined as the integral
between boundaries ra and ra+1,

Ua�t� �
N

2
	�

ra

ra+1

dr4�r2g�r,t�v�r� . �52�

The virial can be similarly represented as a sum of con-
tributions from the same r-intervals, W�t�=�a=1

M Wa�t�. From
now on we consider the primary fluctuating quantities to be
Ua�t� and Wa�t� and seek to understand the correlation be-
tween their respective sums in terms of correlations between
particular Uas and Was. In order to achieve a reasonable
degree of spatial resolution, we do not make the intervals
�blocks� too big, and choose an interval width of 0.05. This
gives M =42 intervals: U1 is the contribution to the energy
coming from pairs with separation in the range of 0.85–0.9,
marking the lower limit of nonzero RDF, while U42 refers to
the range 2.9–2.95, marking the cutoff distance of the poten-
tial used here. We shall see explicitly that only distances up
to around 1.4 contribute significantly to the fluctuations. We
denote deviations from the mean as, e.g., �Ua=Ua− �Ua�
with the angle brackets representing the time �or ensemble�
average.

We are interested in the covariance of the Ua’s with
themselves �including ��Ua�Ub�, a�b�, the Wa’s with
themselves, and the Ua’s with the Wa’s. These covariances
are just what is obtained by integrating the integrands in Eqs.
�48�–�50� over the block defined by the corresponding inter-
vals for r1 and r2. These values are conveniently represented
using matrices �UU, �WW, and �UW defined as

��UU�ab = ��Ua�Ub� , �53�

��WW�ab = ��Wa�Wb� , �54�

and

��UW�ab = ��Ua�Wb� . �55�

Note that the sum of all elements of �UU is the energy vari-
ance since it reproduces the double integral of Eq. �48�; simi-
larly, for the other two matrices

���U�2� = �
a,b

��UU�ab, �56�

���W�2� = �
a,b

��WW�ab, �57�

��U�W� = �
a,b

��UW�ab. �58�

At this point we make one further transformation. Define
new matrices �UU*, �WW*, and �UW* by

�UU* � �UU/���U�2� , �59�

�WW* � �WW/���W�2� , �60�

and
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�UW* � �UW/	���U�2����W�2� . �61�

This is equivalent to normalizing the Ua’s by the standard

deviation 	���U�2� and the Wa’s by 	���W�2�, respectively.
The elements of �UU*, �WW*, and �UW* can be thought of as
representing, in some sense, what fraction of the total
�co-�variance is contributed by the corresponding block. Nor-
malized in this way, the sum over all elements of �UU* and
�WW* is exactly unity and that for �UW* equals the correla-
tion coefficient R,

�
a,b

��UU*�ab = 1, �62�

�
a,b

��WW*�ab = 1, �63�

�
a,b

��UW*�ab = R . �64�

To make a direct analysis of all possible covariances, we
now construct a larger 2M 2M matrix by placing �UU* and
�WW* on the diagonal blocks, and �UW* and its transpose on
the off-diagonal blocks,

�Sup � � �UU* �UW*

��UW*�T �WW*
� . �65�

This “supercovariance” matrix contains all the information
about the covariance of the contributions of energy and virial
with each other. This symmetric and positive semidefinite9

matrix can be separated into additive contributions by spec-
tral decomposition as

�Sup = �
�

��v�v�
T , �66�

where v� is the normalized eigenvector whose �non-
negative� eigenvalue is ��—this follows from the diagonal-
ization of the matrix. Thus we decompose the supercovari-
ance into a sum of parts. This method of accounting for the

variance of many variables is the basis of the technique
known as principal component analysis �PCA�, which is a
workhorse of multivariate data analysis.10 The eigenvectors
represent statistically independent “modes of fluctuation;”
the corresponding eigenvalue is the part of the variance
within the 2M-dimensional space accounted for by the mode.
PCA is most effective when the eigenvectors associated with
the largest few eigenvectors account for most of the variance
in the set of fluctuating quantities. For example, in the ex-
treme case where one eigenvector accounts for over 99% of
the variance, we could claim that all the different apparently
random fluctuations of the different contributions to energy
and virial were moving in a highly coordinated way, such
that a single parameter �say, the value of any one of them�
would be enough to give the values of all.

In our case we are not necessarily interested in the
modes with the largest eigenvalues: a large eigenvalue could
describe a fluctuation mode where the individual Ua’s and
Wa’s change a lot but their respective sums do not; this
would correspond to the contributions from one interval in-
creasing while those in others decrease, in such a way that
the total is roughly constant. What we really want are those
modes that contribute a lot to the variance in energy and
virial and to their covariance. This is easy to do by summing
all elements in the appropriate block of the matrix ��v�v�

T,
where v�, �� are the normalized eigenvector and eigenvalue
in question.11 In Table II we list the first ten eigenvalues in
decreasing order, along with their contributions to the nor-
malized variances of energy, virial, and their covariance—
the normalized covariance being equal to RWU. In addition,
an “effective slope” for each mode is obtained from the �th
eigenvector as

�� =	���W�2�
���U�2�

�a=M+1
2M �v��a

�b=1
M �v��b

= �
�a=M+1

2M �v��a

�b=1
M �v��b

, �67�

where the numerator gives the sum of virial contributions for
that mode, and the denominator the sum of energy contribu-

TABLE II. First ten eigenvalues of the supercovariance matrix �Eq. �65��, their fractional contributions to the
three �co-�variances �Eqs. �62�–�64��, and their effective slopes �Eq. �67�� for the SCLJ liquid with parameters
as in Fig. 1 of Paper I �	=34.6 mol / l, T=80 K�. Contributions from the dominant four eigenvectors are in
boldface. The last three rows list sums of the third, fourth, and fifth columns over, respectively, the dominant
four, the first ten, and all 2M eigenvectors. The sum of the fifth column over all eigenvectors should be
compared �see Eq. �64�� to the R=0.939 listed in Table I of Paper I.

Index Eigenvalue U-var. contr. W-var. contr. Corr. coeff. contr. Effective slope

1 1.73 0.01 0.01 0.01 5.38
2 1.55 0.04 0.06 0.05 7.63
3 1.11 0.24 0.15 0.19 4.98
4 0.87 0.25 0.25 0.25 6.34
5 0.78 0.20 0.14 0.17 5.27
6 0.58 0.11 0.17 0.13 7.80
7 0.34 0.02 0.05 0.03 10.14
8 0.23 0.01 0.03 0.01 13.67
9 0.13 0.00 0.01 0.00 116.19
10 0.10 0.01 0.00 −0.00 −3.63
�3,. . .,6 ¯ 0.797 0.709 0.742 ¯

�1,. . .,10 ¯ 0.884 0.877 0.849 ¯

�1,. . .,2M ¯ 1.000 1.000 0.938 ¯
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tions. The factor in front, which is numerically equal to the
overall slope �, accounts for the standard deviation that we
normalized the Ua’s and Wa’s to define the matrices �UU*,
�WW*, and �UW*.

In the above equation, it looks like �� is determined by
the overall �, whereas we could expect more the opposite,
that the overall slope is somehow an average of the indi-
vidual effective mode slopes. It looks like this because of the
normalization choice we made in determining the decompo-
sition. We can relate the �� to the � in a more meaningful
way by writing the sums in Eqs. �62� and �63� in terms of the
spectral decomposition Eq. �66�,

1 =
�a,c�a,c

WW

�b,d�b,d
UU =

���a,c�M���v��a�v��c

���b,d�M���v��b�v��d
�68�

=
������a�M�v��a�2

������b�M�v��b�2 �69�

=
�������/��2��a�M�v��a�2

������b�M�v��b�2 , �70�

where in the last step Eq. �67� was used. Multiplying both
sides by �2 we get an expression for the latter as a weighted
average of the squares of the ��,

�2 =
��X���

2

��X�

, �71�

where the weight of a given mode slope �� is �apart from
normalization� X������a�M�v��a�2, combining the eigen-
value and the square of the summed “energy part” of the
corresponding eigenvector.

Now we can notice that the third, fourth, fifth, and sixth
eigenvectors, to be referred to respectively as EV3, EV4,
EV5, and EV6, account for most of the three �co-�variances
�totalling 0.80 out of 1.00, 0.71 out of 1.00, and 0.74 out of
0.94 for variance of U, variance W, and correlation coeffi-
cient, respectively�. These four eigenvectors are represented
in Fig. 5. We observe that, as expected, most of the fluctua-
tions are associated with pair separations well within the first
peak of the RDF, which extends to nearly r=1.6� �see Fig.
2�a��. In fact, not much takes place beyond r=1.3�. Interest-
ingly, of the four, EV5, accounting for less that 20% of the
variances, is the only one that directly fits the idea that the
fluctuations take place at short distances, while the other
modes extend out to r
1.3�, beyond even the inflection
point of the potential �around 1.24��.

It is instructive to repeat the fluctuation mode analysis
for a nonstrongly correlating liquid, the Dzugutov liquid at
T=0.65. We do not show the full results here but they can be
summarized as follows. There are two modes that are con-
centrated at distances less than and around the first minimum
of the potential. These have slopes of 5.73 and 5.01 and
contribute a total of about 0.35–0.4 to the variances and cor-
relation coefficient. Since the latter is 0.585 at this tempera-
ture, these modes account for most of it. There are four more
modes that contribute more than 5% to the variances, but the
slopes are quite different: −9.34, 7.20, 28.43, and −0.67.
These four modes all include significant contributions at dis-

tances corresponding to the peak in v�r�; clearly this extra
peak in the potential and the associated peak in the pair-virial
w�r� give rise to components in the fluctuations which cannot
be related in the manner of an effective inverse power law,
even though fluctuations occurring around the minimum can.
As a result the overall correlation is rather weak.

D. Synthesis: Why the effective power law works
even at longer distances

We can apply ideas similar to those used in the crystal
analysis to understand why the correlation holds even for
modes active at separations larger than the minimum, why
the slopes are similar to the effective power-law slopes, and
why the effective power law works as well as it does. Recall
the essential ingredients of the crystal analysis: the impor-
tance of summing over all pairs, the fixed-volume constraint,
and the increase in the magnitude of coefficients of the Tay-
lor expansion with order. These are equally valid here, but
now we use them to constrain the allowed deviations in g�r�
from its equilibrium value, instead of displacements from a
fixed equilibrium configuration. Define the resolved pair-
density 	�r� by

	�r� � �N/2�4�r2	g�r� . �72�

The requirement that this integrates to the total number of
pairs in the system, �0

�	�r�dr=N�N−1� /2, gives a global
constraint on fluctuations of 	�r�,

�
0

�

�	�r�dr = 0. �73�

A typical fluctuation will have peaks around the peaks of
g�r�, but only those near the first peak will significantly af-

FIG. 5. �Color online� Representations of the eigenvectors 3, 4, 5, and 6 of
the supercovariance matrix. Squares represent variation in Ua values for a
mode; diamonds represent variation in Wa values.
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fect the potential energy and virial �Sec. II C�. We can as-
sume that, for a dense liquid not close to a phase transition,
almost any configuration � may be mapped to a nearby ref-
erence configuration �ref whose RDF is identical to the ther-
mal average g�r�. “Nearby” implies that the particle displace-
ments relating the � and �ref are small compared to the
interparticle spacing.12 These displacements define the devia-
tion �	�r� of 	�r� from its equilibrium value. Mapping to
�ref gets around the absence of a unique equilibrium configu-
ration as in the crystal case.

Let us consider what restriction this places on �	�r�;
these are illustrated in Fig. 6. Because the displacements are
small, �	�r� must be local: a peak in �	�r� at some r must
be compensated by an opposite peak at a nearby location rref

rather than one far away �thus example �b� in the figure is not
allowed�—this corresponds to a bond having length r in the
actual configuration and length rref in �ref �Fig. 6�c��. Finally
fixed volume implies that a fluctuation cannot involve any
substantial change in the mean nearest-neighbor bond length.
This may be expressed mathematically as the near vanishing
of the first moment of �	�r�,

�
first peak

r�	�r�dr � 0. �74�

Thus, if a particle is displaced toward a neighbor on one side,
it is displaced away from a neighbor on the opposite side,
thus the resulting fluctuation is expected to look like Fig.
6�d�, which is characterized by vanishing zeroth and first
moments. Note that we restrict the integral to the first peak.
The principle that fluctuations of �	�r� must be local allows
us to write a version of Eq. �73� similarly restricted:

�
first peak

�	�r�dr = 0. �75�

Equations �74� and �75� cannot be literally true, since there
must be contributions from fluctuations at whatever cut-off
distance is used to define the boundary of the first peak. For
instance, there could be a fluctuation such as Fig. 6�d� cen-
tered just to the right of this cutoff, so that only the first
positive part was included in the integrals. We can ignore
these contributions if we assume that the potential is trun-
cated and shifted to zero at the boundary, as is standard in
practice �although usually at larger distances�. Then fluctua-
tions right at the boundary do not contribute to the potential
energy, The fact that the only contributions to the integral are
at the boundary is a restatement of the locality of
fluctuations.13

Now we make a Taylor series expansion of v�r� around
the maximum rM of the first peak of g�r�, using U
=�0

�	�r�v�r�dr,

�U = �
first peak

�	�r��v�rM� + k1�r − rM�

+
1

2
k2�r − rM�2 + ¯ 

� �
p

kp

p!
Mp. �76�

As for the crystal kp is the pth derivative of v�r� at the
expansion point �rM here�, while Mp is the pth moment of
�	�r�,

Mp � �
first peak

�	�r��r − rM�pdr . �77�

A similar series exists for W, with coefficients given by
Eq. �26�,

3�W = �
p

Cp
W

�rM�p Mp. �78�

The moments play a role exactly analogous to the sums Sp in
the analysis of the crystal. The near vanishing of M1 corre-
sponds to that of S1 in the crystal case, both following from
the fixed-volume constraint; as there, it probably holds only
to first order in particle displacements �except in one dimen-
sion where it is exact�, but we have not tried to make a
detailed estimate as we did with the crystal. Recalling that
the extra contributions to the M2 terms will be small anyway,
in view of Eqs. �30� and �31�, we simply set M1=0, so the
two series become �noting that M0=0 also�

�U = �
p=2

�

Cp
U Mp

rM
p ,

�79�

3�W = �
p=2

�

Cp
W Mp

rM
p ,

where the coefficients Cp
U,W are those defined in Eqs. �25�

and �26�, but with rM replacing ac. The points made in

FIG. 6. �Color online� Intuitive picture of allowed and disallowed fluctua-
tions in 	�r�: �a� is not allowed because it violates the global constraint
��	�r�=0; �b� satisfies the global constraint but not locality; �c� could cor-
respond, for instance, to a single bond becoming shorter, but this is incon-
sistent with fixed volume �vanishing first moment—such a change cannot
happen in isolation�; and �d� is allowed—it corresponds, for example, to a
single particle being displaced toward one neighbor and away from another.
Thus one bond shortens and one lengthens.
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Sec. II B regarding the relation between the two series are
equally valid here. At orders p=2 and higher, corresponding
coefficients are related by the n�p��rM�, which are always all
above a=12. We expect from dimensional considerations
that the variance of Mp is proportional to NwFP

2p, where wFP


0.3rM is the width of the first peak of g�r�. Thus moments
of higher order should contribute less, and therefore M2

should dominate, implying that the proportionality between
�U and �W is essentially n�2��rM�. This is in the range of
15–24 for rM in the range of 1.05�–1.15�, giving slopes
between 5 and 8, similar to those observed in the fluctuation
modes. Unlike the low-T limit of the crystal, we cannot as-
sume that the fluctuations are particularly localized around
rM, so it is not surprising that a range of slopes show up.
Notice that we do not see arbitrarily high mode slopes cor-
responding to the divergence of n�2��r� at the inflection point
of the potential. Rather, for modes centered there, the as-
sumption that we can neglect higher moments of the fluctua-
tions no longer holds and there is an interpolation between
n�2��r� and n�3��r� which is smaller �but still greater than
a=12�.

We can now understand also why the potential and virial
fluctuations, as “reconstructed” using the effective power-
law potential �Fig. 3�, agree so well with the true fluctua-
tions, even though the fluctuation mode analysis shows that
there are significant contributions from distances around and
beyond the minimum, well away from the matching point r
=1.015�. Figure 7 shows the LJ�12,6� potential, the n
=19.2 power law �which gave the best fit in Sec. II A�, and
their difference, vdiff�r��vLJ�r�−vPL�r�. The latter is obvi-
ously very small and flat near the matching point but grows
significantly in an approximately linear fashion at distances
larger than r
1.05�. In view of Eqs. �16� and �72�, a fluc-
tuation of Udiff can be written as

�Udiff = �
0

�

vdiff�r��	�r�dr , �80�

which has the form of an inner product of functions. Vanish-
ing fluctuations of Udiff follows if either �1� vdiff is identically

zero, or �2� it is nonzero, but orthogonal to the space of
allowed �	�r�. Given that vdiff is not particularly small ex-
cept close to the matching point �see Fig. 7�, the fact that
Udiff fluctuations are relatively small even though they are
associated with distances away from the matching point in-
dicates that point �2� must hold approximately. Since allowed
�	�r� functions are those with no constant or linear term �see
Eqs. �73� and �74��, functions orthogonal to these are those
with only a constant and linear term: f�r�=Cf0�r�+Df1�r�,
where f0�r� is a constant function and f1�r� is a linear func-
tion with zero mean over the range of interest. It is clear in
Fig. 7 that vdiff is not exactly of this form, but it can be well
approximated by such a function. This approximation can be
checked by standard methods of the linear algebra of func-
tion spaces. First we choose a range �r1 ,r2� over which func-
tions are to be defined. For purposes this should include the
range of significant contributions to W and U �Fig. 5�. We
choose r1=0.95� and r2=1.4�. The normalized, mutually
orthogonal basis vectors f0�r� and f1�r� are then given by

f0�r� = 1/	r2 − r1,

�81�

f1�r� =	 12

�r2 − r1�3 �r − �r1 + r2�/2� .

The part of vdiff�r� that is spanned by these basis func-
tions is v0f0+v1f1, where vi��r1

r2f i�r�vdiff�r�dr is the inner
product of vdiff�r� and the corresponding basis vector. We
define vdiff

P �r� as the part of vdiff�r� projected onto the space
of allowed functions,

vdiff
P �r� = vdiff�r� − v0f0�r� − v1f1�r� . �82�

This function is also plotted in Fig. 7, where it can be seen
that it is certainly small compared to vdiff�r� itself. More
importantly, it is also small compared to the projected part of
vLJ�r�, vLJ

P �r�, defined analogously, because it is this that ex-
plains why the fluctuations of Udiff are small compared to
those of ULJ �or equivalently UPL�. This may be quantified by
noting that the ratio of their norms is 0.09, which indicates
how orthogonal vdiff�r� is to the space of allowed �	�r�. If
we projected out only the constant term from vdiff�r� and
vLJ

P �r� �the a priori more obvious way to compare the size of
two functions� the ratio of norms would be 0.50, and it
would not be obvious why vPL does as good a job as it does.
Thus, again, constant-volume constraint, implying Eq. �74�,
is important.

The above discussion applies equally well to the virial.
We can now write a more accurate approximate expression
for vLJ�r�, which we call the extended effective inverse
power-law approximation,

vLJ�r� � Ar−n + B + Cr , �83�

where A, B, and C are constants. The associated pair virial
�w�r��rv��r�� is then

wLJ�r� � − nAr−n + Cr , �84�

which has the same form. In both cases the term Cr contrib-
utes to the mean value but not the fluctuations because
�r	�r�dr is nonzero, while �r�	�r�dr�0 for those �	�r�

FIG. 7. �Color online� The true potential vLJ�r�, the best effective power law
vPL�r� �in the sense that the fluctuations in potential energy and virial and
reproduced most faithfully�, and their difference vdiff�r�. Also shown are the
projected versions vLJ

P �r� and vdiff
P �r� where the constant and linear terms

�determined over the interval 0.95� to 1.4�� have been subtracted off. It is
the projected functions that should be compared in order to make a state-
ment about the smallness of vdiff�r� relative to vLJ�r� since only the projected
functions contribute to fluctuations of total potential energy.
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which are allowed at fixed volume. Note also that the con-
tribution to the mean values from Cr will depend on volume
because g�r� and, hence, 	�r� do. Thus we can see that al-
though there are significant contributions to fluctuations
away from the matching point where the power law fits the
true potential well, these are essentially equal for both the
power law and the true potential because the difference be-
tween the two potentials in this region is almost orthogonal
to the allowed fluctuations in 	�r�. This also explains why
the fluctuation only holds at fixed volume �which would not
be explained by the assumption that short-distance encoun-
ters dominate the fluctuations�.

The extended power-law approximation, determined em-
pirically by the projection procedure, provides an alternative
way to understand why the effective exponent n�1� evaluated
at r
� agrees well with n�2� evaluated around the minimum
rm. For the extended effective power-law approximate �Eq.
�83��, we get

n�1��r� =
− n�n + 1�Ar−�n+1�

− nAr−�n+1� + C
− 1,

�85�

n�2��r� =
n�n + 1��n + 2�Ar−�n+2�

n�n + 1�Ar−�n+2� − 2 = n .

Note that n�2��r� is constant and equal to the exponent n of
the power law, while n�1��r� only approaches n when r is
small enough that C in the denominator can be neglected �for
the true potential n�2��r� increases with r and eventually di-
verges �see Fig. 1��. This emphasizes the greater usefulness
of n�2� in identifying the effective power-law exponent. Re-
call also that our analysis earlier in this section indicates that
n�2��r�, involving that the second and third derivatives of v�r�
near its minimum, is more fundamentally the cause of the
W ,U correlations, explaining something like 80% of the cor-
relation in the liquid phase and over 99% in the crystal
phase. The fact that Eq. �83� is a good approximation for the
Lennard-Jones potential pushes the correlation to over 90%
also in the liquid phase.

To summarize the last two subsections, we have shown
here that the source of the fluctuations is indeed pair separa-
tions within the first peak, although only a relatively small
fraction of the variances come from the short-r region where
the approximation of the pair potential by a power law is
truly valid. We have also seen how the Taylor-series analysis
�which involves the crucial step of taking a sum over all
pairs� may be extended to cover the whole first peak area,
with all terms giving roughly the same effective slope, given
essentially by the second-order effective exponent:
�
n�2��rm� /3. The fact that this matches the first-order ef-
fective exponent at the shorter distance r
� is equivalent to
the extended effective power-law approximation �Eq. �83��,
which given a constant volume is what justifies the replace-
ment of the potential by a power law �empirically demon-
strated in Fig. 3�.

III. SOME CONSEQUENCES OF STRONG PRESSURE-
ENERGY CORRELATIONS

This section gives examples of consequences of strong
pressure-energy correlations. The purpose is to show that
these are important, whenever present. Clearly, more work
needs to be done to identify and understand all consequences
of strong pressure-energy correlations.

A. Measurable consequences of instantaneous
W ,U correlations

The observation of strong W ,U correlations is of limited
interest if it can only ever be observed in simulations. How
can we make a comparison with experiment? In general,
fluctuations of dynamical variables are related to thermody-
namic response functions,14–16 for example, those of U are
related to the configurational part of the specific heat, CV

conf.
The latter is obtained by subtracting off the appropriate ki-
netic term, which for a monatomic system such as argon is
3NkB /2. The virial fluctuations, however, although related to
the bulk modulus, are not directly accessible because of an-
other term that appears in the equation, the so-called hyper-
virial, which is not a thermodynamic quantity.2 Fortunately
this difficulty can be handled.

Everything in this section refers to the NVT ensemble.
First we define the various response functions and configu-
rational counterparts, the isothermal bulk modulus KT, CV,
and the “pressure coefficient,” �V,

KT � − V� ��p�
�V


T
, KT

conf � KT −
NkBT

V
,

CV � � �E

�T


V
, CV

conf � CV −
3

2
NkB,

�86�

�V � � ��p�
�T


V
, �V

conf � �V −
NkB

V
,

pconf � p −
NkBT

V
=

W

V
.

We also define cV�CV /V. The following fluctuation formu-
las are standard �see, for example, Ref. 2�

���W�2�
kBTV

=
NkBT

V
+

�W�
V

− KT +
�X�
V

, �87�

���U�2�
kBT2 = CV −

3

2
NkB = CV

conf, �88�

��U�W�
kBT2 = V�V − NkB = V�V

conf. �89�

Here X is the so-called “hypervirial,” which gives the change
in virial upon an instantaneous volumetric scaling of posi-
tions. It is not a thermodynamic quantity and cannot be de-
termined experimentally, although it is easy to compute in
simulations. For a pair potential v�r�, X is a pair-sum,
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X = �
pairs

x�r�/9, �90�

where x�r�=rw��r�. If we use the extended effective power-
law approximation �including the linear term� discussed in
the last section, then from Eq. �84� we get x�r��n2Ar−n

+Cr. Summing over all pairs, and recalling that when the
volume is fixed the Cr term gives a constant, we have a
relation between the total virial and total hypervirial,

X = �n/3�W + const. �91�

This constant survives, of course, when we take the ther-
mal average �X�, as do the corresponding constants in
�U� , �W�. To get rid of these constants, one possibility would
be to take derivatives with respect to T, but this can be prob-
lematic when analyzing experimental data. Instead we sim-
ply compare quantities at any temperature to those at some
reference temperature Tref; this effectively subtracts off the
unknown constants. Taking first the square of the correlation
coefficient, we have

R2 =
���U�W��2

���U�2����W�2�
, �92�

which implies

R2 ���W�2�
kBTV

=
1

kBTV

���U�W��2

���U�2�
. �93�

Inserting the fluctuation formulas �Eqs. �87� and �89�� gives

R2��p� − KT +
�X�
V
 =

1

kBTV

�kBT2V�V
conf�2

kBT2CV
conf �94�

=T
��V

conf�2

cV
conf . �95�

Defining quantities Ã��p�−KT+ �X� /V and B
�T��V

conf�2 /cV
conf �the reason for the tilde on A will become

clear�, we have R2Ã=B. This is an exact relation. To deal
with the hypervirial we first take differences with the quan-
tities at Tref, assuming that the variation in R is much smaller

than the Ã and B variations:

R2�Ã − Ãref� = B − Bref, �96�

where Ãref= Ã�Tref�, etc. Ã− Ãref written out explicitly is

Ã − Ãref = ��p� − KT� − ��p�ref − KTref� +
�X� − �X�ref

V
. �97�

Next we use the power-law approximation to replace �X�
− �Xref� with �n /3���W�− �Wref��. This is the crucial point:
whereas it is often not a good approximation that �X�
= �n /3��W� due to the unknown additive constants discussed
above, subtracting two state points considers changes in �X�
and �W� with temperature. Recall from Sec. III B of Paper I
that the changes in mean values ��W� and ��X� between
�nearby� temperatures are related as the linear regression of
the fluctuations of those quantities at one �nearby or interme-
diate� temperature. The linear relation between subtracted
mean values holds if the instantaneous W and X are strongly

correlated in the region of interest. The latter is confirmed by
our simulations; indeed the correlation of instantaneous val-
ues of X and W is even stronger than for W and U, with
approximately the same slope �Fig. 8�. Thus Eq. �97� be-
comes

Ã − Ãref � ��p� − KT� − ��p�ref − KTref� +
n

3

�W� − �W�ref

V

�98�

=A − Aref, �99�

where A��p�−KT+ �n /3���W� /V� �no tilde� contains quanti-
ties that are all directly accessible to experiment except for
the effective power-law exponent n. This can be obtained by
noting that if there were perfect correlation, one could inter-
change �W and �n /3��U; thus,

�V
conf

CV
conf/V

=
�V

conf

cV
conf =

��U�W�
���U�2�

=
n

3
, �100�

which gives for A

A = �p� − KT +
�p�conf�V

conf

cV
conf . �101�

Thus to compare with experiment one should plot
B−Bref against A−Aref; the prediction, in the case of near
perfect correlation, R2�1, is a straight line with slope close
to unity. Figure 9 shows data for argon for T between 200
and 660 K. Argon was chosen because as a monatomic sys-
tem there are no rotational or vibrational modes contributing
to the heat capacity and it is therefore straightforward to
subtract off the kinetic part. Also we restrict to a relatively
high temperature to avoid quantum effects. The correlation
coefficient R given as the square root of the slope of a linear
fit is 0.96. Note that the assumed constancy of R is confirmed
�going to lower temperatures there are increasingly large de-

FIG. 8. �Color online� Scatter plot of instantaneous virial and hypervirial �in
dimensionless units� for a SCLJ system at 	=1.0, T=0.80 �NVE�. The cor-
relation coefficient between these quantities is 0.998. The hypervirial is the
main contribution to the configurational part of the bulk modulus; it gives
�after dividing by volume� the change in virial for a given relative change in
volume. The sizable constant term in the linear fit shows that Eq. �91� is a
poor approximation. The slope is 4.9, about 10% smaller than �
5.4 for
this state point. The difference reflects the limit of the validity of the power-
law description—in fact, a more detailed analysis shows that the relation
between W and X is dominated by n�3��r�, which is smaller than n�2��r�
�Fig. 1�.
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viations�. The importance of subtracting from a reference
state point is highlighted by the inset, which shows that
A�T�=B�T� does not hold: There is a correlation in the fluc-
tuations which is not present in the full equation of state.4

B. Time averaging: Pressure-energy correlations
in highly viscous liquids

We have observed and discussed in Paper I that when
volume is held constant, the correlations tend to become
more perfect with increasing T, while along an isobar �con-
sidering still fixed-volume simulations, choosing the volume
to give a prescribed average pressure� they become more
perfect with decreasing T. This fact makes the presence of
correlations highly relevant for the physics of highly viscous
liquids approaching the glass transition. Basic questions such
as the origins of nonexponential relaxations and non-
Arrhenius temperature dependence are still vigorously de-
bated in this field of research.17–20 Instantaneous correlations
of the kind discussed in this work would seem to be relevant
only to the high frequency properties of a highly viscous
liquid; their relevance to the long time scales on which struc-
tural relaxation occurs follows from the separation of time
scales as explained below.

A question that is not actively debated in this research
field �but see, e.g., Refs. 21–23� is whether a single param-
eter is enough to describe a highly viscous liquid. The con-
sensus for more than 30 years is that with few exceptions
these liquids require more than just one parameter, a conclu-
sion scarcely surprising given their complexity. The meaning
of “having a single parameter” can be understood as follows.
Following a sudden change in volume, both pressure and
energy relax to their equilibrium values over a time scale of

minutes or even hours, sufficiently close to the glass transi-
tion. If a single parameter governs the internal relaxation of
the liquid, then both pressure and energy relax with the same
time scale, and, in fact, the normalized relaxation functions
are identical.21,23 This behavior can be expressed in the fre-
quency domain, as a certain quantity, the dynamic
Prigogine–Defay ratio, being equal to unity.23 A key feature
of highly viscous liquids is the separation of time scales
between the slow structural �“alpha”� relaxation �up to order
seconds� and the very short times �of order picoseconds�
characterizing the vibrational motion of the molecules. This
separation allows a more direct experimental consequence of
W ,U correlations than that described in the previous subsec-
tion: Suppose a highly viscous liquid has perfectly correlated
W ,U fluctuations. When W and U are time averaged over,
say, one-tenth of the alpha relaxation time ��,24 they still
correlate 100%. Since the kinetic contribution to pressure is
fast, its time average over �� /10 is just its thermal average,
and thus the time-averaged pressure equals the time average
of W /V plus a constant. Similarly, the time-averaged energy
equals the time-averaged potential energy plus a constant.
Thus the fluctuations of the time-averaged W and U equal the
slowly fluctuating parts of pressure and energy, so these slow
parts will also correlate 100% in their fluctuations. In this
way we get from the nonobservable quantities W and U to
the observable ones E and p �we similarly averaged to ob-
serve the correlation in the SQW system in Paper I�. The
upper part of Fig. 10 shows normalized fluctuations of en-
ergy and pressure for the commonly studied Kob–Andersen
binary Lennard-Jones system25 �referred to as KABLJ in Pa-
per I�, time averaged over one-tenth of ��. In the lower part
we show the dynamic Prigogine–Defay ratio,12 which in the
NVT ensemble is defined as follows:

�TV��� � −
cV�����1/�T�����

T��V�����2 . �102�

Here �T=1 /KT is the isothermal compressibility and � de-
notes the imaginary part of the complex frequency-
dependent response function. A way to interpret this quantity
can be found by considering the fluctuation-dissipation theo-
rem expressions for the response functions. For example the
frequency-dependent constant-volume specific heat cV��� is
given26 by

cV��� =
���E�2�

kBT2 −
i�

kBT2�
0

�

��E�0��E�t��exp�− i�t�dt ,

�103�

where E is the total energy. Taking the imaginary part we
have

cV���� = −
�

kBT2 �L���E�0��E�t�����, �104�

FIG. 9. �Color online� Data from the NIST database �Ref. 45� for supercriti-
cal argon at three different densities covering the temperature range of
200 K–660 K showing a strong virial-potential-energy correlation
�R=0.96� �reproduced from Ref. 4�. Here KT�−V���p� /�V�T,
pconf� p−NkBT /V=W /V �V

conf����p� /�T�V−NkB /V, and cV
conf�CV /V

− �3 /2�NkB /V. The diagonal line corresponds to perfect correlation. The
inset shows “unsubtracted” values for A and B; the fact that the data do not
fall on the solid line indicates that a power-law description does not hold for
the full thermodynamics.

184508-16 Bailey et al. J. Chem. Phys. 129, 184508 �2008�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



where we use L to represent Laplace transformation. Simi-
larly,

�1/�T����� =
�V

kBT
�L���p�0��p�t����� �105�

and

�V���� = −
�

kBT2 �L���E�0��p�t�����. �106�

Forming the Prigogine–Defay ratio then gives, after cancel-
ling factors of kB, T, V, and �,

�TV��� =
�L���E�0��E�t������L���p�0��p�t�����

�L���E�0��p�t�����2 .

�107�

We can see that the right-hand side has a similar structure to
a correlation coefficient, if we take the inverse square root.
So in a loose sense the dynamic Prigogine–Defay ratio can

be thought of as the inverse square of a correlation coeffi-
cient, referred to a particular time scale. This gives an intui-
tive reason for why it is in general greater or equal to unity,
with equality only achieved in the case of perfect
correlation.23 The lower panel of Fig. 10 shows this quantity
for a range of frequencies for the KABLJ system. It clearly
approaches one at low frequencies and stays within 20% of
one in the main relaxation region. In the sense above, this
corresponds to R�0.9, or strongly correlation.

The line of reasoning presented here opens for a new
way of utilizing computer simulations to understand ultravis-
cous liquids. Present-day computers are barely able to simu-
late 1 �s of real-time dynamics, making it difficult to predict
the behavior of liquids approaching the laboratory glass tran-
sition. We find that pressure-energy correlations are almost
independent of viscosity, however, which makes it possible
to make predictions regarding the relaxation properties even
in the second or hour range of characteristic times. Thus if a
glass-forming liquid at high temperatures �low viscosity� has
very strong pressure-energy correlations �R
1�, its eight
thermoviscoelastic response functions at ultraviscous condi-
tions may basically be expressed in terms of just one, irre-
spective of temperature �or viscosity�.

C. Aging and energy landscapes

We now discuss the significance of the present results for
the interesting results reported in 2002 by Mossa et al.27 who
studied the inherent states �ISs� visited by the Lewis-
Wahnström model28 of the glass-forming liquid ortho-
terphenyl �OTP� during aging, i.e., the approach to equilib-
rium. An IS is a local minimum of the so-called potential-
energy landscape �PEL� to which a given configuration is
mapped by steepest-descent minimization.29,30 The PEL for-
malism involves modeling the distributions and averages of
properties of the IS in the hope of achieving a compact de-
scription of the thermodynamics of glass-forming
liquids.31,32 The thesis of Mossa et al.27 and of the previous
work33 is that an equation of state can be derived using this
formalism which is valid even for nonequilibrium situations.
This involves including an extra parameter, namely, the av-
erage IS �potential� energy, �eIS�, so that the equation of state
takes the form

p�T,V,�eIS�� = pIS��eIS�,V� + pvib�T,V,�eIS�� , �108�

where pIS is the ensemble averaged IS pressure—for a given
configuration it is the pressure of the corresponding IS—and
pvib� p− pIS. The usefulness of splitting in this way lies in
the fact that pIS does not explicitly depend on T.

At equilibrium �eIS� is determined by V and T. The con-
clusion of Ref. 22 is that knowledge of �eIS� in nonequilib-
rium situations is enough to predict the corresponding pres-
sure �given also T and V�. This was based on the extensive
simulations of various aging schedules. Thus the authors
concluded that the ISs visited by the system while out of
equilibrium must be in some sense the “same” ones sampled
during equilibrium conditions. Same is effectively defined by
their results that averages of various IS properties �V, eIS, pIS,
as well as a measure of the IS curvature� are all related to

FIG. 10. �Color online� Upper panel, time-averaged �over �� /10, where ��

is the structural relaxation time� normalized fluctuations of E and p in NVT
simulations of the Kob–Andersen �Ref. 20� binary Lennard-Jones �KABLJ�
system, plotted against time in units of ��
103�AA

	m /�AA. The density was
1.2�AA

−3 , and the temperature was 0.474�AA. Middle panel, imaginary parts of
the three response functions −cv���, −�V���; and 1 /�T���, scaled to the
maximum value. Lower panel, dynamic Prigogine–Defay ratio for the same
simulation. The approach toward unity at frequencies smaller than the loss-
peak frequency �
1 /��� is exactly equivalent to the correlation between
time-averaged quantities shown in the upper panel �reproduced from
Ref. 19�.
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each other the same way under nonequilibrium conditions as
under equilibrium conditions. It was similarly found that the
volume could be determined from �eIS� following a pressure
jump in a pressure-controlled simulation. On the other hand,
subsequent work by the same group found that this was not
at all possible for glassy water during compression/
decompression cycles.34

Now, our results �Paper I� for the same OTP model show
that it is a strongly correlating liquid. Thus we expect a gen-
eral correlation between individual, not just average, values
of pIS, the inherent state pressure �which lacks a kinetic term
and therefore equals the inherent state virial divided by vol-
ume� and eIS, for a given volume. Therefore, for any given
collection of ISs with the same volume—not just equilibrium
ensembles—the mean values of U and W will fall on the
same straight line as the instantaneous values. Note that this
would not hold if the correlation was nonlinear. Correspond-
ingly, for a given pIS, there is a general correlation between
individual values of eIS and V. In fact, any two of these
quantities determine the third with high accuracy, and this is
true at the level of individual configurations, including ISs.

To see how this works for cases involving fixed volume,
we write the total �instantaneous� pressure as a sum of an IS
part, which involves the virial at the corresponding IS, plus a
term involving the difference in the true virial from the IS
virial, plus the kinetic term:

p =
WIS

V
+

W − WIS

V
+

NkBT

V
. �109�

The first term is linearly related to the IS energy for a
strongly correlating liquid. Moreover, the difference term is
similarly expressed in terms of the corresponding energy dif-
ference, W−WIS=��U−eIS�. Taking averages over the �pos-
sibly nonequilibrium, although we assume equilibrium
within a given potential-energy basin� ensemble, we expect
that �U−eIS� depends only on T and V �a slight eIS depen-
dence can appear in � since this is slightly state-point depen-
dent�. Thus it follows that p can be reconstructed from a
knowledge of �average� eIS, V, and T, without any assump-
tions about the nature of the ISs visited. In particular, no
conclusion can be drawn regarding the latter. The failure of
the pressure reconstruction in the case of water23 is not sur-
prising since water models are generally not strongly corre-
lating �which as we saw in Paper I is linked to the existence
of the density maximum�.

D. Biomembranes

A completely different area of relevance for the type of
correlations reported here relates to the recent work of He-
imburg and Jackson,35 who proposed a controversial new
theory of nerve signal propagation. Based on experiment and
theory they suggest that a nerve signal is not primarily elec-
trical but a soliton sound wave.36 Among other things this
theory explains how anaesthesia works �and why one can
dope people with the inert gas xenon�: anaesthesia works
simply by a freezing-point depression that changes the mem-
brane phase transition temperature and affects its ability to
carry the soliton sound wave. A crucial ingredient of the

theory is the postulate of proportionality between volume
and enthalpy of microstates, i.e., that their thermal equilib-
rium fluctuations should correlate perfectly. This should ap-
ply even through the first-order membrane melting transition.
The theory was justified in part from previous experiments
by Heimburg showing proportionality between compressibil-
ity and specific heat through the phase transition.37 The pos-
tulated correlation—including the claim that is survives a
first-order phase transition—fits precisely the pattern found
in our liquid simulations.

By re-examining existing simulation data38,39 as well as
carrying out extensive new simulations,40 we have investi-
gated whether the correlations are also found in several
model membrane systems, five of which are listed in Table
III. The simulations involved a layer of phospholipid mem-
brane surrounded by water, in the L� phase �that is, at tem-
peratures above the transition to the gel-state�, at constant p
and T. When p, rather than V, is constant, the relevant quan-
tities that may correlate are energy and volume. As with
viscous liquids �Sec. III B� and the square well system �Pa-
per I�, time averaging is necessary for a correlation to
emerge, where now

�E�t� � �vol�V�t� . �110�

When an averaging time of 1 ns is chosen, a significant
correlation emerges, with correlations between 0.8 and 0.9
�Table III; note these REV values fall slightly short of our
criterion of 0.9 for “strong correlations”�. The time series of
time-averaged normalized E and V for one case are shown in
Fig. 11. The necessity of time averaging stems from the pres-
ence of water, which we know does not exhibit strong cor-
relations. Since the membrane dynamics are much slower
than those of the water, they can be isolated by time
averaging.

IV. CONCLUSIONS AND OUTLOOK

In Paper I and this work we have demonstrated several
cases of strongly correlating liquids and some cases where
the correlation is weak or absent �at least under normal con-
ditions of pressure and temperature�. An important next step
is to continue to document the existence or nonexistence of
correlations, particularly in different kinds of model systems,
such as nonpair potential systems and systems with interac-
tions computed using quantum mechanics �e.g., by density
functional theory�. It is noteworthy in this respect that after

TABLE III. Data from NpT simulations of fully hydrated phospholipid
membranes of 1,2-dimyristoyl-sn-glycero-3-phosphocholine �DMPC�, 1,2-
dimyristoyl-sn-glycero-3-phospho-L-serine with sodium as counter ion
�DMPS-Na�, hydrated DMPS �DMPSH�, and DPPC �Refs. 40 and 44�. The
columns list temperature, correlation coefficient between volume and en-
ergy, average lateral area per lipid, simulation time in equilibrium, and total
simulation time.

T �K� REV Alip �Å2� t �ns� ttot �ns�

DMPC 310 0.885 53.1 60 114
DMPC 330 0.806 59.0 50 87
DMPS-Na 340 0.835 45.0 22 80
DPPC 325 0.866 67.3 13 180
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suitable time averaging the correlations may appear in sys-
tems where they are otherwise unexpected. One example was
the square-well �SQW� case, where the correlation was be-
tween the time-averaged virial and potential energy. In the
case of viscous liquids time averaging allowed a correlation
to appear between the more accessible energy and pressure,
while for the biomembranes it made it possible to remove the
nonstrongly correlating contributions from the water. In all
cases time averaging is relevant because of a separation of
time scales: the SQW system because the time scale over
which the average number of neighbors changes is long com-
pared to the time between collisions; viscous liquids because
the vibrational dynamics �which includes the kinetic contri-
butions� is fast compared to the slow configurational dynam-
ics; biomembranes because the membrane dynamics is slow
compared to those of the water. Note that in this case it was
necessary to consider an NpT ensemble and study the corre-
lations between energy and volume because only a part of
the system is strongly correlating, and this part cannot be
constrained to a particular volume. It is worth noting that
even with fixed volume, the correlation coefficient depends
on whether the ensemble is NVT or NVE, although the
strongly correlating limit of R→1 is independent of
ensemble.

A point which has been mentioned, but which is worth
emphasizing again, is that the replacement of the potential by
an appropriate inverse power law can only reproduce the
fluctuations, and not the mean values of �potential� energy
and virial, nor their first derivatives with respect to T and V.
These determine the equation of state, in particular features
such as the van der Waals loop that are absent in a pure
power-law system, even if changes in the exponent are al-
lowed. The generalization to the extended effective inverse
power-law approximation, however, allows in principle such
features to be described.

Finally, consider again viscous liquids, which are typi-
cally deeply supercooled. The most common way of classi-
fying them involves the fragility parameter introduced by
Angell,41 related to the departure from Arrhenius behavior of

the temperature dependence of the viscosity. Strong liquids,
having the most Arrhenius behavior, have traditionally been
considered the easiest ones to understand because Arrhenius
temperature dependence is well-understood. However it may
well be that strongly correlating liquids are in fact the
simplest.42 The connection with the long-discussed question
of whether a single-order parameter describes highly viscous
liquids has been discussed briefly in Sec. III B and is dis-
cussed further in Ref. 21. As an example, a direct application
of the strongly correlating property concerns diffusion in su-
percooled liquids. Recent work of Coslovich and Roland43

has shown that the diffusion constant in viscous binary
Lennard-Jones mixtures may be fitted by an expression D
=F�	� /T�, where � reflects the effective inverse power of the
repulsive core. “Density scaling” has also been observed
experimentally.46–49 It is natural, given the results of Coslov-
ich and Roland, to hypothesize that the scaling exponent is
connected to pressure-energy correlations, and in Ref. 4 it
was conjectured that density scaling applies if and only if the
liquid is strongly correlating. We have recently studied the
relationship between the two quantitatively50 and have found
that �1� density scaling does indeed hold to the extent that the
liquids are strongly correlating, and �2� the scaling exponent
is given accurately by the slope � of the correlations �hence
our use of the same symbol�. This finding supports the con-
jecture that strongly correlating liquids may be simpler than
liquids in general.

In summary, the property of strong correlation between
the equilibrium fluctuations of virial and potential energy
allows a new way to classify liquids. It is too soon to tell
how fruitful this will turn out in the long term, but judging
from the applications briefly presented here, it seems at least
plausible that it will be quite useful.
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