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Department of Sciences, DNRF Center “Glass and Time,” IMFUFA, Roskilde University, Universitetsvej 1,
Roskilde 4000, Denmark

�Received 17 July 2009; accepted 10 November 2009; published online 12 January 2010�

We present a new model for dielectric data in the alpha-beta merging region. The model is
constructed using electrical circuit analogies. It leads to an interpretation of the merging region as
one where the total relaxation upon cooling separates in two relaxation processes, consistent with a
view where the relaxing entities involved are the same for the two processes. We use this alpha-beta
model to fit dielectric data in the merging region of two different molecular liquids. These fits are
performed under the assumption that the intrinsic high-frequency behavior of the alpha relaxation is
a �1/2 power law and that both the alpha and the beta process separately obey time temperature
superposition. We get good quality fits in the entire frequency and temperature range studied. This
supports the view that alpha relaxation high-frequency slopes that are found to be numerically
smaller than 1/2 can be attributed to the influence of the beta relaxation. © 2010 American Institute
of Physics. �doi:10.1063/1.3270164�

I. INTRODUCTION

Relaxation in ultraviscous liquids after a small perturba-
tion is dominated by the primary alpha relaxation, but many
frequency-temperature spectra also show one or several
liquid-specific secondary beta processes which appear in the
kilo- to megahertz region. Such secondary processes can also
be found in rigid molecules as first demonstrated by Johari
and Goldstein,1,2 and these are referred to as the Johari–
Goldstein beta process. The characteristic time of the pri-
mary alpha relaxation increases dramatically with decreasing
temperature, while the temperature dependence of the sec-
ondary process is weaker. Therefore an alpha-beta merging
or crossover temperature above the glass transition tempera-
ture �Tg� can be identified. The fundamental phenomenologi-
cal challenge in the field of ultraviscous liquids is to map out
the behavior and interplay between these two relaxations.
The properties which characterize them, and which are be-
lieved to have importance for understanding of the viscous
slowing down, include the temperature dependences of the
characteristic times,3–7 the spectral shapes,8,9 the amplitudes/
strengths of the processes,6,10–12 and the possible relation be-
tween the two processes.7,13–17,52 In this work we limit the
discussion to the behavior found in the dielectric relaxation.
Dielectric spectroscopy data play a special role in the study
of the phenomenology of highly viscous liquids because they
are the most abundant. It is of course important to extend
conclusions to different types of probes, but first observa-
tions are often established from dielectric data.

In earlier work we focused on the shape of the alpha
relaxation seen in dielectric spectroscopy.8,16 This was done
with an unbiased approach where we introduced the math-
ematically well-defined minimum slope and a time tempera-

ture superposition �TTS� parameter that is directly related to
the spectra instead of the more common approach of fitting
the spectra to some function. The direct reference to the ac-
tual data is an advantage, because the result of a fit is often
very dependent on how much of the frequency range is avail-
able and this can lead to artificial results, e.g., for the tem-
perature dependences of the parameters.8,16 Our view, based
on these earlier studies, is that the alpha relaxation broadens
as temperature decreases until it reaches the slope 1/2,
whereafter it stays TTS in the remaining low temperature
region. When the spectra appears even broader, and have
slopes numerically smaller than 1/2, we believe it is due to
the influence of one or more underlying, low-frequency beta
process�es�. To substantiate this view, and in general to be
able to characterize the behavior of the individual processes
in the merging region, it is necessary to disentangle them
from each other. However, it is not possible to separate the
processes via an unbiased study of the raw data. The separa-
tion of the processes can only be done by introducing as-
sumptions and by using a consistent fitting procedure. Our
aim in this work is to do so by developing a new model for
the alpha-beta merging region.

To model the two processes’ interaction we need to con-
sider two questions. The first question is how to describe the
alpha and the beta relaxation, respectively. The second ques-
tion is how to model the merging of the two processes’ spec-
tra. The beta process will be fitted by a Cole–Cole �CC�
function, since the beta peak is symmetric. Our focus is on
the new approach for handling the merging of the relax-
ations, but we moreover present a new description of the
alpha process.

The merging of the alpha relaxation and the beta relax-
ation is commonly fitted either by assuming that the two
spectra can be added or by using the Williams ansatz18–20,35a�Electronic mail: kniss@ruc.dk.
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which leads to a product of the alpha and the beta relaxation
functions in the time domain. The additive approach is used
more often because it is the easiest from a practical point of
view. The Williams approach is more complicated to use in a
fitting process, and is rarely used, but most scientists in the
field consider it to be the correct approach, although there is
some discussion regarding the question.21–24 Looking at the
original Williams paper �Refs. 18–20�, it appears that he as-
sumes the two processes to be statistically independent and
that he is probably thinking of side chain motions in poly-
mers rather than the intrinsic Johari–Goldstein beta relax-
ation which is found in the relaxation in rigid molecule
liquids.1,2 Today there is much evidence pointing to a strong
interdependence of the two processes, which suggests that a
proper model should be one where the two processes are
closely interlinked.13,15

In our approach, the merging region is seen as one where
the total relaxation upon cooling separates in two relaxation
processes, consistent with a view where the relaxing entities
involved are the same for the two processes. The model has
the feature that the beta process can never be seen if it is
slower than the alpha process, as is also found when using
the Williams ansatz. The model is expressed directly in the
frequency domain and therefore well suited for fitting data
from dielectric spectroscopy.

The tool we use for constructing this model is electrical
circuit analogies. When using electrical circuits to model di-
electric relaxation response the electrical charge and poten-
tial represent polarization and field. In this sense the circuits
can be seen as a less abstract representation of the so-called
network thermodynamics.25–27 The use of circuits assures
that the model is physically consistent, e.g., obeys conserva-
tion of energy, positive dissipation, causality, linearity, etc. It
moreover leads to an expression for the response function in
the frequency domain with real and imaginary parts which
obey the Kramers–Kronig relation.

The structure of the paper is as follows: in Sec. II differ-
ent fitting functions for the alpha relaxation are discussed, in
order to motivate the formulation of a new model for the
dielectric alpha relaxation of molecular glass formers. The
electrical circuit approach will be explained by building up
the electrical circuit model by extension from the electrical
circuit counterpart of the Debye model. The new electrical
circuit model gives a function that can be used to describe
the non-exponential alpha relaxation. This new expression
for the primary process is interpreted and analyzed in Secs.
II B and II C. In Sec. III the electrical circuit model of the
CC function and assumptions regarding the secondary relax-
ation process are briefly presented.

The new alpha-beta circuit model covering the merging
of the two relaxations is presented and analyzed in Sec. IV.
This includes a comparison to the additive combination of
the alpha and the beta relaxation, and a brief comparison to
the Williams approach.

The alpha-beta circuit model is fitted to experimental
dielectric data, namely, the whole temperature-frequency
scans for the two liquids toluene-pyridine mixture
�temperature range of 125–131 K and frequency range of
10−2–106.5 Hz� and di-iso-butyl phthalate �temperature

range of 191–221 K and frequency range of 10–2.7

−107.5 Hz�, i.e., above, at, and under the temperature at
which the primary and secondary processes merge.

II. THE MODEL FOR THE ALPHA RELAXATION

In this section we will develop and discuss a model for
the alpha relaxation which is needed for modeling the merg-
ing region. The most common fitting functions �presented in
Table I� are the stretched exponential or Kohlrausch–
Williams–Watts �KWW� function, which is given as an ex-
plicit function in the time domain, the Cole–Davidson �CD�
function, and the Havriliak–Negami function �HN� which are
both functions expressed in the frequency domain. Each of
these fitting functions have problems which have been dis-
cussed detailed in several papers by a number of
authors.34,35,37–40 Here we shall only summarize the discus-
sion in order to motivate the introduction of a new function.

Phenomenologically, it is well established that the imagi-
nary part of the susceptibility of molecular viscous liquids
converges toward a low-frequency power law dependence of
�1 and a high-frequency power law of �−�, where � takes
values between zero and one depending on the liquid and the
state point. This behavior is captured by both the KWW and
the CD functions which both have one shape parameter,
namely, the exponent governing the high-frequency slope.
However, the two functions have different shapes even if the
high-frequency exponent is set to the same value. The KWW
is wider than the CD for a given value of the exponent �see,
e.g., Ref. 34� and the KWW approaches the low-frequency
power law much more slowly than the CD. It is sometimes
found that KWW gives good fits, though the CD seems to
more often be the best choice,8 but the general picture is that
the width seen in different liquids can take different values
even if the high-frequency power law is the same.8,16 This
means that the spectral shape needs to be described by two
parameters. The HN function introduces an extra parameter,
but it does not have the correct limiting low-frequency be-
havior. There have also been various suggestions for other
ways of characterizing data. Blochowicz and co-workers34

take the strategy of describing the relaxation by a sum of
Debye relaxations. This is a consistent approach and the re-
sulting function has both real and imaginary parts, as well as
the correct low-frequency behavior. However, it is a some-
what involved fitting procedure. Bergman has, in Refs. 35,
38, and 39, proposed a fitting function for the imaginary part
of the relaxation which is constructed in order to make a
peak with high and low-frequency power law dependences
and varying peak width. This function, however, is a func-
tion of � and not of i� this means that it does not have a
corresponding real part and thus we cannot know whether it
corresponds to the Laplace transform of any function in the
time domain.

To summarize we find that a suitable function describing
the dielectric alpha relaxation should have the following
three properties: �i� be expressed as a function of i�; �ii�
have a low-frequency limiting power law with exponent 1
and a high-frequency power law with a variable exponent
which can take values between �1 and zero; and �iii� the
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width of the relaxation should be variable for fixed high-
frequency exponent. In the following section we construct
such a fitting function based on an electrical circuit model.

All the functions mentioned in the section above are
shown in Table I. We also show a modification of the
stretched exponential which fulfills requirements �ii� and �iii�
but is expressed in the time domain �see Table I for the
expression�. We use this function to represent time domain
data in Ref. 36. This time domain function is not exactly
equivalent to the circuit model even if they have the same
qualitative characteristics. At this point we do not know
which of the two is better, but focus on the circuit model in
this paper because it is better suited for frequency domain
data.

A. The alpha circuit model

The simplest approach when modeling the dielectric al-
pha relaxation is to apply the Debye model41 in both time
and frequency domains. This gives an exponential relaxation,

and it will therefore not give a proper fit to the asymmetric
relaxation seen in data. It is nevertheless very intuitive and
we use it, as Cole and Cole did in Ref. 42, as a starting point
for our electrical circuit model.

The electrical circuit leading to the Debye model is

shown in Fig. 1. The complex capacitance of the circuit C̃
can easily be found �remembering that the capacitance and

the impedance, Z̃���, are related in the following way:

C̃���=1 / �i�Z̃�����. It is given by:

C̃��� = C1 +
1

1

C2
+ i�R

= C1 +
C2

1 + i��D
, �1�

where �D=RC2 the relaxation time. This expression corre-
sponds to the well-known Debye model41 for dielectric re-
laxation of liquids,

TABLE I. An overview of different fitting functions for the alpha relaxation. The parameters counted in the table are those controlling the shape; each function
has in addition a time-scale and a strength parameter. The high-frequency dielectric constant is also a parameter, except in Bergman’s function which only
includes the dispersion.

Name Expression

Slopes, lim�→L

d ln����

d ln �

# shape parameters Function of Adjustable widthL=0 L=�

Stretched exponential
�KWW�a ��t�=��+���1−exp�−� t

�KWW
��KWW�� 1 −�KWW 1 t No

CDb �̃���=��+
��

�1+ i��CD��CD
1 −�CD 1 i� No

HNc �̃���=��+
��

�1+ �i��HN��HN��HN
�HN −�HN�HN 2 i� �Yes�

Blochowicz �B�d,e �̃��� = �� + ���
−�

�

G���
1

1 + i��
d ln � 1 −�G 2 i� Yes

Bergmanf,g �����=
�max�

1−C

a+b �b� �

�max
�−a

+a� �

�max
�−b�+C

−a −b 3 � Yes

Circuit �-modelh �̃���=��+
��

1+
1

�i����−1+k��i����−�

1 −� 2 i� Yes

Modified stretched
exponentiali ��t� = �� + ���1 − exp�− k� t

�KWW
��KWW

−
t

�KWW
	� 1 −�KWW 2 t Yes

aReferences 18, 28, and 29.
bReferences 30 and 31.
cReferences 32 and 33.
dReference 34.
eIn this expression the generalized gamma distribution function is G���=N�� ,���� /�0��exp�−�� /���� /�0��� and the normalization factor is N�� ,��
= �� /���/�� /	�� /��.
fReferences 35 and 39.
gAll parameters are fitted only to the dispersion. C is the bluntness �width� parameter.
hSee the text for explanation of the parameters.
iReference 36.
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�̃��� = �� +
��

1 + i��D
, �2�

where �D is proportional to the viscosity 
. In the high-
frequency limit the capacitance of Eq. �1� is given by the
capacitor C1 alone. The capacitor C1 is thus representing the
high-frequency dielectric susceptibility ��, which is some-
times referred to as the “glassy” response of the liquid.43 The
resistor on the other hand represents the viscosity of the sur-
rounding liquid which “hinders” the rotation of the dipoles.
The capacitor C2 represents the strength of the dielectric re-
laxation ��=�0−�� �which is directly related to the dipole
density and the size of the molecular dipole moment�.

To be able to model the asymmetric relaxation, which is
not captured by the Debye model, we add a constant phase
element CPE, as used by Jonscher and others,42,44–47 in par-
allel with the resistor �see Fig. 2�. We place the CPE in
parallel because our assumption is that the relaxation pro-
cess, which is described by the CPE, is a relaxation of the
same dipoles that relax in Debye-like manner at low frequen-
cies. The CPE has a capacitance given by:

C̃CPE��� = K�i��−� 0 � � � 1, �3�

where K has the dimension of capacitance� time−�. The
CPE has its name because the complex capacitance of the
CPE has a constant phase angle �−�
 /2��� independent of
the frequency. The limits �=0 and �=1 correspond to a
capacitor and a resistor, respectively.

The introduction of the CPE leads to our new function
describing the dielectric alpha relaxation �with k�=K��

� /��
and ��=�D�,

�̃��� = �� +
1

1

��
+

1

1

i�R
+

K

�i���

= �� +
��

1 +
1

�i����−1 + k��i����−�

. �4�

An illustration of the imaginary part of this function is
shown in Fig. 3.

B. Physical interpretation of the alpha circuit model

Equation �4� can be used as a fitting function, but the
electrical circuit also serves as a model which gives the basis
for an interpretation of the function. Replacing the resistor R,
which corresponds to viscosity in the Debye model, with a
resistor in parallel with a CPE can be viewed as replacing the
static viscosity, 
, with the dynamical frequency dependent
viscosity 
̃���. In this interpretation the model is close to
earlier models which relate the mechanical response seen in
viscosity and shear modulus to the dielectric response. In
Ref. 48 such a model is constructed exactly by replacing the
static viscosity of the Debye model by a dynamical viscosity.
Equivalent models have earlier been developed starting from
a microscopic perspective, first by Gemant,49 and later by
DiMarzio and Bishop.50 A short review is given in Ref. 51
where it is also demonstrated that the connection between the
mechanical relaxation and the dielectric relaxation are quali-
tatively described by this model, though the quantitative
agreement is less convincing. In this interpretation the asym-
metry of the dielectric relaxation is “inherited” from asym-
metry in the mechanical relaxation, even if the spectral shape
of the two is different �see Ref. 51 for a detailed discussion�.

For completeness one could add an extra capacitor in
parallel with the resistor and the CPE in Fig. 2. Such a ca-
pacitor would represent the high-frequency elastic response
of the liquid and would have a capacitance proportional to
the inverse of the high-frequency shear modulus. This elastic

C2

C1 R

FIG. 1. Electrical circuit of the Debye model. The electrical circuit elements
correspond to the physical dielectric susceptibility quantities as follows: the
instantaneous dielectric constant �0=C1 and the strength ��=C2. The resis-
tor R represents the viscosity 
. The relaxation time is given by �D=RC2.

C1 R

C2

α

FIG. 2. The circuit model for alpha relaxation. The Debye model circuit is
extended by adding a constant phase element �CPE� with a capacitance

C̃CPE���=K�i��−� 0���1. The CPE governs the high-frequency behavior
of the response. C1 corresponds to �� and C2 corresponds to �� as in Fig. 1.

−2 −1 0 1 2 3
−3

−2.5

−2

−1.5

−1

−0.5

0

log(ω)

lo
g(

ε
’’)

FIG. 3. The imaginary part of the circuit model for the alpha relaxation
�Eq. �4�� with the exponent �=0.5. The values of k� are varied from 0.9 up
to 3.5 corresponding to the most narrow and most broad spectral shape. �The
dielectric strength, ��, and the time �� are the same for all curves.�
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response can actually be seen in the dielectric response as
demonstrated in Ref. 51. However, the spectral shapes that
can be achieved do not change when adding this capacitance;
to keep the model as simple as possible we have therefore
left it out.

C. The characteristics of the alpha circuit model

The function in Eq. �4� has a total of five adjustable
parameters: The strength, ��, the relaxation time, ��, the
high-frequency level ��, and finally the two shape param-
eters � and k�. This means that the function has one addi-
tional parameter compared to the CD function and the KWW
function. However, it still has the same low-frequency be-
havior with a power law of exponent 1. The extra parameter,
k�, gives the function a variable width for the same high-
frequency exponent. This is illustrated in Fig. 3.

It can be seen both from the circuit and from the math-
ematical expression that this model in some sense can be
regarded as a type of combination of the Debye model and
the CC model—since leaving out the constant phase element
gives a Debye model while leaving out the resistor gives a
CC model42 �see Sec. III�. The Debye part dominates at low
frequencies, whereas the CC part dominates at high frequen-
cies. The parameter k� determines where �with respect to the
relaxation peak� this transition between the two behaviors
takes place. For very small k� values the transition comes
significantly after the relaxation peak leading to an inflection
point on the high-frequency side. Very large k� values will
on the other hand make the CC-like behavior dominate down
to below the peak. These behaviors of the model are illus-
trated in Fig. 4. The values of k� that give well-behaved
peaks depend on the value of alpha. For �=0.5, which is our
focus, we find that k� should be chosen in the range of 0.9–
3.5; the range of widths obtained is illustrated in Fig. 3.

We also find that the circuit model can give spectral
shapes with good correspondence to both KWW and CD
functions. There is not a one to one correspondence between
the circuit model and the CD function or the circuit model
and the KWW, but a reasonably good overlap can be ob-
tained. The exact parameters found when fitting the circuit
model to the CD or the KWW function depend significantly
on how large a frequency range is included.

III. BETA RELAXATION

Before building the merging model, we take a look at the
phenomenology of the secondary beta process. Generally it
is observed that all liquids have one or more beta relaxations.
The beta relaxation can give rise to a well-resolved high-
frequency peak but it can also sometimes manifest itself as
an excess wing on the high-frequency side of the alpha
relaxation.53–55 An evolution from excess wing into a sec-
ondary peak has been seen in long-time annealing
experiments53,56–59 as well as in high-pressure dielectric ex-
periments �see, e.g., Ref. 7�.

Regarding the temperature dependence of the beta relax-
ation in the equilibrium liquid, it is found that the relaxation
time is temperature independent or very weakly temperature
dependent, while the amplitude of the beta relaxation gener-
ally increases with temperature. In the glass, the beta process
slows down in an Arrhenius manner but the amplitude is
more or less constant with cooling.60–62

In all cases the beta relaxations’ spectral shape is seen to
be symmetric, relatively broad, and temperature independent
�see, e.g., Ref. 6�. Thus, the CC function gives a good de-
scription of this process and is almost always used to fit it.
Cole and Cole illustrated their function42 by the electrical
circuit shown in Fig. 5; a capacitor in series with a CPE�

with a slope parameter �. This leads to the well-known ex-
pression

�̃���� =
1

1

��

+
�i���

K

=
��

1 + �i����� �5�

for the CC function, where �� corresponds to the capacitor in
the circuit, and ��= ��� /K�1/�.

IV. THE MERGING OF THE ALPHA AND BETA
RELAXATIONS

Having established a model for the alpha relaxation that
fulfills our requirements and a model for the beta relaxation,
we now move on to combining the two in a model of the
alpha-beta merging.

When combining the CC model with the previously de-
scribed alpha model, there are two simple possibilities. The
CC model can be attached at the node between C1 and C2,

−5 0 5
−6

−5

−4

−3

−2

−1

0

1

log(ω)

lo
g(

ε
’’)

−5 0 5
−6

−5

−4

−3

−2

−1

0

1

log(ω)

lo
g(

ε
’’)

−5 0 5
−6

−5

−4

−3

−2

−1

0

1

log(ω)

lo
g(

ε
’’)

FIG. 4. The curves show the imaginary part of the circuit model all with the
exponent � set to 0.5. Two different k�-values are shown: k=0.1 �full line�,
and k=20 �dashed line�. The thin line is the Debye relaxation. �The dielec-
tric strength, ��, and the time, ��, is the same for all three curves.�

β

Cβ

FIG. 5. Part of the circuit model for a Cole–Cole function �to obtain a full
Cole–Cole model �Ref. 42� this part is connected in parallel with the capaci-

tor C1�. The constant phase element �CPE� is with a capacitance C̃CPE���
=K�i��−�, 0���1 and is used to model the beta process. C� represents ��.

024503-5 Circuit model of the alpha-beta merging J. Chem. Phys. 132, 024503 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



thus being in parallel with every element in the model, or it
can be attached in parallel with the two alpha elements R and
CPE�. This is illustrated in Fig. 6.

These two possibilities lead us to two different models—
which also have different physical interpretations. In the first
case an extra branch is added to the circuit �Fig. 6�a�� and
there is a new place for loading charge, namely, C�. In the
dielectric case it means that the total dipole relaxation be-
comes larger when introducing the beta relaxation. In the
second case the beta relaxation gives a new mechanism for
relaxation, but the amount of charge in the low-frequency
limit is unchanged. In the dielectric case this means that the
beta relaxation has no effect on the total strength of the re-
laxation. The dipoles relaxing are the same with or without
the beta relaxation; it is the manner in which they relax
which is perturbed when introducing the beta relaxation.

If we determine the response by calculating the capaci-
tance of the two models, we find that the first option results
into the well-known simple addition of the alpha and beta
models �henceforth this model is referred to as the additive
model�:

�̃A��� = �� +
1

1

��
+

1

1

i�R
+

1

K��i���

+
1

1

��

+ K��i���

⇔

�6�

�̃A��� = �� +
��

1 +
1

�i����−1 + k��i����−�

+
��

1 + �i����� .

The second possibility leads to a new way of combining the
alpha and the beta models. We will refer to it as the alpha-
beta circuit model:

�̃C��� = �� +
1

1

��
+

1

1

i�R
+

1

K��i��� +
1

1

��

+ K��i���

⇔

�7�

�̃C��� = �� +
��

1 +
1

�i����−1 + k��i����−� +
��/��

1 + �i�����

,

with ��= ���K��1/�. Equation �7� is the main new result of
this paper. Spectra of the two models are illustrated in Figs.
7 and 8.

Both models involve 8 parameters: There are two shape
parameters for the alpha relaxation �k� and ��, one shape
parameter for the beta relaxation ���, a characteristic time
for each process ��� and ���, a strength parameter for each
process ��� and ��� and the high-frequency dielectric con-
stant ����.

The two models result in very similar spectra when the
beta relaxation is faster than the alpha relaxation. The beta
relaxation gives rise to either a peak, a shoulder, a wing or
just an apparent broadening of the alpha relaxation. This
means that high-frequency slopes of the alpha relaxation can
appear to be numerically smaller than 1/2 due to an underly-
ing beta relaxation. On the other hand it is not possible to
explain high-frequency slopes numerically larger than 1/2 by
the influence of the beta relaxation. Even though the models
appear similar they differ because of the fundamental differ-
ence in the way the beta relaxation is introduced in the cir-
cuit as discussed above. This difference also leads to differ-
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FIG. 6. The electrical circuit of �a� the additive model and �b� the alpha-beta
merging circuit model. C1 corresponds to �� and C2 corresponds to �� as in
Fig. 1. The respective mathematical expressions are Eqs. �6� and �7�.
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ences in the spectra—especially for some choices of the
parameters. In the following section we discuss the differ-
ences in terms of how the spectra look with different values
of the parameters in the model and show why the circuit
model, in our opinion, is more appropriate for describing the
merging of the alpha relaxation with the Johari–Goldstein
beta relaxation.

A. The characteristics of the two alpha-beta models

In the circuit model the beta relaxation is not an indi-
vidual relaxation, but a part of the alpha relaxation. When
comparing the behavior of the circuit model with the additive
model we want to follow the underlying models for the “pure
relaxations.” We define these pure relaxations as the limits of
the full model when one relaxation is much slower than the
other. Thus, the pure alpha relaxation is modeled with the
limit of the total relaxation when ��→�. With this definition
the pure alpha model corresponds exactly to the alpha model
as it looked before the beta process was introduced. The pure
beta relaxation model is likewise defined as the limit of the
total model when the alpha relaxation is much slower than
the beta relaxation, ��→�. This leads to the following un-
derlying pure models for the circuit model:

�̃�
C��� = lim

��→�
�̃��� = �� +

��

1 +
1

�i����−1 + k��i����−�

, �8�

�̃�
C��� = lim

��→�
�̃��� = �� +

����

�� + ���1 + �i������
, �9�

and trivially for the additive model:

�̃�
A��� = lim

��→�
�̃��� = �� +

��

1 +
1

�i����−1 + k��i����−�

, �10�

�̃�
A��� = lim

��→�
�̃��� = �� +

��

1 + �i����� . �11�

The two main features in which the models differ are �i� the
behavior at low frequencies and �ii� the interpretation of how
the two relaxation processes affect the total relaxation
strength as can be seen in Figs. 7 and 8.

1. Low-frequency behavior

The additive model sums the two relaxations, therefore
the low-frequency limit will have a �� dependence �since
��1�. The beta relaxation will in other words be seen as a
wing or a shoulder on the low-frequency side of the alpha
relaxation when the alpha relaxation is slower than the beta
relaxation. This does not have much practical effect for fit-
ting data, because this wing signal will be extremely small.
However, if the beta relaxation is slower than the alpha re-
laxation it will pop out as a low-frequency shoulder, as illus-
trated in Fig. 7�b�.

The alpha-beta circuit model shows Debye-like behavior
in the low-frequency range, and it always has a �1-behavior
in the low-frequency limit. Or put in other words: The beta
relaxation is not seen on the low-frequency side of the alpha
relaxation. This means that the beta relaxation truly merges
with the alpha relaxation when it becomes slower. This is
illustrated with a log-log plot of �� as a function of the fre-
quency � in Fig. 8�b�.

2. Relation between the relaxation strengths

The relation between the amplitudes or strength of the
relaxation processes is clearly illustrated in the Nyquist plots.
In the additive model the total relaxation strength increases
when there is a beta relaxation, compared to the relaxation
strength of the alpha relaxation. In the alpha-beta circuit
model on the other hand, the total relaxation strength is given
by the strength of the alpha relaxation alone. This means that
introducing the beta relaxation does not add something extra;
rather the beta relaxation makes the alpha relaxation bifur-
cate in two. It has the consequence that the apparent strength
of the alpha relaxation is smaller than the strength it would
have if there were no beta relaxation. This is shown in Fig.
7�a� for the additive model and Fig. 8�a� for the alpha-beta
circuit model. Note that the actual strength of the beta relax-
ation in the alpha-beta circuit model is given by ���

=���� / ���+���, meaning that it is close to �� as long as the
latter is much smaller than the total strength ��. This more
complicated relation between the beta amplitude parameter is
a consequence of the way the model interlinks the two pro-
cesses.

3. Relation to Williams ansatz

In this section we will briefly compare the alpha-beta
circuit model to the Williams ansatz. The Williams ansatz is
naturally formulated in the time domain in terms of the cor-
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relation function, ��t�=���t���1−��+����t�� , 0���1.
From this expression it is easily seen that the beta relaxation
only has an effect before the decay of the alpha relaxation.
This means that the low-frequency behavior will be that of
the alpha relaxation and that the beta relaxation will not be
visible if it is faster than the alpha relaxation. Thus the quali-
tative behavior of the alpha-beta circuit model is equivalent
to the behavior obtained when using the Williams ansatz at
low frequencies. The Williams ansatz approach does not give
any clear answers regarding the influence that the relaxation
strength of the beta relaxation has on the total relaxation
strength. This is because the alpha and beta relaxation as
well as the total relaxation all are presented in a normalized
form.

B. Physical interpretation of the two alpha-beta
models

The two models reflect two different physical interpreta-
tions of the origin of the beta relaxation. In the additive
model only the alpha process is related to the relaxation of
the dipole orientation while the beta process is completely
decoupled from the alpha process. The beta process contin-
ues to exist even when it becomes slower than the alpha
relaxation. Interestingly in this respect, it was recently found
by Mandanici et al.63 using mechanical spectroscopy that
ethylcyclohexane has an intramolecular motion �a “chair”
bending mode� which is seen in the relaxation spectra as a
secondary process which has a continuous temperature de-
pendence seen on both sides of the alpha relaxation. We be-
lieve that the additive model would be suited for fitting data
containing an extra process due to this type of internal de-
grees of freedom.

In contrast, in the alpha-beta circuit model the beta re-
laxation is an integrated part of the total relaxation process,
and the merging region becomes one where, upon cooling,
the total relaxation process separates in two processes. Phe-
nomenologically we know that the beta relaxation is weakly
temperature dependent in the equilibrium liquid,60,61 while
the alpha relaxation is strongly temperature dependent. When
the liquid is heated, the alpha relaxation passes the time-
scale of the beta relaxation “picking it up” and merging into
one single integrated process. This integrated process has the
spectral features of the alpha relaxation. Both the alpha and
the beta process are a relaxation of the dipole represented by
��. This interpretation is consistent with the view that the
alpha and beta relaxation are closely related. It is clearly
consistent with the idea of the two processes being, respec-
tively, large and small angle motions of the same dipole. The
phenomenology of the circuit model agrees well with the
phenomenology of the Johari–Goldstein beta process since it
does not appear on the low-frequency side of the alpha re-
laxation. We therefore believe that this model is a good can-
didate when fitting spectra including an alpha and a beta
relaxation. Diezemann and co-workers in 199964 discussed a
stochastic free-energy landscape model in which the beta re-
laxation corresponds to intraminima transitions. In this
model, as in the alpha-beta circuit model proposed here, it is

not possible to have the timescales of alpha and beta relax-
ations cross each other such that the beta process becomes
slower than the alpha process.

V. FITTING TO DATA

A. Data

We have fitted the alpha-beta circuit model to dielectric
data from two liquids: the dielectric measurements that are
used in this paper are made on the liquids di-iso-butyl
phthalate �99%, Sigma-Aldrich Chemical Co., DisoBP� and
Toluene-Pyridine mixture �17% toluene, tol-pyr�. The data
have already been published in Refs. 8 and 16, respectively.
The tol-pyr data were obtained in a setup described in details
in Refs. 65 and 66, and the DisoBP data were obtained in a
setup described in Ref. 67–69. The two liquids frequency
scans are characterized by well-revealed secondary processes
in the megahertz range.

B. Fitting procedure

The alpha-beta circuit model has a total of eight param-
eters, five to describe the alpha relaxation and three to de-
scribe the beta relaxation. �Recall that there are only two
shape parameters for the alpha relaxation and one shape pa-
rameter for the beta relaxation, the additional parameters are
time scales and relaxation strength�. This is the same number
of parameters as in the additive model, and also the same
number of parameters as one would have with an additive
model of a HN-function and a CC. It is not possible to
uniquely determine these eight parameters in the region
where the alpha and beta process merge. There are simply
too few distinct features in the spectra. In order to get a
stable fit it is therefore necessary to make some reasonable
assumptions.

As described in the introduction we believe8 that the
alpha relaxation broadens upon cooling until the numerical
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The three shape parameters are held fixed at all temperatures implying TTS
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�=0.39�. The dots show the data. The full line is the total fit. The dashed
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value of the slope reaches 1/2 upon further cooling we be-
lieve that the alpha relaxation obeys TTS. This is based on
our earlier results,8 where a study on 347 spectra for 53
liquids show prevalence of high-frequency slopes with the
numerical value close to 1/2. Slopes numerically smaller
than 1/2 are explained by the influence of the beta relaxation,
and it is this last point that we study closer in this work. To
do so we make fits of the spectra in the merging region
assuming that the alpha and beta processes both obey TTS, and that the numerical value of the high-frequency slope of

the alpha relaxation is 1/2. In the fitting procedure this means
letting the three shape parameters k�, �, and � be tempera-
ture independent, and specifically setting �=1 /2. The values
for k� and � were determined by making preliminary fits at
temperatures where the alpha and beta peaks are well-
separated. With three parameters fixed we have five remain-
ing fitting parameters, of which �� is a pure real parameter
which just gives the high-frequency level of the dielectric
constant. The remaining four parameters are the two time
constants and the two amplitude parameters.

C. The results of the fits

The results from the model fit for tol-pyr �k�=1.8,
�=0.5, and �=0.39� are presented in Fig. 9 and the DisoBP
data and fits �k�=0.93, �=0.5, and �=0.49� are shown in
Fig. 10. We find a good correspondence between the data and
the fit, especially in the region where we see the merging of
the alpha and the beta peak. For DisoBP there is a systematic
discrepancy just on the low-frequency side of the alpha peak.
A better fit around the peak can be obtained using a lower
value of k�=0.65; however this gives rise to a high-
frequency inflection point in the pure alpha relaxation. This
inflection point is difficult to see directly in the fit but comes
out in the derivative �this feature of the alpha model was
discussed in Sec. II C�. Because we are interested in the
high-frequency slope we prefer a small discrepancy around
the peak. However, it does show that the alpha model does
not fully capture the spectral shape of the alpha relaxation.
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Tol-pyr has a relatively strong beta process and some of
the characteristics of the circuit model are therefore seen
more clearly here: The beta relaxation “eats” a bit of the
alpha relaxation, so that the amplitude at the peak is smaller
than the amplitude of the “pure” alpha relaxation. Also, the
beta strength differs from ��, and is instead given by ���

=���� / ���+���. From the fitting parameters we find the
well-known dramatic increase in the alpha relaxation time as
temperature decreases, while the beta relaxation time is very
weakly temperature dependent in the equilibrium liquid.60–62

See Fig. 11�a� �for tol-pyr� and Fig. 12�a� �for DisoBP�. The
alpha relaxation strength increases with decreasing tempera-
ture as expected in dielectric relaxation. The beta relaxation
amplitude has a decreasing trend with decreasing tempera-
ture for tol-pyr �Fig. 11�b�� and is more or less temperature
independent for DisoBP �Fig. 12�b��.

Regarding the shape parameters, the good quality of the
fits, especially on the high-frequency side of the alpha peak,
confirms that for these liquids it is possible to explain high-
frequency slopes numerically smaller than 1/2, by the influ-
ence of the beta relaxation. In Fig. 13 we show the phenom-
enological minimum slopes found for DisoBP and tol-pyr in
Ref. 8. These approach the numerical value of 1/2 when
temperature decreases. We moreover show the minimum
slopes of the curve obtained from the fits. In the fits we have
used a high-frequency slope numerically equal to 1/2 for the
alpha relaxation at all temperatures. The deviation from this
value in the total spectra in the fit is therefore due to the
influence of the beta relaxation. The correspondence between
the minimum slopes of the tol-pyr data and fit is good. For
DisoBP there is also a good qualitative agreement. This sup-
ports the view that alpha relaxation high-frequency slopes
that are found to be numerically smaller than 1/2 can be
attributed to the influence of the beta relaxation. Slopes that
are numerically larger than 1/2 cannot be explained in this
way. As pointed out earlier, we believe that these numerically
larger slopes �and narrower peaks� appear as the liquid is
heated and approaches the Debye behavior at high tempera-
tures. When slopes numerically larger than 1/2 are observed
even at low temperatures �with low loss peak frequency� we
conjecture that this is because one is still above the tempera-

ture where the alpha and beta process merge, i.e., there is one
or more low-lying beta processes.

D. Comparison to a standard fit

In this section we briefly compare our fits to what is
probably the most commonly used fitting function used to
describe the alpha-beta merging in dielectric spectra; a sum
of a HN-function and a CC-function. This is illustrated with
two temperatures of the tol-pyr data, a low temperature
where the processes are well-separated and a high tempera-
ture where the processes are highly merged. In order to make
the most direct comparison we use the same procedure as we
did in the fit using the alpha-beta circuit model. The high-
frequency power of the alpha relaxation is fixed to 1/2, and
the low temperature spectra is then fitted. TTS is assumed for
each of the individual processes and the high temperature
spectra are therefore fitted by adjusting only the time scales
and the amplitudes. The result is shown in Fig. 14. The figure
shows that the low temperature fit is good. The HN-function
has the intrinsic problem �which is discussed in Sec. II� that
the bluntness of the peak is obtained by letting the low-
frequency power be lower than the expected value 1, in this
case it is fitted to 0.8. Nevertheless the quality of the fit in the
studied region is good for the low temperature spectra. The
fit at higher temperature captures the overall features of the
spectra but the overlap is rather poor in the details. This does
not mean that the high temperature cannot be fitted with a
sum of a HN-function and a CC function, it just means that
more parameters need to be fitted than what we needed when
using the alpha-beta circuit model. Either, one should allow
the spectral shapes of each peak to be temperature depen-
dent, or one should make a fit without the assumption of the
1/2 high-frequency slope. The fact that the current fit does
not work, while the fit in Fig. 9 made with the same assump-
tions and a different fitting function does work, clearly shows
that the choice of fitting function influences the conclusions
we draw. Comparing Figs. 9 and 14 it is also seen that the
amplitudes of what we interpret as the pure relaxations is
different, again showing how the fit used will influence the
analysis of the problem. The alpha-beta circuit model is more
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satisfactory because it assures the correct low-frequency be-
havior and because the beta process can never be slower than
the alpha process. We therefore believe that the conclusions
drawn on the basis of this new model are more likely to be
reliable.

VI. SUMMARY AND CONCLUSION

We have presented a new circuit model that can be used
to describe dielectric relaxation data. The circuit model leads
to a fitting procedure for the combined alpha and beta relax-
ation. The connection to physics lies in the way that we
combine the electrical circuit models for the alpha and the
beta process, respectively, to describe the merging of the two
processes. The model leads to an interpretation of the merg-
ing region as a type of bifurcation where the beta relaxation
separates from the total relaxation, while it is still fundamen-
tally related to the same physics as the alpha relaxation. One
signature of this close interlink between the two processes in
the model is that the beta relaxation does not add to the total
amplitude of the relaxation.

The function used to fit the alpha relaxation is also new.
This model has two shape parameters, one controlling the
exponent of the high-frequency power law and one which
independently controls the width of the relaxation. The low-
frequency behavior is always a Debye-like power law with
exponent one, in agreement with dielectric relaxation data of
molecular liquids.

The fact that the model is based on an electrical circuit
ensures that it is physically consistent, e.g., obeys conserva-
tion of energy, positive dissipation, causality, linearity, etc. It
moreover leads to an explicit function, with both real and
imaginary parts, in the frequency domain which makes it
convenient for fitting dielectric data.

The full alpha-beta circuit model was fitted to the merg-
ing region of two different molecular liquids. These fits were
performed under the assumption that the intrinsic high-
frequency behavior of the alpha relaxation is a �1/2 power
law and that both the alpha and beta process separately obey
TTS. We obtain good quality fits in the entire frequency and
temperature range studied. This supports the view that high-
frequency slopes numerically smaller than 1/2 can be attrib-
uted to the influence of the beta relaxation.
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