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NVU perspective on simple liquids’ quasiuniversality
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The last half-century of research into the structure, dynamics, and thermodynamics of simple liquids has
revealed a number of approximate universalities. This paper argues that simple liquids’ reduced-coordinate
constant-potential-energy hypersurfaces constitute a quasiuniversal family of compact Riemannian manifolds
parametrized by a single number; from this follows the quasiuniversalities.
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I. INTRODUCTION

Simple liquids are traditionally defined as systems of spher-
ically symmetric particles interacting via pairwise additive
forces [1–16]. It is now known, however, that a number
of such systems like the Gaussian core model [17–20],
the Lennard-Jones Gaussian model [21], the Jagla and re-
lated discontinuous-force models [22–25], and other models
[25–29] exhibit quite complex behavior. On the other hand,
van der Waals molecular liquids are generally regular and
“simple” in their properties [10,11]. In view of these facts
we recently with Ingebrigtsen and Schrøder suggested [30]
defining instead liquid simplicity from the property of strong
correlations between equilibrium virial and potential energy
fluctuations in the NVT ensemble [31–35]. This is how the
term “simple liquid” is used below. In practice there is
considerable overlap between the two definitions, for instance
the Lennard-Jones liquid and related systems are simple in
both senses. One notable difference is that realistic systems are
only simple in the present meaning of the term in part of their
phase diagram—simplicity does not apply near the critical
point or at gas states (where different kinds of simplicity
apply, of course). With regard to real liquids, it appears
that most or all van der Waals bonded and metallic liquids
are simple, whereas covalently bonded, hydrogen-bonded,
and strongly ionic liquids are generally not simple because
directional and competing interactions tend to weaken the
virial potential-energy correlations [30].

Simple liquids are characterized by having isomorphs in
their thermodynamic phase diagram [34]. An isomorph is an
equivalence class of the following equivalence relation: two
state points are isomorphic if all pairs of physically relevant
microconfigurations of the state points, which trivially scale
into one another, have the same configuration-space canonical
probability. Among pair-potential liquids only inverse-power-
law (IPL) systems have exact isomorphs, but all “strongly cor-
relating” liquids have isomorphs to a good approximation [34].

Simple liquids’ simple properties derive from the fact that
the existence of isomorphs implies that their thermodynamic
phase diagram is effectively one-dimensional instead of two-
dimensional for all properties that are isomorph invariant. Ex-
amples of such properties are [34]: Newtonian and Brownian
reduced-unit dynamics, reduced-unit static structure factors
of any order, the excess entropy, the isochoric heat capacity.
For any simple liquid solidification defines an isomorph in
the phase diagram; this implies invariance along the melting
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curve of, e.g., excess entropy, reduced viscosity, reduced
heat conductivity, reduced diffusion constant, etc., as well as
invariance of the Lindemann melting criterion [34,35].

The isomorph theory explains a number of previously noted
regularities relating to a given simple liquid [34]. The theory
cannot explain, however, the intriguing similarities between
different simple liquids known for a long time. This is the focus
of the present paper that views simple-liquid quasiuniversality
from an NVU perspective.

NVU dynamics [36], which is inspired by earlier ap-
proaches to dynamics conserving [37–39] or limiting [40]
the potential energy, is defined as geodesic motion on the
constant-potential-energy hypersurface. If R ≡ (r1, . . . , rN )
is the 3N -dimensional position vector describing a system
of N identical particles, Ri the position vector at time step
i, and Fi the corresponding 3N -dimensional force vector, the
NVU algorithm for tracing out a geodesic in simulation [36] is
Ri+1 = 2Ri − Ri−1 − 2[Fi · (Ri − Ri−1)]Fi/F2

i . As shown in
Ref. [41], if m is the particle mass and �t the time step of the
Verlet algorithm Ri+1 = 2Ri − Ri−1 + Fi(�t)2/m, the NVU
and Verlet algorithms are equivalent in the thermodynamic
limit because the fluctuations of the NVU-force prefactor
become insignificant as N → ∞. Consequently, the radial dis-
tribution function, diffusion constant, coherent and incoherent
intermediate scattering functions, etc., are identical in the ther-
modynamic limits of NVU dynamics and standard NVE or NVT
Newtonian dynamics. This has been confirmed in computer
simulations of both atomic and molecular models [36,41,42].

NVU dynamics provides an alternative view of a liquid’s
molecular dynamics. At any given state point all information
about the liquid’s structure and dynamics is encoded in
its constant-potential-energy hypersurface �. If 〈U 〉 is the
average potential energy at the state point in question, this
compact Riemannian differentiable manifold is defined by

� ≡ {R | U (R) = 〈U 〉} . (1)

� is a so-called level set of the function U (R). If standard
periodic boundary conditions are employed, � is embedded
as a (3N−1)-dimensional hypersurface in the 3N -dimensional
torus. The manifold � is not only defined for simple liquids,
of course, but for all liquids, solids, and gasses.

The present paper considers systems of N identical particles
in volume V . For simplicity we focus on systems interacting
via pairwise additive forces. Thermodynamic quantities are
excess quantities, i.e., in excess of the corresponding ideal gas
quantities at the same density and temperature. Thus S is the
excess extensive entropy (S < 0) and CV the excess extensive
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isochoric specific heat, which we for simplicity refer to as just
“entropy” and “specific heat”. The corresponding intensive
quantities are denoted by lower-case letters, i.e., s ≡ S/N and
cV ≡ CV /N . Reduced quantities are marked by a tilde.

It is clear from the results of many years of research into the
liquid state that there is no such thing as exact universality, even
among narrowly restricted classes like the IPL liquids. Thus
any theory predicting liquid-state universality is too simple.
The philosophy of this paper is that approximate universalities
may provide useful insights. In this connection it is an
obvious conjecture that genuine simple-liquid universality
is approached as the spatial dimension increases towards
infinity—if this is the case, we have for liquids a situation
reminiscent to that of critical phenomena.

Section II argues for the existence of a quasiuniversal family
of constant-potential-energy hypersurfaces for simple liquids,
parametrized by just one parameter. The argument presented
is not rigorous, but suggests one route for justifying quasiuni-
versality. The reader may choose to accept quasiuniversality
in its NVU formulation, skip most of Sec. II, and proceed
to the central part of the paper, Sec. III, which derives and
discusses a number of consequences of the NVU formulation
of simple liquids’ quasiuniversality. Section IV returns briefly
to what causes quasiuniversality. Finally, Sec. V gives a few
concluding remarks.

II. A SINGLE-PARAMETER FAMILY
OF HYPERSURFACES �̃(λ) COMMON

TO ALL SIMPLE LIQUIDS

Any state point in the thermodynamic phase diagram of a
liquid gives rise to a constant-potential-energy hypersurface �

as defined in Eq. (1). At first sight these manifolds may appear
to be completely characterized by the number 〈U 〉, but actually
the system volume V is a second parameter implicit in the
definition of U (R). Thus for liquids in general, � is described
by two parameters, corresponding to the two independent
thermodynamic variables.

Using reduced units means measuring length in units
of ρ−1/3, where ρ ≡ N/V is the density, time in units of
ρ−1/3√m/kBT , and energy in units of kBT . The reduced
3N -dimensional position vector is thus defined by R̃ ≡ ρ1/3R.
Appendix A of Ref. [34] showed that a liquid has strong virial
potential-energy correlations, i.e., is simple, if and only if the
liquid has isomorphs to a good approximation, and that this
happens if and only if the liquid’s reduced constant-potential-
energy hypersurfaces are (almost) invariant along certain
curves in the phase diagram, the liquid’s isomorphs. Thus for
any given simple liquid a single number, λ, parameterizes the
reduced constant-potential-energy hypersurfaces. We indicate
this by writing

�̃ = �̃(λ), (2)

where

�̃ ≡ {R̃ | U (ρ−1/3R̃) = 〈U 〉} . (3)

The isomorph theory says nothing about how these hypersur-
faces compare between different simple liquids. We now argue
that the family �̃(λ) is quasiuniversal, i.e., approximately the
same for all simple liquids.

The only systems with 100% correlation between NVT
equilibrium fluctuations of potential energy and virial
(W (R) ≡ −1/3

∑
i ri · ∇iU ) are the inverse-power-law (IPL)

systems, for which the potential energy scales with interpar-
ticle distance as r−n. For these systems the 100% correlation
follows from the identity U (λR) = λ−nU (R) and Euler’s
theorem for homogeneous functions. The last decade has given
rise to a number of studies of how well experimental systems
may be understood by reference to an IPL system (see, e.g.,
Refs. [43–47]). In these works the value of the IPL exponent
n plays a central role because n determines how the system
reacts to volume changes.

A simple liquid by definition has strong correlations
between the NVT equilibrium fluctuations of W and U at
its condensed-phase state points. Consequently, at each of
it’s strongly correlating state points the liquid behaves much
like an IPL system. The value of the effective IPL exponent
n generally varies with state point. For Lennard-Jones (LJ)
liquids n is fairly constant, between 5 and 6 at typical liquid
state points. For the 99.9% correlating “repulsive LJ liquid”
defined by the pair potential ε[(r/σ )−12 + (r/σ )−6]/2 [48],
the exponent varies from n ∼= 12 at high densities to n ∼= 6
at low densities. How much the effective IPL exponent varies
throughout the phase diagram is of no importance for the
arguments given below for �̃(λ) quasiuniversality, however.

In many respects IPL systems with different exponents
have similar (“quasiuniversal”) behavior. This was noted long
time ago in relation to these systems’ structure and DC
dynamic properties expressed, e.g., via the diffusion constant
[49–57]. During the last decade IPL quasiuniversality has
come into focus again [58–60] and been extended to include
general dynamic properties, termed “dynamic equivalence”
by Medina-Noyola and coworkers. Dynamic equivalence has
been established for Brownian [61,62] as well as Newtonian
[63–66] dynamics.

Because structure and dynamics are both encoded in �̃,
IPL quasiuniversality follows if IPL systems have almost
identical constant-potential-energy hypersurfaces. But why
should this be the case? To understand this, we consider two
infinitesimally close configurations with same n-IPL potential
energy and argue that they for all m to a good approximation
have the same m-IPL potential energy.

The m-IPL potential energy is given by Um =
εm

∑
ij (rij /σ )−m, in which rij is the distance between particles

i and j . The change in Um between two nearby configurations
is given by

δUm = −m εm

∑
ij

(
rij

σ

)−m−1
δrij

σ
. (4)

By assumption δUn = 0. Equation (4) implies

d

dm

(
δUm

m εm

)
=

∑
ij

(
rij

σ

)−m−1

ln

(
rij

σ

)
δrij

σ
. (5)

The factor ln(rij /σ ) in Eq. (5) does not vary dramatically be-
cause it is a logarithm. This factor is multiplied by (rij /σ )−m−1

that varies a lot. Their product is dominated by a rather narrow
range of interparticle distances, the most important of which
is denoted by 〈r〉m. This quantity depends on both m and the
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state point. As a good approximation one can replace ln(rij /σ )
by ln(〈r〉m/σ ), and Eq. (5) now becomes, via Eq. (4),

d

dm

(
δUm

m εm

)
= − ln

( 〈r〉m
σ

)(
δUm

m εm

)
. (6)

Recall that δUn = 0. Since δUm/(mεm) ≡ 0 is the unique
solution to this first-order differential equation that obeys
δUn/(nεn) = 0, it follows that δUm = 0 for all m. Note that
the approximation made by replacing ln(rij /σ ) by a constant
is questionable when m � 2, in which case no narrow
range of interparticle distances dominates Eq. (5) because∑

j r−m−1
ij diverges. Note also that, since the approximation

relies on fluctuations in rij being small in the region where
force is greatest, the argument can be expected to work
better in higher dimensions. This supports the conjecture that
genuine simple-liquid universality is approached as the spatial
dimension increases towards infinity (Sec. I).

Within the above approximation the potential-energy func-
tions Un(R) have the same constant-potential-energy hyper-
surfaces for all n � 2. Possibly, this applies for all n. Since a
simple liquid at a given state point may be approximated by
an IPL system, this means that all simple liquids have approx-
imately the same constant-potential-energy hypersurfaces. In
other words, to a good approximation one family of manifolds
parametrized by a single parameter, �̃(λ), is common to all
simple liquids. Each isomorph of a simple liquid corresponds
to a particular value of λ, i.e., to one specific manifold �̃.

III. CONSEQUENCES OF �̃(λ) QUASIUNIVERSALITY

This section derives consequences of the above justified
central idea that the family of reduced constant-potential-
energy hypersurfaces to a good approximation is common to
all simple liquids.

A. Different IPL systems exhibit close similarities with respect
to structure and dynamics, similarities that extend to all

other simple liquids [49–76]

Because reduced-unit structure and dynamics are both
encoded in �̃, any two state points of two different IPL systems
with same �̃ have the same structure and dynamics. The
extension of similarities to all simple liquids follows from
�̃(λ) quasiuniversality. Note that the hard-sphere (HS) system
also exhibits these quasiuniversalities because it is the n → ∞
limit of n-IPL systems.

B. The Young-Andersen approximate scaling principle [63,64]

This principle states that if two liquids at two state points
have approximately the same reduced radial distribution
function g(r̃), they have approximately the same reduced
dynamics. g(r̃) is determined from �̃, so having the same g(r̃)
implies having the same �̃. This implies the same dynamics if
the two liquids are simple.

C. Quasiuniversality of the order-parameter maps
of Debenedetti and coworkers [77–79]

Plotting a translational order parameter versus an orien-
tational order parameter for various state points leads to a

one-dimensional curve for any simple liquid, because both
order parameters are isomorph invariant [34]. The approximate
identity between the order-parameter curves of different
simple liquids follows from �̃(λ) quasiuniversality, because
�̃ determines both order parameters.

D. Excess entropy scaling [80–83]

Rosenfeld noted in 1977 that the reduced diffusion con-
stants D̃ of different simple liquids have an approximately
universal dependence on the (excess) entropy per particle,
s [80]. This quasiuniversality applies also, e.g., for the reduced
heat conductivity as a function of excess entropy [84]. For any
simple liquid, since D̃ and s are both isomorph invariant, one
quantity is a function of the other. Quasiuniversality of the
function D̃(s) is a consequence of the fact that D̃ and s are
both encoded in �̃ (the entropy S = Ns is the logarithm of
the area of �̃).

E. The Lindemann melting criterion [85–87]

According to the Lindemann criterion a crystal melts when
the vibrational mean-square displacement obeys

√
〈x̃2〉 	 0.1,

where x̃ ≡ xρ1/3 in which x is the atomic vibrational dis-
placement from equilibrium in a fixed direction. The melting
curve in the phase diagram is an isomorph [34,35], so melting
takes place for a particular manifold �̃c of the crystalline
state. This manifold determines 〈x̃2〉. Thus any simple crystal
melts when 〈x̃2〉 reaches a certain, quasiuniversal value. The
Lindemann criterion and its generalizations [85,87,88] have
been questioned on the grounds that they are single-phase
criteria, whereas melting occurs when the crystal and liquid
free energies are the same, so any melting criterion should
refer to properties of both phases. One possible resolution
of this paradox is that the Lindemann criterion does not, in
fact, determine the melting line, but a spinodal at a slightly
higher temperature where the crystal becomes mechanically
unstable [89,90]. Alternatively, for the class of simple liquids
�̃ quasiuniversality implies that there is basically just one
melting process, which takes place at state points where the
crystalline manifold is �̃c. Any single-phase melting criterion
referring to this manifold applies for all simple solids.

F. Freezing rules referring to the liquid

Quasiuniversality of such rules follows from the fact that
�̃ is quasiuniversal also on the liquid side of melting. For
instance, this implies the Hansen-Verlet rule that a liquid
crystallizes when the maximum value of the static structure
factor upon cooling reaches 2.85 [50]. Likewise, any simple
liquid’s cV is close to 3kB at freezing [91,92] (it is shown below
that cV is encoded in �̃). Other quasiuniversal melting rules
similarly follow from �̃(λ) quasiuniversality [88]. Examples
are the Andrade equation from 1934 implying a quasiuniversal
value of the reduced melting point viscosity [93,94], the
Raveche-Mountain-Streett criterion [95] of a quasiuniversal
ratio between maximum and minimum of the radial distribu-
tion function at freezing, Lyapunov-exponent based criteria
[89], or the criterion of zero higher-than-second-order liquid
configurational entropy at crystallization [96]. Note that the
theory also predicts a quasiuniversal constant-volume melting
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entropy for simple liquids, which is consistent with experiment
[91,97].

G. Algebraic closedness of the class of simple potentials

If U1(R) and U2(R) are both potentials of simple liquids,
i.e., strongly correlating liquids, their sum and product are also
simple: since at any density the functions U1(R̃) and U2(R̃)
are both constant on the manifolds �̃(λ), this applies also
for their sum and product. In particular, note the following
property. Writing a simple pair potentials as v(r) = εφ(r/σ ),
the derivative with respect to σ , ∂v(r)/∂σ , is also a simple
pair potential. Less trivial is the property that the product of
two simple pair potentials defines the pair potential of another
simple liquid (see Sec. IV).

H. Additivity of thermodynamic quantities

Suppose U (R) = U1(R) ± U2(R) in which U1(R) and
U2(R) each define a simple liquid (the symbol ± signals that
the below arguments apply for both signs). An example is when
U (R) is the LJ potential, U1(R) is an n = 12 IPL potential,
and U2(R) is an n = 6 IPL potential. Then U (R) defines a
simple liquid, and as functions of density and entropy the cor-
responding temperatures obey T (ρ,S) = T1(ρ,S) ± T2(ρ,S)
[98]. To show this, note that since the entropy determines
�̃, at given values of ρ and S the three constant-potential-
energy manifolds are identical: � = �1 = �2. This implies
that U (ρ,S) = U1(ρ,S) ± U2(ρ,S), from which T (ρ,S) =
T1(ρ,S) ± T2(ρ,S) follows via the definition of temper-
ature T ≡ (∂U/∂S)ρ . The thermodynamic relation W =
(∂U/∂ ln ρ)S similarly implies additivity of virials: W (ρ,S) =
W1(ρ,S) ± W2(ρ,S). The (excess) Helmholtz free energy F ,
(excess) Gibbs free energy G, and (excess) enthalpy H are
likewise additive: F (ρ,S) = F1(ρ,S) ± F2(ρ,S), G(ρ,S) =
G1(ρ,S) ± G2(ρ,S), H (ρ,S) = H1(ρ,S) ± H2(ρ,S).

As an application we note the intriguing “additivity of
melting temperatures” first discussed by Rosenfeld [55]: Since
crystallization for all simple liquids takes place at a certain
value of the liquid entropy, at any given density one has
Tm = Tm,1 ± Tm,2. An IPL liquid’s melting temperature scales
with density as Tm ∝ ρn/3, so for the LJ liquid this implies an
expression of the form Tm = Aρ4 − Bρ2 [48,55,99].

I. A partly quasiuniversal equation of state

It was recently shown that simple liquids have simple
thermodynamics in the sense that temperature factorizes into
a product of a function of entropy and a function of density,
T = f (s)h(ρ) [48]. We now show that the function f (s) is
quasiuniversal, i.e., all specific system dependence is in the
function h(ρ). This justifies writing the equation of state as

T = f0(s)h(ρ) . (7)

The point is that the specific heat, like the entropy, depends
only on �̃. This can be shown by first writing cV in terms
of fluctuations of canonical ensemble probabilities, and then
relating the latter to microcanonical (NVU) probabilities, ar-
guing as follows. According to Einstein CV = 〈(�U )2〉/kBT 2

in which the average refers to the canonical ensemble. In terms
of the configuration-space probability p ∝ exp(−U/kBT )

this implies CV = kB〈(� ln p)2〉. The canonical ensemble
is realized from the microcanonical NVU ensemble in the
standard textbook way by considering a small subvolume Vm

of the total volume V . On average Vm contains m particles
where m/N = Vm/V . Each configuration of m particles in
Vm, (r1, . . . ,rm), has a probability p(r1, . . . ,rm) that can be
calculated from the manifold � (or �̃) by integrating out the
remaining degrees of freedom. The set of configurations in
� with precisely m particles in volume Vm is denoted by
�m. Integrating out the remaining degrees of freedom from
the configurations in �m determines p(r1, . . . ,rm), so this
function is given by � (or �̃). From cV = kB〈(� ln p)2〉/m

it now follows that cV = cV (λ). Since cV = (∂s/∂ ln T )ρ and
s = s(λ), this implies that at fixed density d ln T = φ0(λ)dλ

for some quasiuniversal function φ0(λ). Thus, while for two
simple liquids the temperatures corresponding to the same
manifold �̃ may well differ, the relative temperature changes
(at fixed density) between different �̃s are the same. By
integration this implies that for each simple liquid one can write
T = �(λ)T∗(ρ). Combining this with the equation of state
T = f (s)h(ρ) shows that the function f (s) is determined by
λ, i.e., by the manifold �̃. In summary, �̃(λ) quasiuniversality
implies that f (s) is quasiuniversal, f (s) = f0(s). The function
T∗(ρ) = h(ρ) is not quasiuniversal; it reflects how the liquid’s
characteristic energy scale varies with density [100].

J. Quasiuniversality of simple liquids’ specific-heat
temperature dependence

Eliminating λ between cV (λ) and T = f0(s)h(ρ) where
s = s(λ) leads to cV = F0(T/h(ρ)) for some quasiuniversal
function F0. This is consistent with the Rosenfeld-Tarazona
expression cV ∝ T −2/5 [81], which as shown by computer
simulations applies to a good approximation not just for all
IPL systems, but also for LJ-type liquids and other simple
liquids [101–106]. Note that cV ∝ T −2/5 implies s ∝ −T −2/5

since cV = (∂s/∂ ln T )ρ and s → 0 for T → ∞. This means
that

f0(s) ∝ (−s)−5/2 . (8)

K. Quasiuniversal isochoric fragility of simple liquids

NVU dynamics give the same relaxation times as NVE or
NVT dynamics, and thus the reduced relaxation time τ̃ is
determined by �̃. This not only means that τ̃ is a unique
function of the excess entropy (“excess entropy scaling”), it
also implies a quasiuniversal temperature dependence of τ̃ at
constant density: The quasiuniversal equation of state Eq. (7)
implies that at any given density, entropy is a quasiu-
niversal function of temperature in the following sense:
s = s0(T/h(ρ)). This implies quasiuniversality of the form
τ̃ = τ̃0(T/h(ρ)) [100]. In particular, at constant density
Angell’s fragility, −d log10(τ̃ )/d ln T |T =Tg

[107], is a qua-
siuniversal number for any given cooling rate defining the
glass transition temperature Tg [107–109]. This is reminis-
cent of the universal temperature dependence of viscosity
discussed in 1996 by Kivelson et al. [110], although these
authors subtracted the high-temperature activation energy
before demonstrating data collapse. A quasiuniversal isochoric
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fragility is consistent with simulations of De Michele et al.,
who found that different IPL systems have the same fragility
[111] (see, however, also Ref. [112]). The prediction is not
entirely consistent with available experimental data, although
there does seem to be a tendency that van der Waals liquids
have isochoric fragilities not far from 50 [113]. In this
connection it should be pointed out that it is an experimental
challenge to determine the isochoric fragility accurately.

L. The hard-sphere system

Temperature plays no role for the configurational degrees of
freedom of the hard-sphere (HS) liquid. Since only density is
important, the HS thermodynamic phase diagram is effectively
one-dimensional. This brings to mind isomorphs, the existence
of which implies that a simple liquid’s phase diagram is also
effectively one-dimensional. Is the HS liquid simple? Since
its potential energy is zero whereas the virial is not, the HS
liquid is not simple in the sense of the term used here. In
our opinion, the HS liquid should be thought of more as the
n → ∞ limit of an n-IPL system than as a physical system of
its own right. When a simple liquid is modeled by a HS system,
each of the liquid’s isomorphs correspond to a specific value
of the HS packing fraction η. This establishes a one-to-one
correspondence λ ↔ η, which explains why simple liquids’
entropy, reduced relaxation time, reduced viscosity, etc, have
all been found to be quasiuniversal functions of the η parameter
of the HS reference system.

Arguments for quasiuniversality were traditionally based
on the fact that any simple liquid is well represented by the
HS reference system [2,71,114–118]. In this view, the HS
system is useful because it captures the essence of liquids’
harsh repulsive forces [116,117,119]. This picture is intuitively
appealing, but runs into problems when confronted with known
facts. On the one hand, IPL quasiuniversality extends down
to n = 3 or n = 4, in fact for some quantities down to
n = 1 [80,120] where repulsions are quite smooth. On the
other hand, there are several systems with harsh repulsive
forces that exhibit anomalous behavior which is not captured
by the HS system [21–29]. From the NVU perspective, the
HS system’s usefulness is not the explanation of simple
liquids’ quasiuniversality, but a consequence of it: since all
n-IPL systems are quasiuniversal, the HS system inherits this
property because it is the n → ∞ limit of n-IPL systems.

M. Role of entropy

Theories relating a liquid’s relaxation time to its entropy
go back in time at least to Bestul and Chang, who in 1964
noted that the glass transitions of different glass-forming
liquids occur at virtually the same value of the (excess)
entropy [121]. Since the glass transition for a given cooling
rate takes place when the liquid’s relaxation time reaches a
certain value, by generalization to other cooling rates this result
implies that the relaxation time is a quasiuniversal function
of entropy. Independently, based on computer simulations
and approximate analytical arguments, Rosenfeld in 1977
proposed excess entropy scaling [80]. These two results, as
well as the Adam-Gibbs model from 1965 in which entropy
is also crucial [122–124], may appear counterintuitive since

entropy is global property: How can a global property control
the relaxation time, which is determined as an average of
(fairly) local properties? For simple liquids �̃(λ) quasiuni-
versality provides the following answer. Entropy identifies
the relevant manifold �̃, and �̃ determines the relaxation
time. Accordingly, other markers of �̃ should be equally
useful for determining the relaxation time, for instance the
two-particle entropy that Dzugutov in 1996 suggested controls
the relaxation time [88,125].

N. Characterizing �̃ via the mean curvature

It is difficult to visualize a high-dimensional differentiable
manifold. A primitive analog is a two-dimensional closed
surface in ordinary three-dimensional space. Such a surface
has two obvious geometric characteristics, its area and its mean
curvature. The latter is conveniently quantified in terms of the
average radius of curvature R, defined as the average inverse
curvature. Both the area and the curvature concepts generalize
to multidimensional Riemannian surfaces [126–128] (good
introductions to this branch of mathematics are available, for
instance Refs. [129–131]). The entropy is the logarithm of
the manifold’s area, but what is the physical interpretation
of the average radius of curvature? To answer this we start
from the configuration-space canonical ensemble expression
[132–134],

kBT = 〈(∇U )2〉
〈∇2U 〉 , (9)

which is derived by partial integration of
∫

dR∇ ·
∇U (R) exp[−U (R)/kBT ]. Because of ensemble equivalence,
the NVU configuration-space microcanonical ensemble may
be used to calculate the averages in Eq. (9) as integrals over �.
The inverse radius of curvature at a point on a d-dimensional
hypersurface � is ∇ · n/d [130,131] where n is the normal
vector to � at the point in question, which is in our case given
by n = ∇U/|∇U|. To leading order in 1/

√
N fluctuations of

the denominator are insignificant. This implies for the inverse
average radius of curvature 1/R (replacing 3N − 1 by 3N )

1

R
= 1

3N

〈∇2U 〉
〈|∇U |〉 . (10)

If the average length of the 3N -dimensional force vector F =
−∇U is denoted by F, because fluctuations are insignificant as
N → ∞, one has F2 = 〈(∇U )2〉 and Eqs. (9) and (10) imply

R F = 3NkBT . (11)

We see that a small radius of curvature corresponds phys-
ically to a large average force. As N → ∞, 〈∇2U 〉 ∼
N and 〈|∇U |〉 ∼ √

N which implies R ∼ √
N . Likewise,

F ∼ √
N as N → ∞. If one defines R̃ ≡ ρ1/3R/

√
3N and

F̃ ≡ ρ−1/3F/(
√

3NkBT ), these quantities are dimensionless,
independent of N in the thermodynamic limit, and related by

R̃ F̃ = 1 . (12)

Thus �̃’s curvature is basically F̃. This quantity provides an
alternative to the entropy for characterizing �̃.

Entropy and F̃ both have simple geometric interpretations,
but the curvature F̃ has the advantage of being the average of
a locally defined quantity. This implies that, since fluctuations
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are unimportant in the thermodynamic limit, F̃ may be
calculated from a short-time simulation. Note also that F̃ may
be calculated from standard NVE or NVT simulations.

The quasiuniversal entropy dependencies observed for
simple liquids’ structure and dynamics may equally well be
interpreted as quasiuniversal dependencies on F̃, the curvature
of �̃. Interestingly, this is the quantity that controls the
relaxation time in the entropic barrier hopping theory of
Schweizer and co-workers [135–137]—except for the fact that
here the real forces are replaced by effective forces defined by
the direct correlation function.

The connection between curvature and force is not surpris-
ing since motion on a flat manifold requires no force. Indeed,
this point was made by one of the pioneers in connecting
mechanics and differential geometry, Lipschitz, who wrote in
1873 [138]: “When a material particle, which is not influenced
by any accelerating force, is bound to move on a given surface,
the pressure exerted in each point of the trajectory is inversely
proportional to the radius of curvature of this trajectory”
(quoted from Ref. [139]). What happens is the following.
When a particle (i.e., the system) moves on a perfectly smooth
surface like �̃, since no work is performed, the kinetic energy
is conserved and thus the particle’s velocity v is constant. This
implies that the centripetal force keeping the particle on the
surface, ∝ v2/r , is inversely proportional to the local curvature
radius r .

For viscous liquids most motion is vibrational and one can
estimate F̃ by adopting a harmonic approximation. Writing for
the force on a particle −Cx, where x is the displacement
away from its short-time average, implies 〈F2〉 ∝ C2〈x2〉.
Since C〈x2〉/2 = kBT /2 by equipartition, this means that
if a ≡ ρ−1/3 is the average interatomic spacing, 〈F̃2〉 ≡
ρ−2/3〈F2〉/[3N (kBT )2] ∝ a2/〈x2〉 ≡ 1/〈x̃2〉. Thus for viscous
simple liquids the quantity 1/〈x̃2〉 identifies �̃ and “controls”
the relaxation time in the same sense as entropy does. This
is an old idea [140–147], which is closely related to the
shoving model and other elastic models for the temperature
dependence of viscous liquids’ relaxation time [109,148–150].
Note also that, since 1/〈x̃2〉 identifies �̃, for simple liquids the
crossover to activated transitions takes place at a quasiuniversal
value of the reduced vibrational displacement 〈x̃2〉, as recently
predicted by Lubchenko and coworkers from the random
first-order transition theory [151,152].

O. Quasiuniversal interdependence of isomorph invariants

We showed above that the isomorph invariant cV is encoded
in �̃. Generally, any isomorph invariant is encoded in �̃. As
a consequence, �̃(λ) quasiuniversality implies the following
principle:

The relation between any two isomorph invariants is
quasiuniversal.

From the �̃(λ) quasiuniversality perspective, excess en-
tropy scaling is thus a special case of a much more general
principle.

P. A single microconfiguration is enough to identify �̃

Given an equilibrium configuration R = (r1, . . . ,rN ) of a
simple liquid the corresponding reduced vector R̃ identifies

the relevant manifold �̃. From �̃ all the system’s isomorph
invariants like entropy, specific heat, reduced relaxation time,
reduced diffusion constant, reduced heat conductivity, reduced
incoherent scattering function, etc, can be calculated. The
reduced radial distribution function g(r̃) is also included, of
course, being trivially given by R̃. This illustrates again the
Young-Andersen approximate scaling principle that for simple
liquids knowing g(r̃) determines many other quantities.

IV. TOWARDS A THEORY OF SIMPLE LIQUIDS

Rosenfeld in 1977 justified IPL quasiuniversality by as-
suming that any n-IPL system is well represented by a HS
reference system [80]. Since the HS system has just one
parameter, this implies IPL quasiuniversality. Given the fact
that the HS system is the n → ∞ limit of n-IPL systems,
this reasoning may be regarded as somewhat circular by
assuming part of what is to be arrived at. Section II gave a
non-circular argument for quasiuniversality, but we wish here
to supplement it by another argument, suggesting a deeper
reason for quasiuniversality.

We take as starting point that the pair potential defined
by a simple exponentially decaying function of r is strongly
correlating, i.e., defines a simple liquid. This remains to
be thoroughly investigated and documented, but the recent
simulations by Veldhorst et al. [153] of the Buckingham
potential, which has a harsh exponentially repulsive term,
certainly indicates that this is the case. Thus we assume that
systems with pair potentials of the form v(r) = ε exp(−r/σ )
are strongly correlating, at least in the part of the (σ 3ρ,kBT /ε)
parameter space defining dense fluid states. This means that
the reduced constant-potential-energy hypersurfaces �̃, which
are a priori parametrized by the two dimensionless numbers
σ 3ρ and kBT /ε, constitute a single-parameter family �̃(λ),
where λ = λ(σ 3ρ,kBT /ε).

We proceed to argue that this one-parameter fam-
ily characterizes all simple liquids. It is enough to
show that all IPL pair potentials have in common
these “exponential” reduced constant-potential-energy hy-
persurfaces. Now, following the reasoning of Sec. III G
any linear combination of exponential pair potentials,
C1ε1 exp(−r/σ1) + C2ε2 exp(−r/σ2), has the same family of
reduced constant-potential-energy hypersurfaces as a single
exponential. By generalization, this implies via the mathemat-
ical identity

r−n = 1

(n − 1)!

∫ ∞

0
xn−1e−xrdx (13)

that the family �̃(λ) is common to all IPL potentials and,
by implication, to all simple liquids. Thus, while the IPL
functions constitute a convenient “basis set” for simple-liquid
pair potentials, an even simpler basis set is provided by the
exponential pair potentials. Interestingly, such potentials come
out naturally from quantum mechanics; in fact, these were the
first pair potentials discussed in the literature [154] (by Born,
Born-Meyer, Morse, etc.).

The above implies that the pair potential of any simple
liquid is equivalent to a sum of exponentials. Consequently,
the product of any two simple pair potentials defines a simple
pair potential.
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V. CONCLUDING REMARKS

We have shown that the several quasiuniversalities found
for simple liquids’ structure, dynamics, and thermodynam-
ics follow from one fundamental quasiuniversality, namely
the existence of a common single-parameter family of
reduced constant-potential-energy hypersurfaces �̃(λ). This
“�̃(λ) quasiuniversality” was justified for IPL systems in
Sec. II by a nonrigorous argument, but it can also be arrived
at from the fact that the exponentially repulsive pair potential
is simple in a large part of its parameter space (Sec. IV). IPL
quasiuniversality generalizes to all simple liquids by virtue
of their property of having strong correlations between NVT
equilibrium virial and potential-energy fluctuations.

It is important to emphasize again that there is no exact
universality among simple liquids, only approximate univer-
sality. A demonstration of this is provided by the well-known

fact that the crystalline state is only face-centered cubic for IPL
exponents larger than seven (below which it is body-centered
cubic). Another point to be emphasized is that, in contrast to
mode-coupling theory and other fully renormalized theories
of liquid dynamics, the present approach does not distinguish
between short and long time scales—quasiuniversality applies
on vibrational time scales and longer.
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