
Roskilde
University

Analysis of Logic Programs Using Regular Tree Languages
Extended Abstract

Gallagher, John Patrick

Published in:
Lecture Notes in Computer Science

Publication date:
2012

Document Version
Early version, also known as pre-print

Citation for published version (APA):
Gallagher, J. P. (2012). Analysis of Logic Programs Using Regular Tree Languages: Extended Abstract. Lecture
Notes in Computer Science, 7225, 1-3.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain.
 • You may freely distribute the URL identifying the publication in the public portal.
Take down policy
If you believe that this document breaches copyright please contact rucforsk@kb.dk providing details, and we will remove access to the work
immediately and investigate your claim.

Download date: 05. Jul. 2025

Analysis of logic programs using regular tree
languages (extended abstract)

John P. Gallagher?

Roskilde University, Denmark
IMDEA Software Institute, Madrid, Spain

Email: jpg@ruc.dk

Abstract. The field of finite tree automata provides fundamental nota-
tions and tools for reasoning about set of terms called regular or recog-
nizable tree languages. We consider two kinds of analysis using regular
tree languages, applied to logic programs. The first approach is to try
to discover automatically a tree automaton from a logic program, ap-
proximating its minimal Herbrand model. In this case the input for the
analysis is a program, and the output is a tree automaton. The second
approach is to expose or check properties of the program that can be
expressed by a given tree automaton. The input to the analysis is a pro-
gram and a tree automaton, and the output is an abstract model of the
program. These two contrasting abstract interpretations can be used in
a wide range of analysis and verification problems.

Finite Tree Automata

A tree language is a set of trees, commonly represented as terms. Terms are ubiq-
uitous in computing, representing entities as diverse as data structures, compu-
tation trees, and computation states. Here we consider only finite terms. Infor-
mally, a finite tree automaton (FTA) is a mathematical machine for recognising
terms. FTAs provide a means of finitely specifying possibly infinite sets of ground
terms, just as finite state automata specify sets of strings. Detailed definitions,
algorithms and complexity results can be found in the literature [1]. An FTA in-
cludes a grammar for trees given by transition rules of the form f(q1, . . . , qn)→ q,
where f is a function symbol from a given signature Σ and q, q1, . . . , qn are states
of the automaton. This rules states that a term f(t1, . . . , tn) is accepted by at
state q of the FTA if t1, . . . , tn are accepted at states q1, . . . , qn respectively. If
q is a final state, then the term f(t1, . . . , tn) is recognised by the FTA.

A notational variant of FTAs is given by alternating tree automata, though
the class of recognisable terms is the same as for FTAs. For the purposes of
static analysis, a subset of alternating tree automata we call conjunctive FTA
(CFTA) is useful. In a CFTA, transition rules have the form f(C1, . . . , Cn)→ q,
which is like an FTA transition except that C1, . . . , Cn are nonempty sets of
automata states. Such a rule states that a term f(t1, . . . , tn) is accepted at state

? Supported by Danish Research Council grants FNU 272-06-0574, FNU 10-084290.

2

q of the automaton if each ti is accepted at all the states in Ci. A bottom-up
deterministic finite tree automaton (DFTA) is one in which the set of transitions
contains no two transitions with the same left-hand-side. For every FTA A there
exists a DFTA A′ that recognises the same set of terms.

An FTA is called complete iff for all n-ary functions f and states q1, . . . , qn,
there exists a state q and a transition f(q1, . . . , qn)→ q. This implies that every
term is accepted by some (not necessarily final) state of a complete FTA.

Deriving a CFTA from a logic program

The concrete semantics of a definite logic program P is defined by the usual
TP (immediate consequence) operator. We write it as follows, with subsidiary
functions project, reduce, ground. Let I be a subset of the Herbrand base of the
program.

TP (I) = {project(H, θφ)) | H ← B ∈ P, θ ∈ reduce(B, I),
φ ∈ ground(vars(H) \ vars(B))}

The subsidiary functions have obvious meanings in the concrete semantics, yield-
ing the familiar function such that lfp(TP) is the least Herbrand model of P . This
is the limit of the Kleene sequence ∅, TP (∅), T 2

P (∅),
We define a finite abstract domain of CFTAs FP for a given program P , based

on the symbols appearing in P , in the style described by Cousot and Cousot [3].
Consider the set of occurrences of non-variable subterms of the heads of clauses
in P , including the heads themselves; call this set headterms(P). The aim is
to analyse the instances of the elements of headterms(P). In particular, the set
of instances of the clause heads in successful derivations is the least Herbrand
model of P . Let P be a program, with function and predicate symbols Σ. Let
Q be a finite set of identifiers labelling the elements of headterms(P) including
a distinguished identifier τ . The base set of transitions ∆P is the set of CFTA
transitions that can be formed from Σ and states Q. The domain FP is defined
as FP = {〈Q, {τ}, Σ,∆〉 | ∆ ⊆ ∆P }. In other words FP is the set of CFTAs
whose states are identifiers from the finite set Q, have a single accepting state τ
and some set of transitions that is a subset of the base transitions of P . Q and
Σ are finite, and hence FP is finite.

Let γ be a concretisation function, where γ(A) is the set of terms accepted
by CFTA A. The abstract semantic function is a function Tα1

P : FP → FP and
the safety condition is that T ◦γ ⊆ γ ◦Tα1

P , which is sufficient, together with the
monotonicity of TP , to prove that lfp(TP) ⊆ γ(lfp(Tα1

P)) [2]. In short, Tα1

P (A)
returns a CFTA by solving each clause body wrt A resulting in a substitution
of states of A for the body variables. This substitution is projected to the corre-
sponding clause head variables, generating transitions for the returned CFTA.

The sequence ∅, Tα1

P (∅), Tα1

P
2(∅), Tα1

P
3(∅), . . . is monotonically increasing wrt

⊆. Convergence can be tested simply by checking the subset relation, which is a
vital point for efficient implementations (since the language containment check
would be very costly). Note that this abstract interpretation is not a Galois
connection, in contrast to the second family of analyses discussed next.

3

Analysis of a program with respect to a given DFTA

A complete DFTA induces a finite partition of the set of accepted terms, since
every term is accepted at exactly one state. Given a complete DFTA R, let
βR(t) be the partition (denoted by its DFTA state) to which term t belongs.
The Herbrand base BP for a program P is abstracted by mapping into a domain
of abstract atoms AP . More precisely, let I ⊆ BP ; define the abstraction function
α as α(I) = {p(βR(t1), . . . , βR(tn)) | p(t1, . . . , tn) ∈ I}. Given a set of abstract
atoms J ⊆ AP , the concretisation function γ is defined as γ(J) = {p(t1, . . . , tn) |
p(a1, . . . , an) ∈ J, ti is accepted at state ai, 1 ≤ i ≤ n}. α and γ together define
a Galois connection between the complete lattices (2BP ,⊆) and (2AP ,⊆). There
is thus an optimal abstract semantic function Tα2

P = α ◦ TP ◦ γ [2], and this can
be implemented and computed by suitable instantiations of the functions reduce,
project and ground mentioned earlier.

Regular types and other applications

Approximating a logic program by a CFTA has been called “descriptive type
inference”; each inferred automaton state can be interpreted as a type. It has
been used in debugging programs (highlighting inferred empty types) as well
as checking whether inferred types correspond to intended types [5]. Analysis
based on DFTAs has been used to perform mode analysis, binding time analysis
and type checking for given types and modes expressed as DFTAs. Since it is
possible to construct a DFTA from any given FTA, this kind of of analysis
can be used to check any term property expressible as an FTA. Techniques for
handling the potential blow-up caused by conversion to DFTA, as well as BDD
representations of the DFTAs to improve scalability, are discussed in [4].

References

1. H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Ti-
son, and M. Tommasi. Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata, 2007. release October, 12th 2007.

2. P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic
and Computation, 2(4):511–547, 1992.

3. P. Cousot and R. Cousot. Formal language, grammar and set-constraint-based pro-
gram analysis by abstract interpretation. In Proceedings of the Seventh ACM Con-
ference on Functional Programming Languages and Computer Architecture, pages
170–181, La Jolla, California, 25–28 June 1995. ACM Press, New York, NY.

4. J. P. Gallagher, K. S. Henriksen, and G. Banda. Techniques for scaling up analyses
based on pre-interpretations. In M. Gabbrielli and G. Gupta, editors, Proceedings of
the 21st International Conference on Logic Programming, ICLP’2005, volume 3668
of Springer-Verlag Lecture Notes in Computer Science, pages 280–296, 2005.

5. J. P. Gallagher and G. Puebla. Abstract Interpretation over Non-Deterministic
Finite Tree Automata for Set-Based Analysis of Logic Programs. In Fourth In-
ternational Symposium on Practical Aspects of Declarative Languages (PADL’02),
LNCS, January 2002.

