Towards Abstract Interpretation of Epistemic Logic

Ajstrup, Mai; Gallagher, John Patrick

Publication date:
2012

Document Version
Early version, also known as pre-print

Citation for published version (APA):
Towards Abstract Interpretation of Epistemic Logic

Mai Ajspur and John P. Gallagher

CBIT, Building 43.2, Roskilde University, 4000 Roskilde, Denmark

Abstract. The model-checking problem is to decide, given a formula ϕ and an interpretation M, whether $M \models \phi$. Model-checking algorithms for temporal logics were initially developed with finite models (such as models of hardware) in mind so that $M \models \phi$ is decidable. As interest grew in model-checking infinite systems, other approaches were developed based on approximating the model-checking algorithm so that it still terminates with some useful output.

In this work we present a model-checking algorithm for a multiagent epistemic logic containing operators for common and distributed knowledge. The model-checker is developed as a function directly from the semantics of the logic, in a style that could be applied straightforwardly to derive model-checkers for other logics. Secondly, we consider how to abstract the model-checker using abstract interpretation, yielding a procedure applicable to infinite models. The abstract model-checker allows model-checking with infinite-state models. When applied to the problem of whether $M \models \phi$, it terminates and returns the set of states in M at which ϕ might hold. If the set is empty, then M definitely does not satisfy ϕ, while if the set is non-empty then M possibly satisfies ϕ.

1 Syntax and semantics of the logic CMAEL(CD)

We consider the logic CMAEL(CD) [1, 7] whose formulas $\phi \in \Phi$ are defined by the following grammar.

$$\varphi ::= p \mid \neg \varphi \mid (\varphi_1 \land \varphi_2) \mid D_A \varphi \mid C_A \varphi.$$

The variable p ranges over the set \mathcal{AP} of atomic propositions, typically denoted by p, q, r, \ldots; the variable A ranges over the set of coalitions $\mathcal{P}^+(\Sigma)$, which is the set of non-empty subsets of Σ, where Σ is a finite, non-empty set of (names for) agents, typically denoted by a, b, \ldots. The epistemic operators D_A and C_A are read as "it is distributed knowledge among A that" and "it is common knowledge among A that" respectively. When A is a singleton $\{a\}$ we often write it as a subscript a instead of $\{a\}$, for example D_a instead of $D_{\{a\}}$.

The semantics of CMAEL(CD) is given in terms of coalitional multiagent epistemic models (CMAEMs). A CMAEM is a tuple $(\Sigma, S, \{R^D_A\}_{A \in \mathcal{P}^+(\Sigma)}, \{R^C_A\}_{A \in \mathcal{P}^+(\Sigma)}, L)$,

1. Σ is a finite, non-empty set of agents;
2. $S \neq \emptyset$ is a set of states;
3. for every $A \in \mathcal{P}^+(\Sigma)$, R^D_A is an equivalence relation on S, satisfying the condition $R^D_A = \bigcap_{a \in A} R^D_a$;
4. for every $A \in \mathcal{P}^+(\Sigma)$, R^C_A is the transitive closure of $\bigcup_{a \in A} R^D_a$;
5. $L : S \rightarrow \mathcal{P}(\mathcal{AP})$ is a labelling function, assigning to every state s the set $L(s)$ of atomic propositions true at s.

Let S be a set. We define functions $\text{pre} : ((S \times S) \times \mathcal{P}(S)) \rightarrow \mathcal{P}(S)$ and $\overline{\text{pre}} : ((S \times S) \times \mathcal{P}(S)) \rightarrow \mathcal{P}(S)$.

- $\text{pre}(R)(X) = \{ s \mid \exists s' \in X : (s, s') \in R \}$ returns the set of states having at least one of their successors (in relation R) in the set $X \subseteq S$;
Abstract Interpretation is not limited to this kind of abstraction.

Semantic Function for CMAEL(CD). Let M be a CMAEM with states S; the following function $[]: \Phi \rightarrow \mathcal{P}(S)$ evaluates to the set of states of M where ϕ is true.

$$[p]_M = \{s | p \in L(s)\}$$

$$[\neg \phi]_M = S \setminus [\phi]_M$$

$$[\mathcal{D}_A \phi]_M = \mathcal{P}(S) \setminus \mathcal{P}(M)$$

$$[\mathcal{C}_A \phi]_M = \mathcal{P}(S) \setminus \mathcal{P}(\mathcal{C}_A \phi)$$

This is closely related to the standard semantic relation $M, s \models \phi$ (where ϕ holds at state s in M), which can be expressed as $s \in [\phi]_M$. (We will transform the function above to eliminate the set complement operator, to avoid technical problems later when abstracting the function.)

1.1 Abstract Interpretation of CMAEL(CD)

What does it mean to perform “abstract model checking”? Informally, we check the satisfiability of a formula in a (possibly infinite) model using partial information about the model. The abstract interpretation framework [5] ensures that the result of the check is safe, in the sense that abstract checking returns false only when the formula is not satisfied by the model.

A typical abstraction is based on a finite set of properties of interest $\{p_1, \ldots, p_k\}$ (see Figure 1), for example those atomic propositions appearing in the formula to be checked. Suppose we have a model in which the set of states is infinite and in every state in S, exactly one p_i holds. Then the finite partition $A = \{d_1, \ldots, d_k\}$ is defined such that $d_i = \{s \in S | p_i \in L(s)\}$. In a property-based abstraction such as this, an abstract interpretation is constructed from two lattices $(\mathcal{P}(S), \subseteq)$ and $(\mathcal{P}(A), \subseteq)$ called the “concrete” and “abstract” domain respectively, and a Galois connection relating them. The Galois connection consists of monotonic functions $\alpha: \mathcal{P}(C) \rightarrow \mathcal{P}(A)$ and $\gamma: \mathcal{P}(A) \rightarrow \mathcal{P}(C)$ such that $\forall c \in \mathcal{P}(C), a \in \mathcal{P}(A), \alpha(c) \subseteq a \Leftrightarrow c \subseteq \gamma(a)$. In property-based abstractions, α and γ are defined as $\alpha(X) = \{d_i | d_i \cap X \neq \emptyset\}$ and $\gamma(Y) = \bigcup Y$. The concrete semantic function is $[\cdot]_M: \Phi \rightarrow \mathcal{P}(S)$ defined above. Given these components, the framework of abstract interpretation assists us in systematically deriving an abstract semantic function $[\cdot]_M: \Phi \rightarrow \mathcal{P}(A)$ systematically from the concrete semantic function such that $[\phi]_M \subseteq \gamma([\phi]_M)$, for all $\phi \in \Phi$ (or equivalently, $\alpha([\phi]_M) \subseteq [\phi]_M$).

Thus in property-based abstract interpretation, the abstract semantic function returns a set of partitions (an element of $\mathcal{P}(A)$). The union of this set of partitions is a superset of the set of concrete states returned by the concrete semantic function. In particular, if $[\phi]_M$ is empty for some ϕ, then the result of the concrete computation $[\phi]_M$ is also empty.

1 Abstract interpretation is not limited to this kind of abstraction.
No Abstract Transition Relations In some approaches to abstract model checking [3, 4], a partition of the set of states is used to induce “abstract relations” in an “abstract model”. This is not our approach, since it cannot simultaneously approximate both a formula and its negation. By contrast, the abstract semantic function derived below always returns an over-approximation of the set of states where any given formula holds. Other authors have developed “dual” approximations based on abstract relations to overcome the limitations of abstract models, but the framework of abstract interpretation offers a more direct solution, and was previously applied successfully to abstract model checking for CTL [2].

1.2 Abstract Semantic Function

The function \([\models^A_M : \Phi \rightarrow P(A)\)] is defined systematically from the concrete function \([\models_M : \Phi \rightarrow P(A)\)] and the functions \(\alpha\) and \(\gamma\). We show it below. The transformation consists only of applying \(\alpha\) to the base cases \(\{s \mid p \in L(s)\}\) and \(\{s \mid p \not\in L(s)\}\) and replacing \(\text{pre}(\cdot,\cdot)\) (resp. \(\text{pre}(\cdot,\cdot)\)) by \(\alpha(\text{pre}(\cdot,\cdot))\) (resp. \(\alpha(\text{pre}(\cdot,\cdot))\)).

\[
\begin{align*}
[p]_M^A &= \alpha(\{s \mid p \in L(s)\}) & [-p]_M^A &= \alpha(\{s \mid p \not\in L(s)\}) \\
[\phi_1 \land \phi_2]_M^A &= [\phi_1]_M^A \cap [\phi_2]_M^A & [\neg(\phi_1 \land \phi_2)]_M^A &= [\neg\phi_1]_M^A \cup [\neg\phi_2]_M^A \\
[D_A\phi]_M^A &= \alpha(\text{pre}(R_A^A)(\gamma([\phi]_M^A))) & [-D_A\phi]_M^A &= \alpha(\text{pre}(\neg R_A^A)(\gamma([\neg\phi]_M^A))) \\
[C_A\phi]_M^A &= \alpha(\text{pre}(R_A^A)(\gamma([\neg\phi]_M^A))) & [-C_A\phi]_M^A &= \alpha(\text{pre}(\neg R_A^A)(\gamma([\neg\phi]_M^A))) \\
[-\phi]_M^A &= [\phi]_M^A
\end{align*}
\]

Proposition 1. For all formulas \(\phi \in \Phi\), and CMAEM \(M\), \([\phi]_M \subseteq \gamma([\phi]_M^A)\).

Proof. Proof is by structural induction on the formula \(\phi\) and uses the properties of Galois connections and monotonic functions.

References