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Henning Christiansen1 and John P. Gallagher12
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DK-4000 Roskilde, Denmark
2 IMDEA Software, Madrid

Email: {henning,jpg}@ruc.dk

Abstract. We present a technique for identifying predicate arguments
that play no role in determining the control flow of a logic program with
respect to goals satisfying given mode and sharing restrictions. We call
such arguments non-discriminating arguments. We show that such argu-
ments can be detected by an automatic analysis. Following this, we define
a transformation procedure, called discriminator slicing, that removes
the non-discriminating arguments, resulting in a program whose compu-
tation trees are isomorphic to those of the original program. Finally, we
show how the results of the original program can be reconstructed from
trace of the transformed program with the original arguments. Thus the
overall result is a two-stage execution of a program, which can be ap-
plied usefully in several contexts; we describe a case study in optimising
computations in the probabilistic logic program language PRISM, and
discuss applications in tabling and partial evaluation. We also discuss
briefly other possible ways of exploiting the non-discriminating argu-
ments.

1 Introduction

The first result presented here is the identification of predicate arguments that
play no role in determining the control flow of a logic program computation,
with respect to initial goals satisfying given mode and sharing restrictions. We
call such arguments non-discriminating arguments. The non-discriminating ar-
guments can be given either manually or determined by an automatic analysis.

Following this, we define a transformation procedure, called discriminator
slicing, that removes the non-discriminating arguments, resulting in a program
whose computations are isomorphic to those of the original program. The trans-
formation can be performed on a whole program or on individual modules, as-
suming that mutually recursive modules do not occur.

We present a technique for decomposing the execution of a program into
two stages. The first stage executes a simplified transformed program called a
mode-sliced program, that establishes the control flow. The second stage per-
forms computations omitted in the first stage. We present certain practical and
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conceptual benefits of this two-stage execution. Non-discriminating arguments
could be used in other ways, though we focus here on transforming a program.

Removing non-discriminating arguments generates a simpler program whose
control flow mirrors that of the original program. The simpler program can be
executed, yielding a trace of its execution. From that trace, together with the
eliminated non-discriminating arguments, the results of executing the original
computation can be reconstructed by re-running the trace but including the
computations for the non-discriminating arguments.

There are various uses of this two-stage process, which might at first sight
appear simply to do the same work as the original computation, and even with
some additional overhead. We show how the technique can lead to overall opti-
misation. The simpler first stage can be of benefit in tabled computations. We
show such a case in the probabilistic logic program language PRISM [18].

The paper is structured as follows. In Section 2 we define the concept of a dis-
criminating argument, along with its relation to mode and sharing abstractions.
Then the slicing of a program, cutting out non-discriminating arguments, is de-
scribed. In Section 3 it is shown that slicing preserves computation traces, and a
two-phase execution scheme is introduced along with an illustrative example. In
Section 4 a particular application is studied, namely the calculation of the most
probable sequence of states in a hidden Markov model programmed in PRISM;
in this application exponential speedup can be achieved, due mainly to savings
in the tabled structures constructed. Sections 5 and 6 contain a discussion on
the applicability of the method and related work, and Section 7 concludes.

2 Preliminaries

We follow the standard terminology and notation for logic programs [10]. For
now, we consider definite logic programs that allow calls to declarative built-in
predicates.

Modes. We define mode abstractions {v, nv} having the following interpretation
given by a function mode. mode(v) is the set of variables and mode(nv) is the set
of non-variables. p(m1, . . . ,mn) is a moded atom if p is an n-ary predicate symbol
and mj ∈ {v, nv}, 1 ≤ j ≤ n. A finite set of moded atoms for predicate p is called
a mode for p. We extend mode to atoms and set of atoms; mode(p(m1, . . . ,mn)) =
{p(t1, . . . , tn) | ti ∈ mode(mi), 1 ≤ i ≤ n}, and mode(M) =

⋃
{mode(p(m̄)) |

p(m̄) ∈M}. We say that an atom A respects a mode M if A ∈ mode(M).

Sharing. We adopt a variant of a standard technique [19] for representing possible
sharing among arguments of a predicate. A pair of terms {t1, t2} is said to share
if vars(t1)∩vars(t2) 6= ∅, where vars(t) denotes the set of variables occurring in
term t. A pair-sharing abstraction (hereafter called simply a sharing abstraction)
for an n-ary predicate p is given by a subset of {{i, j} | i, j ∈ {1, . . . , n}, i 6= j}.
A sharing abstraction S for n-ary predicate p denotes a set of atoms given by
share(S) = {p(t1, . . . , tn) | if {ti, tj} share then {i, j} ∈ S}, or equivalently



as share(S) = {p(t1, . . . , tn) | {i, j} 6∈ S implies {ti, tj} do not share}. Thus
a sharing abstraction represents possible sharing between the given argument
pairs, or equivalently definite independence of pairs of arguments that are ab-
sent. Namely, if {i, j} 6∈ S for some sharing abstraction S, then for all atoms
p(t1, . . . , tn) ∈ share(S), ti and tj share no variable. We say that an atom A
respects a sharing abstraction S for its predicate if A ∈ share(S).

Definition 1. A (argument) discrimination for an n-ary predicate p is an atom
p(d1, . . . , dn), where di ∈ {d, nd}, where d stands for a discriminating argument
and nd stands for a non-discriminating argument. An argument discrimination
for a program Π is a set of discriminations, one for each p/n defined in Π.

The intention of a discrimination is to identify which arguments in a predicate
have an effect on the computation flow. A discriminating argument is one which
could fail to match with the corresponding argument in at least one clause head.
Conversely, a non-discriminating argument is one that does not influence the
success of unification of a call with any clause head. The next definition makes
this precise.

Definition 2. Given a program Π and a goal A, a discrimination for Π is
correct for the computation of Π with A if the following condition holds. For
every call p(t1, . . . , tn) arising in the computation, and standardised-apart clause
head p(u1, . . . , un),

– mgu(((t1, . . . , tn), (u1, . . . , un)) succeeds iff mgu((ti1 , . . . , tik), (ui1 , . . . , uik))
succeeds, where {i1, . . . , ik} is the set of discriminating arguments of p.

Example 1. Consider the usual append program.

append([],Ys,Ys).

append([X|Xs],Ys,[X|Zs] :- append(Xs,Ys,Zs).

Then append(d,nd,nd) is a correct discrimination for the goals append([a],U,V)
and append([a],[b],V). That is, only the first argument determines whether
a call matches a clause head, even though the second argument may also be
non-variable.

Since Definition 2 is given in terms of the set of all calls arising in a com-
putation, it is necessary to find some sufficient conditions in practice, since the
set of calls is infinite in general. The next definition characterises a correct dis-
crimination with respect to a program with a set of calls denoted by a mode
abstraction and a sharing abstraction.

Definition 3. Let Π be a program, M a mode and S a sharing abstraction. Let p
be a predicate and p(d1, . . . , dn) a discrimination for p. Then the discrimination
is correct with respect to M and S if for every standardised-apart clause head
p(u1, . . . , un) and p(m1, . . . ,mn) ∈ M , the set of pairs {〈ui,mi〉 | 1 ≤ i ≤ n}
satisfies the following condition;



– for all 1 ≤ i ≤ n, if di = nd then ui is a variable or mi = v; and
– there do not exist 〈ui,mi〉 and 〈uj ,mj〉, i 6= j, such that di = nd, mi = v

and {i, j} ∈ S, and uj is non-variable; and
– there do not exist 〈ui,mi〉 and 〈uj ,mj〉, i 6= j, such that di = nd, ui is a

variable, mj = nv and share(ui, uj).

Informally, consider a call p(t1, . . . , tn) that satisfies the mode and sharing dec-
larations for p, and a (standardised apart) clause head p(u1, . . . , un). Then for
each non-disriminating argument position i, according to Definition 3, at least
one of ti and ui is a variable. Furthermore, if ti is a variable and shares with
some other argument tj then uj is a variable; and if ui shares with some other
argument uj then tj is a variable.

Example 2. Consider again the append program, the mode {append(nv,nv,v)}
and sharing abstraction ∅ for append. Then append(d,nd,nd) is a correct dis-
crimination. Note that argument 2 is non-discriminating despite the fact that it
is non-variable. Although in clause head append([],Ys,Ys) arguments 2 and 3
share, they are not both matched to non-variables.

The following lemma states that a correct discrimination with respect to a
mode and sharing abstraction (Definition 3) safely approximates the condition
of Definition 2.

Lemma 1. Let Π be a program, M a mode and S a sharing abstraction. Assume
that for all A respecting M and S, every call in the computation of Π with A
respects M and S. Let ∆ be a discrimination for Π. Then if ∆ is correct with
respect to M and S for each predicate in Π then ∆ is correct with respect to Π
and A, for all A respecting M and S.

Proof (Sketch). It can be verified that Definition 3 ensures that any call respect-
ing the given mode and sharing cannot fail due to unifying the non-discriminating
arguments. When unifying on a non-discriminating argument at least one of the
two terms is variable. Thus the only possible cause of failure (since the two terms
are standardised apart) is another occurrence of the variable that is matched to
a different term. This cause is excluded by the conditions of Definition 3. It fol-
lows that every call unifies with each clause head if and only if the discriminating
arguments unify, as required by Definition 2.

Constructing a discrimination from mode and sharing abstractions. Given a
mode and sharing abstraction, we can construct a discrimination that satisfies
the conditions of Definition 3.

Let Π be a program, M a mode and S a sharing abstraction; construct a
discrimination for each predicate p as follows. The ith argument of p is nd if and
only if either (a) the ith argument of each clause head for p is a variable, and
if the ith argument shares with another head argument then that argument is
also a variable, or (b) the mode of the ith argument is v in all mode atoms and
if {i, j} ∈ S then mj = v also. Note also that a discrimination can be relaxed by
replacing any nd by d, preserving correctness.



Example 3. Consider the usual append program, the mode {append(nv,nv,v)}
and sharing abstraction ∅ for append. Then we derive append(d,nd,nd) as the
discrimination. As there is no sharing in the calls, the 2nd argument is non-
discriminating even though it is non-variable. Given the mode {append(nv,v,v)}
and the same sharing abstraction we obtain append(d,nd,nd) once again. Given
the mode {append(v,v,nv)} and the same sharing abstraction, we obtain the
discrimination append(nd,nd,d).

Analysis for Discrimination. Static analyses for freeness and sharing are well
established, starting with [19, 4] and we can apply them for automatically con-
structing correct discriminations. Given an initial moded call and a sharing ab-
straction on the call, such an analysis returns, for each predicate, a safe mode and
sharing abstraction; that is, one respected by every call. An analysis is performed
for a given computation rule; in this paper we assume the standard left-to-right,
depth-first strategy. As discussed later, more precise analyses could be employed
to derive more accurate discriminations than the one described here, which is
based on very simple modes and no information on term structure.

2.1 Discriminator slicing

Let Π be a program and ∆ a discrimination for Π which is correct with respect
to a mode and sharing abstraction for Π.

An argument position pi where p is an n-ary predicate and 1 ≤ i ≤ n is
deletable if

– that argument position is nd in ∆, and
– no occurrence of that argument position in the program contains a term that

shares with an argument that is marked d.

A slice with respect to∆ is obtained by replacing each clauseA0 ← A1, . . . , An
in Π by A′

0 ← A′
1, . . . , A

′
n where A′

i is obtained by deleting from Ai all deletable
arguments. We call the resulting program Π∆.

Discriminator slicing with respect to a predicate. Slicing with respect to a pred-
icate p allows the removal of body atoms in the clauses for p. A body atom can
be removed if it cannot influence the choice of clause for p, or some predicate
mutually recursive with p, in a computation,

Let Π be a program and ∆ a discrimination for Π which is correct with
respect to a mode and sharing abstraction for Π. Let GΠ be the predicate
dependency graph of Π and c0, c1, . . . , cl be the sequence of strongly connected
components [21] of GΠ in some topologically sorted order (where cl is the “top”
component). Let A0 ← A1, . . . , An in Π be a clause whose head has predicate p
and let ck be the component containing p. Then Ai (i ≤ i ≤ n) is deletable if

– Ai’s component is cj where j < k, and
– no argument of Ai shares with any d argument of an atom Am, m 6= i, where
Am’s predicate is in ck.



Let Π∆
p be the program obtained by first constructing Π∆ and then removing

any deletable atoms (with respect to predicate p).

Discriminator slicing with respect to built-ins or imported predicates. built-in
predicates are considered to be at the bottom of the predicate dependency graph.
Thus slicing with respect to a predicate p allows removal of calls to built-ins from
p’s clauses that cannot affect p’s control flow. However the same principle allows
imported predicates can be handled in a similar way, assuming that mutually
recursive predicates are not in separate modules. Thus predicate based slicing
can be used to remove calls to imported predicates from a module if they cannot
affect the control flow of the predicates of the module.

3 Discriminator Slicing and the Preservation of Traces

We now deal with the question of what properties of a program are preserved
by discriminator slicing. The overall answer is that the control flow is preserved.
To make this precise we introduce derivation trees and trace terms [3].

Derivations. A single moded atom is assumed for the top predicate, and a query
to a given program consists, for simplicity, of a single call to the top predicate
respecting its mode. The following characterisation of derivations and trace trees
is adapted from [3].

Definition 4. An AND-tree (for program Π) is a tree each of whose nodes is
labelled by an atom and a clause, such that

1. each non-leaf node is labelled by a clause A ← A1, . . . , Ak and an atom Aθ
(for some substitution θ), and has children A1θ, . . . , Akθ,

2. each leaf node is labelled by a clause A ← true and an atom Aθ (for some
θ).

It was shown by Stärk [20] that A has answer θ in program Π if and only if
there is an AND-tree (for Π) with root node labelled by Aθ.

Furthermore, a successful derivation with left-right depth-first computation
rule (or any other computation rule) can be transformed into an AND-tree. Each
AND-tree can be associated with a trace term.

Definition 5. Let T be an AND-tree; define α(T ) to be either

1. fj, if T is a single leaf node labelled by the unit clause identified by fj; or
2. fi(α(T1), . . . , α(Tn)), if T is labelled by the clause identified by fi/n, and has

immediate subtrees T1, . . . , Tn.



Adding trace-terms to programs. Trace-terms can easily be added to logic pro-
grams, so that the computation returns a trace term as well as its normal result.
Let Π be a program and let the ith clause be p(t̄) ← q1(t̄1), . . . , qai(t̄ai). Let
fi/ai be the function symbol associated with the ith clause. Transform each such
clause to p(t̄, fi(Y1, . . . , Yai

))← q1(t̄1, Y1), . . . , qai
(t̄ai

, Yai
), where Y1, . . . , Yai

are
distinct variables not occurring elsewhere in the clause.

Finally, transform each atomic goal ← q(s̄) to ← q(s̄,W ), where W is a
variable not occurring elsewhere in the goal. Given a program Π we denote the
program obtained by adding trace terms by Π+.

We can modify the trace term to incorporate built-ins and imported predi-
cates for which the clauses are not available. We simply define a unique con-
stant for each such call and add it to the trace term. E.g. if qj(t̄j) in the
clause p(t̄) ← q1(t̄1), . . . , qj(t̄j), . . . , qai

(t̄ai
) is a call to a built-in, we transform

the clause to p(t̄, fi(Y1, . . . , b, . . . , Yai
)) ← q1(t̄1, Y1), . . . , qj(t̄j), . . . , qai

(t̄ai
, Yai

),
where b is the unique identifier for that built-in.

Preservation of traces by discriminator slicing. Consider the result of discrim-
inator slicing; some arguments are removed from the program but otherwise
the structure of clauses is intact. Assume that the same clause identifiers are
retained in the sliced program. Then the AND-trees of the sliced program are
in one-to-one correspondence with those of the original program. This implies
that, if we add trace-terms to both programs as in Definition 5, then the two
programs generate exactly the same trace terms.

Proposition 1. Let Π be a program and A a goal. Let Π+, A+ be the result
of adding trace terms to Π and A. Let ∆ be a correct discrimination for Π;
Π∆, A∆ the discriminator slice, and Π∆+

, A∆
+

the result of adding trace terms.
Then there is an execution of A+ in Π+, yielding trace term t if and only if
there is an execution of A∆

+
in Π∆+

yielding t.

Proof (Sketch). The sliced program Π∆+
uses only the discriminating arguments

but a call unifies with a clause head in Π∆+
iff the corresponding call with all

arguments unifies with the corresponding clause head in Π+. Clearly the trace
terms do not influence the control flow. Hence the computation follows exactly
the same course and so the same trace terms are generated.

In the case of a slice with respect to a predicate, the trace term is preserved
apart from the subterms corresponding to the deleted atoms. We state the cor-
responding correctness result.

Proposition 2. Let Π be a program and A a goal. Let Π+, A+ be the result of
adding trace terms to Π and A. Let ∆ be a correct discrimination for Π and
p a predicate; Π∆

p , A
∆ the discriminator slice wrt p, and Π∆+

p , A∆
+

the result
of adding trace terms. Then there is an execution of A+ in Π+, yielding trace
term t if and only if there is an execution of A∆

+
in Π∆+

p yielding t′, where t′

is obtained from t by deleting the subterms corresponding to the deleted atoms.



Re-running a trace. Having generated a trace term t (using A∆
+

in Π∆+

p ), we
can then insert t into the trace term argument of the goal for the original goal
A+ in Π+. The trace term will force the computation to re-run exactly the same
path as given in the trace term. While there may have been backtracking while
generating the trace term, the re-run using a ground trace term is completely
deterministic.

Furthermore, some computation on failed branches is possibly avoided in the
sliced program due to the deletion of atoms that do not affect the control flow.
When re-running the program there is no backtracking. Thus it is possible that
there is an overall saving in executing a program in two stages; the first phase
to generate a successful trace using the sliced program, but doing less work in
the unsuccessful branches than would have occurred in the original program.
The second phase generates the full answer using the trace, with no redundant
computation.

Example 4. We consider an implementation of a finite state machine which
moves from states to states and consumes/emits a letter in each transition;
for simplicity, we let the state machine treat all different letters alike. The top
predicate m(history, letter-sequence) where the history records, for each step
consecutively numbered, the states passed and letters seen. For example, the let-
ter sequence [a, b] may give rise to the history [s(0,q1), e(0,a), s(1,q2),
e(1,b), s(2,end)]. We assume the following mode pattern indicating that the
program is used for mapping sequences of letters into histories, m(v, nv); the
program Π is as follows.

m(H,Ls):- m(q0,0,H,Ls).
m(end,N,[s(N,end)],[]).
m(Q,N,[s(N,Q),e(N,L)|H],[L|Ls]):-
suc(Q,Q1), N1 is N+1, m(Q1,N1,H,Ls).

suc(q0,q1). suc(q0,q3).
...

A discrimination for this program is given as follows; it can be derived automat-
ically from a sharing and freeness analysis with respect to the goal m(v,nv) with
no sharing between the arguments.

m(nd,nd), m(d,nd,nd,d), suc(d,nd),

We make now a two-stage transformation of this program, producing a sliced
version Π∆

m with respect to the predicate m/4. Notice the call to built-in “is” is
removed by this transformation, since N1 is N+1 processes only variables that
are non-discriminating in m/4. We then extend this with trace terms, correspond-
ing to the production of Π∆+

m .

mDeltaT(Ls,f1(T)):- mDeltaT(q0,Ls,T).
mDeltaT(end,[],f2).
mDeltaT(Q,[L|Ls],f3(T1,T2):-
sucDeltaT(Q,Q1,T1), mDeltaT(Q1,Ls,T2).



sucDeltaT(q0,q1,f4). sucDeltaT(q0,q3,f5).
...

Finally, we generate the trace term version of the original program, correspond-
ing to Π+.

mPlus(H,Ls,f1(T)):- mPlus(q0,0,H,Ls,T).
mPlus(end,N,[s(N,end)],[],f2).
mPlus(Q,N,[s(N,Q),e(N,L)|H],[L|Ls],f3(T1,is,T2)):-

sucPlus(Q,Q1,T1),
N1 is N+1, mPlus(Q1,N1,H,Ls,T2).

sucPlus(q0,q1,f4). sucPlus(q0,q3,f5).
...

Instead of querying the original program by (i) m(H,a-list-of-letters), we can
pose the query equivalently as follows,

(ii) ?- mDeltaT(a-list-of-letters,T), mPlus(H,the-same-list-of-letters,T).

For measuring the difference in runtime, we detailed a state machine that needs
to explore combinatorially many failing branches before escaping through an end
state. While (ii) may look more complicated, it runs about 20% faster than (i).3

To explain this difference, notice firstly that the call to mPlus is negligible wrt.
runtime as it executes deterministically for a correct trace. The unifications in
mDeltaT all involve patterns mentioned in the head of clauses, so that the Prolog
compiler can reduce them to very little work at runtime. Finally, the queries to m
and mPlusT involve exactly the same number of failing and successful branches,
so the speedup reflects the difference in efficiency of the single clauses.

It is clear that an arbitrarily large speedup can be demonstrated by applying
this technique to suitably constructed programs with heavy use of built-ins and
backtracking. In fact, as noted, the technique can be generalized to remove also
calls to program defined predicates or imported predicates.

4 Discriminator slicing in tabling systems, including
PRISM

We now discuss a case study in which drastic speedup is achieved using discrim-
inator slicing in relation to tabled logic programming systems.

Very briefly, we can explain tabling [16] as a mechanism utilized in the ex-
ecution of Prolog programs that maintains a table of successful calls and their
answers, and whenever a call is encountered, it is checked if it (or perhaps a more
general call) is known in the table already; if so, there is no need to execute it
once again as the answers are ready in the table.

3 This test was made using the optimizing compiler of SICStus Prolog 4.0.4 under
Mac OS X 10.5.6, 2.4 GHz Intel Core 2 Duo with 4GB RAM.



Comparing the use of tabling for a program Π and its reduced version Π∆,
we notice that different calls of Π differing only in the non-discriminating argu-
ments, will merge into a single call in Π∆. Thus the table can be much smaller,
and there is a larger chance that the current call has a match in the table.

We have applied this principle in a preprocessor for the probabilistic-logic
PRISM [18] system, where in some cases, it reduces time complexity from expo-
nential or worse to linear for applications of the system’s generic Viterbi algo-
rithm. For a detailed explanation of PRISM’s facilities we refer to its manual [17];
PRISM is based on BProlog [25] from which it inherits a tabling mechanism.

Programs in PRISM are basically Prolog programs extended with random
variables, called multi-valued switches. With given probabilities for the switches,
a probabilistic semantics is induced that associates a probability to each true
atom in the program so that a program becomes a probabilistic model. One pos-
sible application of a PRISM program is to find the set of outcomes of switches
that provides the maximum probability, called the Viterbi probability, for a
given observation represented as a top-level goal g; this can be done by a call
viterbif(g). Another useful option is viterbig(g), which instantiates the vari-
ables in g to terms that provide the highest Viterbi probability. These predicates
are given in alternative versions that also provide the Viterbi probability as well
as an “explanation” which basically is a representation of the proof tree, includ-
ing outcomes for the switches, that gives rise to the Viterbi probability.

The viterbig facility is interesting, among others applications, for prediction
of structures in genomic sequence data. Many different models can be used and
PRISM appears as a very flexible tool for developing such models. Here we
will illustrate a Hidden Markov Model [14] (HMM) which can be represented
as a predicate hmm(annotation,sequence) where sequence is a sequence of the
letters a, c, g, t, in length between hundreds and in principle up to billions, and
annotation is a description of those structures that the biologists find interesting
(e.g., proposed positions of genes or detailed intron-exon structures).

A call such as viterbig(hmm(A,sequence)) typically leads to a combinatorial
explosion, but with our program slicing method we can achieve linear complexity
which is the best possible. We will explain the details for the following PRISM
program, ΠHMM; it defines a general HMM which records the sequence of states
during a run. The most probable sequence is the so-called Viterbi path.4

values(letter(_state), [a,c,g,t]).
values(next_state(_state), [q1,q2,end]).
hmm(A,S):- hmm(q1,A,S).
hmm(end,[end],[]).
hmm(Q,[Q|Qs],[L|S]):-

Q \= end,
msw(letter(Q),L), msw(next_state(Q), Q1),
hmm(Q1,Qs,S).

4 This code is inspired by similar examples in the PRISM manual [17].



We have left out additional program lines that set the probabilities for the
switches defined by the values declarations; notice that a parameterized pat-
tern such as letter( state) indicates a family of random variables. The msw
predicate is a reference to a switch and may instantiate its second argument to
any outcome of the switch.

The strategy applied for Viterbi computations in PRISM is to explore all pos-
sible proof trees being stored as a so-called explanation graph, but using sharing
of subtrees whenever their top nodes are identical; this sharing is implemented
through clever use of the underlying tabling mechanism in a way that we shall
not describe here. When the program above is used for finding the best path for
a given sequence, calls of the form

hmm(sk, Qs,[`k,. . .,`n])

are made to the recursive predicate for all k and possible value of sk. PRISM
considers all possible answers for it, and they are entered in the underlying table;
these answers amount to all possible instances given by substitutions of the form

Qs→ [sk,. . .,sn].

The explanation graph needs to include all correspondingly instantiated nodes,
of which there are clearly exponentially many.

On the other hand, the annotation arguments are non-discriminating and can
be removed while still retaining the same set of proof trees (modulo mappings to
adds/remove the annotation arguments). However, without the annotations far
more nodes can share; more precisely the exponential amount of different nodes
for each k and sk reduces to a single node in the graph. To see this, consider
reduced program Π∆

HMM which is as follows.

hmm(S):- hmm(q1,S).
hmm(end,[]).
hmm(Q,[L|S]):-

Q \= end,
msw(letter(Q),L), msw(next_state(Q), Q1),
hmm(Q1,S).

The recursive calls are now of the form hmm(sk ,[`k,. . .,`n]) where all argu-
ments are grounded, thus only one possible answer, namely the empty substitu-
tion corresponding. This means that the explanation graph can be viewed as a
structure a width equal to the number of different states and a length equal to
the sequence length. The construction of this graph can be done in time linear
in the size sequence length.

It is now so fortunate that viterbif can return a representation of the best
proof tree extracted as a subgraph of the explanation graph. This tree can then
be mapped into a desired annotation in one efficient run of a program such as
our Π+

HMM adapted for PRISM’s particular proof tree format.
We have developed a little preprocessor, called autoAnnotations [1], which

given a program ΠHMM as above, produces automatically Π∆
HMM as well Π+

HMM.



The current version of this system requires the user to indicate the arguments
and body calls to be removed. With the analysis methods described here, this can
be done fully automatically from a single mode declaration for the top predicate.

We tested runtime for Viterbi computations with the reduced and non-
reduced version. While the non-reduced version did not return an answer for
sequences of length 20 within several hours, the reduced one Π∆

HMM followed by
our postprocessor Π+

HMM could produce Viterbi paths for lists of lengths up to
20,000 in few minutes on a machine with sufficient amount of RAM.

5 Discussion

It is clear that the slicing technique and two-phase execution can slow a program
down. In the worst case no arguments or atoms are deletable so the program will
be executed twice in its entirety. On the other hand there are examples such the
one described above where spectacular speedup is achieved. Thus the technique
needs to be used with care and targeted to appropriate examples. It seems hard
to characterise precisely the class of programs that could benefit from its appli-
cation. Applications that require explicit manipulation of computation trees or
traces could be candidates; these might include online partial evaluation, where
an explicit representation of computation trees are constructed and some notion
of tabling is used to handle infinite branches of the tree [12, 7]. In the case of the
Viterbi calculation in Section 4, a key point is that one computation path (the
most probable) is returned but the whole tree must be constructed first. Thus
savings while constructing the tree are worthwhile. Search problems in which
some structure is computed while searching for a solution are also liable to op-
timisation, as discussed in Example 4. The transformation can eliminate cases
where partial solutions are constructed on failing branches of the search and
then thrown away. Other examples in this class are non-deterministic parsers
constructing a syntax tree. It is likely that the arguments of the parser con-
structing the syntax tree are non-discriminating; thus it could be a substantial
optimisation for highly non-deterministic grammars to generate a trace of a suc-
cessful parse and then deterministically construct the syntax tree afterwards.

Apart from optimisation, there could be applications of discriminator slicing
for refactoring of logic programs [23]. The sliced program expresses the control
part of the program. Thus two predicates p1, p2 that have isomorphic discrimi-
nator slices with respect to p1, p2 respectively could be said to share the same
control. Such information could be useful for understanding, documenting or
comparing programs. Furthermore the idea of recording and replaying program
traces has applications in several other fields, especially debugging and under-
standing of concurrent programs [15].

6 Related Work

Program slicing [24, 22] is a collection of techniques for removing parts of the
code of a program that are irrelevant with respect to some chosen part of the



program’s semantics (the slicing criterion). Most slicing criteria concern the
values of some selected variables; by contrast our slicing technique preserves
control flow. However path slicing [5] is more similar; it concerns removing code
that does not affect a given computation path; we differ in that our slicing
criterion is the set of all computation paths rather than a specific one, and
in that the underlying analyses are different from those used in an imperative
language. We have done some initial investigation on the formulation of our
approach as a value-based slicing technique using trace terms. The approach
is to construct a slice of the program augmented with trace terms (Section 3)
with respect to the trace term argument; the slice in principle contains only the
operations needed to preserve the trace terms, that is, the control flow. Using
a logic program slicing approach such as Leuschel and Vidal’s [9] incorporating
partial evaluation and the redundant argument filtering transformation [8] it
is possible to handle simple examples but it is unclear at present whether the
analyses incorporated in these tools are powerful enough.

Applications of mode and sharing analysis are many, including automatic
parallelisation [13], occur-check elimination [19, 4], non-failure analysis [2] and
determinacy analysis [11]. The latter two applications resemble discriminator
analysis in some respects and give pointers to obtaining more precise discrimi-
nations. The conditions for detecting non-failure, for example, are that each call
unifies with at least one clause head, while the conditions for detecting deter-
minacy are that each call unifies with exactly one clause head. Adapting these
conditions and applying them argumentwise should lead to conditions express-
ing, for each argument or group of arguments, whether they unify with each
clause head. If these conditions are true for some argument and every clause
head, then that argument is non-discriminating. Further study is required.

We chose to apply discriminations to obtain a sliced program, but the same
information could be applied dynamically during execution. In this respect there
is a relation to control flow generation. Automatic generation of delay mecha-
nisms and reordering of subgoals in clause bodies for improving efficiency and
termination properties of logic programs have been considered by [6]. These tech-
niques are somewhat orthogonal to ours, but we notice that our method may be
adapted to generate delay declarations for calls which, in the construction of our
reduced programs, are subject to deletion. Consider the finite state machine pro-
gram of Example 4 in which the call N1 is N+1 can be removed in the reduced
program. Instead of deleting this call, we may delay it by an inline application
of freeze or by replacing it with a call addOne(N1,N) where the new predicate
is defined as follows.

:- block addOne(?,-).
addOne(N1,N):- N1 is N+1.

We can obtain an improved efficiency by only executing calls to addOne that
occur in a successful execution of the program, by changing the top clause of the
program into the following.

m(H,Ls):- m(q0,Zero,H,Ls),Zero=0.



(This step employs the data flow analysis of the program). An optimizing com-
piler and a runtime system with low overhead for delays may produce a program
that runs almost as efficiently as the reduced version. It is not clear at present
whether the approach of [6] will detect this opportunity for optimisation; the
reordering of calls in the body for an optimised execution in their approach may
possibly be utilized in order to classify more arguments as non-discriminating.

7 Conclusion

We have presented the concept of discriminating arguments and shown that they
may be detected automatically given a moded goal. A slicing transformation was
defined in which the slice preserves the computation tree structure. Using trace
terms we then defined a two-phase execution in which the control flow is first
established and then the full results are generated from the trace. Applications
where this approach could be beneficial were presented and discussed.
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