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Novel characteristics of valveless pumping
S. Timmermann and J. T. Ottesena�

Department of Sciences, Mathematics and Physics, Roskilde University,
P.O. Box 260, Roskilde 4000, Denmark

�Received 30 October 2007; accepted 22 December 2008; published online 4 May 2009�

This study investigates the occurrence of valveless pumping in a fluid-filled system consisting of
two open tanks connected by an elastic tube. We show that directional flow can be achieved by
introducing a periodic pinching applied at an asymmetrical location along the tube, and that the flow
direction depends on the pumping frequency. We propose a relation between wave propagation
velocity, tube length, and resonance frequencies associated with shifts in the pumping direction
using numerical simulations. The eigenfrequencies of the system are estimated from the linearized
system, and we show that these eigenfrequencies constitute the resonance frequencies and the
horizontal slope frequencies of the system; “horizontal slope frequency” being a new concept. A
simple model is suggested, explaining the effect of the gravity driven part of the oscillation observed
in response to the tank and tube diameter changes. Results are partly compared with experimental
findings. © 2009 American Institute of Physics. �DOI: 10.1063/1.3114603�

I. INTRODUCTION

Generally valveless pumping is classified as directional
flow in a system of valveless fluid-filled flexible tubes, where
an applied periodic force �a device compressing one of the
tubes� generates a frequency dependent unidirectional flow
in the system. The phenomena of valveless pumping have
been investigated using a number of approaches and meth-
ods. The studies of the most prominent systems include flow
in the annulus and the open tank system. The annulus con-
sists of two or more flexible tubes with different elasticities,
connected in a closed circuit. In the literature, this system
has been described both with ordinary differential equation
�ODE� �Refs. 1 and 2� and partial differential equation �PDE�
�Refs. 3–7� models. Yet another approach is to simulate the
flow using molecular dynamics techniques.8,9 The open tank
system consists of two tanks connected by a flexible tube.
This system has been investigated using models based on
Navier–Stokes equations.10–14 A variation of the open tank
system is the T-pipe system in which the tanks are connected
by a rigid T-pipe with a piston placed in the “leg” of the
T-pipe. The flow in this system has been studied using ODE
models.15,16 Both experiments and modeling approaches con-
firm the phenomena and show the same characteristic fea-
tures of valveless flow: The magnitude and the direction of
the flow depend in a complex way on the pumping frequency
and amplitude, the pump duty cycle, and the system material
properties and dimensions, e.g., tube radius.

The valveless flow phenomenon is universal in the sense
that it is scale invariant and qualitatively independent of to-
pology. However, despite agreement between the various
studies, a full understanding of the mechanisms responsible
for the phenomenon has not yet been obtained.

In this paper we add to the understanding of the mecha-
nisms responsible for valveless flow by investigating valve-

less flow in the open tank system, shown in Fig. 1. Reference
10 completed a numerical investigation of this system. He
observed flow reversals in the system and found that the flow
reversals depend on the pumping frequency and the tube
length. However, the study did not uncover the mechanisms
responsible for the phenomenon. Reference 12 used a more
advanced numerical scheme to investigate the same system
of equations, but with modified boundary conditions. They
showed that valveless flow can be obtained both in the origi-
nal nonlinear model and in a linearized model with friction.
However their work is not focused on how the system de-
pends on the pumping frequency. Reference 14 showed that a
mismatch of characteristic impedance between the flow
channels is necessary for creating wave reflection sites in a
variant of the system. They also present results of an experi-
mental study that demonstrate the phenomena. Inspired by
Refs. 11 and 12, we propose a one-dimensional �1D� model
derived from the Navier–Stokes equation for flow in a tube.
In order to write the equations on a generalized conservation
form, we formulate the model in velocity and cross-sectional
area instead of velocity and pressure as was done in previous
studies. The boundary equations describing the fluid in the
tanks are derived from the instationary Bernoulli equation as
proposed by Ref. 10 but in contrast to Refs. 12 and 14.
Mathematically, this formulation turns out to be a more natu-
ral way of connecting the tube and the tanks. Although
valveless pumping has been detected in this system by oth-
ers, the mechanisms behind the phenomenon have not yet
been provided.

In this paper, we show that there are two qualitatively
different ways that pumping reversal can occur: At “reso-
nance points,” where pumping reversal appear to be con-
nected with the resonance in the system, and at “zero
points,” which are not connected with resonance. Further-
more, zero points appear to be influenced by the position of
the pump, in contrast to resonance points. Based on numeri-
cal simulations we propose a relation between resonance
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points, wave propagation velocity, and tube length. Further-
more, using a linearized model, we show that the eigenfre-
quencies define two series of frequencies; resonance frequen-
cies and horizontal slope frequencies. The resonance
frequencies agree with the resonance points whereas the
horizontal slope frequencies constitute a new concept. Addi-
tionally, to understand the system thoroughly we analyze the
gravity driven component separately. This analysis shows
how the period of the gravitational oscillations depends on
the ratio between the cross-sectional diameters of the tube
and tanks.

II. EXPERIMENTAL SETUP

To illustrate valveless pumping we carried out a series of
experiments in an open tank system, see Fig. 1. This system
comprises an elastic silicone rubber tube with wall thickness
of 0.004 m, length of 1.8 m, and rest diameter of 0.03 m,
i.e., at zero transmural pressure, and Young modulus
4.033�106 kg /ms2 connected to two identical open rigid
tanks. The diameter of the tanks was 5.7 times the rest diam-
eter of the tube. The system was filled with water to the level
of one meter in the tanks. Valveless flow was obtained by
compressing a piston from above, as shown in Fig. 2�a�. The
piston compressed the tube at frequencies ranging from
0–5 Hz.

Pumping at a given frequency makes the fluid flow from
one tank to the other. This net change in fluid continues until
the force generated by the pump is balanced by the gravita-
tional force. At this point a “steady state” is reached and a
water level difference between the tanks is created. At steady
state the water level oscillates with the pumping frequency.
The resulting water level depends on the frequency and the
location of the pump. Furthermore, we noted that changing
the frequency or the location of the pump may reverse the
flow, and consequently the elevated water level shifts from
one tank to the other.

In the experiment we measured the resonance frequen-
cies and the water level in the tanks. The tank water level
was measured continuously using a high speed video camera.
Experiments were carried out for pumping frequencies rang-
ing from 0 to 5 Hz. In a separate experiment, we measured
the water level in the tank as a function of time without
compressing the tube but starting with an elevated water
level in one of the tanks. The result is smooth damped sinus-
like waves. When measuring the period of the gravity driven
oscillations, the average was calculated over as many periods
as possible �which was at least four to five periods� to im-
prove accuracy. Video recordings of the experimental setup
for some of the experiments can be found in the online ver-
sion by clicking on Fig. 1.

The focus of this paper is on understanding the system
through mathematical modeling and, therefore, we will not
go into further details with the experiment. However, we will
refer to the experiment and some of the experimental results
obtained for validation and discussion of the model.

III. ONE-DIMENSIONAL MATHEMATICAL MODEL
OF THE SYSTEM

A. The tube

Consider the fluid-filled system illustrated in Fig. 1. The
motion of a fluid is described by the Navier–Stokes equa-
tions. The derivation of the 1D model is based on the as-
sumptions of constant temperature, incompressible Newton-
ian fluid, irrotational, and axisymmetric flow. Equations are
derived using a velocity profile described by a general power
law characterized by �. We chose �=2 in the simulations,
which gives a parabolic velocity profile �increasing values of
� gives flatter and flatter velocity profiles�. With these as-
sumptions, the model equations become

hR

p0

p0
L0

R0

L1
hl

hL

R1
hr

∆h

x

pa(x, t)

PR

FIG. 1. Two fluid-filled tanks connected by a flexible
rubber tube. Periodic compression at an asymmetric
location of the rubber tube generates a difference
in fluid levels, �h=hL−hR. Compression is obtained
by varying the external pressure pa�x , t� in the
pump region �PR� �enhanced online� �URL:
http://dx.doi.org/10.1063/1.3114603.1�.

xA xB xA xB

l0

b)a)

tubetank tank tank tanktube

FIG. 2. �a� The axial nonsymmetrical
compression of the tube between xA

and xB as in the experiment. �b� In the
model, the tube is compressed axial
symmetrically between xA and xB.

053601-2 S. Timmermann and J. T. Ottesen Phys. Fluids 21, 053601 �2009�

Downloaded 05 Jan 2010 to 130.226.199.115. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp

http://dx.doi.org/10.1063/1.3114603.1
http://dx.doi.org/10.1063/1.3114603.1


�

�t
�A

u
� +

�

�x� uA

1

2
u2 +

1

�
pt� = � 0

−
1

�

�pa

�x
−

�

�
2��� + 2�

u

A
� .

�1�

Here A denotes the cross-sectional area of the tube, u
denotes the 1D velocity in the longitudinal direction, and
pt= p�A�− pa denotes the transmural pressure, where p is the
pressure in the tube and pa is the external pressure. These
quantities are all functions of the position along the tube x
and time t. The parameters � and � are assumed constant and
denote density and viscosity of the fluid, respectively. A de-
tailed derivation of the governing equations can be found in
Ref. 5.

The transmural pressure and the cross-sectional area are
related by

pt�A� =
4

3

sE

rrest
�1 −	Arest

A
� , �2�

where E denotes Young modulus of the tube wall, rrest de-
notes the rest radius �corresponding to Arest�, A denotes the
cross-sectional area of the tube, and s denotes the wall thick-
ness of the tube. This constitutive equation has been used in
previous studies concerning blood motion in vessels, see
Ref. 17 for further discussion, but it deviates from the one
used by Refs. 10 and 12.

The wave propagation velocity c�=u�a, where

a=	�4 /3��sE /�Drest�	4 Arest /A can be found by calculating ei-
genvalues of the coefficient matrix when the system of equa-
tions is placed in the form

�

�t
�A

u
� + � u A

4

3

sE

�Drest
	Arest

A3 u � �

�x
�A

u
�

= � 0

−
1

�

�pa

�x
−

�

�
2��� + 2�

u

A
� . �3�

If the external pressure equals the inner pressure, i.e.,
A=Arest, the wave propagation velocity is reduced to the

constant velocity a0=	4sE /3�Drest, the well known Moens–
Korteweg approximation.18 Substituting a0 into the system of
equations simplifies the equations as

�

�t
�A

u
� +

�

�x� Au

1

2
u2 + 2a0

2�1 −	Arest

A
� �

= � 0

−
1

�

�pa

�x
−

�

�
2��� + 2�

u

A
� . �4�

In the physical experiment we used a piston to compress the
tube, as shown in Fig. 2�a�, violating the axial symmetrical
condition. In contrast to this the pump in the model is de-
scribed by axial symmetric compression, obtained by impos-
ing an oscillating external pressure, as indicated in Fig. 2�b�.
The external pressure is described by the C1-function,

pa�x,t� = 
p0
1 + 	
�x − xA�2�xB − x�2

�1

2
�xB − xA��4 sin�2�
t� for x � �xA,xB� ,

p0 else,
 �5�

p0�1+	� being the maximal external pressure applied to the
tube and 
 the frequency of compression. The constant ex-
ternal pressure p0 is set to atmospheric pressure. This pump
function is a moderation of the function used in Ref. 12. The
function has been altered in order to give a C1-function.

B. Boundary and initial conditions

The relation between the flow across the two tube ends
and the fluid levels in the two tanks are described by bound-
ary conditions. For each boundary, two additional differential
equations are needed to close the system of equations. For
both left and right boundaries the additional equations are
obtained from the instationary Bernoulli equation.

Boundary conditions are obtained by solving the insta-

tionary Bernoulli equation along a streamline in the tank,19 a
mechanical energy balance for isothermal conduit flow,

�� ��

�t
+

1

2
u2 +

1

�
p + gh� = 0, �6�

where � denotes the scalar potential function. Thus

1

2
uL1

2 +
pL1

�
= − �

0

hL �u

�t
dh +

1

2
uL0

2 +
pL0

�
+ ghL, �7�

by integration from L1=0 to L0=hL, where hL is the height of
the water level. Note that uL1

=u�0, t� and uL0
=u�hL , t� and

similarly for the pressures. To eliminate uL0
we apply the

continuity equation AtankuL0
=AL1

uL1
and to avoid time de-

pendence, we approximate AL1
by Astart, where Astart being the
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initial cross-section area at hydrostatic pressure, derived in
Eq. �13� below.

Thus the following approximation for the first term on
the right hand side of Eq. �7� holds, i.e.,

�
0

hL �u

�t
dh � �

0

hL

�uL1

�t
+

�uL0

�t

2
dh

�
1

2

duL1

dt
�1 +

Astart

Atank
�hL. �8�

Energy is dissipated when fluid flows from one tube to the
other and therefore slows down the flow. To avoid modeling
the minor regions of turbulent flow at the connection be-
tween the tanks and the tube explicitly, the energy loss is
modeled assuming that it is proportional to the squared flow
velocity with proportionality constant �. Consequently, the
term 1

2 �uL1
�2 in Eq. �7� is replaced by 1

2 �1+���uL1
�2. Numeri-

cal simulations comparing this simplified treatment of energy
loss to the loss term 1

2 �1+sign�uL1
��, as used in Refs. 11, 20,

and 12, showed no significant difference. Hence we proceed
with our simpler choice.

The final boundary conditions for the left boundary are
obtained by rewriting the inner pressure pL1

using Eq. �2� as

duL1

dt
=

1

�1 +
Astart

Atank
�hL

��� AL1

Atank
�2

− �1 + ���uL1

2

− 4a0
2�1 −	Arest

AL1

� + 2ghL� . �9�

As a result, the change in the fluid level in the left tank is
given by the velocity of the fluid at the top of the tank, and
using the continuity equation we get the second boundary
condition for the left boundary,

dhL

dt
= −

AL1

Atank
uL1

. �10�

The boundary conditions for the right boundary are similar to
those of the left boundary except that one has to substitute
the indices L and L1 by R and R1, respectively, and change
the sign of the derivatives �see Eqs. �20� and �21� below�.

Note that AL1
=A�0, t� and AR1

=A�l , t� are determined by
Eq. �2� and consequently these quantities are time dependent.
This time dependence is important since boundary conditions
derived from assuming constant cross-sectional area for in-
stance, causes rarefractions created by the numerical
method.21,5 Furthermore, such boundary conditions simply
shift the mechanistic peculiarity �that neighboring elements
of the discretized equation form might have different cross-
sectional areas �without leaking� at the connection between
the tank and the tube further down the tube.

At time t=0 the system is in equilibrium. Thus
hL�t=0�=hR�t=0�=h0. Assuming that the fluid height h0 is
larger than the diameter of the tube, the fluid in the tanks will
impose a positive transmural pressure on the tube causing an
expansion of the cross-sectional area of the tube. Thus, the
hydrostatic pressure determines the pressure and, conse-
quently, the initial cross-sectional area of the tube,

pt�x,0� = �gh0 ⇔ A�x,0� = Arest�1 −
gh0

2a0
2�−2

. �11�

Imposing these conditions gives initial conditions on the
form

u�x,0� = 0, �12�

A�x,0� = Astart = Arest�1 −
gh0

2a0
2�−2

. �13�

C. The 1D model in dimensionless form

We introduce nondimensional variables in order to
simplify the numerical solutions of the equations. To do
so, we use the following characteristic quantities: the rest
radius r0 �i.e., radius at zero transmural pressure� and the
average fluid velocity u0. We define nondimensional vari-
ables �indicated by ˜�,

x̃ =
x

r0
, t̃ =

u0

r0
t, ũ =

u

u0
, Ã =

A

r0
2 , �14�

where x̃, t̃, ũ, and Ã are the dimensionless space, time, ve-
locity, and cross-sectional area variables, respectively. To
simplify the system of equations we let

p̃ =
p

�u0
2 , 
̃ =

r0

u0

, h̃ =

h

r0
,

�15�

Ãtank =
Atank

r0
2 , Ãstart =

Astart

r0
2 ,

where p̃, 
̃, h̃, Ãtank, and Ãstart are the dimensionless pressure,
pumping frequency, water level, cross-sectional area of the
tanks, and cross-sectional area of the tube at t=0, respec-
tively. Introducing the Reynolds number �Re=�u0r0 /��
and the Froude number �Fr=u0

2 /gr0� the systems of
equations, boundary and initial conditions reduce to �now
omitting the ˜�.

Tube:

�

�t
�A

u
� +

�

�x� Au

1

2
u2 + 2

a0
2

u0
2�1 −	Arest

A
� �

= � 0

−
�pa

�x
−

2�� + 2��
Re

u

A
� . �16�

Pump:
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pa�x,t� = 
p0
1 + 	
�x − xA�2�xB − x�2

�1

2
�xB − xA��4 sin�2�
t� for x � �xA,xB� ,

p0 else.
 �17�

Left boundary condition:

duL

dt
=

1

�1 +
Astart

Atank
�hL

�� AL

Atank
− �1 + ���uL

2

− 4
a0

2

u0
2�1 −	Arest

AL
� +

2hL

Fr
� , �18�

dhL

dt
= −

AL

Atank
uL. �19�

Right boundary condition:

duR

dt
=

− 1

�1 +
Astart

Atank
�hR

�� AR

Atank
− �1 + ���uR

2

− 4
a0

2

u0
2�1 −	Arest

AR
� +

2hR

Fr
� , �20�

dhR

dt
=

AR

Atank
uR. �21�

Initial conditions:

u�x,0� = 0, �22�

A�x,0� = Arest�1 −
u0

2

2a0
2

h0

Fr
�−2

. �23�

Together, these equations constitute the distributed 1D model
of the open tank system.

IV. NUMERICAL METHODS

The system of equations is solved using a second order
finite difference method. For the tube we discretize the equa-
tions using the MacCormack scheme22 and to evaluate the
boundary conditions �the equations for the tanks� we use the
method of characteristics. As shown in Ref. 7 differences
between the three second order schemes, LaxWendroff,
MacCormack, and dissipative relation preserving methods,
are minor for flows in an elastic tube. Other choices could be
finite element methods,14 spectral methods or combinations
of the two methods.23 Finite element methods work well but
have some unresolved mathematical problems when applied
to Navier–Stokes’ equations,24 and the spectral method was
originally designed for smooth solutions with periodic
boundary conditions. The MacCormack scheme was
implemented in MATLAB 6.5 under Debian GNU/Linux on
a workstation. The dimensionless equations were solved

on a lattice in the �x , t� plane with the spatial domain
�0, l0�= �0,1.8� m divided into J=200 intervals. This dis-
cretization leads to a dimensionless step size �x=0.6
�corresponding to 9�10−3 m� and the time domain was dis-
cretized by a dimensionless time step �t=10−3 �correspond-
ing to 7.5�10−5 s�. The height difference corresponding to
60 s range was computed in 12 min while a whole frequency
scan �0.5–15 Hz� took approximately 10 h of CPU time.

To use the MacCormack scheme we consider the system
in Eq. �16� in generalized conservation form,

�w

�t
+

�f

�x
= g , �24�

where

w = �A

u
�, f = � Au

1

2
u2 + 2

a0
2

u0
2�1 −	Arest

A
� � ,

and

g = � 0

−
�pa

�x
−

2�� + 2��
Re

u

A
� .

The left hand side of Eq. �24� expresses the overall change in
the w-quantity and the right hand side allows sources and
sinks. The first step in the MacCormack scheme calculates a
preliminary value of w j

n+1,

w j
n + 1 = w j

n −
�t

�x
�f j+1

n − f j
n� + �tg j

n, �25�

where “the bar” over �n+1� �the �n+1�th time step� indicates
that it is an approximate value of w evaluated at the point
�j ,n+1�. Thus, the correction step is calculated as

w j
n+1 =

1

2
�w j

n + w j
n + 1� −

1

2

�t

�x
�f j

n + 1 − f j−1
n + 1� + �tg j

n + 1,

�26�

where f j
n + 1= f�w j−1

n + 1� and g j
n + 1=g�w j−1

n + 1�.
The magnitude of the spatial and temporal step sizes was

chosen so that the MacCormack scheme was stable. The dif-
ference equations are linearly stable if and only if
��t /�x�max�c��1.
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V. PERIOD OF GRAVITATIONALLY
DRIVEN OSCILLATIONS

In this section we address the question of why and how
the fraction Dk=Dtank /Dtube of the tank and tube cross-
sectional areas, influences the period in the simple case of
gravity driven oscillations, i.e., without pumping. For this
analysis, we assume a constant tube radius corresponding to
a nonelastic U-tube. Thus Dk is a constant parameter, i.e.,
independent of time and spatial variables, throughout this
approach.

In the following we investigate a number of approaches
and show that inclusion of a pressure loss term is essential
for the formation of gravity driven waves. The resulting
ODE allows us to estimate the period providing insight into
the physics of the gravity driven oscillations. These estimates
are calculated numerically from the model and they are con-
firmed analytically by perturbation theory.

We use the results of this simpler model to justify the
results obtained with the distributed 1D model. Note that
gravity is included in the distributed 1D model, where it
appears in the boundary conditions and, as shown in Sec. VI,
gravity plays an important role in the phenomenon of valve-
less pumping. In this section we therefore discuss the occur-
rence of oscillations due to gravity by a more complete
analysis of the simpler model.

In literature much effort has been placed into modeling
simple systems.25 Without external compression our system
is relatively simple but to our knowledge, there is only one
other study of oscillations in the U-tube with spatial varying
cross sections26 analyzing gravitationally driven oscillations
of a liquid column in a vertical pipe, open at both ends, and
with the bottom immersed into a reservoir. Experimentally,26

observe an eruption of a jet at the beginning of the rise of the
water column, which in their experiment is caused by an
initial singularity related to the zero mass of their oscillator.
In their asymmetrical setup the mass of the oscillator
changes constantly. In contrast to this, the mass of the system
is constant and singularities related to eruption of jets do not
appear in our system. Similar to the results presented in Ref.
26 we observe damped oscillations due to dissipation. How-
ever, as opposed to Ref. 26 we observe smooth damped
sinuslike waves in experiments. This observation agrees with
the symmetry of the governing equation, derived below. Due
to the conservation of mass and the symmetry of the system
we study, we are able to eliminate singular effects. Hence,
the conclusions derived by Ref. 26 are not directly applicable
for our study.

In conclusion, our goal in this section, is to estimate the
period of the gravity driven oscillations formed when the
system is started away from equilibrium. We derive a family
of simple dynamical models that allows prediction of the
period, and which provide us with insight into the mechani-
cal effects. The correct way to do this is by using the integral
form of the conservation of energy for the system. Hence, the
rate of change in mechanic energy, i.e., kinetic and potential
energies, equals the turbulent loss plus the viscous
dissipation.25 The turbulent loss is partly due to the elbows
where flow and momentum change direction, i.e., where the

tanks and tube meet, and partly to sudden changes in diam-
eter �vena contracta� where fluid flows between tanks and
tube. However, this approach is technically difficult, and we
therefore present a more direct approach based on the mo-
mentum equation. Unfortunately this “mechanistic” ap-
proach has some loose ends. We account for these pitfalls by
idealizing that the fluid moves in a 1D system only. This
corresponds to neglecting the 90° turn at the elbows connect-
ing the tank and the tube. Alternatively we may assume that
the losses, due to transforming the vertical momentum to
horizontal momentum and visa versa, are included in the
turbulent loss applied at the sudden change in diameters be-
tween the tanks and the tube.

If the water level starts slightly above the equilibrium
level, it is possible to ignore time and spatial variation in the
tube radius; thus we assume that the radius of the tube is
constant and that it equals the radius at hydrostatic pressure.
Since the total mass of water in the tube and the tanks re-
mains constant the momentum equation holds, i.e.,

dP

dt
= Fvisc + Floss + Fgrav, �27�

where P denotes the total momentum. Let x be the deviation
in water level of the left tank, x�t�=h�t�−h0, between the
actual height, h�t�, and the height at equilibrium, h0. In
Eq. �27� Fgrav denotes the gravitational force acting on the
system,

Fgrav = − 2Atank�gx .

Furthermore, using the continuity equation the viscous force
Fvisc becomes

Fvisc = − 8��

���ltank,left + ltank,right��dx

dt
�

tank
+ ltube�dx

dt
�

tube
�

= − 8���2h0 + ltubeDk
2�

dx

dt
, �28�

with ltank,left+ ltank,right=2h0 �the sum of fluid levels in
the tanks�, ltube is the tube length, and dx /dt �tube and
dx /dt=dx /dt �tank are the fluid velocity in the tube and the
tanks, respectively. Dk is the tank to tube diameter ratio.
Finally, Floss represents the additional force resulting from
resistance due to the abrupt change in the diameter, where
the tanks are connected to the tube �resistance from the fric-
tion between the fluid and the walls could be included in this
term too, as well as the loss at the elbows�. Following Ref.
25 we assume that Floss is proportional to the square of the
velocity but directed opposite the velocity, i.e.,

Floss = − k0�Dk���dx

dt
�dx

dt
,

where the loss coefficient, k0, depends on the ratio Dk.
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In addition to this, the total momentum P= Ptank,left

+ Ptank,right+ Ptube is

P = �h0 + x�Atank�
dx

dt
+ �h0 − x�Atank�

dx

dt

+ ltubeAtube��
dx

dt
�

tube
= �2h0 + ltube�Atube�Dk

2dx

dt
,

where the continuity equation has been used. Thus

dP

dt
= me

d2x

dt2 ,

with me being the effective mass of the system

me = �2h0 + ltube�Atube�Dk
2.

Hence Eq. �27� becomes

d2x

dt2 +
8���2h0 + ltubeDk

2�
�2h0 + ltube�A�Dk

2

dx

dt
+

k0�Dk�
�2h0 + ltube�ADk

2�dx

dt
�dx

dt

+
2g

2h0 + ltube
x = 0, �29�

where A=Atube.
If the two middle terms are ignored, which corresponds

to disregarding viscosity and loss of energy, Eq. �29� de-
scribes a harmonic oscillator with period

T = 2�	2h0 + ltube

2g
. �30�

We note that T, in this approximation, becomes independent
of Dk

2. This is intuitively absurd in the limit of vanishing tube
diameter or infinite tank diameter, i.e., when Dk

2→�. In the
latter case an infinite amount of fluid has to move back and
forward in a finite time T. Likewise in the limit Dk

2→0 one
expects infinite damping to be important and that is not in-
cluded in this approximation. Hence the approximation is
useful only for Dk

2�1.
If instead we ignore the loss term and include the vis-

cous term, we obtain an equation describing the correspond-
ing damped oscillator, x�t�=x0e−�t cos��t�, with damping

� =
4���2h0 + ltubeDk

2�
�2h0 + ltube�A�Dk

2 , �31�

and frequency

� = 	�0
2 − �2 =	 2g

2h0 + ltube
− �4���2h0 + ltubeDk

2�
�2h0 + ltube�A�Dk

2 �2

�32�

for ���0. From this equation one can see the effect of all
the parameters analytically. Overdamping is observed in the
limit Dk

2→0 as � tends to infinity. However, in the limit
where Dk tends to infinity loss becomes important. If it is not
included, Eq. �32� predicts a finite period as in Eq. �30�.

The above approximations do not give reasonable solu-
tions in the limit Dk→�. To improve this, we ignore the
viscosity and include the loss term in Eq. �29�. In order to
continue, the loss coefficient k0�Dk� needs to be specified. In

regions where the flow is laminar, k0�Dk� is normally as-
sumed as proportional to Dk

2. More specifically, we let it
depend on Dk

2−1 for symmetry reasons, which means that
we only consider loss related to the abrupt change of diam-
eters between the tube and tanks. For simplicity reasons we
assume k0�Dk�=k�Dk

2−1�2, where k is the loss constant �in
general, one can use a Taylor expansion k0�Dk�=k2�Dk

2−1�2

+k4�Dk
2−1�4+ . . ., omitting the odd powers due to symmetry,

and the constant term due to the fact that the loss vanishes
for Dk=1�. Hence, disregarding the viscosity term, Eq. �29�
becomes

d2x

dt2 +
k/A�Dk

2 − 1�2

�2h0 + ltube�Dk
2�dx

dt
�dx

dt
+

2g

2h0 + ltube
x = 0. �33�

Note that the coefficient �0
2=2g / �2h0+ ltube� may be removed

by the nondimensionalization of the time variable s=�0t.
Thus the governing equation simplifies to

x� + ��Dk��x��x� + x = 0, �34�

where �=��Dk�= �k / �2h0+ ltube�A���Dk
2−1�2 /Dk

2�. The prime
denotes the derivative with respect to s �i.e., x�=dx /ds, etc.�.
Thus the equation may be interpreted as a harmonic oscilla-
tor in the external force field,

F = − ��Dk��x��x�.

From this it follows that the total energy decreases with time:

E =
1

2
�x��2 +

1

2
x2 ⇒

dE

ds
= x�x�� + xx�

= − ��Dk��x���x��2 � 0, ∀ x� � 0.

A consequence of this observation is that the trajectory will
spiral toward a stable equilibrium point in the phase space.

Since we are interested in the cycle of the damped oscil-
lation we rewrite Eq. �34� as a first order system of coupled
differential equations. For this system we let y=x� and then
switch to polar coordinates, x=r cos��� and y=r sin���, in
order to estimate the time it takes to change the angular
variable by 2�. In polar coordinates,

r� = − ��Dk�r2�sin����sin2 ��� ,

�35�
�� = − 1 − ��Dk�r�sin����sin���cos��� ,

giving

dr

d�
=

��Dk�r2����sin����sin2 ���
1 + ��Dk�r����sin����sin���cos���

� ��Dk�r2����sin����sin2��� + O��2� , �36�

since dr /d�= �dr /ds� / �d� /ds�=r� /��. For � small one may
integrate the approximated expression explicitly to obtain the
trajectory. For � sufficient small, regular perturbation theory
to first order gives that the frequency is independent of �,
which means that the cycle does not change with Dk in a
neighborhood of Dk=1. Thus the derivative of the period
with respect to Dk vanishes at Dk=1. From the governing
equations in polar coordinates it follows that the exact period
is
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T = �
0

2�

−
dt

d�
d�

= �
0

2� 1/�0

1 + ��Dk�r����sin����sin���cos���
d� , �37�

where dt /d�=1 / �d� /dt�=1 / ��0��� and r��� is given by the
differential Eq. �36�. From the expressions in Eq. �35�, the
time for one revolution is calculated, i.e., the time it takes to
increase � by 2�. For Dk in a neighborhood of 1, the result
agrees with the result mentioned above for � small but
shows, in addition, that the Dk-dependence of the period be-
comes linearly increasing for large values of Dk. Further-
more, it shows that the period diverges in the limit Dk→0, as
seen in Fig. 3 �full curve with k=0.14� of the results section.

VI. RESULTS

In this section we summarize results obtained from
the models presented. The main focus will be on the distrib-
uted 1D model presented in Sec. III. Unless otherwise men-
tioned, the parameters in Table I are used in the numerical
calculations.

A. Period of gravitationally driven oscillations

We start by comparing the distributed 1D model derived
in Sec. III with the simpler models derived in Sec. V and
with our experimental findings. This comparison allows us to
validate the distributed 1D model and to gain more insight
into the physics of the gravitationally driven oscillations.

Figure 3 shows the period calculated numerically �full
curve� from Eq. �35� compared to the results obtained from
the distributed 1D model �circles� �derived in Sec. III� and a
single value measured experimentally �the diamond� �see
Sec. II�.

Note the close correspondence among the period ob-
tained with the 1D model �to be studied further in Sec. VI B�
13.5 s, the period predicted by the simple model �Eq. �35��
13.54 s, and the measured period 13.5 s. In Fig. 4 we
compare an experimentally obtained time-series of water
levels in one of the tanks and the model prediction based on
the full Eq. �29� including both energy loss and viscosity.
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] FIG. 3. Numerical results �solid

curve� for the oscillation period as a
function of Dk obtained from Eq. �35�
by calculating how long time it takes
for � to increase by 2�. The loss co-
efficient is k=0.14. Results are com-
pared to periods obtained by the 1D
model �circles� and the experimental
value �diamond�.

TABLE I. Parameters used in the models and simulations. The values agree
with those obtained from the experiment.

Gravity g=9.81 m /s2

Constant external pressure p0=1.013�105 Pa

Density of water �water=998 kg /m3

Viscosity of water �water=0.001 kg /s m

Rest diameter of tube Drest=0.03 m

Rest diameter of tank Dtank=DkDrest

Tank/tube fraction Dk=5.7

Tube wall thickness s=0.004 m

Tube length l0=1.8 m

Young modulus of tube E=4.033�106 kg /m s2

Loss constant �=0.5

Pump amplitude 	=1.68

Pump region start xA=0.2l0

Pump region end xB=0.4l0

Water heights in the tanks at t=0 is h0=1 m

Standard position of the pump xc=0.3l0

Characteristic velocity u0=0.2 m /s

Characteristic length r0=0.015 m
�the rest radius of the tube�
Dimensionless time step �t=0.001

Dimensionless space step �x=0.6

Spatial tube divisions J=200

Loss coefficient k=0.14
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Again a convincing agreement is observed between the ex-
perimental data and the full model. The period is estimated
to 13.3 s, see the reed graph in Fig. 4. Finally, note that the
viscosity term �8���2h0+ ltubeDk

2� / �2h0+ ltube�A�Dk
2dx /dt��

�2�10−4 m /s2, that the loss term �k0�Dk� / �2h0

+ ltube�ADk
2�dx /dt�dx /dt���10−3 m /s2, and that the gravity

term �2g / �2h0+ ltube�x���5�10−2 m /s2. Thus the approxi-
mation resulting in Eq. �33�, and the analysis based on it, are
justified.

B. Viscosity in the distributed 1D model

The use of the word simulation in the rest of this section
refers to simulations by the dimensionless distributed 1D
model derived in Sec. III. However, all results are presented
in a dimensional form.

Figure 5 shows the difference between water levels in
the two tanks as a function of time when the viscosity is
zero. The results in the zoomed box are for the first 2.5 s.
The pump is set at a frequency of 3.5 Hz and the oscillations
due to the pump are visible in the zoomed box. Note that
when the pump is active, the height difference between the
two tanks deviates from zero if the pump is not placed at
0.5l0. Furthermore, if the viscosity is nonzero, the height
difference reaches an oscillatory equilibrium state with a
mean different from zero. If the viscosity is zero, the height
difference oscillates between zero and a constant height dif-
ference determined by the pump, and the pump affects the
amplitude of the gravity driven oscillations whereas the pe-
riod is not affected. Gravity and the physical proportions of
the system determine the oscillation period.

Deactivating the pump and changing the initial condi-
tions to �h=0.1 m make it possible to calculate the oscilla-
tion period caused by gravity. This results in a period of 13.5
s, which is close to the oscillation period of 13.35 s obtained
when the pump is activated. So, these long period oscilla-

tions are an effect of gravity. Similar observations are briefly
mentioned, but not documented in Ref. 10. In contrast to our
findings, the numerical studies in Ref. 12 show damping
even for zero viscosity. A possible explanation could be that
it is essential to use the instationary Bernoulli equation in the
derivation of the boundary conditions.

When viscosity is nonzero the gravitational oscillations
are damped and the height difference reaches an oscillatory
steady state. Figure 6 shows the oscillation phenomenon at
four different values of the viscosity.
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FIG. 4. Experimentally obtained data
�circles� and model results �solid
curve� of height vs time for the gravi-
tationally driven damped oscillations
in the U-tube system. The model is the
simple model with viscosity, energy
loss, and gravitation included as stated
in Eq. �29�.
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FIG. 5. Height difference between water levels in the tanks. Results from
the distributed 1D model �rapid oscillating curve� have been fitted �solid
curve� using the trigonometric function f fit�t�= �fA /2��1−cos��2� /T�t��,
where fA is twice the oscillation amplitude and T is the oscillation period.
The maximum deviation from the zero height difference and oscillation
period are �fA�=0.0165 m and T=13.35 s, respectively. A zoomed box of
the first 2.5 s of the simulation is inferred. The pump frequency is 3.5 Hz
and it is clearly responsible for the small oscillations embedded in the os-
cillations with the longer period.
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C. Frequency dependence

The frequency dependence of the height difference has
been investigated in the frequency domain 0.5–15 Hz in
steps of 0.5 Hz. At each frequency the height difference was
calculated in the time domain 0–60 s. After the transient, the
mean value was calculated by averaging over an integer
number of oscillations �the number of oscillations depends
on the frequency� and plotted versus frequency, as shown in
Fig. 7 �asterisks�.

The simulations show that the height difference changes
with frequency, and that mean flow reversals occur, even
when the point of compression is maintained. Furthermore,
since the simulations diverge near frequencies of flow rever-
sals, it is reasonable to assume that eigenfrequencies of the
system play an important role in the valveless pumping. This
hypothesis is underpinned by the observation that the nu-
merical solutions become unstable at points of reversal if the
viscosity is zero. This result also indicates that reversal occur
when the pumping frequency collides with the resonance

frequencies of the system. However it is not always the case
that reversal is associated with resonance. Shifts in mean
flow direction can also occur continuously. We term those
points zero points, and points associated with resonance phe-
nomenon are termed resonance points. The eigenfrequencies
are analyzed further in Sec. VI E.

D. Pump position

Figure 7 shows that varying the pump position does not
change the location of the resonance points, but it does in-
fluence the location of the zero points. Furthermore, the
pump position also influences the mean water level differ-
ence. The largest absolute value of the water level difference
is achieved when the pump is placed at one third of the tube
length for frequency 
=14.84 Hz �shown to be four times
the fundamental eigenfrequency of the linearized system�.

In order to examine the relationship between the pump
position and the height difference, the pump position was
varied while the pumping frequency was kept constant at a
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FIG. 6. Height difference between water levels in the tanks. Numerical simulations for four different values of viscosity; �=�water, �=10�water,
�=50�water, and �=100�water. The pump frequency is 3.5 Hz. For clarity not all points are plotted for �=50�water and �=100�water.
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frequency where the wavelength of the oscillation equals the
length of the tube. Results show the sinuslike wave shown in
Fig. 8 �circles and dots�.

As shown in Fig. 8, the height difference depends on the
pump position in a nontrivial way. At a frequency of 14.84
Hz the height difference becomes zero when the pump is
placed in the middle at 0.5l0 �as would be expected due to
symmetry�, but the difference also becomes zero when the
pump is placed at 0.25l0 and at 0.75l0. When the pumping
frequency is halved so that the wavelength of the pump fre-
quency is 2l0, the difference becomes zero only when the
pump is placed at xc=0.5l0. The transition from a two period

wave to a one period wave has been investigated and
the numerical results are shown in Fig. 8. Starting at

=7.42 Hz the mean height difference increases when the
frequency is increased. After the resonance point at 10.5 Hz
the mean height difference changes sign but retains, approxi-
mately, the same absolute value. A further increase in fre-
quency reduces the mean height difference. The shift from
one period waves to two period waves appears at the reso-
nance point.

E. Eigenfrequencies, resonance frequencies
and horizontal slope frequencies by linearizing

Linearizing of the 1D model derived in Sec. III can be
used to get an approximate theoretical explanation for the
frequencies of the resonance points and of the points of hori-
zontal slope, see Fig. 7. In the following, these frequencies
are termed resonance frequencies and horizontal slope fre-
quencies, respectively. Furthermore, a justification for the
choice of pumping frequencies, 
=14.84 and 
=7.42, is
given based on the present analysis.

The resonance frequencies agree well with the eigenfre-
quencies of the linearized system with asymmetric boundary
conditions. Horizontal slope frequencies agree with the
eigenfrequencies of the linearized system but with symmetric
boundary conditions.

Linearizing Eq. �4�, near points where A=Arest and
u=0 �i.e., no flow� and without pumping, gives a wave equa-
tion for u,

1

a0
2� �2u

�t2 + b
�u

�t
� −

�2u

�x2 = 0, �38�

with a0 as the wave velocity at A=Arest and
b=2����+2� / ��Arest� representing the attenuation.

The eigenfrequencies of the linearized system, near van-
ishing mean flow, fulfilling the symmetric boundary condi-
tions u�t ,0�=u�t , l0�=0 or �u /�t�t ,0�=�u /�t�t , l0�=0 give
the horizontal slope frequencies,
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FIG. 7. Height difference between water levels in the
tanks. Frequency scans at four different pump positions.
At xc=0.3l0 and xc=0.4l0 �asterisks and crosses, respec-
tively� flow reversals are due to resonance, while at
xc=0.2l0 and xc=0.25l0 �dots and circles, respectively�
the mean flow also reverses �at approximately 12 and
15 Hz� without any sign of resonance. Note that the
pump position does not significantly affect the location
of the resonance points, while it does affect the location
of the zero points.
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FIG. 8. Height difference between the water levels in the tanks. Position
scans for frequencies 7.42,9.28,9.75,11.33,12.99, and 14.84 Hz �dots, dia-
monds, crosses, asterisks, circles, and squares, respectively�. The resonance
point lies close to 10.5 Hz.
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n =	n2� a0

2l0
�2

− �b

2
�2

� n
a0

2l0

= �7.42,14.84,22.25,29.66, . . .� , �39�

for n�Z+. The approximation appearing in Eq. �39� is suit-
able given our choice of parameter values. These frequen-
cies, corresponding to symmetric boundary conditions, de-
scribe the situations where the same amount of energy flows
across the two boundaries. More precisely, the first boundary
condition �nodes at both boundaries� corresponds to the situ-
ation where no energy flows across the boundaries; the sec-
ond corresponds to the situation in which the same amount
of energy crosses the two boundaries. In Fig. 7 these are the
points with horizontal tangents �approximately at 7.5 and 14
Hz�. At these points, the absolute value of the height differ-
ence has a local minima. The horizontal slope frequencies
are also demonstrated in Fig. 8, where sinuslike waves with
nodes at the boundaries appear at frequencies corresponding
to a tube length of multiple of half a wavelength.

The eigenfrequencies of the linearized system near van-
ishing mean flow fulfilling the asymmetric boundary condi-
tions u�t ,0�=�u /�t�t , l0�=0 or �u /�t�t ,0�=u�t , l0�=0 gives
the resonance frequencies,


n =	�n +
1

2
�2� a0

2l0
�2

− �b

2
�2

� �n +
1

2
� a0

2l0

= �3.71,11.13,18.55,25.97, . . .� �40�

for n�Z+� �0�. Again the approximation made in Eq. �40�
is suitable given our choice of parameter values. These fre-
quencies, corresponding to asymmetric boundary conditions,
describe the situations of changing flow. More specifically,
the two sets of asymmetric boundary conditions correspond
to situations where maximum energy is transported across
one boundary �the one where the antinode is� and nothing
across the other �the one where the node is�. In Fig. 7 these
are the points of resonance, located approximately at 4.5 and
10.5 Hz. Hence, resonance appear where the solutions have a
node at one end and an antinode at the other, corresponding
to a tube length of multiple of a quarter of a wavelength.
Similar observations can also be extracted from the numeri-
cal simulations by Ref. 14 and those by Ref. 4.

F. Nonlinear description of resonance points

In this subsection we consider the nonlinearized 1D
model. As regard the full system, it should be noted that
changing the length of the tube affects the location of both
the resonance points and the zero points in a manner not
exactly as predicted by the linearized model described in
Sec. VI E. If the locations of the first and the second reso-
nance points are plotted against the length of the tube, the
relationship follows a power law, although not the same
power law for both resonance points, see the upper panels of
Fig. 9.

If the frequencies of the first and second resonance
points are denoted fr1 and fr2, respectively, the numerical
results give the following relations:

fr1 = 7l0
−3/4 and fr2 = 16.9l0

−0.84. �41�

The wave propagation velocity is determined by the model
parameters: a=	�4 /3��sE /�Drest�	4 Arest /A=a0

	4 Arest /A. Note
that the constant a0 is the only place where the density, the
tube wall thickness, and the Young modulus enter the equa-
tions. Thus, these quantities can be combined into one pa-
rameter and instead of changing each one of them and ana-
lyze the results, it is sufficient to change the wave velocity
constant a0 and study how the locations of the resonance
frequencies are affected.

Frequencies of the first and second resonance points as a
function of the wave propagation velocity can be seen in the
lower panel of Fig. 9. The numerical results give the follow-
ing relations for the first and second resonance point:

fr1 = 0.17a0 and fr2 = 0.38a0. �42�

Based on the relations in Eqs. �41� and �42� we make the
conjecture that the following relations between the resonance
points, the length of the tube, and the wave propagation ve-
locity hold:

fr1 = k1
a0

l0
3/4 and fr2 = k2

a0

l0
0.84 . �43�

As to the first resonance point we get from Eq. �41� that
k1=0.261 and from Eq. �42� that k1=0.264. For the second
resonance point a similar calculation can be made. From
Eq. �41� the constant can be calculated to k2=0.631 and from
Eq. �42� the calculation gives k2=0.623.
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FIG. 9. Upper panels: the resonance frequencies �asterisks� plotted against
the length of the tube for the first �left graph� and second �right graph� point
of resonance. Five different lengths have been used: l0=1.6, 1.8, 2, 2.2, and
3 m. The viscosity is �=�water and the wave propagation velocity is
a0=26.8 m /s. The curves represent best fit by power laws. Lower panels:
the resonance frequencies �asterisks� plotted against the wave propagation
velocity for the first �left graph� and second �right graph� resonance point.
Note that the frequency and the wave velocity are proportional. The length
of the tube is fixed at l0=1.8 m.
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Regression analysis between estimated first and second
resonance frequency �based on simulations� and a0 / l0

m

�where m=3 /4 for the first resonance point and m=0.84 for
the second resonance point� over 25 points �all combinations
of a0=13.4; 16.8; 20.1; 23.4; 26.8 and l0=1.6; 1.8; 2.0; 2.2;
3.0� gives the following relationships between the locations
of the first resonance point, the second resonance point, and
the wave propagation velocity and the length of the tube:

fr1 = 0.26
a0

l0
3/4 and fr2 = 0.63

a0

l0
0.84 , �44�

i.e., regression analysis gives k1=0.26�0.01 and
k2=0.63�0.01.

VII. SUMMARY AND CONCLUDING REMARKS

A. The instationary Bernoulli equation

In this paper we have shown that the instationary
Bernoulli equation serves as a natural boundary condition for
the tube-tank valveless flow problem. The modeling results
are in qualitative agreement with those reported by
others:12,10 The average flow direction and the size of the
flow are very sensitive to the pumping frequency, and the
results show that valveless pumping occurs in the system.

B. Frequency dependence and nodes

We have shown that the height difference, generated
by the average flow, varies in a systematical way with
the position of the pump along the tube. This has also
been noticed in Ref. 12. We showed that this variation con-
stitute a spatial symmetric one-node sinuslike curve �i.e.,
hmean�x�=C sin�2�x / l0� for some constant C� for pump fre-
quency 
=7.42 Hz. We also showed that vanishing height
difference �no mean flow� occur when the pump is posi-
tioned at 0.5l0 �or at the ends�. We noted that the frequency

=7.42 Hz corresponds to the first horizontal slope fre-
quency 
1=a0 /2l0 of the tube. Furthermore, when the fre-
quency is doubled, 
=2
1=14.84 Hz, the “period” of the
sinuslike curve also “doubles” to a symmetric three-node si-
nuslike curve �i.e., hmean�x�=C sin�4�x / l0� for some con-
stant C�. Hence, the height difference is zero when the pump
is positioned at 0.5l0, 0.25l0, and 0.75l0 �or at the ends�. In
between the two pumping frequencies 
1 and 
2=2
1 there is
a resonance point �near 
=10.5 Hz�. When the pump fre-
quency varies from the one-node frequency to the three-node
frequency the curve varies in a characteristic way: First, the
amplitude of the sinuslike curve increases and diverges at the
resonance frequency. Second, when passing the resonance
frequency the sign of the amplitude changes, i.e., the curve is
reflected, and the shift from one node to three nodes appears.

C. Flow reversal and resonance

A new observation, apparently, is that at least two differ-
ent characteristic flow reversals may exist. As mentioned, we
saw resonance points in the frequency spectrum, but we also
observed more smoothly appearing transitions. We denoted
these point resonance points and zero points. We used simu-

lations to show that the resonance points do not depend on
the pump position whereas the zero points do.

D. Experimental findings

A physical realization of the system has been constructed
and some experiments have been carried out, see Sec. II. The
experimental findings resemble the numerical results re-
ported in this paper, such as height differences caused by
pumping and flow reversals at resonance points. Recordings
of the system can be found at the online version by clicking
on Fig. 1.

E. Gravity driven oscillations

Special attention was devoted to gravity driven oscilla-
tions �without pumping� and the implication of the losses due
to changes in the cross-sectional area between the tube and
the tanks. A simpler model was developed ignoring time
variation in the cross-sectional area of the tube. We found
that it is necessary to account for the energy loss in order to
have a physically acceptable dependence on the period of the
resulting oscillations, and that the period is asymptotically
linear in the tank to tube diameter ratio. We note that for
realistic values of viscosity one may identify a pronounced
gravity component in the 1D model simulations. This pro-
nounced gravity component was excellently fitted by a co-
sine function. The simpler model for studying the period of
the gravity driven oscillations agreed excellently with the
periods predicted by the 1D model and with the experimental
values.

F. Relation between resonance, tube length,
and wave propagation velocity

Using the linearized 1D model in Eq. �38� in Sec. VI E,
we predicted a set of eigenfrequencies. These frequencies
constitute the resonance frequencies and the horizontal slope
frequencies. The resonance frequencies are related to asym-
metric boundary conditions, and horizontal slope frequencies
are related to symmetric boundary conditions. The funda-
mental eigenfrequency 
1=3.71, and the higher order eigen-
frequencies 
2=11.13, 
3=18.55, 
4=25.97, etc., given by
Eq. �40� are approximately equal to the resonance frequen-
cies, where the reversals of flow occur �see Fig. 7 of Sec.
VI C�. The horizontal slope frequencies 
1=7.42, 
2=14.84,

3=22.25, 
4=29.66, etc., given by Eq. �39� are in precise
agreement with the one-node and the three-node sinuslike
waves discussed in Sec. VI D. Another important discovery
is that the nonlinear 1D model predicts a refinement of the
resonance frequencies predicted by linearization. In fact,
there seems to be a simple linear relationship between the
first resonance point and a certain power of the �inverse� tube
length. The frequency of the first resonance point is propor-
tional to the wave propagation velocity divided by the tube
length to the power 0.75 with proportionality constant 0.26.
We found a similar relation for the frequency of the second
resonance point but with power 0.84 and proportionality con-
stant 0.63. Based on these two findings we hypothesize that
it is possible to relate the first and the second resonance

053601-13 Novel characteristics of valveless pumping Phys. Fluids 21, 053601 �2009�

Downloaded 05 Jan 2010 to 130.226.199.115. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



frequencies. It deserves to be mentioned that the power de-
viates significantly from one—the expected value. The dis-
crepancies between the linearized estimates and those esti-
mated from the nonlinear 1D model are 20% and 8%,
respectively. Further investigations into this discrepancy are
needed.
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