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Speaking about and doing - doing without speaking about it

Greek philosophy, at least its Platonic and Aristotelian branches, spoke
much about demonstrated knowledge as something fundamentally differ-
ent from opinion; often, it took mathematical knowledge as the archetype
for demonstrated and hence certain knowledge ~ in its scepticist period, the
Academy went so far as to regard mathematical knowledge as the only kind
of knowledge that could really be based on demonstrated certainty.!

Not least in quarters close to Neopythagoreanism, the notion of math-
ematical demonstration may seem not to correspond to our understanding
of the matter; applying our own standards we may judge the homage to
demonstration to be little more than lip service.

Aristotle, however, discusses the problem of finding principles and
proving mathematical propositions from these in a way that comes fairly
close to the actual practice of Euclid and his kin. Even though Euclid
himself only practises demonstration and does not discuss it we can there-
fore be sure that he was not only making demonstrations but also explicitly
aware of doing so in agreement with established standards. The preface to
Archimedes’ Method is direct evidence that its author knew demonstration
according to established norms to be a cardinal virtue - the alleged or real
heterodoxy consisting solely in his claim that discovery without strict proof
was also valuable. Philosophical commentators like Proclus, finally, show
beyond doubt that they too saw the mathematicians’ demonstrations in the
perspective of the philosophers’ discussions.

As to Diophantus and Hero we may find that their actual practice is
not quite in agreement with the philosophical prescriptions, but there
is no doubt that even their presentation of mathematical matters was

A preprint version of this article appeared in HPM 2004: History and Pedagogy of Mathematics,
Fourth Summer University History and Epistemology of Mathematics, ICME 10 Satellite
Meeting, Uppsala 12-17 July 2004. Proceedings Uppsala: Universitetstryckeriet, 2004. [ thank
Karine Chemla for questions and commentaries which made me clarify the final text on
various points.

See, e.g., Cicero, Academica 11.116-17 (ed. Rackham 1933).

Mathematical justification: the Babylonian example

meant to agree with such norms as are reflected in the philosophical
prescriptions.

Justification unproclaimed - or absent

But is it not likely that mathematical demonstration has developed as a
practice in the same process as created the norms, and thus before such
norms crystallized and were hypostasized by philosophers? And is it not
possible that mathematical demonstration - or, to use a word which is less
loaded by our reading of Aristotle and Euclid, justification ~ developed in
other mathematical cultures without being hypostasized?

A good starting point for the search for a mathematical culture of this
kind might be that of the Babylonian scribes - if only for the polemical
reason that ‘hellenophile’ historians of mathematics tend to deny the exist-
ence of mathematical demonstration in this area. In Morris Kline’s (rela-
tively moderate) words,? written at a moment when non-specialists tended
to rely on selective or not too attentive reading of popularizations like
Neugebauer’s Science in Antiquity (1957) and Vorgriechische Mathematik
(1934) or van der Waerden's Erwachende Wissenschaft (1956):

Mathematics as an organized, independent, and reasoned discipline did not exist
before the classical Greeks of the period from 600 to 300 B.C. entered upon the
scene. There were, however, prior civilizations in which the beginnings or rudi-
ments of mathematics were created

The question arises as to what extent the Babylonians employed mathematical
proof. They did solve by correct systematic procedures rather complicated equa-
tions involving unknowns. However, they gave verbal instructions only on the steps
to be made and offered no justification of the steps. Almost surely, the arithmetic
and algebraic processes and the geometrical rules were the end result of physical
evidence, trial and error, and insight.

The only opening toward any kind of demonstration beyond the observa-
tion that a sequence of operations gives the right result is the word ‘insight;
which is not discussed any further. Given the vicinity of ‘physical evidence’
and ‘trial and error’ we may suppose that Kline refers to the kind of insight
which makes us understand in a glimpse that the area of a right-angled
triangle must be the half of that of the corresponding rectangle.

2 Kline 1972: 3, 14.
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Figure 11.1 The configuration of VAT 8390 #1.

Evident validity

In order to see how much must be put into the notion of ‘insight’ if Kline’s
characterization is to be defended we may look at some texts.? I shall start
by problem 1 from the Old Babylonian tablet VAT 8390 (see Figure 11.1)
(as also in following examples, an explanatory commentary follows the
translation): ¢

Obv. 1

1. [Length and width] I have made hold:® 10" the surface.t
2. [The length t]o itself I have made hold:

* T use the translations from H2002 with minor corrections, leaving out the interlinear
transliterated text and explaining key operations and concepts in notes at their first occurrence
- drawing for this latter purpose on the results described in the same book. In order to
facilitate checks I have not straightened the very literal (‘conformal’) translations. The first text
(VAT 8390 #1) is translated and discussed on pp. 61-4.

The Old Babylonian period covers the centuries from 2000 BCE to 1600 BcE (according to the
‘middle chronology’). The mathematical texts belong to the second half of the period.

To make the lines @ and b *hold’ or ‘hold each other’ (with further variations of the phrase

in the present text) means to construct (‘build’) the rectangular surface © 3(a,b) which they
contain. If only one line s is involved, the square I (s) is built.

Ifollow Thureau-Dangin's system for the transliteration of sexagesimal place value numbers,
where *, ", .. . indicate increasing and , "', ... decreasing sexagesimal order of magnitude,

FS

[

o

Mathematical justification: the Babylonian example

[a surface] I have built.

[So] much as the length over the width went beyond 7

I have made hold, to 9 I have repeated: ®

as much as that surface which the length by itself

was [ma]de hold.

The length and the width what?

. 10" the surface posit,’®

10. and 9 (to) which he has repeated posit:

11. The equalside'® of 9 (to) which he has repeated what? 3.
12. 3 to the length posit

13. 3 t[o the w]idth posit.

14. Since ‘so [much as the length] over the width went beyond
15. I have made hold; he has said

16. 1from 3 which t]o the width you have posited

17. tea[r out:] 2 you leave.

18. 2 which yo[u have l]eft to the width posit.

19. 3 which to the length you have posited

20. to 2 which (to) the width you have posited raise,!! 6.

© 2N W AW

and where ‘order zero’ when needed is marked ° (I omit it when a number of ‘order zero’

stands alone, thus writing 7 instead of 7°). 5'2°10" thus stands for 5.60' +2-60° + 10-6071. It

should be kept in mind that absolute order of magnitude is not indicated in the text, and that

*, and ° correspond to the merely mental awareness of order of magnitude without which
the calculators could not have made as few errors as actually found in the texts. The present
problem is homogeneous, and therefore does not enforce a particular order of magnitude.

I have chosen the one which allows us to distinguish the area of the surface (10") from the
number 1/6 (107).

7 The text makes use of two different ‘subtractive’ operations. One, ‘by excess, observes how
much one quantity A goes beyond another quantity B; the other, ‘by removal, finds how much
remains when a quantity a is ‘torn out’ (in other texts sometimes ‘cut off’ etc.) from a quantity
A. As suggested by the terminology, the latter operation can only be used if a is
part of A. .

8 ‘Repetition tofuntil #’ is concrete, and produces n copies of the object of the operation. n is
always small enough to make the process transparent, 1 <n<10.

9 ‘Positing’ a number means to take note of it by some material means, perhaps in isolation on a
clay pad, perhaps in the adequate place in a diagram made outside the tablet. Positing n to'a
line (obv. 112, etc.) is likely to correspond to the latter possibility.

19 The ‘equalside’ s of an area Q is the side of this area when it is laid out as a square (the ‘squaring
side’ of Greek mathematics). Other texts tell that s ‘is equal by’ Q.

! ‘Raising’ is a multiplication that corresponds to a consideration of proportionality; its
etymological origin is in volume determination, where a prismatic volume with height h cubits
is found by ‘raising’ the base from the implicit ‘default thickness’ of 1 cubit to the real height &.
It also serves to determine the areas of rectangles which were constructed previously (lines 1 20
and 11 7), in which case, e.g., the ‘default breadth’ (1 ‘rod; c. 6 m) of the length is ‘raised’ to the
real width. In the case where a rectangular area is constructed (‘made hold’), the arithmetical
determination of the area is normally regarded as implicit in the operation, and the value is

stated immediately without any intervening ‘raising’ (thus lines 11 7 and 10).
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21. Igi 6" detach: 10".
22, 10" to 10" the surface raise, 1'40.
23. The equalside of 1'40 what? 10.

Obv. 1

10 to 3 whlich to the length you have posited]

raise, 30 the length.

10 to 2 which to the width you have po[sited]

raise, 20 the width.

If 30 the length, 20 the width,

the surface what?

30 the length to 20 the width raise, 10" the surface.

30 the length together with 30 make hold: 15°.

30 the length over 20 the width what goes beyond? 10 it goes beyond.
10 together with [10 ma]ke hold: 1'40.

. 1'40 to 9 repeat: 15" the surface.

. 15" the surface, as much as 15" the surface which the length
. by itself was made hold.

AN

e e L )
W N = O

This problem about a rectangle exemplifies a characteristic of numerous
Old Babylonian mathematical texts, namely that the description of the pro-
cedure already makes its adequacy evident. In Obv. 1 4-5 we are told to con-
struct the square on the excess of the length of the rectangle over its width
and to take 9 copies of it, in lines 1 6-7 that these can fill out the square on
the length. Therefore, these small squares must be arranged in square, as in
Figure 11.1, in a 3x3 pattern (lines 1 11-13). But since the side of the small
square was defined in the statement to be the excess of length over width
(1 14-15, an explicit quotation), removal of one of three rows will leave
the original rectangle, whose width will be 2 small squares.!® In this unit,
the area of the rectangle is 2:3=6 (1 18-20); since the rectangle is already
there, there is no need for a ‘holding’ operation. Because the area meas-
ured in standard units (square ‘rods’) was 10°, each small square must be
%-10" =140 and its side V1'40=100=10 (1 21-23). From this it follows
that the length must be 3-10=30 and the width 2-10=20 (11 1-3).

12 “Igi n’ designates the reciprocal of . To ‘detach igi n; that is, to find it, probably refers to the
splitting out of one of n parts of unity. ‘Raising a to igi n’ means finding a - 1/n, that is, to
divide a by n.

¥ In our understanding, 2 times the side of the small square. However, the Babylonian term
for a square configuration (mithartum, literally ‘[situation characterized by a] confrontation
[between equals]’), was numerically identified by and hence with its side - a Babylonian
square (primarily thought of as a square frame) ‘was’ its side and ‘had’ an area, whereas ours
(primarily thought of as a square-shaped area) ‘has’ a side and ‘is’ an area.

Mathematical justification: the Babylonian example

The one who follows the procedure on the diagram and keeps the exact
(geometrical) meaning and use of all terms in mind will feel no more need
for an explicit demonstration than when confronted with a modern step-
by-step solution of an algebraic equation,'* in particular because numbers
are always concretely identified by their role (‘3 which to the length you
have posited; etc.). The only place where doubts might arise is why 1 has to
be subtracted in 1 16-17, but the meaning of this step is then duly explained
by a quotation from the statement (a routine device). There should be no
doubt that the solution must be correct.

None the less a check follows, showing that the solution is valid (11 5
onwards). This check is very detailed, no mere numerical control but an
appeal to the same kind of understanding as the preceding procedure:
as we see, the rectangle is supposed to be already present, its area being
found by ‘raising’; the large and small squares, however, are derived entities
and therefore have to be constructed (the tablet contains a strictly parallel
problem that follows the same pattern, for which reason we may be confi-
dent that the choice of operations is not accidental).

A similar instance of evident validity is offered by problem 1 of the text
BM 13901 (Figure 11.2)," the simplest of all mixed second-degree prob-
lems (and by numerous other texts, which however present us with the
inconvenience that they are longer):

Obv.1
1. The surfa[ce] and my confrontation'® I have accu[mulated]:'” 45" is it. 1, the

projection,'®
2. you posit. The moiety' of 1 you break, [3]0" and 30" you make hold.

14 For instance,

3x+2=17
= 3x=17-2=15
=x=%-15=5.

15 Translation and discussion in H2002: 50-2.

16 The mithartum or ‘[situation characterized by the] confrontation [of equals]; as we remember
from n. 13, is the square configuration parametrized by its side.

17 “To accumulate’ is an additive operation which concerns or may concern the measuring
numbers of the quantities to be added. It thus allows the addition of lengths and areas, as here,
in line 1, and of areas and volumes or of bricks, men and working days in other texts. Another
addition (‘appending’) is concrete. It serves when a quantity a is joined to another quantity A,
augmenting thereby the measure of the latter without changing its identity (as when interest,
Babylonian ‘the appended; is joined to my bank account while leaving it as mine).

18 The ‘projection’ (wasitum, literally something which protrudes or sticks out) designates a line
of length 1 which, when applied orthogonally to another line L as width, transforms it into a
rectangle = 3(L,1) without changing its measure.

19 The ‘moiety’ of an entity is its ‘necessary’ or ‘natural’ half, a half that could be no other fraction -
as the circular radius is by necessity the exact half of the diameter, and the area of a triangle is
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Figure 11.2 The procedure of BM 13901 #1, in slightly distorted proportions.

Mathematical justification: the Babylonian example

3. 15" to 45" you append: by] 1, 1 is equal. 30" which you have made hold
4. in the inside of 1 you tear out: 30" the confrontation.

The problem deals with a ‘confrontation, a square configuration identified
by its side s and possessing an area. The sum of (the measures of) these is
told to be 45°. The procedure can be followed in Figure 11.2: the left side
s of the shaded square is provided with a ‘projection’ (1 1). Thereby a rec-
tangle = 3(s,1) is produced, whose area equals the length of the side s; this
rectangle, together with the shaded square area, must therefore also equal
45°. ‘Breaking’ the ‘projection 1’ (together with the adjacent rectangle) and
moving the outer ‘moiety’ so as to make the two parts ‘hold’ a small square
0J(30") does not change the area (1 2), but completing the resulting gnomon
by ‘appending’ the small square results in a large square, whose area must
be 45"+ 15" =1 (1 3). Therefore, the side of the large square must also be
1 (1 3). ‘Tearing out’ that part of the rectangle which was moved so as to
make it ‘hold’ leaves 1-30" for the ‘confrontation;, [the side of} the square
configuration.

As in the previous case, once the meaning of the terms and the nature of
the operations is understood, no explanation beyond the description of the
steps seems to be needed.

In order to understand why we may compare to the analogous solution of
a second-degree equation:
2+lx=%
2+ 1x+ (%) =%+ (%)

K+ lx+(B)P=%+%=1
(x+%)=1

x+¥%=V1=1
x=1-%2="

13008

We notice that the numerical steps are the same as those of the Babylonian
text, and this kind of correspondence was indeed what led to the discovery
that the Babylonians possessed an ‘algebra. At the same time, the termi-
nology was interpreted from the numbers - for instance, since ‘making %2
and % hold’ produces %, this operation was identified with a numerical
multiplication; since ‘raising’ and ‘repeating’ were interpreted in the same
way, it was impossible to distinguish them.? Similarly, the two additive

found by raising exactly the half of the base to the height. It is found by ‘breaking, a term which
is used in no other function in the mathematical texts.

2 Actually, both Neugebauer and Thureau-Dangin knew that this was not the whole truth: none
of them ever uses a wrong operation when reconstructing a damaged text. On one occasion
Neugebauer (1935-7: 1 180) even observes that the scribe uses a wrong multiplication. However,
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operations were conflated, etc. All in all, the text was thus interpreted as a
numerical algorithm:

Halve 1: %.

Multiply % and %: %.

Add % to %: 1.

Take the square root of 1: 1.
Subtract % from 1: %.

A similar interpretation as a mere algorithm results from a reading of the
symbolic solution if the left-hand side of all equations is eliminated. It is
indeed this left-hand side which establishes the identity of the numbers
appearing to the right, and thereby makes it obvious that the operations
are justified and lead to the solution. In the same way, the geometric
reference of the operational terms in the Babylonian text is what establishes
the meaning of the numbers and thereby the pertinence of the steps.

Didactical explanations

Kline wrote at a moment when the meaning of the terms and the nature
of the operations was not yet understood and where the text was therefore
usually read as a mere prescription of a numerical algorithm; his opinion
is therefore explainable (we shall return to the fact that this opinion of his
also reflects deeply rooted post-Renaissance scientific ideology). How this
understanding developed concerns the history of modern historical schol-
arship.2! But how did Old Babylonian students come to understand these
matters? (Even we needed some explanations and some training before we
came to consider algebraic transformations as self-explanatory.)

Neugebauer, fully aware that the complexity of many of the problems
solved in the Old Babylonian texts presupposes deep understanding and
not mere glimpses of insight, supposed that the explanations were given
in oral teaching. In general this will certainly have been the case, but after
Neugebauer’s work on Babylonian mathematics (which stopped in the late
1940s) a few texts have been published which turn out to contain exactly
the kind of explanations we are looking for.

they never made this insight explicit, for which reason less brilliant successors did not get the
point. For instance, Bruins and Rutten 1961 abounds in wrong choices (even when Sumerian
word signs are translated into Akkadian).

! See Hoyrup 1996 for what evidently cannot avoid being a partisan view.

Mathematical justification: the Babylonian example 371

Most explicit are some texts from late Old Babylonian Susa: TMS vi1,
TMS 1x, TMS xv1.22 Since TMS 1x is closely related to the problem we have
just dealt with, whereas TMS vI1 investigates non-determinate linear prob-
lems and TMS xvI the transformation of linear equations, we shall begin
by discussing TMS 1x (Figures 11.3 and 11.4). It falls in three sections, of
which the first two run as follows:

3
—

The surface and 1 length accumulated, 4{0°. :30, the length,’ 20" the width.}?
As 1 length to 10" 'the surface, has been appended,]

or 1 (as) base to 20, [the width, has been appended,]

or 1°20° [:is posited’) to the width which together 'with the length tholds’] 40°
or 1°20° toge(ther) with 30" the length hol[ds], 40" (is) [its] name.

Since so, to 20" the width, which is said to you,

1 is appended: 1°20° you see. Out from here

you ask. 40" the surface, 1°20° the width, the length what?

. [30° the length. T]hus the procedure.

¥ P NG e w

#2

10. [Surface, length, and width accu]mulated, 1. By the Akkadian (method).

11. [1 to the length append.] 1 to the width append. Since 1 to the length is
appended,

12. [1 to the width is app]ended, 1 and 1 make hold, 1 you see.

13. [1 to the accumulation of length,] width and surface append, 2 you see.

14. [To 20" the width, 1 appe]nd, 1°20". To 30" the length, 1 append, 1°30".¢

15. [:Since’ a surflace, that of 1°20 the width, that of 1°30" the length,

16. [ithe length together with’ the wi]dth, are made hold, what is its name?

17. 2 the surface.

18. Thus the Akkadian (method).

Section 1 explains how to deal with an equation stating that the sum of a
rectangular area © 3(I,w) and the length [ is given, referring to the situation
that the length is 30" and the width 20". These numbers are used as identi-
fiers, fulfilling thus the same role as our letters [ and w. Line 2 repeats the

2 Al were first published by Bruins and Rutten 1961 who, however, did not understand their
character. Revised transliterations and translations as well as analyses can be found in H2002:
181-8, 89-95 and 85-9 (only part 1), respectively. A full treatment of TMS xv1 is found in
Heyrup 1990: 299-302.

3 As elsewhere, passages in plain square brackets are reconstructions of damaged passages that
can be considered certain; superscript and subscript square brackets indicate that only the
lower or upper part respectively of the signs close to that bracket is missing. Passages within
i, . .? are reasonable reconstructions which however may not correspond to the exact
formulation that was once on the tablet.

24 My restitutions of lines 14-16 are somewhat tentative, even though the mathematical substance
is fairly well established by a parallel passage in lines 28-31.
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Figure 11.3 The configuration discussed in TMS 1x #1.

bt
=

Figure 11.4 The configuration of TMS 1x #2.

Mathematical justification: the Babylonian example

statement but identifying the area as 10". In line 3, this is told to be equiva-
lent to adding ‘a base’ 1 to the width, as shown in Figure 11.3 - in symbols,
C 3(Lw)+1=Cc 3(,w)+C 3(,1)=C 3(L,w+1); the ‘base’ evidently fulfils
the same role as the ‘projection’ of BM 13901. Line 4 tells us that this means
that we get a (new) width 1°20°, and line 5 checks that the rectangle con-
tained by this new width and the original length 30" is indeed 40°, as it
should be. Lines 6-9 sum up.

Section 2 again refers to a rectangle with known dimensions - once
more [=30", w=20". This time the situation is that both sides are added to
the area, the sum being 1. The trick to be applied in the transformation is
identified as the ‘Akkadian method. This time, both length and width are
augmented by 1 (line 11); however, the resulting rectangle © 3(I+ 1,w+1)
contains more than it should (cf. Figure 11.4), namely beyond a quasi-gno-
mon representing the given sum (consisting of the original area = 3(I,w),
a rectangle = 3(/,1) whose measure is the same as that of /, and a rectangle
C3(1,w) =w), also a quadratic completion ©3(1,1) =1 (line 12). Therefore,
the area of the new rectangle should be 1+1=2 (line 13). And so it is: the
new length will be 1°30°, the new width will be 1°20", and the area which
they contain will be 1°30°-1°20" =2 (lines 15-17).

Since extension also occurs in section 1, the ‘Akkadian method’ is likely
to refer to the quadratic completion (this conclusion is supported by further
arguments which do not belong within the present context).

After these two didactical explanations follows a problem in the proper
sense. In symbolic form it can be expressed as follows:

ca(w)+l+w=1, Y%GBl+4aw)+w=30
The first equation is the one whose transformation into
C3(A,w)=2

(A=1+1, w=w+1) was just explained in Section 2. The second is multiplied
by 17, thus becoming

3/+21w=8°30".
and further transformed into

3A+21w=32°30,

whereas the area equation is transformed into

C3(3)\,21w) =2'6.
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| s |

Figure 11.5 The situation of TMS xv1 #1.

Thereby, the problem has been reduced to a standard rectangle problem
(known area and sum of sides), and it is solved accordingly (by a method
similar to that of BM 13901 #1).

The present text does not explain the transformation of the equation 1/17
(31+4w) +w=30’, but a similar transformation is the object of Section 1 of
TMS xv1 (Figure 11.5):

- [The 4th of the width, from] the length and the width to tear out, 45". You, 45°
. [to 4 raise, 3 you] see. 3, what is that? 4 and 1 posit,
. [50" and] 5’, to tear out, Ipositl. 5° to 4 raise, 1 width. 20" to 4 raise,
. 1°20" you (see), 4 widths. 30" to 4 raise, 2 you (see), 4 lengths. 20", 1 width, to
tear out,
5. from 1°20°, 4 widths, tear out, 1 you see. 2, the lengths, and 1, 3 widths, accu-
mulate, 3 you see.
6. Igi 4 de[ta]ch, 15" you see. 15" to 2, the lengths, raise, [3]0" you (see), 30" the
length.
7. 15" to 1 raise, [1]5° the contribution of the width. 30" and 15" hold.?s
8. Since ‘The 4th of the width, to tear out; it is said to you, from 4, 1 tear out, 3
you see.
9. Igi 4 de(tach), 15" you see, 15" to 3 raise, 45" you {see), 45" as much as (there
is) of [widths].
10. 1 as much as (there is) of lengths posit. 20, the true width take, 20 to 1’ raise,
20’ you see.
11. 207 to 45" raise, 15" you see. 15" from 3015 [tear out],
12. 30" you see, 30" the length.

W N e

Even this explanation deals formally with the sides / and w of a rectangle,
although the rectangle itself is wholly immaterial to the discussion. In sym-
bolic translation we are told that

(I+w)-taw=45".

% 'This ‘hold’ is an ellipsis for ‘make your head hold; the standard phrase for retaining in memory.

Mathematical justification: the Babylonian example

50
(30) | 20) |

5

2 1°20'
|

1 20

Figure 11.6 The transformations of TMS xv1 #1.

The dimensions of the rectangle are not stated directly, but from the numbers
in line 3 we see that they are presupposed to be known and to be the same as
before, 50 being the value of I+ w, 5" that of Yaw — cf. Figure 11.6.

The first operation to perform is a multiplication by 4. 4 times 45 gives
3, and the text then asks for an explanation of this number (line 2). The
subsequent explanation can be followed on Figure 11.6, which certainly is
a modern reconstruction but which is likely to correspond in some way to
what is meant by the explanation. The proportionals 1 and 4 are taken note
of (‘posited’), 1 corresponding of course to the original equation, 4 to the
outcome of the multiplication. Next 50 (the total of length plus width) and
5’ (the fourth of the width that is to be ‘torn out’) are taken note of (line 3),
and the multiplied counterparts of the components of the original equa-
tion (the part to be torn out, the width, and the length) are calculated and
described in terms of lengths and widths (lines 3-4); finally it is shown that
the outcome (consisting of the components 1 =4w-1w and 2 = 4l) explains
the number 3 that resulted from the original multiplication (lines 4-5).

Now the text reverses the move and multiplies the multiplied equation
that was just analysed by %. Multiplication of 2 (= 4l) gives 30’, the length;
multiplication of 1 gives 15°, which is explained to be the ‘contribution of
the width’; both contributions are to be retained in memory (lines 6-7).
Next the contributions are to be explained; using an argument of false posi-
tion (if one fourth of 4 was torn out, 3 would remain; now, since it is torn
out of 1, the remainder is 3 - %), the coefficient of the width (‘as much as
(there is) of widths’) is found to be 45". The coeflicient of the length is seen
immediately to be 1 (lines 1-10).

Next (line 10) follows a step whose meaning is not certain; the text distin-
guishes between the ‘true length’ and the ‘length’ simpliciter, writing however
the value of both in identical ways. One possible explanation (in my opinion
quite plausible, and hence used in the translation) is that the ‘true width’
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is the width of an imagined ‘real’ field, which could be 20 rods (120 m),
whereas the width simpliciter is that of a model field that can be drawn in the
school yard (2 m); indeed, the normal dimensions of the fields dealt with in
second-degree problems (which are school problems without any practical
use) are 30" and 20" rods, 3 and 2m, much too small for real fields but quite
convenient in school. In any case, multiplication of the value of the width by
its coefficient gives us the corresponding contribution once more (line 11),
which indeed has the value that was assigned to memory. Subtracting it from
the total (which is written in an unconventional way that already shows the
splitting) leaves the length, as indeed it should (lines 11-12).

Detailed didactical explanations such as these have only been found in
Susa; once they have been understood, however, we may recognize in other
texts rudiments of similar explanations, which must have been given in
their full form orally,? as once supposed by Neugebauer.

These explanations are certainly meant to impart understanding, and in
this sense they are demonstrations. But their character differs fundamen-
tally from that of Euclidean demonstrations (which, indeed, were often
reproached for their opacity during the centuries where the Elements were
used as a school book). Euclidean demonstrations proceed in a linear way,
and end up with a conclusion which readers must acknowledge to be una-
voidable (unless they find an error) but which may leave them wondering
where the rabbit came from. The Old Babylonian didactical texts, in con-
trast, aim at building up a tightly knit conceptual network in the mind of
the student.

However, conceptual connections can be of different kinds. Pierre de la
Ramée when rewriting Euclid replaced the ‘superfluous’ demonstrations
by explanations of the practical uses of the propositions. Numerology (in a
general sense including also analogous approaches to geometry) links math-
ematical concepts to non-mathematical notions and doctrines; to this genre
belong not only writings like the ps-Iamblichean Theologoumena arithmeti-
cae but also for some of their aspects, Liu Hui’s commentaries to The Nine
Chapters on Mathematical Procedures, which cannot be understood in isola-
tion from the Book of Changes.”” Within this spectrum, the Old Babylonian
expositions belong in the vicinity of Euclid, far away from Ramism as well
as numerology: the connections that they establish all belong strictly within
the same mathematical domain as the object they discuss.

* Worth mentioning are the unpublished text IM 43993, which I know about through Jéran
Friberg and Farouk al-Rawi (personal communication), and YBC 8633, analysed from this
perspective in H2002: 254-7.

¥ According to Chemla 1997.

Mathematical justification: the Babylonian example

Justifiability and critique

Whoever has tried regularly to give didactical explanations of mathemati-
cal procedures is likely to have encountered the situation where a first
explanation turns out on second thoughts — maybe provoked by questions
or lacking success of the explanation - not to be justifiable without adjust-
ment. While didactical explanation is no doubt one of the sources of math-
ematical demonstration, the scrutiny of the conditions under which and
the reasons for which the explanations given hold true is certainly another
source. The latter undertaking is what Kant termed critique, and its central
role in Greek mathematical demonstration is obvious.

In Old Babylonian mathematics, critique is less important. If read as
demonstrations, explanations oriented toward the establishment of concep-
tual networks tend to produce circular reasoning, in the likeness of those
persons referred to by Aristotle ‘who . . . think that they are drawing paral-
lel lines; for they do not realize that they are making assumptions which
cannot be proved unless the parallel lines exist'?® In their case, Aristotle told
the way out — namely to ‘take as an axiom’ (&§16w) that which is proposed.
This is indeed what is done in the Elements, whose fifth postulate can thus
be seen to answer metatheoretical critique.

However, though less important than in Greek geometry, critique is not
absent from Babylonian mathematics. One instance is illustrated by the text
YBC 6967, a problem dealing with two numbers igim and igibim, ‘the
reciprocal and its reciprocal, the product of which, however, is supposed to
be 1" (that is, 60), not 1:

Obv.
1. [The igib]ém over the igim, 7 it goes beyond
2. [igim] and igibdm what?
3. Yo{u], 7 which the igibiim
4. over the igdm goes beyond
5. to two break: 3°30";
6. 3°30° together with 3°30°
7. make hold: 12°15".
8. To 12°15" which comes up for you
9. [1" the surflace append: 1'12°15".
10. [The equalside of 1']12°15" what? 8°30".
11. [8°30" and] 8°30, its counterpart,®® lay down.”!

3 Prior Analytics 11, 64°34-65%9, trans. Tredennick 1938: 485-7.

2 Transliterated, translated and analysed in H2002: 55-8.

30 The ‘counterpart’ of an equalside is ‘the other side’ meeting it in a common corner.
31 Namely, lay down in writing or drawing.
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Figure 11.7 The procedure of YBC 6967.

Rev.
3°30°, the made-hold, l
from one tear out,

to one append.

The first is 12, the second is 5.

12 is the igiblim, 5 is the igiim.

M A

The procedure can be followed in Figure 11.7; the text is another
instance of self-evident validity, and only differs from those discussed
under this perspective in having the sides and the area of the rectan-
gle represent numbers and not just themselves. The interesting point is
found in Rev. 2-3. In cases where there is no constraint on the order, the
Babylonians always speak of addition before subtraction. Here, however,
the 3°30° that is to be added to the left of the gnomon (that is, to be put

Mathematical justification: the Babylonian example

back in its original position) must first be at disposition, that is, it must
already have been torn out below.

This compliance with a request of concrete meaningfulness should not
be read as evidence of some ‘primitive mode of thought still bound to the
concrete and unfit for abstraction’; this is clear from the way early Old
Babylonian texts present the same step in analogous problems, often in a
shortened phrase ‘append and tear out’ and indicating the two resulting
numbers immediately afterwards, in any case never respecting the norm of
concreteness. This norm thus appears to have been introduced precisely in
order to make the procedure justifiable - corresponding to the introduction
in Greek theoretical arithmetic of the norm that fractions and unity could
be no numbers in consequence of the explanation of number as a ‘collection
of units’*

But the norm of concreteness is not the only evidence of Old Babylonian
mathematical critique. Above, we have encountered the ‘projection’ and
the ‘base, devices that allow the addition of lines and surfaces in a way that
does not violate homogeneity, and the related distinction between ‘accu-
mulation’ and ‘appending’ Even these stratagems turn out to be secondary
developments. A text like AO 8862 (probably from the early phase of Old
Babylonian mathematics, at least within Larsa, its local area) does not make
use of them. Its first problem starts thus:

Length, width.>* Length and width I have made hold:

A surface have I built.

I turned around (it). As much as length over width

went beyond,

to inside the surface I have appended:

3'3.1 turned back. Length and width

I have accumulated: 27. Length, width, and surface wih]at?

NSk wh =

As we see, a line (the excess of length over width) is ‘appended’ to the
area; ‘accumulation’ also occurs, but the reason for this is that ‘appending’
for example the length to the width would produce an irrelevant increased
width and no symmetrical sum (cf. the beginning of TMS xvi, above,
which first creates a symmetrical sum and next removes part of it).

This ‘appending’ of a line to an area does not mean that the text is absurd.
In order to see that we must understand that it operates with a notion of
‘broad lines, lines that carry an inherent virtual breadth. Though not made

32 See Hoyrup 2004: 148f.
3 That is, the object of problem is told to be the simplest configuration determined solely by a
length and a width - namely, according to Babylonian habits, a rectangle.
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explicit, this notion underlies the determination of areas by ‘raising’;** it
is widespread in pre-modern practical mensuration, in which ‘everybody’
(locally) would measure in the same unit, for which reason it could be
presupposed tacitly® - land being bought and sold in consequence just
as we are used to buying and selling cloth, by the yard and not the square
yard. However, once didactical explanation in school has taken its begin-
ning (and once it is no longer obvious which of several metrological units
should serve as standard breadth), a line which at the same time is ‘with
breadth’ and ‘without breadth’ becomes awkward. In consequence, critique
appears to have outlawed the ‘appending’ of lines to areas and to have intro-
duced devices like the ‘projection’ - the latter in close parallel to the way
Viete established homogeneity and circumvented the use of broad lines of
Renaissance algebra.’

All in all, mathematical demonstration was thus not absent from Old
Babylonian mathematics. Procedures were described in a way which, once
the terminology and its use have been decoded, turns out to be as transpar-
ent as the self-evident transformations of modern equation algebra and in
no need of further explicit arguing in order to convince; teaching involved
didactical explanations which aimed at providing students with a corre-
sponding understanding of the terminology and the operations; and math-
ematical concepts and procedures were transformed critically so as to allow
coherent explanation of points that may initially have seemed problematic
or paradoxical. No surviving texts suggest, however, that all this was ever
part of an explicitly formulated programme, nor do the texts we know point
to any thinking about demonstration as a particular activity. All seems to
have come as naturally as speaking in prose to Moliére’s Monsieur Jourdain,
as consequences of the situations and environments in which mathematics
was practised.

Mathematical Taylorism: practically dubious but an
effective ideology

Teachers, in the Bronze Age just as in modern times, may have gone beyond
what was needed in the ‘real’ practice of their future students, blinded by
the fact that the practice they themselves knew best was that of their own

3 Cfn. 11 above.
% See Hoyrup 1995.

% Namely the ‘roots, explained by Nuiiez 1567: fos. 6r, 232r to be rectangles whose breadth is ‘la
unidad lineal’

Mathematical justification: the Babylonian example

trade, the teaching of mathematics. None the less, the social raison détre of
Old Babylonian mathematics was the training of future scribes in practical
computation, and not deeper insight into the principles and metaphysics
of mathematics. Why should this involve demonstration? Would it not be
enough to teach precisely those rules or algorithms which earlier workers
have found in the texts and which (in the shape of paradigmatic cases)
also constitute the bulk of so many other pre-modern mathematical hand-
books? And would it not be better to teach them precisely as rules to be
obeyed without distracting reflection on problems of validity?

That ‘the hand’ should be governed in the interest of efficiency by a ‘brain’
located in a different person but should in itself behave like a mindless
machine is the central idea of Frederick Taylor’s ‘scientific management’ —
‘hand’ and ‘brain’ being, respectively, the worker and the planning engineer.
In the pre-modern world, where craft knowledge tended to constitute
an autonomous body, and where (with rare exceptions) practice was not
derived from theory, Taylorist ideas could never flourish.” In many though
not all fields, autonomous practical knowledge survived well into the nine-
teenth, sometimes the twentieth century; however, the idea that practice
should be governed by theory (and the ideology that practice is derived
from the insights of theory) can be traced back to the early modern epoch.
Already before its appearance in Francis Bacons New Atlantis we find
something very similar forcefully expressed in Vesalius' De humani corpo-
ris fabrica, according to which the art of healing had suffered immensely
from being split into three independent practices: that of the theoretically
schooled physicians, that of the pharmacists, and that of vulgar barbers
supposed to possess no instruction at all; instead, Vesalius argues, all three
bodies of knowledge should be carried by the same person, and that person
should be the theoretically schooled physician.

In many fields, the suggestion that material practice should be the task
of the theoretically schooled would seem inane; even in surveying, a field
which was totally reshaped by theoreticians in the eighteenth century, the
scholars of the Académie des Sciences (and later Wessel and Gauss), even
when working in the field, would mostly instruct others in how to perform
the actual work and control they did well. Such circumstances favoured the
development of views close to those of Taylorism - why should those who
merely made the single observations or straightened the chains be bothered

37 Aristotle certainly thought that master artisans had insight into ‘principles’ and common
workers not (Metaphysics1, 981b1-5), and that slaves were living instruments (Politics 1.4); but
reading of the context of these famous passages will reveal that they do not add up to anything
like Taylorism.
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by explanations of the reasons for what they were asked to do? If the rules
used by practitioners were regarded in this perspective, it also lay close at
hand to view these as ‘merely empirical’ if not recognizably derived from
the insights of theoreticians.

Such opinions, and their failing in situations where practitioners have
to work on their own, are discussed in Christian Wolff’s Mathematisches
Lexikon:

It is true that performing mathematics can be learned without reasoning math-
ematics; but then one remains blind in all affairs, achieves nothing with suitable
precision and in the best way, at times it may occur that one does not find one’s way
at all. Not to mention that it is easy to forget what one has learned, and that that
which one has forgotten is not so easily retrieved, because everything depends only
on memory.*

Wolff certainly identified ‘reasoning mathematics’ (also called ‘Mathesis
theorica’ or ‘speculativa’) with established theoretical mathematics, but
none the less he probably hit the point not only in his own context but also
if we look at the conditions of pre-modern mathematical practitioners:
without insight into the reasons why their procedures worked they were
likely to err except in the execution of tasks that recurred so often that their
details could not be forgotten.® Even the teaching of practitioners’ math-
ematics through paradigmatic cases exemplifying rules that were or were
not stated explicitly will always have involved some level of explanation
and thus of demonstration - and certainly, as in the Babylonian case, inter-
nal mathematical rather than philosophical or otherwise ‘numerological’
explanation. Whether critique would also be involved probably depended
on the level of professionalization of the teaching institution itself.

But those mathematicians and historians who were not themselves
involved in the teaching of practitioners were not forced to discover such
subtleties. For them, it was all too convenient to accept Taylorist ideologies
(whether ante litteram or post) and to magnify their own intellectual stand-
ing by identifying the appearance of explicit or implicit rules with mind-
less rote learning (if derived from supposedly real mathematics) or blind

3 Wolff 1716: 867 (my translation).

% The ‘rule of three} with its intermediate product deprived of concrete meaning, only turns up in
environments where the problems to which it applies were really the routine of every working
day - notwithstanding the obvious computational advantage of letting multiplication precede
division. Its extensions into ‘rule of five’ and ‘rule of seven’ never gained similar currency. A
more recent example, directly inspired by Adam Smith’s theory of the division of labour, is
Prony’s use of ‘several hundred men who knew only the elementary rules of arithmetic’ in the
calculation of logarithmic and trigonometric tables (McKeon 1975).
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experimentation (if not to be linked to recognizable theory). Such ideolo-
gies did not make opinions such as Kline's necessary and did not engender
them directly, but they shaped the intellectual climate within which he and
his mental kin grew up as mathematicians and as historians.
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