Roskilde
University

Extended Set Constraints and Tree Grammar Abstraction of Programs

Rosendahl, Mads; Gallagher, John Patrick

Publication date:
2011

Document Version
Early version, also known as pre-print

Citation for published version (APA):
Rosendahl, M., & Gallagher, J. P. (2011). Extended Set Constraints and Tree Grammar Abstraction of
Programs. http://imada.sdu.dk/~petersk/WLPE2011/#venue

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
« You may not further distribute the material or use it for any profit-making activity or commercial gain.
« You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact rucforsk@kb.dk providing details, and we will remove access to the work
immediately and investigate your claim.

Download date: 30. Sep. 2022

http://imada.sdu.dk/~petersk/WLPE2011/#venue

Extended Set Constraints and Tree Grammar Abstraction of
Programs®

Mads Rosendahl John P. Gallagher
Roskilde University, Building 43.2, DK-4000 Roskilde, Denmark
madsr@ruc.dk jpg@ruc.dk

Set constraints are relations between sets of ground terms or trees. This paper presents two main
contributions: firstly we consider an extension of the systems of set constraints to include a tuple
constructor, and secondly we construct a simplified solution procedure for set constraints. We illus-
trate the approach using logic programs and show that we can construct various set-based abstractions
of a program including the Jp abstraction using a system of set constraints derived in a single pass
over the program.

1 Introduction

Set constraints are relations between sets of ground terms or trees. In the first part of the paper we
consider an extension of the systems of set constraints used by Heintze and Jaffar [17]] to analyse logic
programs, which can in turn be seen as extensions of the techniques used earlier to analyse LISP-like
languages [27]], [21]]. We introduce a tuple constructor expression in set constraints and show that con-
straints with such expressions are satisfiable and solvable. We provide a simple yet efficient solution
procedure where standard techniques from fixpoint iteration may be used.

With these expressions it is possible in a single pass of the program to generate set constraints whose
solution is the .Zp interpretation of logic programs. We also show how to generate constraints that
are more precise than the .7p interpretation and which cannot directly be expressed with membership
expressions [9].

2 Set constraints

In this section we describe a version of definite set constraints as used by Heintze and Jaffar [17]]. In a
later section we extend set constraints with a new expression, called a tuple constructor.

The set of ground terms (or trees) is built from function symbols (or constructors) in a set X. Each
function symbol f in X has a rank or arity greater than or equal to zero. Zero-ary functions are also
called constants. The set of ground terms is denoted G and is the least solution to the equation G =
{ft1,....,)[ti e GA f € E}.

Set constraints systems are collections of equations of the form
csii= V=e,...,V=¢
where the left hand side is a variable V from a set ¥ and the right hand side is a set expression. A

variable symbol can at most appear on the left hand side of one equation. The syntax of set expressions
can be defined as follows.

*Work supported by the Danish Natural Science Research Council (FNU) in the project SAFT: Static Analysis with Finite
Tree Automata (FNU-272-06-0574).

© M. Rosendahl & J.P. Gallagher
This work is licensed under the
Creative Commons Attribution License.

Submitted to:
WLPE 2011

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Extended Set Constraints and Tree Grammar Abstraction of Programs

ex=1 | T |V | ene | eUe | f(V,...,V) | f(;)l(e)

In examples variables are written in ifalics and functions in a typewriter font. Zero-ary functions will
typically be written without extra parentheses.

Expressions are here written in so-called normalized form [6]] where arguments to functions are
set variables. In examples we will allow composite expressions inside functions. They can easily be
transformed into the desired form by the introduction of new variables.

A set constraint system is said to be satisfiable if there exists an assignment of sets to variables
that satisfies the constraints. The set interpretation below will construct such an assignment. If set
constraints are extended with complement or general set difference expressions then set constraints are
not guaranteed to be satisfiable. Set constraints are said to be solvable if they can be transformed into a
tree grammar. The tree grammar interpretation in the next section shows they are also solvable.

Set interpretation of set constraints. The meaning of a set constraint system is defined as the least
solution to the system. This is here defined as a function M which for a set constraint system returns a
mapping of variables to sets of ground terms. Notice that all operations are monotonic and that the least
fixpoint is well-defined for all constraint systems.

M[es] : ¥ — @(G)
Ele] : (v — 0(G)) — #(G)
M[Vi = e1,..., Vo = ea] = fpAp.[Vi = E[er]p. ..., Vi > Ee]lp]

Vip=p(V)
Tlp=G
Llp=0

For a set constraint system cs = V| =ey,...,V, = e, we define
Mesfles]] = UiM[[es] (Vi)

so that M [[es]] has type #(G).

3 Tree grammar interpretation

Tree grammars form a sub-language of set constraints where we do not have intersections or projections.

The aim of this section is to show how to translate (or solve) a system of set constraints into a tree
grammar. The transformation is here done as an interpretation of the set constraint system over a domain
of tree grammar expressions.

The transformations may generate new variables - in the worst case one for every subset of variables
in the constraint system. Instead of working with dynamically generated variable names we will gen-
erate a tree grammar as a mapping of sets of variables to tree grammar expressions. A set of variables
represents the intersection of the meaning of each variable in the set. A tree grammar expression is either
the top symbol or a set of constructors with sets of variables as arguments.

DZ{T}U{fj(Sl,...,Sn)]si§7/,si7é®}

M. Rosendahl & J.P. Gallagher 3

Traditionally the transformation to tree grammars is done as a sequence of rewrites of the system
where one adds new expressions and a final removal of expressions with projections and intersections.
Here we will present the transformation as direct interpretation of set expressions as tree grammar ex-
pressions. This interpretation is expressed as fixpoint over a cpo with finite height and this means that
standard techniques from implementation of abstract interpretation can be utilized.

The transformation of set constraints to tree grammars is done using the S function. In the interpre-
tation we only include constructor expressions as results if all arguments are non-empty. This means that
test of non-emptiness is included in intersection and constructor expressions. In the Heintze and Jaffar
implementation the test is made in the projection where one only projects arguments out of constructor
expressions if all other arguments in the expression are non-empty.

Si=eir,....Va= e - (V) = (D)
Rle] : (&(7) = #(D)) = 2(D)

S[[Vl = 61,...,Vn = en]] =
lfpAp.[0 — 0,{Vi} — R[ei]p,-..,{Va} — Rle]p,
{V1,Va} — intersect(p(V1),p(V2)),{V1,V3} — intersect(p (V1),p(V3)),...]

where R[VIp = p({V})
R[T]p = {T}
R[L]p
R Uez}]P Rlei]lp UR[e2]p
R[le1 Nex]p = intersect(R[e;]|p, R[e2]p)
RIfVi,....V)lp ={f({Vi},... . {Vu}) [Vj.p({V;}) # 0}
R/ ()]p = project(f.i,R[e]p)

and

intersect({T},d) =
intersect(d,{T}) =
intersect({dy,d>...},d) = intersect({d; },d) U - - Uintersect({d, },d)
intersect(d,{di,d>...}) = intersect(d,{d })U-- - Uintersect(d,{d,})
intersect({f(u1,...,un)},{g(Wi,...,wn)})

={furUwi,...,unUwy,) | Vi:p(u;Uw;) ZONf =g}

project(f,i,d) = ({T}iIfT ed)U{p(u;) | f(u1,...,uy) €d}
Correctness of solver. We will use the set interpretation M of set constraint systems on tree grammars

since tree grammars form a sublanguage of set constraints. In this case M will have type @(7) — #£/(G).

Mes [[CS]] = Mg [[S [[CS]] H

4 Extending set constraints

Certain set operations are not directly expressible as set constraints. Assume we have the environment
p =X +— {f(a,b),f(b,a)} and want to write a set constraint that restricts another variable Y to be the
same as X except that the function symbol f is changed to g. The obvious constraint would be

Y = gt (X),£5.(X)

4 Extended Set Constraints and Tree Grammar Abstraction of Programs

This, however, will have the solution {g(a,b),g(b,a),g(a,a),g(b,b)} and the relationship between the
arguments is lost.

In this section we introduce a new set expression, called a tuple constructor: f(ey,...,e,)[V]. It
behaves essentially as an ordinary constructor expression except that values of a selected variable (V)
are treated independently. We will show that set constraint systems extended with tuple constructor
expressions are still satisfiable and solvable. The set interpretation of the tuple constructor expression is
fairly straightforward:

Elf(er,-.sea)VIlp= U {f(nr,...,ta) |1 € Eleillp[V = {s}]}

sep(V)

In the remainder of the paper we will assume that the set interpretation M of set constraints is extended
with this interpretation of tuple constructor expressions.
If we consider the example above then we could write the constraint as

Y = g2 (X). £ 51 (X)) X]

This constraint will have the solution {g(a,b),g(b,a)}. The tuple constructor will in general return a
result which is a subset of the ordinary constructor expression.

We will impose certain restrictions on the possible expressions that can appear inside tuple construc-
tors. The expressions should be intersections of simple variables and projections of the selected variable.
We further assume that the expressions only project disjoint parts of the selected variable. The context
free part of this restriction can be expressed as follows:

en=f(t,...,1)[V] tu=tNt|u u:::V\f(lf)l(u)

Constraint solver. The basic idea in the constraint solver is to expand out the value of the selected
variable so that the projections in the arguments can be evaluated as sets of variables. Each argument
in the tuple constructor expression can then be represented as an intersection of simple variables. This
makes it possible to represent the result in the domain D of tree grammar expressions. We extend the
solver S to the extended set constraints by extending the R function to tuple constructor expressions.

RIlf(er-- - en)[V]p =
tuple(f,[e1,...,e],p,V,expand(e; N...Ne,,p(V),V,p))

expand(e; Ney,d,V,p) = expand(e;,expand(ez,d,V,p),V,p)
expand(e,e;Uey,d,V,p) = expand(e,e;,V,p) Uexpand(e, ez, V,p)
expand(f(;)l(V),d,V,p) =d
expand(W,d,V,p) =d
expand(f(;)l(e),{f(tl,...,ti_l,s,ti+1,...,tn)},V,p)
={f(t1,...,ti-1,d,tix1,...,1,) | d € expand(e,p(s),V,p)}
tuple(f,[e1,...,eq],p,V,d1 Udp)
=tuple(f,|e1,...,en],p,V,d1) Utuple(f,[ei,... e, p,V,d2)
tuple(f,le1,...,en],p,V,d) = lets; = select(e;,V,d) in
ifVi.p(s;) # 0 then{f(sy,...,s,)} else®
select(Wne,V,d) = {W}Uselect(e,V,d)
select(eNW,V,d) = {W} Uselect(e,V,d)
select(f(l Ye), f(t1,...,t,)) = select({e},1;)
select(W,V,d) = {W}

M. Rosendahl & J.P. Gallagher 5

The auxiliary function expand expands the value of the selected variable so that each projection in the
argument to the tuple constructor represents a set of variables. The select function takes an argument to
the tuple constructor and the expanded version of the selected variable and returns a set of variables.

As an example consider the expression

£(h;) (8 (V) Ngoy (V)IV]

in an environment where {V} — {g(X,Y),g(X,Z)} and {X} — {h(A),h(B)}. We assume further that
all other variables and their intersections have non-empty values. The expand function will expand the
value of V so that the projected values are represented as simple sets of variables. In this case we obtain:

{V} = {e(h(4),Y),g(h(B),Y),g(h(A),2),g(h(A),2)}
The value of the tuple constructor expression is then

{£({A,Y}),£({B,Y}),£({A,2}),£({B, Z})}

Correctness. Constraints that contain the new tuple constructor expressions are still satisfiable and
solvable: M[[es]] = M [[S[les]]]]

S Set constraint solver implementation

The tree grammar interpretations above have been implemented essentially as described here. We have
also implemented the set constraint interpretations described later and the efficiency when applied to
constraints derived from logic programs seems comparable to [13]].

The problem of solving set constraints is here formulated as a fairly standard second-order fixpoint
iteration problem. The fixpoint operation used in the solver has type:

Ifp: (p(7) = £(D)) = ((V) = 9(D))

In the worst-case scenario one would have to evaluate and iterate this function for all subsets of #'. In
practice we compute the minimal function graph [22] reachable from the set of reachable calls consisting
of all the singleton sets of variables.

Demand-driven versions of the solver. The fact that the fixpoint is found as a minimal function graph
also means that we can create demand driven versions of the problem. If we only are interested in a
single variable then a minimal function graph implementation of the fixpoint operation will create the
tree grammar describing that variable and the variables it may depend on.

Evaluation strategy. The main problem with second-order fixpoint iteration is that function appli-
cation p(x) is not monotonic when the environment p is not monotonic. A straightforward selective
reevaluation of the environment will then not necessarily form an ascending sequence. There are two
main approaches to secure correctness and termination of second-order iteration:

e Chaotic iteration sequence [7[]. This is based on the principle that a fair reevaluation strategy will
reach the fixpoint.

e Semi-monotonic iteration [10]. Reevaluation of the environment from a sub-fixpoint of an argu-
ment and all its needed arguments of a semi-monotonic functional is stable if and only if it is the
fixpoint for those arguments.

6 Extended Set Constraints and Tree Grammar Abstraction of Programs

The literature contains a number of different approaches to scheduling reevaluation during fixpoint
iteration. Internally such strategies may use worklists or neededness graphs to find arguments for which
the functional should be reevaluated. It is a trade-off between the cost of reevaluation and the cost of
maintaining dependencies so that one only reevaluates when dependent values have changed. In the
examples we have considered, we found that the most efficient algorithm was a truncated depth first
evaluation strategy [28]] where in each iteration one evaluates depth first, but uses the result from the last
iteration or evaluation if the evaluation of the same argument is attempted more than once.

6 Interpretations of logic programs

We will now present a small language of logic programs and two interpretations: Tp and Zp.
The language of logic programs can be described with the following grammar

prg :cli---cly

cl :pred :- pred,,... pred,. n>0
pred : p(termy, ... term,) n>0
term:V;| f(termy,... term,) n>0

we assume that variables are not shared between clauses. We will further assume that clauses with non-
empty right hand side contains at least one variable on the left hand side. It is fairly easy to transform a
program so that these conditions is satisfied. A clause of the form “p(a):-q(b).” can be transformed to
“p(X):-q(b),isA(X). isA(a).” where the rank of each predicate symbol has been retained.

Standard semantics 7p. The set G is the Herbrand universe and GP the Herbrand base. Substitutions
are ordered with U (fail) as bottom element and Ax. T as top element. The standard interpretation returns
the success set as a subset of GP

T[ecly -~ cly]) = fpAo.U[cli]JoU---UU][cl,] o
U[H:-Bi,...By]Joc = (mgu(H,GP)Mmgu(B;,c)MN---Mmgu(B,,0))(H)
mgu(t,0) = {mgu'(t,s) | s € c}\{U}
mgu’(V,s) = Ax. ifx =V thens else T
mgu’(c,s) = ifc = s then Ax.T else 5
mgu/((t17),g(Sl,...,Sn)) =

iff=g then mgu’(t1,51) M-+ -Mmgu’ (1, 5,) else O

Set-based semantics .7p. This is the least set based model [16] of a logic program. The meaning of
the right hand sides are abstracted as set substitutions before being applied to the left hand side.

Tely - -cly] = fpAo .U [cliJoU---UU ¢,]|

U*[H:-By,...,B,]Jo = (topmap(H) M a(mgu(By,0)MN---Mmgu(B,,0))(H)
topmap(H) = Ax. ifx € freevar(H) thenG else T
o(0)=0
a(¢) = Ax.ifx € dom¢ then{0(x) |6 € ¢} else T

Relation. The set-based interpretation gives a safe approximation of the success sets of the program:

Tlprel € T llprell

M. Rosendahl & J.P. Gallagher 7

7 Set constraint construction

In this section we will describe three different ways of constructing set constraints from a logic program.
They will not be defined as a fixpoint but as a direct construction and collection of constraints from terms.

Operations on set constraints. Simple set constraints are formed using the notation "'V = e' where e
is a set constraint expression. For two constraint systems cs; and c¢s, we can construct new constraint
systems csy LIcsy and csy M csp, where we create the union or the intersection of the expressions for the
shared variables and preserve constraints that only appear in one of the constraint systems. For a term ¢

we let p denote the outer predicate/functor symbol. E.g. Pros(it il is rev.

Heintze and Jaffar style constraints. We here show the construction of constraints described in [15]].

Cety -+l = RM el] - - URM[e,]
RMH:-B),...,B,] ="p,=H'Nsc(H,T)I sc(B1,py) 11---T15¢(By,)

sc(V,u)="V=u'
SC(f (11, tuy1e) = sc(t1, 7y () M-+ Msc(t, i (u)

Relation. For a logic program P, let Mp][[cs] denote the application of M[cs]] to all set variables corre-
sponding to predicate symbols in the program P. We have .7 [P]] € Mp[[C*[[P]]

p equivalent constraints. In the 7p equivalent constraints we create constraints that describe the set
of substitutions that satisfy the right-hand side of the clause. A set of substitutions is represented as a
terms with an argument for each variable and constant in the clause.

C'lely---cly]] = R*[[elh] U+ - - LR [[eu])
R*[H:-By,...,B,)] = '_pH = H 'Mprjvars(vl,hb)
mgu’(Bl,pBl,vl,hb) n--- I_ImguT(Bn,an,vl,hb)
mgu®(t,u, [Vi,...,Va,Cl,. .. Cm], hb) =
"hb = hb(mguy, (¢,u),...,mgu; (t,u))[u]’

mgul,(F(11, -, ta),u) = mgul (1, £} () M- (T mgul (1, £, (1))
mgu’,(c,u) = 1fw =cthenuMwelse T
mgul (V,u) = ifw =V thenuelse T

privars([Vi,..., Va1, cal hb) = "Vi = hb) (hb), ..., Vo = hb) (hb)'
where hb is a fresh variable for each clause and vl is a list of all variables and constants in the clause.
The function mgu® generates a constraint that describes the set of substitutions from the right hand
side. The function prjvars projects each variable and thus corresponds to the & function in the set-based
interpretation.

Relation. .7[[P] = Mp[C*[[P]]

8 Extended Set Constraints and Tree Grammar Abstraction of Programs

Improved constraints. Further precision can be gained by preserving some dependencies between
“brother variables” in the clause head instead of projecting each variable separately.

Clllety ---cl,] = RPlel U - LUR e,]
RC[H:-Bi,...,B,] =
apply(H,vl,hb) MTmgu®(B ,pBl,vl,hb) M---N mguT(Bn,pB , VI, hb)

apply(p(el so-sen), vl hb) = let(s;,cs;) = apply(e;,vl,hb) in
"p=p(prj(si,vi, hb) <o, prj(sp, vl hb))[hb] Mesy M-~ Mesy,
apply (V,vl,hb) = (v,") where " ' is the empty constraint system
apply’(f (el, .,en),vl,hb) = let(s;,cs;) = apply’(e;,vI, hb) in
(h,"h = f(prj(sl,vl hb) -, Prj(p, v, b)) [hb] ' Mesy M-+~ Mesy)
Pri(Vis Vi, Vas€rs o e hb) = hby;) (hb)
prj(h, [Vl,...,Vn,cl,..., Cm|,hb) =h

In the function apply’ we generate a new variable h for each sub-expression in the head. The function
mgu® was defined previously and it creates constraints that describe the set of substitutions. We then
use the tuple constructor to apply the substitutions independently to the head. This is only possible if all
arguments are variable. It can, however, be performed at all levels of the head and thus retain relations
between arguments at the same level in the head.

Relation. T[P] C Mp[C°[P]] C 7[P]

8 Example

The following example shows a small program where the three set constraint interpretations generate
different results. We show the set constraints and their solutions as found by the interpretation presented
in sections 3] and

p(f(a,b)).

p(f(b,a)).

p(f(c,c)).

q(f(X,Y)) :- p(£(X,Y))
r(V) - q(f,N).
s(W) :- p(£(W,W)).

Heintze and Jaffar style set constraints. To the left we show the constraint system generated from
the program above using the C" function. To the right we show the constraints in solved form.

V=1(q;}() Nl (a5l (@) p=p(f(a,b))u

LG v p(£(b,2)) Up(£(c,c))
WP BT)P g=a(z(V,V))

X:f,lf(p,lf(}?)) I”ZI(V)

V=1206)(p)(P)) s=s(V)

p=p(f(a,b)) Up(f(b,a)) Up(£f(c,c)) V=aUbUc

q=q(f(X.Y))

r=r(V)

s=s(W)

M. Rosendahl & J.P. Gallagher 9

Tuple based set constraints. In the tuple based constraints we can describe the sets of substitutions
but the values are projected out before being applied to the head. This means that precision is lost in ¢
and r, but the description of s is correct since only one variable needs to be extracted.

V= rbody(l) (rbody) p=rp(f(a,b))U

X= qbody(lf (gbody) p(£(b,a)) Up(f(c,c))
Y = gbody) (gbody) qg=q(£(V,V))

p = p(£(a,b)) Up(£(b,a)) Up(£(c,)) o

q=q(f (X V) V_—anUC

gbody = gbody (£) (P} (P)): £ o) () (P))[P]

r=r(V)

rbody = rbody (£ ;)(a;)(4)) NE) () (4)))[d]

s=s(W)

W= sbody(*lﬁ(sbody)

sbody = sbody (£) (p}) (P)) Nt) (P (P))) 7]

Improved constraints. In the last example we can keep the relationship between the arguments to £ in
the q clause and consequently we obtain a precise description of all the variables.

h = £(qbody,}(qbody), qbody ;) (qbody))[gbody] p =p(£(a,b))U

p=p(£(a,b))Up(£(b,a)) Up(£(c,c)) p(f(b,a))Up(£(c,c))
q=q(h) q=q(h)

gbody = gqbody (£ ;) (p(;) (P)): £) (P 1) (1)) [P] r=x(c)

r=r(rbody 1i(rbola’y))l[rbody] ZZ Sf((‘;) by

rbody = rbody (£ 1)(1)[())ﬂf()(q(l)(Q)))[Q] f(I;,a)Uf(c,c)

(
s-s(sbody %(s ody))[sbody]
sbody—sbody((11)(13(11)())ﬂf(2>((1)()))[]

The new constraints will in this example give the same solution as 7p and in general the solution will
be a subset of Zp and a superset of Tp.

9 Related Work and Discussion

Related Work. Automatic derivation of descriptions of sets of terms capturing the “shape” of com-
putational entities such as data structures, computation trees and proof trees has been the subject of
much research in static analysis. Following Reynolds’ early work [27], further advances were made by
Jones and Muchnick [21} 20]. The explicit study of set constraints was started by Heintze and Jaffar
[[L7,[15]. This led to a series of publications exploring various classes of set constraints and their solution
algorithms (e.g. [12, 1,123} 15, 25} 9]]).

In parallel with this stream of research, abstract interpretation over domains of tree descriptions were
being explored, especially in static analysis of logic programs [[19, (30} 14} 24} 4]]. Cousot and Cousot
[8] showed that the two approaches were related: the solution of a set of set constraints derived from a
program could be seen as an abstract interpretation of the program over a domain of tree grammars.

Another approach was pursued by Frithwirth ef al. [12]. In this work a logic program was first
approximated by a program containing only unary predicates. This approach has some similarity to the

10 Extended Set Constraints and Tree Grammar Abstraction of Programs

set constraint method; the derivation of the unary program followed by its normalisation corresponds to
the extraction of set constraints followed by their solution. It was also noted in [12]] that the computation
of the model of the unary program model mirrored the construction of the abstract .7p abstraction of the
original program, but the abstract domain in this case was an infinite height domain consisting of infinite
sets of ground terms and so this interpretation was not particularly useful in practice. Gallagher and
Puebla [[13] constructed and implemented an abstract interpretation for logic programs over a domain of
non-deterministic tree grammars, yielding a tree-grammar approximation of a program P equivalent to
the .7p abstraction.

Tree grammar approximations of the set of reachable terms in rewrite systems has also been studied,
dating back to the work of Jones [20]]. Recent work in this area is [11} 3]].

Discussion. The first aspect of this work concerns the extraction of more precise set constraints directly
from programs. Previous presentations of set constraint analyses have shown existentially quantified set
expressions having a similar purpose to our tuple constructor, and are used to express the .Zp-model
of a logic program [17]. However, a clear syntactic characterisation of a class of solvable constraints
comparable to our extended constraints, along with a precisely defined solution procedure, seems to
be absent from previous work. The presentation in [[17] uses existentially quantified set constraints to
define an abstraction of a logic program. It is pointed out by Heintze [[16], where a procedure handling
quantified constraints is discussed, that unrestricted use of quantified expressions leads to undecidability.

The second aspect concerns different program abstractions and their relation to each other. Firstly, set
constraints themselves are regarded as a semantic domain; this has not previously been done. A function
S was constructed, assigning a tree grammar as the meaning of a set of (extended) set constraints. S
is both a semantic function for set constraints and a practical solution procedure when executed. Tree
grammars thus form another domain of description which is more abstract than set constraints, since
many sets of set constraints can denote the same tree grammar. A program P in some source language
(we used logic programs as a case study) can be given an abstract interpretation C[[P] as a set of set
constraints. The function C can be chosen to give different approximations (such as 7, Y and Z for logic
programs [18]). By composing the set constraint extraction function C with the S interpretation we obtain
a tree grammar abstraction of P, namely S(C[[P]]). Finally the term interpretation M returns an abstract
meaning M(S(C[[P]])) over the domain of sets of ground expressions, which is in turn a more abstract
meaning than tree grammars.

Other extensions of set constraints. Constraints may be extended with quantified constraints [16]],
membership expressions [9]] and generalized definite set constraints [29)]. The central aspect of such
extensions are expressions of the form {x |7, € Vi A--- At, € V,;} where f; are terms built from con-
structors, the variable x and other unbound variables. Such expressions can be rewritten using the tuple
constructor by constructing an expression that describe the set of environments for the unbound variables
in the expression. From this set one can extract the variable x as the meaning of the whole expression.
The example from section 4} however, cannot be expressed directly as membership expressions. In [[16]]
there are extensions with atomic complement expressions and a disjointness expression and in [29] quan-
tified expressions are extended with universally quantifiers. These extensions seems orthogonal to the
extension discussed here.

Future Work. Our construction is step in developing a framework in which both set constraint solving
and abstract interpretation over tree grammars can be explored. This in turn will allow connections to be

M. Rosendahl & J.P. Gallagher 11

explored with a wider class of analyses. Firstly, tree grammar interpretations over infinite sets of states
(with a widening operator) are inherently more precise than those over program-specific finite domains.
The corresponding development in set constraints would seem to be the dynamic generation of set con-
straints during program execution or partial evaluation. Secondly, tree grammars (tree automata) can
be enriched with constraints [6l 26] and this points to the possibility of more precise abstract domains.
Again, a synthesis would allow this to be related to extension of set constraints with, say, arithmetic con-
straints. Finally, as pointed out by Cousot and Cousot, standard constructions from abstract interpretation
such as reduced product can be exploited to combine tree grammar abstractions with other abstractions,
such as term size, instantiation modes, term sharing and so on.

10 Conclusion

We introduced a tuple constructor set expression and showed that set constraints using this construct
can be solved yielding tree grammars. Extended set constraints extracted in a single pass from a logic
program are able to express the .7p abstraction, which previous set constraint analyses for logic programs
were unable to achieve as far as we are aware. We also formulated the derivation and solution of set
constraints in a form that emphasized that set constraints, tree grammars and sets of ground terms are
closely related domains of abstraction.

References

[1] A. Aiken (1994): Set Constraints: Results, Applications, and Future Directions. In: PPCP’94, LNCS vol.
874, pp. 326-335.

[2] A. Aiken & E. L. Wimmers (1992): Solving Systems of Set Constraints (Extended Abstract). pp. 329-340.

[3] Y. Boichut et al. (2007): Rewriting Approximations for Fast Prototyping of Static Analyzers. In: RTA 2007,
LNCS vol. 4533, pp. 48-62.

[4] F. Bueno, J. A. Navas & M. V. Hermenegildo (2010): Towards Parameterized Regular Type Inference Using
Set Constraints. Technical Report, CoRR abs/1002.1836.

[5] W. Charatonik, A. Podelski & J. Talbot (2000): Paths vs. Trees in Set-Based Program Analysis. In: POPL
2000, pp. 330-337.

[6] H. Comon et al. (1999): Tree Automata Techniques and Applications. http://www.grappa.univ-lille3.fr/tata.

[7] P. Cousot & R. Cousot (1978): Static determination of dynamic properties of recursive procedures. In E. J.
Neuhold, editor: Formal Description of Programming Concepts, North-Holland.

[8] P. Cousot & R. Cousot (1995): Formal Language, Grammar and Set-Constraint-Based Program Analysis by
Abstract Interpretation. In: FPCA’95, pp. 170-181.

[9] P. Devienne, J. Talbot & S. Tison (1997): Solving Classes of Set Constraints with Tree Automata. In: CP97,
LNCS vol. 1330, pp. 62-76.

[10] A. Dix (1988): Finding Fixed Points in Non-Trivial Domains: Proofs of Pending Analysis and Related Algo-
rithms. Technical Report 107, Univ. of York.

[11] G. Feuillade, T. Genet & V. V. T. Tong (2004): Reachability Analysis over Term Rewriting Systems. J. Autom.
Reasoning 33(3-4), pp. 341-383.

[12] T. Frithwirth et al. (1991): Logic Programs as Types for Logic Programs. In: IEEE Symposium on Logic in
Computer Science, Amsterdam.

[13] J. P. Gallagher & G. Puebla (2002): Abstract Interpretation over Non-deterministic Finite Tree Automata for
Set-Based Analysis of Logic Programs. In: PADL 2002, LNCS vol. 2257, pp. 243-261.

12

[14]

[15]
[16]
[17]

(18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]
(28]
[29]

(30]

Extended Set Constraints and Tree Grammar Abstraction of Programs

J. P. Gallagher & D. A. de Waal (1994): Fast and Precise Regular Approximations of Logic Programs. In:
ICLP’94, pp. 599-613.

N. Heintze (1992): Practical Aspects of Set Based Analysis. In: ICLP’92, pp. 765-779.
N. Heintze (1992): Set Based Program Analysis. Ph.D. Thesis, CMU.

N. Heintze & J. Jaffar (1990): A Finite Presentation Theorem for Approximating Logic Programs. In:
POPL’90, pp. 197-209.

N. Heintze & J. Jaffar (1992): Semantic Types for Logic Programs. In: Types in Logic Programming, pp.
141-155.

G. Janssen & M. Bruynooghe (1992): Deriving Descriptions of Possible Values of Program Variables by
Means of Abstract Interpretation. J. Log. Program. 13(2& 3), pp. 205-258.

N. D. Jones (1987): Flow Analysis of Lazy Higher Order Functional Programs. In S. Abramsky & C. Hankin,
editors: Abstract Interpretation of Declarative Languages, Ellis-Horwood, pp. 103—122.

N. D. Jones & S. S. Muchnick (1982): A Flexible Approach to Interprocedural Data Flow Analysis and
Programs with Recursive Data Structures. In: POPL’82, pp. 66-74.

N. D. Jones & A. Mycroft (1986): Data Flow Analysis of Applicative Programs Using Minimal Function
Graphs. In: POPL’86, pp. 296-306.

D. Kozen (1998): Set Constraints and Logic Programming. Inf. Comput. 142(1), pp. 2-25.

P. Mildner (1999): Type Domains for Abstract Interpretation: A Critical Study. Ph.D. thesis, Department of
Computer Science, Uppsala University.

A. Podelski, W. Charatonik & M. Miiller (1999): Set-Based Failure Analysis for Logic Programs and Con-
current Constraint Programs. In: ESOP’99, LNCS vol. 1576, pp. 177-192.

A. Reul & H. Seidl (2010): Bottom-Up Tree Automata with Term Constraints. In Christian G. Fermiiller
& Andrei Voronkov, editors: Logic for Programming, Artificial Intelligence, and Reasoning - 17th Interna-
tional Conference, LPAR-17, Yogyakarta, Indonesia, October 10-15, 2010. Proceedings, Lecture Notes in
Computer Science 6397, Springer, pp. 581-593.

J. C. Reynolds (1968): Automatic computation of data set definitions. In: IFIP Congress (1), pp. 456-461.
M. Rosendahl (2004): Demand-Driven Higher-Order Fixpoint Iteration. Technical Report, Univ. of Roskilde.

J. Talbot, P. Devienne & S. Tison (2000): Generalized Definite Set Constraints. Constraints 5(1/2), pp.
161-202.

P. Van Hentenryck, A. Cortesi & B. Le Charlier (1995): Type Analysis of Prolog Using Type Graphs. J. Log.
Program. 22(3), pp. 179-209.

	Introduction
	Set constraints
	Tree grammar interpretation
	Extending set constraints
	Set constraint solver implementation
	Interpretations of logic programs
	Set constraint construction
	Example
	Related Work and Discussion
	Conclusion

