
Roskilde
University

Distinguish Dynamic Basic Blocks by Structural Statistical Testing

Petit, Matthieu; Gotlieb, Arnaud

Publication date:
2009

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Petit, M., & Gotlieb, A. (2009). Distinguish Dynamic Basic Blocks by Structural Statistical Testing. Paper
presented at European Workshop on Dependable Computing, Toulouse, France. http://hal.inria.fr/

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain.
 • You may freely distribute the URL identifying the publication in the public portal.
Take down policy
If you believe that this document breaches copyright please contact rucforsk@kb.dk providing details, and we will remove access to the work
immediately and investigate your claim.

Download date: 13. Jul. 2025

http://hal.inria.fr/

Distinguish Dynamic Basic Blocks by Structural Statistical Testing

Matthieu Petit∗

Departement of Communication, Business
and Information Technologies

Roskilde University
P.O Box 260, 4000 Roskilde Denmark

petit@ruc.dk

Arnaud Gotlieb
INRIA Rennes - Bretagne Atlantique

Campus Beaulieu
35042 Rennes cedex, FRANCE

Arnaud.Gotlieb@irisa.fr

Abstract

Statistical testing aims at generating random test data
that respect selected probabilistic properties. A distribution
probability is associated with the program input space in
order to achieve statistical test purpose: to test the most
frequent usage of software or to maximize the probability of
satisfying a structural coverage criterion for instance.

In this paper, we propose a new statistical testing method
that generates sequences of random test data that respect
the following probabilistic properties: 1) each sequence
guarantees the uniform selection of feasible paths only and
2) the uniform selection of test data over the subdomain as-
sociated with these paths. Baudry et al. present a testing-
for-diagnosis method where the essential notion of Dy-
namic Basic Block was identified to be strongly correlated
to the effectiveness of fault-localization technique. We show
that generating a sequence of random test data respecting
these properties allows to well-distinguished Dynamic Ba-
sic Blocks. Thanks to Constraint programming techniques,
we propose an efficient algorithm that uniformly selects fea-
sible paths only by drastically decreasing the number of re-
jects (test data that activate another control flow path) dur-
ing the test data selection. We implemented this algorithm
in a statistical test data generator for Java programs. A first
experimental validation is presented.

1 Introduction

Software testing is the first validation technique used to
produce high-quality software, but it is also a primary cost
driver on most projects. Software testing aims at detect-
ing defects within programs, while debugging aims at lo-

∗This work is supported by the project GENETTA granted by Brittany
region and the project “Logic-statistic modeling and analysis of biological
sequence data” funded by the NABIIT program under the DanishStrategic
Research Council.

cating faults and correcting them. The times when these
two complementary activities were separated is hopefully
behind us. Nowadays, modern test data generation tech-
niques cannot ignore how the test data will be used in order
to locate the defects. Since several years, many automated
fault-localization techniques have been proposed to use in-
formation about the test data executions through control-
flow monitoring introduced [12]. These methods, globally
called coverage-based fault localization, use statement cov-
erage and test results to locate the statements that are the
most correlated to the defects. Recently, studies have been
conducted to identify how test data generation techniques
impact the effectiveness of coverage-based fault localiza-
tion techniques [2, 1, 21]. In [2], Baudry et al. present
a testing-for-diagnosis method where the essential notion
of Dynamic Basic Blockwas identified to be strongly cor-
related to the effectiveness of any fault-localization tech-
nique. Roughly speaking, aDynamic Basic Block (DBB)
is the subset of statements in a program that are equally
covered by the test data of a given test suite. Surprisingly,
the experimental results of [2] show a strong correlation be-
tween the effectiveness of fault-localization technique and
the size of the DBB that includes the faulty statement. They
conclude that maximizing the number of DBBs increases
the effectiveness of coverage-based fault-localization tech-
niques.

As proposed by Thevenod-Fosse and Waeselynck [18],
test data generation methods include deterministic and sta-
tistical testing. While deterministic testing aims at selecting
a single test data in front of a given test objective, statisti-
cal testing generates test data at random. Statistical testing
covers three distinct ways of generating test data:

• (Random Testing[7]) Test data are generated accord-
ing an uniform distribution probability, meaning that
each point of the input space of a program has the same
probability to be selected ;

• (Operational Testing[14]) Test data are generated ac-

1

cording to an operational usage profile of the program.
Usually, this profile is specified by the tester and does
not depend on the program itself ;

• (Functional and Structural statistical testing[18]) Test
data are generated according to a distribution probabil-
ity that is computed from a model (functional) or the
program itself (structural). In the latter case, the goal is
to maximize the coverage of a selected coverage crite-
rion by maximizing the probability to exercise the least
probable element of the criterion.

In this paper, we propose a new statistical test data
generation technique that improves coverage-based fault-
localization. We built on our previous works by unifying
two techniques : uniform selection of feasible paths [17]
and path-oriented random testing [10]. The technique we
propose in this paper aims at generating random test data
that respect two specific probabilistic properties :

• The generated test suite will activate uniformly all the
feasible paths of the program ;

• The generated test suite will ensure that the subdomain
associated with each feasible path will be uniformly
activated.

Generating a test suite that follows these two properties is
challenging as establishing path feasibility is undecidable
in the general case and generating a test suite that uni-
formly covers a subdomain defined by constraints usually
requires many rejections. In our work, we benefit from
well-recognized Constraint Programming techniques to de-
termine, in most case, path feasibility and obtain a tight
over-approximation of the path constraint solutions. We
model uniform selection of feasible paths as an optimiza-
tion problem. To cover a path, constraint propagation and
refutation allow us to drastically decrease the number of re-
jects (test data following another path) while maintaining
uniformity. Thanks to our implementation, our experimen-
tal results show that generating a sequence of random test
data respecting these properties permits unambiguously to
increase the number of well-distinguished DBBs, improv-
ing so coverage-based fault localization.

Outline of the paper. The paper is organized as fol-
lows : section 2 motivates our work on programtrityp .
Section 3 presents our statistical testing technique. Our im-
plementation prototype GENETTA is described section 4
while section 5 presents our experimental validation. Fi-
nally, section 6 concludes this work.

2 Motivating Example

We illustrate our statistical test data generation method
for fault-localization on an example. The programtrityp ,

initially proposed by Myers [15] and fully studied by De-
Millo and Offut [5], takes three non-negative integers as
arguments that represent the relative lengths of the sides
of a triangle and classifies the triangle as scalene (output
equals to 1), isosceles (output equals to 2), equilateral (out-
put equals to 3) or illegal (output equals to 4). The source
code of a faulty version of the program is given by theFig-
ure 1.

Although it implements a simple specification, this pro-
gram is difficult to handle for test data generators as it con-
tains several nested conditionals structures and a lot of in-
feasible paths (47 over a total of 57 in our version).

Random testing alone has some difficulties to achieve
good coverage of the source code. Indeed, simple events
such asi=j have low probability to happen (1

232 if i and
j are 32-bits integers). Similarly,statistical structural test-
ing, as implemented in [6], fails to achieve good coverage
in a reasonable amount of time, as non-feasible paths are
not discarded from the set of possible executions. In this
example, 75% of selected paths are rejected after being gen-
erated.

In this paper, we propose a dynamic algorithm that gen-
erates sequences of random test data respecting both fol-
lowing probabilistic properties:

• each generated test suite guarantees the uniform selec-
tion of the 10 feasible paths oftrityp ;

• each generated test suite for a given feasible path guar-
antees the uniform selection of test data over the asso-
ciated sub-domain.

Figure1 shows the coverage matrix of two test suites: on the
left side, test data are generated by Random Testing (RT),
while on the right side, test data are generated according
to our method. Both data have been generated automati-
cally using a RT implementation and our implementation
called GENETTA. In the conditional statement line 20, cor-
rect conditionj + k < i is replaced by faulty condition
j + k > i. For sake of clarity, the input domain of each
integer variable has been restricted to0..1000.

By definition extracted from [2], a dynamic basic block
is a set of statements of a program that is covered by the
same test data from a test suite. Two statementss ands′

belong to a DBB if they have identical lines in coverage
matrix.

From the RT coverage matrix, threedynamic basic
blocks (DBBs)are extracted:

{01, 03, 04, 06, 08, 10, 11, 23}, {12}, {13}

while seven DBBs are extracted from GENETTA coverage
matrix:

{01, 03, 04, 06, 08, 10, 14, 16, 18, 23}, {05},

{07, 19}, {09}, {20}, {21}, {22}.

2

Random Testing Test Suite Genetta Test Suite
216 319 848 830 274 344 50 817 240 914

public int trityp(int i,int j,int k) 635 239 686 265 684 344 50 660 68 666
int t; 762 330 271 979 31 838 932 817 68 666
01.if((i==0)||(j==0)||(k==0)) • • • • • • • • • •
02. t=4;

else{
03. t=0; • • • • • • • • • •
04. if(i==j) • • • • • • • • • •
05 t=t+1; • •
06 if(i==k) • • • • • • • • • •
07 t=t+2; •
08. if(j==k) • • • • • • • • • •
09 t=t+3; • •
10. if(t==0) • • • • • • • • • •
11. if((i+j<=k)||(j+k<=i)||(i+k<=j)) • • • • •
12. t=4; •

else
13. t=1; • • • •

else
14. if(trityp>3) • • • • •
15. t=3;

else
16 if((t==1)&&(i+j>k)) • • • • •
17 t=2;

else
18 if((t==2)&&(i+k>j)) • • • • •
19 t=2; •

else
20. if((t==3)&&(j+k<i))//< instead of > • • • •
21 t=2; •

else
22; t=4; } • • •
23. return(t); • • • • • • • • • •

Test Verdict P P P P P P P P F F

Figure 1. Faulty version of trityp and coverage matrix

As a result, the DBB associated with the faulty statement
(line20) has size one for GENETTA while it is not activated
with RT.

3 Constraint-based statistical test data gen-
eration

Constraint-based testing aims at modelling an automatic
test data generation problem as a constraint problem [4, 9].
Relations between program variables and testing purposes
are translated into constraints. In this section, we propose
a new algorithm that guarantees the uniform selection of
feasible paths only and the uniform activation of test data
that follow each of these paths. Sec.3.1 describes the over-
all algorithm whereas Sec.3.2, 3.3 and 3.4 present step-by-
step its distinct techniques. In this paper, we only consider
programs composed of:assignment statement, conditional
statement, loop statementandcompound statement. Vari-
ables types are integer or array of integers. Note that the
coverage of all execution paths is generally an intractable

testing criterion, due to the presence of loops. As done in
[20, 8], we limit the number of iterations in aloop state-
ment to a fixed numberk. Hence in the following,loop
statementsare considered ask imbricatedconditional state-
ments.

3.1 Algorithm of Statistical Test Data
Generation

Statistical test data generation is described byAlgorithm
1. It takes a programProgram, Nb DT the expected num-
ber of test data to generate andk the maximum number of
iterations in loops as inputs, and issues a randomly gener-
ated test set.

The first step of the algorithm, line 2, corresponds
to the translation ofProgram and the testing purpose
into a stochastic optimization problemctrs proba. The
optimization function Optim Function is generated
accordingly during this phase. This function imple-
ments the (currently unknown) number of feasible paths

3

of Program. Our approach allows a uniform selec-
tion of feasible paths without computing this number.

Algorithm 1 : Statistical test data generation
Input : Program, Nb DT , k

Output : DT Seq

DT Seq ← ∅ ;1

TranslateProgran into Ctrs proba and generate2

Optim function;
while size(DT Seq)< Nb DT do3

Path Conditions← Maximize4

Optim function;
DT ← Select uniformly valuations that satisfy5

Path Conditions;
Add DT in DT Seq;6

UpdateCtrs proba in regards to the path7

activated byDT ;
end8

return DT seq9

The algorithm iterates untilNb DT test data are gen-
erated. EachDT is generated in two steps (line4 and5).
The search of the maximal value ofOptim Function is
performed as search over a tree, called theprobabilistic ex-
ecution tree[17]. The nodes of this tree are just the various
basic blocks ofProgram while its edges correspond to the
possible transfer of control flow. In addition, the edges of
this tree are labeled with the variables of the probability dis-
tribution.

Large parts of the tree can be removed during the
stochastic optimization process when path conditions are
detected as unsatisfiable. Searching an optimal value for
Optim Function yields the selection of a feasible path,
Path Conditions.

The uniform selection of test data that activate a given
path is performed by an efficient process we calledpath-
oriented random testingin [10]. Constraint propagation
leads to the computation of an over approximation of the
subdomain associated with path conditions. Thanks to
this result, we provide a divide–and–conquer algorithm that
minimizes the number of rejects (test data that activate an-
other path) while generating statistical test data. Note that
checking whether a test datum follows the selected path, can
be done on the constraint system itself just by verifying the
consistency of itsPath Conditions. Finally, Ctrs proba

is updated after each statistical test datum generation with
the information on path feasibility.

3.2 Translation of the program into a con-
straint program

In our approach, the relations between program variables
are modelled with constraints, as well as the statistical test-
ing purpose. As said above, the generated constraint system

is represented by a tree (probabilistic execution tree). In this
section, we detail how each statement of the tested program
can be translated within this tree.

3.2.1 Translating statements into constraints

Method Signature.
Signature of tested method does not appear in probabilistic
execution tree. However, this signature is translated intoa
clause head1. Each variable of the signature is translated
into a fresh variable and type information into a domain
constraint. Body of the clause is composed of the proba-
bilistic execution tree. For instance, input variablei of tri-
typ is translated intoI and type information by the con-
straintI in −231..231 − 1.
Sequence of assignment statements.
For each definition of a variable, a fresh variable is gener-
ated and a domain constraint to represent type information.
Then, var := Expr is translated intoX = E whereE

is the syntactic translation ofExpr. For instance,trityp
statementt=t+1 is translated intoT1 = T0 + 1 ∧ T1 in −
231..231− 1. A sequence of assignment statements is trans-
lated into a conjunction of constraints.
Transfer of control flow.
Transfer of control flow associated with a conditional
statement or a loop unfolding is translated into a
choose decision(C, [W1,W2], Ctrs1, Ctrs2) whereC is
the syntactic translation of the decision,W1 andW2 rep-
resent the probability transitions to the two successor nodes
in the tree andCtrs1 (resp.Ctrs2) is the probabilistic ex-
ecution tree associated with statements of thetrue (resp.
false) branch and remaining statements of the program.
For example, first conditional oftrityp is translated into:

choose decision(I ≤ 0 ∨ J ≤ 0 ∨K ≤ 0,

[W1,W2], Ctrs1, Ctrs2)

where is aW1 (resp. W2) is a finite domain variable that
represents the probability to add(I ≤ 0 ∨ J ≤ 0 ∨ K ≤
0) ∧ Ctrs1 (resp. (I > 0 ∧ J > 0 ∧ K > 0) ∧ Ctrs2)
andCtrs1 (resp.Ctrs2) is the probabilistic execution tree
associated withtrue branch (resp.false branch) of a con-
ditional statement.

3.2.2 Constraints on probability transitions

Suppose that the set of feasible paths of the probabilistic
execution tree is known. A uniform selection of feasible
paths can be easily performed. Indeed, the selection of fea-
sible paths in the tree is uniform when probability transi-
tions associated with each edge of this tree are proportional

1Constraint solver used is part of a logic programming language. That
is the reason why some terminologies of this paradigm are used.

4

to the number of feasible paths that activate it. However in
practice, the number of feasible paths which activates this
edge is unknown. That is the reason why a couple of weight
variables [W1,W2] is used to model probability transitions
of the tree. Domain of weight variables represents infor-
mation about the number of feasible paths that activate the
edge. However, constraints on these weight variables can
be generated from the tree structure.

Suppose thatWi is the weight variable associated with
the edge which goes in a node andWo1

andWo2
the weight

variables associated with the two branches which go out the
node. The number of feasible paths that go in a node is
equals to the number of feasible paths that go out. Then, a
constraintWi = Wo1 + Wo2 is generated for each proba-
bilistic choice constraint. For instance, the number of fea-
sible paths that activates the first conditional oftrityp is
equals to the sum of the number of feasible paths that active
thetrue and thefalse branch.

Suppose thatWe represents a weight variable that leads
to a leaf node. Domain ofWe is 0..1. Indeed, only one fea-
sible path activates at most this edge. In the following of
this paper,Wexit denotes the set of weight variables associ-
ated with leaf nodes of probabilistic execution tree.

3.3 A uniform selection of satisfiable path
conditions only

Path selection is represented by generation of path con-
ditions associated with a path of the probabilistic execution
tree (from the root node to a leaf node). This path se-
lection is performed when each probability transition that
composes this path is valuated. Our approach is based on
an iterative construction of the selector of path conditions.
This iterative construction is represented by domain prun-
ings of weight variables. Path selection is modelled as an
optimization problem. Optimization function to maximize
corresponds to the number of feasible paths, defined as fol-
lows: ∑

Wj∈Wexit

Wj .

A top-down labeling process on weight variables ofWexit

is used to generate of path conditions. This labeling process
leads to a valuation of weight variables. In that case, uni-
form path selection is performed on the set of feasible paths
and the set of paths not yet detected as unfeasible. Deci-
sion procedure of the constraint solver allows us to detect
as soon as possible that path conditions are not satisfiable.
In that case, a backtrack mechanism is used to reload the
search and find a new optimal valuation of the weight vari-
ables. Corresponding part of the probabilistic execution tree
is also removed.

For instance, let us consider again the probabilistic
choice constraint associated with the first conditional state-

ment oftrityp :

choose decision(I ≤ 0 ∨ J ≤ 0 ∨K ≤ 0,

[W1,W2], Ctrs1, Ctrs2)

At the beginning, constraints generated from the tree struc-
ture constraintW1 to 0..1 andW2 to 0..56. These domains
correspond to the potentially number of feasible paths that
activate respectively thetrue branch or thefalse branch.
First optimal solution for theOptim Function leads to a
valuation to1 for W1 and56 for W2. This valuation can
launch the generation ofI ≤ 0 ∨ J ≤ 0 ∨ K ≤ 0 as path
conditions (path01− 02− 23). However, constraints

I > 0 ∧ J > 0 ∧K > 0 ∧ I = J ∧ I = K ∧ J 6= K

associated with pre-conditions of01− 03− 04− 05− 06−
07 − 08 can also be generated. As these constraints are
not satisfiable, part of probabilistic execution tree associ-
ated with this edge is removed and the search is reloaded.

3.4 Uniform selection of test data that
satisfy path conditions

In this section, we detail our algorithm to perform a uni-
form of test data that satisfy path conditions. In constraint
programming terminology, this algorithm aims at selecting
solutions of a constraint problem with the same probabil-
ity. Determine this set of solutions is a NP-hard problem
[11]. Rejection method [13] is a classical way to address
this problem. Uniform selection is performed on an over-
approximation of the solutions set. Valuation of variables
is rejected when this valuation is not a solution of the prob-
lem. This valuation is kept when this valuation is a solu-
tion. However, rejection method can be inefficient when the
sub-domain associated with input variables is too large w.r.t
solutions of the path conditions. The algorithm presented in
this section permits a trade off between the computation of
solution sets and an inefficient rejection method. A divide
and conquer is proposed to achieve this goal.

Firstly, we detail how to fairly divide the subdomain
associated with path conditions resulting from constraint
propagation (Sec. 3.4.1) and secondly, we explain how
to exploit constraint refutation to prune this subdomain
(Sec.3.4.2). Finally, we give our algorithm that exploits
both these processes (Sec.3.4.3).

3.4.1 Dividing subdomain of path conditions

Applying constraint propagation on the path conditions re-
sults in an subdomain that is a correct approximation of the
solution set of the path conditions. We propose a new way
of refining this subdomain in a smaller one. Letdiv be a
given parameter, called thedivision parameter, our method

5

is based on the division of each variable domain intodiv

subdomains of equal area. When the size of a domain vari-
able cannot be divided bydiv, then we enlarge its domain
until its size can be divided bydiv. By iterating this process
over all then input variables, we get a fair partition of the
(augmented) initial subdomain, indivn subdomains.

3.4.2 Pruning subdomain of path conditions

Constraint refutation is the process of temporarily addinga
constraint to a set of constraints and testing whether the re-
sulting constraint system has no solution by using constraint
propagation. If the resulting constraint system is unsatisfi-
able, the added constraint is shown to be contradictory with
the rest of the constraints and then it is refuted. When con-
straint propagation does not yield to a contradiction, then
nothing can be deduced as constraint propagation is incom-
plete in general. Based on constraint addition/removal and
propagation, this process is very efficient and it can be ex-
ploited to reduce the over approximation of the set of solu-
tions obtained by constraint propagation.

Constraint refutation is used to test efficiently domain in-
tersection. Thus, we eliminate parts of the suddomain that
are inconsistent with the path conditions. Constraint refuta-
tion has another advantage as it help detecting non-feasible
paths. Recall that non-feasible paths correspond to unsatis-
fiable constraint systems. Hence, when all the subdomains
of the partition are shown to be inconsistent, then it means
that the corresponding path is unfeasible.

3.4.3 Algorithm

The algorithm takes as inputs a set of variables along with
their variation domain,Path Conditions constraints set
generated during path selection,div the division parameter,
andN the length of the expected random sequence. The al-
gorithm returns a list ofN uniformly distributed random tu-
ples that all satisfy the path conditions. The list is void when
the corresponding path is detected as being non-feasible.

Firstly, the algorithm partitions the subdomain resulting
from constraint propagation indivn subdomains of equal
area (divide function). Then, each subdomainDi in the
partition is checked for unsatisfiability. This results in a
list of subdomainsD′

1
, . . . ,D′

p wherep ≤ divn. Secondly,
uniform selection of test data is built from this list by pick-
ing up first a subdomain and then picking up a tuple inside
this subdomain. If the selected tuple does not satisfy the
path conditions then it is simply rejected. This process is
repeated until a sequence ofN test data is generated. This
algorithm is semi-correct, meaning that when it terminates,
it is guaranteed to provide the correct expected result, butit
is not guaranteed to terminate. Indeed, in the second loop,
N is decreased ifft satisfiesPath Conditions, which can
happen only ifPath Conditions is satisfiable. In other

words, ifPath Conditions is unsatisfiable and if this has
not been detected by constraint propagation (p ≥ 1), then
the algorithm will not terminate. Note that similar problems
arise with random testing or path testing as nothing prevents
an unsatisfiable goalPath Conditions to be selected and,
in this case, all the test cases will be rejected. In practice,
a time out mechanism is necessary to enforce termination.
This mechanism is not detailed here but it is mandatory on
actual implementation. Note that any testing tools that exe-
cute programs should be equipped by such a time-out mech-
anism as nothing prevents the programs to activate endless
paths.

Algorithm 2 : Uniform selection of test data that satisfy
path conditions

input : (x1, .., xn), Path Conditions, div, N

output: t1, .., tN or ∅ (non-feasible path)

T := ∅;1

(D1, ..,Dkn) := divide({x1, .., xn}, k);2

forall Di ∈ (D1, . . . ,Dkn) do3

if Di is inconsistent w.r.t.Path Conditions then4

RemoveDi from (D1, ..,Dkn) ;5

end6

end7

Let D′

1
, ..,D′

p be the remaining list of domains;8

if p ≥ 1 then9

while N > 0 do10

Pick up uniformlyD at random from11

D′

1
, ..,D′

p;
Pick up uniformlyt at random fromD;12

if Path Conditions is satisfied byt then13

addt to T ;14

N := N − 1;15

end16

end17

end18

return T ;19

4 Implementation

Our prototype is implemented in SICStus Prolog (4500
LOC). The tool generates statistical test data for a restricted
fragment of the JAVA language.

Given a JAVA class and a method of this class, our proto-
type generates a test suite at random that respects the prob-
abilistic properties we defined above.

The implementation of the tool includes three main
parts: source code parsing and analysis, constraint gen-
eration and constraint solving. The modules dedicated to
source code analysis include a complete SUN’s JAVA 1.4
parser that builds a symbol table and an abstract syntax
tree. From this tree, the constraint generation modules de-

6

rive theprobabilistic execution treewe introduced in Sec.3.
Finally, the constraint solving modules implement proba-
bilistic choice constraints which are the key-stone of the
tool. These modules are built upon the clp(fd) [3] and the
PCC(FD) [16] libraries of SICStus Prolog. The modules
dedicated to constraint solving also implement the algo-
rithms of Sec.3.1.

The user interacts with the tool through a batch mode
that permits to ask various test data generation requests. The
statistical test data generation can be parameterized through
the predicategenetta launcher. This predicate offers
optional arguments for constraining the number of paths to
be selected, the number of test data to be generated,k a
parameter that bounds the loop unfolding,div the division
parameter andtime− out a time-out value able to interrupt
the generation. Note that this latter parameter is mandatory
on every testing tool implementation as nothing guarantees
the tested program to iterate indefinitely.

5 Experimental validation

In this section, we present our preliminary results on the
impact of our statistical test data generator on the effective-
ness of a standard coverage-based fault localization tech-
nique. Sec. 5.1 presents our experimental process whereas
Sec.5.2 describes our results.

5.1 Experiments

The experimental process was divided into4 steps:

1. Two sequences of test data were generated using
GENETTA and a Random Testing implementation.
Test data were generated for a correct version of the
method under test;

2. Mutants were then generated for the method under test;

3. The generated test data were executed against all the
mutants and the execution traces were collected within
a coverage matrix;

4. Finally, the Dynamic Basic Blocks (DBBs) associated
with both sequences of test data were computed;

This experimental process exploited two existing tools:
MuJava [22] was used to generate a set of standard mutants
and execution traces were collected thanks to the BUGDEL
tool [19]. Finally, we implemented a predicate that com-
putes DBBs associated with each test suite.

5.2 Experimental results

Trityp was used to serve as our candidate program.
GENETTA and our RT implementation generated two se-
quences of100 test data in order to defined the coverage

matrix and32 mutants oftrityp were generated by MuJava.
Fig.2 summarizes our results.

These results show unambiguously that our method im-
proves the number of DBBs on every mutants. Interestingly,
the maximum number of DBBs is reached on more than half
of the mutants, indicating that GENETTA not only outper-
forms RT on all the cases but is also well-suited to generate
statistical test data for fault-localization. Of course, more
experiments are required to validate this statement on other
programs but these results are clearly very encouraging.

6 Conclusion

In this paper, we proposed a new statistical testing
method that generates sequences of random test data that
respect the following probabilistic properties: 1) each se-
quence guarantees the uniform selection of feasible paths
only and 2) the uniform selection of test data over the sub-
domain associated with these paths. We introduced a new
algorithm that uniformly selects feasible paths only by dras-
tically decreasing the number of rejects during the test data
selection. This approach was implemented in a prototype
for JAVA and preliminary experimental results were given
to show that the generated test suite increases the size of
DBBs w.r.t. a pure random testing approach. Moreover, we
got encouraging experimental results that show the poten-
tial for increasing the effectiveness of a standard coverage-
based localization fault technique. Future work will be ded-
icated to improve the coverage of the JAVA language, in
particular by taking method calls into account. Moreover,
additional experimental results are required to fully validate
the ability of our statistical test data generator to generate
test data for fault localization.

References

[1] R. Abreu, P. Zoeteweij, and A.J.C. van Gemund. On the accuracy of
spectrum-based fault localization. InTesting: Academic and Indus-
trial Conference, Practice and Industrial Conference, Windsor, UK,
September 2007.

[2] B. Baudry, F. Fleurey, and Y. Le Traon. Improving test suites for ef-
ficient fault localization. InProceedings of International Conference
on Software Engineering, pages 20–28, Shanghai, China, May 2006.

[3] M. Carlsson, G. Ottoson, and B. Carlson. An open–ended finite do-
main constraint solver. InProceedings of the International Sympo-
sium on Programming Languages: Implementations Logics andPro-
grams, LNCS, pages 191–206, Soupthampton, UK, September 1997.
Springer.

[4] R.A. DeMillo and J.A. Offutt. Constraint-based automatic test data
generation.IEEE Transaction on Software Engineering, 17(9):900–
910, September 1991.

[5] R.A. DeMillo and J.A. Offutt. Experimental results from an auto-
matic test case generator.ACM Transactions on Software Engineer-
ing and Methodology, 2(2):109–127, April 1993.

7

Figure 2. Comparison of the number of dynamic basic blocks for a Genetta and a Random Testing
test suite

[6] A. Denise, M.-C. Gaudel, and S.-D. Gouraud. A generic method for
statistical testing. InProceedings of the International Symposium
on Software Reliability Engineering, pages 25–34, St-Malo, France,
November 2004. IEEE.

[7] J.W. Duran and S. Ntafos. An evaluation of random testing. IEEE
Transaction on Software Engineering, 10(4):438–444, July 1984.

[8] P. Godefroid, N. Klarlund, and K. Sen. Dart: Directed automated ran-
dom testing. InProceedings of the Conference on Programming Lan-
guage Design and Implementation, pages 213–223, Chicago, USA,
June 2005. ACM.

[9] A. Gotlieb, B. Botella, and M. Rueher. Automatic test datagenera-
tion using constraint solving techniques. InProceedings of the Inter-
national Symposium on Software Testing and Analysis, pages 53–62,
Clearwater Beach, USA, March 1998.

[10] A. Gotlieb and M. Petit. Constraint reasoning in path-oriented ran-
dom testing. InProceedings of the International Computer Software
and Applications Conference, Turku, Finland, July 2008.

[11] P. Van Hentenryck, V. Saraswat, and Y. Deville. Design,implemen-
tation, and evaluation of the constraint language cc(fd). Technical
Report CS-93-02, Brown University, 1993.

[12] J.A. Jones, M.J. Harrold, and J. T. Stasko. Visualization of test in-
formation to assist fault localization. InProceedings of the Inter-
national Conference on Software Engineering, pages 467–477, Or-
lando, USA, May 2002.

[13] P. L’ Ecuyer. Random Number Generation, Chapter 2 of Hand-
book of Computational Statistics: Concepts and Methods. Springer-
Verlag, 2004.

[14] J.D. Musa. Operational profiles in software-reliability engineering.
IEEE Software, 10(2):14–32, March 1993.

[15] G. J. Myers. The Art of Software Testing. John Wiley, New York,
1979.

[16] M. Petit and A. Gotlieb. Boosting probabilistic choiceoperators. In
Proceedings of the International Conference on Principlesand Prat-
ice of Constraint Programming, LNCS, pages 559–573, Providence,
USA, September 2007.

[17] M. Petit and A. Gotlieb. Uniform selection of feasible paths as a
stochastic constraint problem. InProceedings of the International
Conference on Quality Software, IEEE, pages 280– 285, Portland,
USA, October 2007.

[18] P. Th́evenod-Fosse and H. Waeselynck. An investigation of statisti-
cal software testing.Software Testing, Verification and Reliability,
1(2):5–25, July 1991.

[19] Y. Usui and S. Chiba. Bugdel: An aspect-oriented debugging sys-
tem. In Proceedings of Asia-Pacific Software Engineering Confer-
ence, pages 790–795, Taipei, Taiwan, December 2005.

[20] N. Williams, B. Marre, P. Mouy, and M. Roger. Pathcrawler: Auto-
matic generation of path tests by combining static and dynamic anal-
ysis. InProceedings of the European Dependable Computing Con-
ference, pages 281–292, Budapest, Hungary, April 2005. Springer.

[21] Y. Yu, J.A. Jones, and M.J. Harrold. An empirical study ofthe effects
of test-suite reduction on fault localization. InProceedings of the
International Conference on Software Engineering, pages 201–210,
Leipzig, Germany, May 2008.

[22] M. Yu-Seng, J.A. Offut, and R. Kwon. Mujava : An automated
class mutation system.Software Testing, Verification and Reliabil-
ity, 15(2):97–133, June 2005.

8

