Roskilde
University

Distinguish Dynamic Basic Blocks by Structural Statistical Testing

Petit, Matthieu; Gotlieb, Arnaud

Publication date:
2009

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Petit, M., & Gotlieb, A. (2009). Distinguish Dynamic Basic Blocks by Structural Statistical Testing. Paper
presented at European Workshop on Dependable Computing, Toulouse, France. http://hal.inria.fr/

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain.
* You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact rucforsk@kb.dk providing details, and we will remove access to the work
immediately and investigate your claim.

Download date: 13. Jul. 2025

http://hal.inria.fr/

Distinguish Dynamic Basic Blocks by Structural Statistical Testing

Matthieu Petit Arnaud Gotlieb
Departement of Communication, Business INRIA Rennes - Bretagne Atlantique
and Information Technologies Campus Beaulieu
Roskilde University 35042 Rennes cedex, FRANCE
P.O Box 260, 4000 Roskilde Denmark Arnaud.Gotlieb@irisa.fr
petit@ruc.dk
Abstract cating faults and correcting them. The times when these

two complementary activities were separated is hopefully
Statistical testing aims at generating random test data behind us. Nowadays, modern test data generation tech-
that respect selected probabilistic properties. A disttibn nigues cannot ignore how the test data will be used in order
probability is associated with the program input space in to locate the defects. Since several years, many automated
order to achieve statistical test purpose: to test the most fault-localization techniques have been proposed to use in
frequent usage of software or to maximize the probability of formation about the test data executions through control-
satisfying a structural coverage criterion for instance. flow monitoring introduced [12]. These methods, globally
In this paper, we propose a new statistical testing method called coverage-based fault localization, use statenwent ¢
that generates sequences of random test data that respectrage and test results to locate the statements that are the
the following probabilistic properties: 1) each sequence most correlated to the defects. Recently, studies have been
guarantees the uniform selection of feasible paths only andconducted to identify how test data generation techniques
2) the uniform selection of test data over the subdomain as-impact the effectiveness of coverage-based fault localiza
sociated with these paths. Baudry et al. present a testing-tion techniques [2, 1, 21]. In [2], Baudry et al. present
for-diagnosis method where the essential notion of Dy- a testing-for-diagnosis method where the essential notion
namic Basic Block was identified to be strongly correlated of Dynamic Basic Blockvas identified to be strongly cor-
to the effectiveness of fault-localization technique. kidens related to the effectiveness of any fault-localizationhtec
that generating a sequence of random test data respectingnique. Roughly speaking, Rynamic Basic Block (DBB)
these properties allows to well-distinguished Dynamic Ba- is the subset of statements in a program that are equally
sic Blocks. Thanks to Constraint programming techniques, covered by the test data of a given test suite. Surprisingly,
we propose an efficient algorithm that uniformly selects fea the experimental results of [2] show a strong correlation be
sible paths only by drastically decreasing the number of re- tween the effectiveness of fault-localization techniqod a
jects (test data that activate another control flow path)-dur the size of the DBB that includes the faulty statement. They
ing the test data selection. We implemented this algorithm conclude that maximizing the number of DBBs increases
in a statistical test data generator for Java programs. Atfirs the effectiveness of coverage-based fault-localizatoi-
experimental validation is presented. niques.
As proposed by Thevenod-Fosse and Waeselynck [18],
test data generation methods include deterministic and sta
1 Introduction tistical testing. While deterministic testing aims at séteg
a single test data in front of a given test objective, sfatist
cal testing generates test data at random. Statisticaigest

Software testing is the first validation technique used to o .
covers three distinct ways of generating test data:

produce high-quality software, but it is also a primary cost
driver on most projects. Software testing aims at detect- o (Random Testingj7]) Test data are generated accord-

ing defects within programs, while debugging aims at lo- ing an uniform distribution probability, meaning that
*This work is supported by the project GENETTA granted by @riy each p(')l.nt ofthe Input space ofa program has the same

region and the project “Logic-statistic modeling and anialy$ biological probability to be selected ;

sequence data” funded by the NABIIT program under the DaBisdtegic])

Research Council. e (Operational Testing14]) Test data are generated ac-

cording to an operational usage profile of the program. initially proposed by Myers [15] and fully studied by De-
Usually, this profile is specified by the tester and does Millo and Offut [5], takes three non-negative integers as
not depend on the program itself ; arguments that represent the relative lengths of the sides
of a triangle and classifies the triangle as scalene (output
; AL . equals to 1), isosceles (output equals to 2), equilatete (0
data are generated according to a distribution probabll-put equals to 3) or illegal (output equals to 4). The source

ity that is. computed from a model (functional) or the_ code of a faulty version of the program is given by Fig-
program itself (structural). In the latter case, the goal is ure 1

to maximize the coverage of a selected coverage crite-
rion by maximizing the probability to exercise the least
probable element of the criterion.

¢ (Functional and Structural statistical testifi$j8]) Test

Although it implements a simple specification, this pro-
gram is difficult to handle for test data generators as it con-
tains several nested conditionals structures and a lot-of in

In this paper, we propose a new statistical test dataf€@sible paths (47 over a total of 57 in our version).
generation technique that improves coverage-based fault- Random testing alone has some difficulties to achieve
localization. We built on our previous works by unifying 900d coverage of the source code. Indeed, simple events
two techniques : uniform selection of feasible paths [17] Such as =j have low probability to happeny if i and
and path-oriented random testing [10]. The technique weJ aré 32-bits integers). Similarlgfatistical structural test-

propose in this paper aims at generating random test data"d: s implemented in [6], fails to achieve good coverage
that respect two specific probabilistic properties : in a reasonable amount of time, as non-feasible paths are

not discarded from the set of possible executions. In this
e The generated test suite will activate uniformly all the example, 75% of selected paths are rejected after being gen-
feasible paths of the program ; erated.
In this paper, we propose a dynamic algorithm that gen-
erates sequences of random test data respecting both fol-
lowing probabilistic properties:

e The generated test suite will ensure that the subdomain
associated with each feasible path will be uniformly

activated.
_ _ ~ e each generated test suite guarantees the uniform selec-
Generating a test suite that follows these two properties is tion of the 10 feasible paths tityp :

challenging as establishing path feasibility is undedielab

in the general case and generating a test suite that uni- ® each generated test suite for a given feasible path guar-
formly covers a subdomain defined by constraints usually antees the uniform selection of test data over the asso-
requires many rejections. In our work, we benefit from ciated sub-domain.

well-recognized Constraint Programming techniques to de-Figure1 shows the coverage matrix of two test suites: on the
termine, in most case, path feasibility and obtain a tight |eft side, test data are generated by Random Testing (RT),
over-approximation of the path constraint solutions. We while on the right side, test data are generated according
model uniform selection of feasible paths as an optimiza- to our method. Both data have been generated automati-
tion problem. To cover a path, constraint propagation and cally using a RT implementation and our implementation
refutation allow us to drastically decrease the number-ofre called GENETTA. In the conditional statement line 20, cor-
jects (test data following another path) while maintaining rect conditionj + & < i is replaced by faulty condition
uniformity. Thanks to our implementation, our experimen- ; 4 1 > . For sake of clarity, the input domain of each
tal results show that generating a sequence of random tesjnteger variable has been restricted)td 000.

data respecting these properties permits unambiguously to By definition extracted from [2], a dynamic basic block
increase the number of well-distinguished DBBs, improv- s a set of statements of a program that is covered by the

ing so coverage-based fault localization. same test data from a test suite. Two statemeratsd s’
Outline of the paper. The paper is organized as fol- pelong to a DBB if they have identical lines in coverage

lows : section 2 motivates our work on prograntyp . matrix.

Section 3 presents our statistical testing technique. @ur i From the RT coverage matrix, thredynamic basic

plementation prototype GENETTA is described section 4 plocks (DBBshre extracted:
while section 5 presents our experimental validation. Fi-
{01,03,04, 06,08, 10,11, 23}, {12}, {13}

nally, section 6 concludes this work.
while seven DBBs are extracted from GENETTA coverage
2 Motivating Example matrix:

. L . 01,03, 04,06, 08,10, 14, 16, 18,23}, {05
We illustrate our statistical test data generation method {01,03,04,06,08,10, 14, 16, 18, 23}, {05},

for fault-localization on an example. The prograrityp , {07,19},{09}, {20}, {21}, {22}.

Random Testing Test Suite Genetta Test Suite
216 | 319 | 848 | 830 | 274 || 344 | 50 | 817 | 240 | 914
public int trityp(int i,int j,int k) 635 | 239 | 686 | 265 | 684 || 344 | 50 | 660 | 68 | 666
int t; 762 | 330 | 271 | 979 | 31 838 | 932 | 817 | 68 | 666
01. if((i ==0) ||(j ==0) ||(k==0)) ° ° ° ° ° ° ° ° ° °
02. t=4;
elsg{
03. t=0; ° ° ° ° ° ° ° ° °
04. if(i==) ° ° ° ° ° ° ° ° ° °
05 t =t +1; ° °
06 if(i==k) ° ° ° ° ° ° ° ° ° °
07 t =t +2; °
08. if(] ==k) ° ° ° ° ° ° ° ° ° °
09 t=t +3;
10. if(t==0) ° ° ° ° ° ° ° ° ° °
L. (1 A <K [K= [K<) . | e
12. t =4,
else
13. t=1; ° . ° .
else
14. if(trityp>3) ° ° ° ° °
15. t =3,
else
16 if((t==1) &&(i+j >k)) ° ° ° ° °
17 t=2;
else
18 if((t==2) &&(i+k>j)) ° ° ° ° °
19 t=2; °
else
20. if((t==3) &&(j +tk<i))// < instead of > ° ° ° °
21 t=2; .
else
22; t=4; } ° °
23. return(t); ° ° ° ° ° ° ° ° ° °
Test Verdict P P P P P P P P F F

Figure 1. Faulty version of trityp and coverage matrix

As a result, the DBB associated with the faulty statement testing criterion, due to the presence of loops. As done in

(line 20) has size one for GENETTA while itis not activated [20, 8], we limit the number of iterations in laop state-

with RT. mentto a fixed numbelk. Hence in the followingloop
statementare considered dsimbricatedconditional state-

3 Constraint-based statistical test data gen- ments
eration
3.1 Algorithm of Statistical Test Data

Constraint-based testing aims at modelling an automatic Generation

test data generation problem as a constraint problem [4, 9].

Relations between program variables and testing purposes Statistical test data generation is describedlgyprithm

are translated into constraints. In this section, we prepos 1. Ittakes a progran®rogram, Nb_DT the expected num-

a new algorithm that guarantees the uniform selection of ber of test data to generate ahdhe maximum number of
feasible paths only and the uniform activation of test data iterations in loops as inputs, and issues a randomly gener-
that follow each of these paths. Sec.3.1 describes the overated test set.

all algorithm whereas Sec.3.2, 3.3 and 3.4 present step-by- The first step of the algorithm, line 2, corresponds
step its distinct techniques. In this paper, we only coniside to the translation ofProgram and the testing purpose
programs composed ofissignment statemergonditional into a stochastic optimization problentrs_proba. The
statementloop statemenand compound statementvari- optimization function Optim_Function is generated
ables types are integer or array of integers. Note that theaccordingly during this phase. This function imple-
coverage of all execution paths is generally an intractablements the (currently unknown) number of feasible paths

of Program. Our approach allows a uniform selec- i

tion of feasible paths without computing this number.

Algorithm 1: Statistical test data generation

Input : Program, Nb_DT, k
Output: DT _Seq

DT _Seq +— 0;

TranslateProgran into C'trs_proba and generate
Optim_function;

while si ze(DT'_Seq) < Nb_DT do
Path_Conditions < Maximize
Optim_function;

DT « Select uniformly valuations that satisfy
Path_Conditions;

Add DT in DT _Segq;

UpdateC'trs_proba in regards to the path
activated byDT;

end

return DT _seq

The algorithm iterates untiNb_DT test data are gen-
erated. EactDT is generated in two steps (linkand5).
The search of the maximal value &fptim_Function is
performed as search over a tree, calledptubabilistic ex-
ecution treg17]. The nodes of this tree are just the various
basic blocks ofProgram while its edges correspond to the

s represented by a treprpbabilistic execution trée In this

section, we detail how each statement of the tested program
can be translated within this tree.

3.2.1 Translating statements into constraints

Method Signature.

Signature of tested method does not appear in probabilistic
execution tree. However, this signature is translated anto
clause head Each variable of the signature is translated

nto a fresh variable and type information into a domain

constraint. Body of the clause is composed of the proba-
bilistic execution tree. For instance, input variablef tri-

typ is translated intal and type information by the con-
straint/ in —231..231 — 1,

Sequence of assignment statements.

For each definition of a variable, a fresh variable is gener-

ated and a domain constraint to represent type information.
Then,var := FExpr is translated intaX = E where F

is the syntactic translation dlxpr. For instancetrityp

statement =t +1 is translated intd; = 7o + 1 A T; in —
231 231 1. A sequence of assignment statements is trans-

lated into a conjunction of constraints.

Transfer of control flow.
Transfer of control flow associated with a conditional
statement or a loop unfolding is translated into a

possible transfer of control flow. In addition, the edges of choose_decision(C, [Wy, Wa], Ctrsy, Ctrs,) where C is

this tree are labeled with the variables of the probability d
tribution.
Large parts of the tree can be removed during the

stochastic optimization process when path conditions areg
detected as unsatisfiable. Searching an optimal value forf

Optim_Function yields the selection of a feasible path,
Path_Conditions.

The uniform selection of test data that activate a given
path is performed by an efficient process we caljbath-
oriented random testingn [10]. Constraint propagation
leads to the computation of an over approximation of the
subdomain associated with path conditions.
this result, we provide a divide—and—conquer algorithn tha
minimizes the number of rejects (test data that activate an-
other path) while generating statistical test data. No# th

checking whether a test datum follows the selected path, carf

be done on the constraint system itself just by verifying the
consistency of itsPath_Conditions. Finally, Ctrs_proba

is updated after each statistical test datum generatidm wit
the information on path feasibility.

3.2 Translation of the program into a con-
straint program

the syntactic translation of the decisidi;; and W, rep-

resent the probability transitions to the two successoesod
in the tree and”trs; (resp.Ctrss) is the probabilistic ex-
cution tree associated with statements of tthe: (resp.
alse) branch and remaining statements of the program.
For example, first conditional afityp is translated into:

choose_decision(I <0V J <0V K <0,
(W1, Ws], Ctrsy, Ctrss)

Thanks towhere is al; (resp. W5) is a finite domain variable that

represents the probability toadd < 0v J <0V K <
0) ACtrsy (resp. (I > 0AJ > 0AK > 0) A Ctrss)
andC'trs; (resp.Ctrss) is the probabilistic execution tree
ssociated withrue branch (respfalse branch) of a con-
ditional statement.

3.2.2 Constraints on probability transitions

Suppose that the set of feasible paths of the probabilistic
execution tree is known. A uniform selection of feasible
paths can be easily performed. Indeed, the selection of fea-
sible paths in the tree is uniform when probability transi-

In our approach, the relations between program variablestions associated with each edge of this tree are propottiona

are modelled with constraints, as well as the statistict te

1Constraint solver used is part of a logic programming langudgat

ing purpose. As said above, the generated constraint systens the reason why some terminologies of this paradigm are used.

to the number of feasible paths that activate it. However in ment oftrityp :

practice, the number of feasible paths which activates this

edge is unknown. That is the reason why a couple of weight choose_decision(I <0V J <0V K <0,

variables [V'1,IW5] is used to model probability transitions [W1, Wa], Ctrsy, Ctrss)

of the tree. Domain of weight variables represents infor-

mation about the number of feasible paths that activate theAt the beginning, constraints generated from the tree struc

edge. However, constraints on these weight variables carture constraint?; to 0..1 andW; to 0..56. These domains

be generated from the tree structure. correspond to the potentially number of feasible paths that
Suppose thalV; is the weight variable associated with activate respectively the-ue branch or thefalse branch.

the edge which goes in a node dng, andW,, the weight First optimal solution for th&ptim_Function leads to a

variables associated with the two branches which go out thevaluation tol for W; and 56 for W,. This valuation can

node. The number of feasible paths that go in a node islaunch the generation df< 0v J < 0V K < 0 as path

equals to the number of feasible paths that go out. Then, aconditions (pattdl — 02 — 23). However, constraints

constrainti; = Wo; + Wo, is generated for each proba-

bilistic choice constraint. For instance, the number offea I >0AJ>0AK >0ANI=JANI=KNJ#K

sible paths that activates the first conditionaltiatyp is)] N

equals to the sum of the number of feasible paths that active2Ssociated with pre-conditions f — 03 — 04 — 05 — 06 —

thetrue and thefalse branch. 07 — 08 can also be generated. As these constraints are

Suppose thalV, represents a weight variable that leads not satisfiable, part of probabilistic execution tree assoc
to a leaf node. Domain dW, is 0..1. Indeed, only one fea- ated with this edge is removed and the search is reloaded.

sible path activates at most this edge. In the following of . .
this paperiV...; denotes the set of weight variables associ- 3-4 Uniform selection of test data that

ated with leaf nodes of probabilistic execution tree. satisfy path conditions
3.3 A uniform selection of satisfiable path In this section, we detail our algorithm to perform a uni-
conditions only form of test data that satisfy path conditions. In constrain

programming terminology, this algorithm aims at selecting

Path selection is represented by generation of path Con_.solutions of.a cor_lstraint problem wi_th the same probabil-
ditions associated with a path of the probabilistic exexuti ity. Dete.rm|'ne this set of SO'_Ut'OnS IS a NP-hard problem
tree (from the root node to a leaf node). This path se- [11]- Rejection method [13] is a classical way to address
lection is performed when each probability transition that tiS Problem. Uniform selection is performed on an over-
composes this path is valuated. Our approach is based Oﬁppr_oxmatlon of the solutpns_set. Valuat|9n of variables
an iterative construction of the selector of path condition IS 'eiected when this valuation is not a solution of the prob-
This iterative construction is represented by domain prun-€M- This valuation is kept when this valuation is a solu-
ings of weight variables. Path selection is modelled as antion- However, rejection method can be inefficient when the
optimization problem. Optimization function to maximize sub-domain associated with input variables is too large w.r

corresponds to the number of feasible paths, defined as folSelutions of the path conditions. The algorithm presernted i
lows: this section permits a trade off between the computation of

Z W, solution sets and an inefficient rejection method. A divide
and conquer is proposed to achieve this goal.
Firstly, we detail how to fairly divide the subdomain
A top-down labeling process on weight variables/Bf.: associated with path conditions resulting from constraint
is used to generate of path conditions. This labeling poces propagation (Sec. 3.4.1) and secondly, we explain how
leads to a valuation of weight variables. In that case, uni-to exploit constraint refutation to prune this subdomain

form path selection is performed on the set of feasible paths(sec.3.4.2). Finally, we give our algorithm that exploits
and the set of paths not yet detected as unfeasible. Decihoth these processes (Sec.3.4.3).

sion procedure of the constraint solver allows us to detect
as soon as possible that path conditions are not satisfiable3
In that case, a backtrack mechanism is used to reload the
search and find a new optimal valuation of the weight vari- Applying constraint propagation on the path conditions re-
ables. Corresponding part of the probabilistic executieat sults in an subdomain that is a correct approximation of the
is also removed. solution set of the path conditions. We propose a hew way
For instance, let us consider again the probabilistic of refining this subdomain in a smaller one. kb be a
choice constraint associated with the first conditionaksta given parameter, called thtivision parameterour method

W;EWewit

4.1 Dividing subdomain of path conditions

is based on the division of each variable domain ito words, if Path_Conditions is unsatisfiable and if this has
subdomains of equal area. When the size of a domain vari-not been detected by constraint propagatien>(1), then
able cannot be divided byiv, then we enlarge its domain the algorithm will not terminate. Note that similar problem
until its size can be divided hyiv. By iterating this process arise with random testing or path testing as nothing prevent
over all then input variables, we get a fair partition of the an unsatisfiable godPath_Conditions to be selected and,

(augmented) initial subdomain, itiv™ subdomains. in this case, all the test cases will be rejected. In practice
a time out mechanism is necessary to enforce termination.
3.4.2 Pruning subdomain of path conditions This mechanism is not detailed here but it is mandatory on

' o _ _ actual implementation. Note that any testing tools that exe
Constraint refutation is the process of temporarily ad@ing cute programs should be equipped by such a time-out mech-

constraint to a set of constraints and teSting whether the re anism as nothing prevents the programs to activate endless
sulting constraint system has no solution by using cormtrai paths.

propagation. If the resulting constraint system is ungatis
able, the added constraint is shown to be contradictory with
the rest of the constraints and then it is refuted. When con-—
straint propagation does not yield to a contradiction, then ~ INPUt : (z1, .., x), Path_Conditions, div, N
nothing can be deduced as constraint propagation is incom- OUtPUt: £1, ..t or {) (non-feasible path)
plete in general. Based on constraint addition/removal and 1 7" := (J;

propagation, this process is very efficient and it can be ex- 2 (D, .., Dy) :=di vi de({x1, .., 2, }, k) ;

Algorithm 2 : Uniform selection of test data that satisfy
path conditions

ploited to reduce the over approximation of the set of solu- 3 forall D; € (Dy,..., D) do
tions obtained by constraint propagation. 4 if D; is inconsistent w.r.tPath_Conditions then
Constraint refutation is used to test efficiently domain in- s \ RemoveD; from (Dy, .., Dgn) ;

tersection. Thus, we eliminate parts of the suddomain that 6 end

are inconsistent with the path conditions. Constraintteefu ;7 end

tion has another advantage as it help detecting non-feasibl g [et D}, .., D), be the remaining list of domains;
paths. Recall that non-feasible paths correspond to wasati 4 i ;, > 1 then

fiable constraint systems. Hence, when all the subdomains, while N > 0 do

of the partition are s_,hown to_be incon_sistent, then it means, Pick up uniformlyD at random from
that the corresponding path is unfeasible. D,,..D';
bR pl

_ 12 Pick up uniformlyt at random fromD;

3.4.3 Algorithm 13 if Path_Conditions is satisfied by then
. . . 14 addt to T,
The algorithm takes as inputs a set of variables along with N=N_1
their variation domainPath_Conditions constraints set) T
16 en

generated during path selectiatiy the division parameter,
andN the length of the expected random sequence. The al-17 end
gorithm returns a list ofV' uniformly distributed random tu- 18 end
ples that all satisfy the path conditions. The listis voicewh 19 return 77
the corresponding path is detected as being non-feasible.

Firstly, the algorithm partitions the subdomain resulting
from constraint propagation idiv” subdomains of equal 4 Implementation
area (i vi de function). Then, each subdomaip; in the
partition is checked for unsatisfiability. This results in a Our prototype is implemented in SICStus Prolog (4500
list of subdomaingD}, ..., D, wherep < div™. Secondly, LOC). The tool generates statistical test data for a resttic
uniform selection of test data is built from this list by pick fragment of the JAVA language.
ing up first a subdomain and then picking up a tuple inside Given a JAVA class and a method of this class, our proto-
this subdomain. If the selected tuple does not satisfy thetype generates a test suite at random that respects the prob-
path conditions then it is simply rejected. This process is abilistic properties we defined above.
repeated until a sequence Sftest data is generated. This The implementation of the tool includes three main
algorithm is semi-correct, meaning that when it terminates parts: source code parsing and analysis, constraint gen-
it is guaranteed to provide the correct expected resultitbut eration and constraint solving. The modules dedicated to
is not guaranteed to terminate. Indeed, in the second loopsource code analysis include a complete SUN’s JAVA 1.4
N is decreased iff satisfiesPath_Conditions, which can parser that builds a symbol table and an abstract syntax
happen only ifPath_Conditions is satisfiable. In other tree. From this tree, the constraint generation modules de-

rive theprobabilistic execution treeve introduced in Sec.3. matrix and32 mutants ofrityp were generated by MuJava.
Finally, the constraint solving modules implement proba- Fig.2 summarizes our results.
bilistic choice constraints which are the key-stone of the These results show unambiguously that our method im-
tool. These modules are built upon the clp(fd) [3] and the proves the number of DBBs on every mutants. Interestingly,
PCC(FD) [16] libraries of SICStus Prolog. The modules the maximum number of DBBs is reached on more than half
dedicated to constraint solving also implement the algo- of the mutants, indicating that GENETTA not only outper-
rithms of Sec.3.1. forms RT on all the cases but is also well-suited to generate
The user interacts with the tool through a batch mode statistical test data for fault-localization. Of courseprm
that permits to ask various test data generation requelsés. T experiments are required to validate this statement orr othe
statistical test data generation can be parameterizedghro programs but these results are clearly very encouraging.
the predicatggenet t a_| auncher . This predicate offers
optional arguments for constraining the number of paths to
be selected, the number of test data to be generated,
parameter that bounds the loop unfoldidgy the division
parameter antime — out a time-out value able to interrupt In this paper, we proposed a new statistical testing
the generation. Note that this latter parameter is mangator method that generates sequences of random test data that
on every testing tool implementation as nothing guaranteesrespect the following probabilistic properties: 1) each se
the tested program to iterate indefinitely. guence guarantees the uniform selection of feasible paths
only and 2) the uniform selection of test data over the sub-
domain associated with these paths. We introduced a new
algorithm that uniformly selects feasible paths only bysdra
tically decreasing the number of rejects during the test dat
selection. This approach was implemented in a prototype
for JAVA and preliminary experimental results were given
show that the generated test suite increases the size of
BBs w.r.t. a pure random testing approach. Moreover, we
got encouraging experimental results that show the poten-
tial for increasing the effectiveness of a standard coverag
based localization fault technique. Future work will be-ded
icated to improve the coverage of the JAVA language, in
particular by taking method calls into account. Moreover,
1. Two sequences of test data were generated usingydditional experimental results are required to fully date

GENETTA and a Random Testing implementation. the ability of our statistical test data generator to geteera
Test data were generated for a correct version of thetast data for fault localization.

method under test;

6 Conclusion

5 Experimental validation

In this section, we present our preliminary results on the
impact of our statistical test data generator on the effecti
ness of a standard coverage-based fault localization tech
nigue. Sec. 5.1 presents our experimental process where
Sec.5.2 describes our results.

5.1 Experiments

The experimental process was divided idtsteps:

2. Mutants were then generated for the method under testReferences

3. The generated test data were executed against all the

mutants and the execution traces were collected within [11 R- Abreu, P. Zoeteweij, and A.J.C. van Gemund. On the amuof
a coverage matrix; spectrum-based fault localization. Testing: Academic and Indus-

trial Conference, Practice and Industrial Conferen®¥indsor, UK,

. . . . 2007.
4. Finally, the Dynamic Basic Blocks (DBBs) associated September 200
with both sequences of test data were computed; [2] B. Baudry, F. Fleurey, and Y. Le Traon. Improving test ssifor ef-
ficient fault localization. IfProceedings of International Conference
This experimental process exploited two existing tools: on Software Engineeringages 20-28, Shanghai, China, May 2006.

MuJava [22] was used to generate a set of standard mutants(sj wm. carlsson, G. Ottoson, and B. Carlson. An open—endété fifo-
and execution traces were collected thanks to the BUGDEL main constraint solver. IRroceedings of the International Sympo-

tool [19]. Finally, we implemented a predicate that com- sium on Programming Languages: Implementations LogicsRane
. . . grams LNCS, pages 191-206, Soupthampton, UK, September 1997.
putes DBBs associated with each test suite. Springer.

[4] R.A. DeMillo and J.A. Offutt. Constraint-based autoncatest data
generation.|EEE Transaction on Software Engineerjriy (9):900—
910, September 1991.

5.2 Experimental results

Triyp was used to .Serve as Ol.Jr candidate program. [5] R.A. DeMillo and J.A. Offutt. Experimental results fronm auto-
GENETTA and our RT implementation generated two se- matic test case generataxCM Transactions on Software Engineer-

guences ofl00 test data in order to defined the coverage ing and Methodology?2(2):109-127, April 1993.

Number of Dynamic Basic
Blocks

B OTGenelta

B DTRandom
Testing

f&%el«@i@@ﬁféo@“@e@@o@“@@%&@@‘%‘{ﬁﬁ "@&0@&@@(@}@ 0@&“%‘&@&“@“& o&@ @@@‘9 %@@ & 900_@ "
@@@@@@@@@v@ PRSI SRSRSI R S R S R SRSI R R R SR SRS
Figure 2. Comparison of the number of dynamic basic blocks for a Genetta and a Random Testing
test suite

[6] A.Denise, M.-C. Gaudel, and S.-D. Gouraud. A generic roétfor
statistical testing. IrProceedings of the International Symposium
on Software Reliability Engineeringages 25-34, St-Malo, France,
November 2004. IEEE.

J.W. Duran and S. Ntafos. An evaluation of random testiHgEE
Transaction on Software Engineerintd(4):438-444, July 1984.

P. Godefroid, N. Klarlund, and K. Sen. Dart: Directed@utted ran-
dom testing. IfProceedings of the Conference on Programming Lan-
guage Design and Implementatigrages 213—-223, Chicago, USA,
June 2005. ACM.

[9] A. Gotlieb, B. Botella, and M. Rueher. Automatic test dgemnera-
tion using constraint solving techniques.Rroceedings of the Inter-
national Symposium on Software Testing and Anglysiges 53-62,
Clearwater Beach, USA, March 1998.

A. Gotlieb and M. Petit. Constraint reasoning in patfented ran-
dom testing. IProceedings of the International Computer Software
and Applications Conferenc&urku, Finland, July 2008.

P. Van Hentenryck, V. Saraswat, and Y. Deville. Desigmplemen-
tation, and evaluation of the constraint language cc(fdychnical
Report CS-93-02, Brown University, 1993.

J.A. Jones, M.J. Harrold, and J. T. Stasko. Visualmabf test in-
formation to assist fault localization. IRroceedings of the Inter-
national Conference on Software Engineeripgges 467-477, Or-
lando, USA, May 2002.

P. L' Ecuyer. Random Number Generation, Chapter 2 of Hand-
book of Computational Statistics: Concepts and Meth@&jwsinger-
Verlag, 2004.

J.D. Musa. Operational profiles in software-relicigiengineering.
IEEE Software10(2):14-32, March 1993.

G. J. Myers. The Art of Software TestingJohn Wiley, New York,
1979.

M. Petit and A. Gotlieb. Boosting probabilistic choioperators. In
Proceedings of the International Conference on Princiled Prat-
ice of Constraint Programmind-NCS, pages 559-573, Providence,
USA, September 2007.

(7]
(8]

(20]

(11]

(12]

(13]

(14]
(15]

(16]

[17] M. Petit and A. Gotlieb. Uniform selection of feasiblaths as a
stochastic constraint problem. Rroceedings of the International
Conference on Quality SoftwaréEEE, pages 280- 285, Portland,
USA, October 2007.

P. Thevenod-Fosse and H. Waeselynck. An investigation of sitatis
cal software testing.Software Testing, Verification and Reliability
1(2):5-25, July 1991.

Y. Usui and S. Chiba. Bugdel: An aspect-oriented delnmgys-
tem. InProceedings of Asia-Pacific Software Engineering Confer-
ence pages 790-795, Taipei, Taiwan, December 2005.

(18]

(19]

[20] N. Williams, B. Marre, P. Mouy, and M. Roger. Pathcrawl@uto-
matic generation of path tests by combining static and dynanak a
ysis. InProceedings of the European Dependable Computing Con-

ference pages 281-292, Budapest, Hungary, April 2005. Springer.

Y. Yu, J.A. Jones, and M.J. Harrold. An empirical studylu# effects
of test-suite reduction on fault localization. Rroceedings of the
International Conference on Software Engineeripgges 201-210,
Leipzig, Germany, May 2008.

M. Yu-Seng, J.A. Offut, and R. Kwon. Mujava : An automated
class mutation systemSoftware Testing, Verification and Reliabil-
ity, 15(2):97-133, June 2005.

[21]

(22]

