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Carrots for dessert

Carsten Lunde Petersen and Pascale Roesch

December 23, 2010

Abstract

We formulate and prove a precise statement of asymptotic shrinking
of “Carrot-fields” around the Mandelbrot set M. This phenomenom had
been suggested in the founder text “On polynomial-like mappings” [DH2].
This is helpful for understanding how the copies of M sit in the bifurca-
tions loci of families of rational maps.

Introduction

For a general analytic family of rational maps (ft)t∈X , the bifurcation locus, is
the set of parameters t ∈ X such that the Julia set does not move continuously
(in the Hausdorff topology) over any neighborhood of t. For instance, the bi-
furcation locus of the quadratic family (Qc(z) = z2 + c)c∈C is the boundary
of the Mandelbrot set M (i.e. M \ int(M)), where M is defined as the set of
parameters c ∈ C such that the Julia set J(Qc) is connected (see Figure 1).

Figure 1: The Mandelbrot set.

McMullen discovered in [McM] the following universality property of M:
the boundaries of small Mandelbrot sets are dense in the bifurcation locus of
any non trivial holomorphic family of rational maps. A small Mandelbrot set
(or a copy of M) is the image of M by a homeomorphism h that preserves
the dynamics: some restriction of an iterate of h(c) and Qc are topologically
conjugated on their Julia sets. This result of McMullen motivates the study of
how those copies are embedded in the bifurcation locus of a general family.
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Figure 2: The picture 16 of “carrots for dessert” in [DH2], carrots are in orange.

In their pioneering paper “ On polynomial-like mappings” [DH2], Douady
and Hubbard exhibited for the first time such an image of M interlocked in
the bifurcation locus of a particular family of rational maps (see Figure 2).
In the paper, they developed the theory of what they called “polynomial-like
mappings”. This theory allows to recognise copies of M in the parameter space
of analytic families of rational maps. Moreover, they suggest that the copies of
M come with some additional structure. Namely, on their particular example,
they observe on the picture (Figure 16 of section “Carrots for dessert” of [DH2])
that there are connected components of the complement of the Bifurcation locus
which are attached to the tips of the copy and that their diameter tends to 0
(see Figure 2). Note that those components are hyperbolic components and that
it is not known, even for the quadratic family, that the diameter of hyperbolic
components tends to 0. Douady and Hubbard called them “carrots”. They also
give a notion of carrot fields in the setting of polynomial-like mappings.

In the present paper, we give a reformulation of Douady-Hubbard definition
of “carrots” and of “carrot fields” around M. We prove in Theorem 1 a general
statement concerning the asymptotic shrinking of “Carrot-fields” around M.

Figure 3: A Mandelbrot copy in M.

We give in Theorem 3 the simplest possible application: namely to the copies
of M inside M (see Figure 3). We prove that , if M0 is a copy of M in M, only
finitely many connected components of M\M0 have diameter greater than some
ε > 0. For proving this we show that any component of M\M0 can be included
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inside a carrot. By the way, we prove that Theorem 1 is a necessary condition
for the Mandelbrot set to be locally connected (the famous MLC conjecture).

Theorem 1 provides a tool that can be applied to lots of holomorphic fami-
lies. For instance, in a forthcomming paper [PR3], to the case of the parabolic
Mandelbrot set.

The proof uses two fundamental tools : the generalized Yoccoz-Levin in-
equality and the combination of two kind of puzzles in the parameter plane
(Yoccoz puzzle together with the puzzle defined by the carrots).

1 Statement and results

• Carrots for Q0 : z 7→ z2.

Let z1, z2 be two points of H+ = {z ∈ C | <e(z) > 0} such that the euclidean
closed triangle ∆ supported by 0, z1, z2 is disjoint from ∆ + 2iπ. Then, the
carrot ∆0 = exp(∆) is homeomorphic to ∆. For any n ∈ N, any p ∈ N∗ with
2n ∧ p = 1, we can consider the carrot ∆p/2n which is the connected component
of Q−n

0 (∆0) containing the point e2iπp/2n

of the unit circle S1. The carrots are
all homeomorphic images of ∆.

• Carrots for M.

Douady and Hubbard gave in [DH1] a dynamical parameterization of the com-
plement of M denoted by Φ : C \ M → C \ D which is the conformal rep-
resentation tangent to identity at ∞. It has the property that its inverse
Ψ = Φ−1 admits a limit γ(p/q) on every ray of rational angle p/q (i.e. γ(p/q) =
limr→1+ Ψ(re2iπp/q)) and more over in any Stolz angle based at e2iπp/q . There-
fore one can take the image Ψ(∆p/2n) which is a compact set in C.

The dyadic carrot field around M generated by ∆ is the union of all the
“carrots” ∆M

p/2n := Ψ(∆p/2n) where p/2n ∈ Q. A first remark is that ∆M
p/2n is

homeomorphic to ∆. With this terminology the Theorem of shrinking of dyadic
carrots of M is

Theorem 1. For any dyadic carrot field ∆ of M

lim
n→∞

diam(∆M
p/2n) = 0.

• Corollary for a copy M0 of M.

Let M0 be a copy of M and denote by χM0 the homeomorphim from M0 to M.
The tips γ0(p/2n) of M0 are the images of the tips γ(p/2n) of M by χ−1

M0
. The

tips of M correspond to the limit γ(p/2n) of the map Ψ at the point e2iπp/2n

in
S1. Denote by ∆M0

p/2n the connected component of M \M0 containing the tip
γ0(p/2n) in its closure and disjoint from M0.
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Theorem 2 (Douady-Hubbard, Yoccoz). For any copy M0 of M in M :

M = M0 ∪
⋃
n≥0

⋃
p/2n∈Q

∆M0
p/2n .

The Shrinking decorations Theorem for strict copies M0 of M in M can
then be stated as

Theorem 3. For any strict copy M0 of M in M

lim
n→∞

diam(∆M0
p/2n) = 0.

The two theorems Theorem 1 and Theorem 3 have very similar proofs, the
proof of the first being slighly more complicated. We shall detail the proof of
the first and sketch the difference to the proof of the second.

Dzmitry Dudko presents a different and independent proof of the Shrinking
decorations Theorem for strict copies M ′ of M in M in [Du]. His statement
includes more generally strict copies of the Multibrot set inside the Multibrot
set of the same degree. The proof we give here would also easily extend to the
Multibrot case. In a forthcomming paper [PR4], we shall treat the more general
case of Mandelbrot-like families.

2 Framework

2.1 Independence on ∆.

The degenerate case where the triangle ∆ is defined by z1 = z2 > 0 is in fact the
only one we need to consider. Let us call the carrot a stick when the triangle is
degenerate. We shall prove the following :

Theorem 4. For the dyadic stick field of M generated ∆ = [0, 1]

lim
n→∞

diam(∆M
p/2n) = 0.

Lemma 5. Theorem 4 implies Theorem 1.

Proof. We will prove in fact that the result is independent of the non trivial
triangle chosen. Let ∆1 and ∆2 be any two possibly degenerate triangles in
H+ ∪ {0}. Then there exists δ > 0 such that ∆1r{0} is contained in a hyper-
bolic δ-neighbourhood of ∆2r{0} in H+ and vice versa. As exp : H+ −→ CrD,
Q0 : CrD −→ CrD and Φ : CrM −→ CrD are local hyperbolic isometries the
same statement holds with the same δ for each ∆jM

p/2n , j = 1, 2. Thus, by ele-
mentary estimates on hyberbolic metrics, there exists k = k(δ) > 1 such that
for any reduced θ = p/2n

1
k
≤ diam(∆1M

θ )
diam(∆2M

θ )
,≤ k
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where diam(·) denotes euclidean diameter.
This follows from the following inequality (see [Po]) where K ⊂ Ĉ is a

compact set and BH denotes the ball for the hyperbolic metric in Ĉ \K:

diam(BH(z, d)) ≤ C(d)dist(z,K).

Indeed, if D is the diameter of ∆1M
θ , then dist(z,K) ≤ D for z ∈ ∆1M

θ and
there exists z′ ∈ ∆2M

θ such that z ∈ BH(z′, d), do that |z − z′| ≤ DC(d).
Hence diam∆2M

θ ≤ (C(d) + 1)D. Computing the reverse inequality yields the
comparison.

To prove Theorem 1 it suffices to consider a particular stick field, say the
field for z1 = z2 = 1, which is Theorem 4.

The choice of this particular degenerate stick field allows to avoid discussions
on the position of the stick (or carrot) with respect to the parameter rays (see
section 2.4.1).

2.2 Argument on the toy exemple

One of the main argument in the proof will be that for any strict copy M ′ of
M in M the stick field defined by ∆M

p/2n = Ψ(∆p/2n) does not touch M ′. Thus
we can put any stick ∆M

p/2n in a annulus that is disjoint from M ′ of modulus
bounded from below.

We can visualize this argument first on the trivial toy example. We re-
place ∆0 that was define by the interval [0, 1] simply by the compact set T0 =
exp([1/2, 1]). This completely trivialises the problem by considerations on the
comparison of hyperbolic and euclidean distance similar to above. In this sim-
pler case T0 has finite hyperbolic diameter diam and moreover this bound is an
upper bound on the hyperbolic diameter of any of the preimages Tp/2n . Hence
the euclidean diameter of any TM

p/2n is bounded uniformly from above by a uni-
versal constant k = k(diam) times the euclidean distance between TM

p/2n and
M. Since the later tends to zero uniformly as n→∞ we have in the toy case

lim
n→∞

diam(Tp/2n) = 0.

With this in mind let us proceed to the proof of Theorem 1. Then as
mentioned above Theorem 3 will follow by using the same proof.

2.3 Proof of Theorem 1.

We prove the following result :

Proposition 6. For the dyadic stick field of M generated by ∆ = [0, 1], let
{∆i = ∆M

pi/2ri}i∈N be any sequence of sticks, with ri+1 > ri and with roots ci
tending to c∞ then

diam(∆i) −→
i→∞

0.
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Remark 7. Theorem 1 is an easy corollary of this proposition by compactness
of the Mandelbrot set. (The details are left to the reader.)

Sketch of the Proof of Proposition 6: Note that necessarily c∞ ∈ ∂M.

1. First of all, the Yoccoz-Levin Parameter inequality (Theorem 15) implies
that if the limit point c∞ belongs to the main cardioid then the diameter
of the carrots has to tend to 0. Therefore we can assume in the following
that the limit point c∞ belongs to some limb LH0

p/q of the main cardioid
H0 of M.

2. Secondly we apply Yoccoz Parameter Puzzle Theorem (Theorem 19).
There exists a non decreasing and non eventually constant sub-sequence
ni such that for i ≥ i0 the carrots ∆i ⊂ Pni

(c∞) (the Parameter Puzzle
Piece). Hence either the diameter tends to 0 or the limiting parameter c∞
is renormalizable, that is c∞ ∈M ′ for some first renormalization copy M ′

of M in LH0
p/q, of period k where q ≤ k.

3. The key point in the proof of Proposition 6 is that all of the dyadic carrots
∆M

p/2n are disjoint from M ′, because their root points Ψ(p/2n) are disjoint
from M ′.

Then we can wrap each TM
p/2n in some annulus. We shall use the fact that

if TM
p/2n ⊂ V ′ ⊂ V ⊂ U , with U a hyperbolic domain and mod(VrV ′) ≥

δ > 0, then the hyperbolic diameter of TM
p/2n in U satisfies diamU (TM

p/2n) ≤
d(δ). Therefore, if TM

p/2n tends toM ′, it follows that the euclidean diameter
has to go to zero.

4. To obtain these annuli we shall set the dynamical counter part. There we
obtain annuli that are univalent preimage of some annulus that admits
a holomorphic motion in a large domain. We shall then use the obser-
vation by Shishikura, that holomorphic motions can be used to transfer
bounds for (locally) persistent annuli in dynamical space to bounds for
corresponding annuli in parameter space (see [R]).

5. We shall follow slightly different paths according to wether M ′ is a prim-
itive copy or the satelite copy Mp/q with root on the cardioid. We start
with the primitive case and afterwards indicate the changes which make
the proof in the satelite case.

2.4 The set-up

Before to start, we recall some classical facts from [DH1] (see also [Mi]) that
will be used at different places of the paper.
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2.4.1 Rays

The polynomialQc is conjugated to z2 near∞. The conjugacy φc that is tangent
to identity at infinity is called the Böttcher-coordinate of Qc at ∞. It has the
property that

Φ(c) = φc(c).

We shall use also the Green’s functions for M and Kc = {z | Qn
c (z)is bounded},

i.e. the subharmonic functions gM(c) = log+ |φc(c)| and

gc(z) = lim
n→∞

1
2n

log+ |Qn
c (z)|.

Moreover we shall use the notation EM(h) and Ec(h) for the equipotentials for
gM and gc of level h ≥ 0. Similarly we shall use the notation FM(h) and F c(h)
for theclosed filled equipotentials of level or height h:

FM(h) = {c | gM(c) ≤ h}, F c(h) = {z | gc(z) ≤ h}.

The external ray of argument θ for M or Kc is the field line of gM or gc, which
is asymptotic to the halfline exp(t+ i2πθ) at ∞. By parameter ray of angle θ we
mean the external ray for M, which is simply the image RM

θ = Ψ(]1,∞[e2iπθ).
The dynamical ray can also be defined as Rc

θ = φ−1
c (]1,∞[e2iπθ) when the Julia

set is connected, else this curve might be broken on the preimages of the critical
point.

2.4.2 Copies of M

Definition 8. We say that f : U → U ′ is quadratic-like if f is a proper holomor-
phic map between discs U,U ′ such that U ⊂ U ′. The filled Julia set associated is
Kf = ∩f−n(U). A map g is said to be l-renormalizable if gl admits a restriction
which is quadratic-like with connected filled Julia set.

Definition 9. Two quadratic-like maps f and g are said hybrid equivalent if
there is a quasi-conformal conjugacy φ between f and g defined on a neighbor-
hood of their respective filled Julia sets such that ∂φ = 0 on K(f).

Theorem 10. Every quadratic-like map f is hybrid equivalent to a polynomial
of the same degree. When K(f) is connected, the polynomial g is unique up to
affine conjugation.

Definition 11. A copy M0 of the Mandelbrot set M, is the image of M by a
homeomorphism h that preserves the dynamics in the following sense. For the
map h(c) = Qc′ , there exists an iterate k minimal and a restriction of Qk

c′ to an
open disk containing 0 which is quadratic-like and hybrid equivalent to Qc. The
minimal k above is called the period of the copy.
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2.4.3 Wakes of H

We denote by H0 the main cardioid in the Mandelbrot set. It corresponds to
the set of parameters c such that Qc has an attracting fixed point. Its closure
is parameterized by the multiplier λa at the non repelling fixed point. At each
λa(e2iπp/q) with p∧ q = 1, there are two external parameter rays RM

η
p/q
±

landing.

We call p/q-wake of H0 the region WH0
p/q bounded by these two rays and disjoint

from H0. The part of M in WH0
p/q is usually called p/q-Limb: LH0

p/q = M∩WH0
p/q.

Now consider any hyperbolic component H of M. It can be seen as the
principal hyperbolic component of a copy M ′ of M. Namely, there exists a
dynamical homeomorphism denoted χH or χM ′ : M ′ → M called the Douady-
Hubbard straightening map (for a precise definition see [DH2, Chap. II, l-4])
that sends H to H0. Note that the period of the copy is the period of H namely
the period of the attracting cycle in H. One can defined similarly for H a
parameterization by the multiplier of the cycle (it can just be λa ◦ χH). For
each p/q reduced rational we denote by p/q-wake of H the region WH

p/q bounded
by the two parameter rays co-landing at λH(p/q) and avoiding H.

The root of H (or root of M ′) is the parameter λH(0) of multiplier 1. Let
θ± be the arguments of the pair of external rays co-landing at the root of
H. We denote by tuning interval for M ′ (or equivalently for H), the interval
I(M ′) = I(H) = [θ−, θ+].

2.4.4 Wake of M ′

Let M ′ be a copy of M in M with tuning interval I. Let k be the period of
M ′, or equivalently of H, the central hyperbolic component of M ′ (i.e. the
period of the attracting cycle in H). Let θ̂+ < θ̂− be the points in I such that
each of the subintervals I0 = [θ−, θ̂+] and I1 = [θ̂−, θ+] map diffeomorphically
onto I under σk, where σ(θ) = 2θ mod 1. Let IM ′

denote the corresponding
σk-invariant Cantor set and let κ = κM ′ : IM ′ −→ Σ2 denote the conjugacy of
σk : IM ′ −→ IM ′

to the shift on Σ2 = {0, 1}N with κ(θ−) = 0 and κ(θ+) = 1.

Figure 4: Wakes of M ′ copy of M
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Then the pair of rays with arguments θ̂± coland at the principal tip c′1/2 =
χ−1

M ′(Ψ(1/2)) of M ′. The sector W ′
1/2 bounded by these rays and disjoint from

M ′ is called the principal wake of M ′.
More generally for p odd with binary expansion p = ε1 . . . εn, εn 6= 0 the

dyadic number p/2n has two binary expansions 0.ε1 . . . εn0 and 0.ε1 . . . εn−101.
According to the Douady tuning algorithm θ−p/2n = κ−1(ε1 . . . εn0) and θ+p/2n =

κ−1(ε1 . . . εn−101) are the two endpoints of a complementary interval of IM ′
.

The corresponding external rays of M co-land at the relatively dyadic tip c′p/2n =

χ−1
M ′(Ψ(p/2n)) of M ′. The p/2n-wake WM ′

p/2n is the sector bounded by these rays
and disjoint from M ′. Moreover, for any parameter c ∈ M ′ the corresponding
dynamical rays co-land on a point, which is preperiodic to the relative β fixed
point (the non-attracting fixed point of the renomalized map).

Denote by W ′
0 the sector bounded by the rays of arguments θ± and not

containing M ′. Note that for each p/2n the root c′p/2n of the corresponding
wake is the only point of intersection between M ′ and (the closure of the) wake.
Note also that any two wakes are disjoint. Note that with notation of Theorem 2
the “limbs” ∆M ′

p/2n coincide with the part of M in the wake: WM ′

p/2n ∩M.

3 Yoccoz-Levin inequality

For the version of Proposition 6 leading to a proof of Theorem 3 the simpler
Yoccoz (rather than Levin-Yoccoz) parameter space inequality suffices, but for
Proposition 6 we need the extension due to Levin.

3.1 Dynamical Inequality

Theorem 12 (The Yoccoz-Levin Dynamical Inequality). Let H be any hyper-
bolic component of M of period k. Let p/q be any non zero reduced rational
and let WH

p/q denote the relative p/q wake of H, bounded by parameter rays with
arguments 0 < η− < η+ < 1. For any c ∈ WH

p/q, the kq periodic rays Rc
η±

land at a common point α′, which is a repelling k-periodic point. Thus α′ has
combinatorial rotation number p/q. Let λ denote the multiplier of α′. It admits
a logarithm Λ such that:

|Λ− p

q
2πi| ≤ 2k log 2 cos θ

q

π

ω(c)
,

where θ ∈ ] − π/2, π/2[ is the argument of Λ − 2πip
q and ω(c) is the angle of

vision of the interval i2π[η−, η+] from Log Φ(c) ∈ {z = x+ iy|0 < y < 2π}.

Proof. Levin proved the fixed point case k = 1 in [L, TH. 5.1], the general case
is similar. For completeness we give a proof in the Appendix, page 25.

We shall use this Theorem when c belongs to M∪∆M, so we need to estimate
the quantity ω(c) for c ∈ ∆M. For this we will estimates the largest potential
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of ∆M, which corresponds to the dyadic parameter rays of lowest denominator
entering the wake.

Proposition 13. Let H be a period k hyperbolic component of M with tuning
interval I(H) = [θ−, θ+] and let p′/2m′ ∈ I(H), 1 ≤ m′ < k be the dyadic
with the smallest denominator. For any irreducible rational p/q, let 0 < η− <
η+ < 1 be the arguments of the co-landing parameter rays bounding WH

p/q and
let p/2m ∈ [η−, η+] be the dyadic with the smallest denominator. We have

2−kq ≤ η+ − η− and m = m′ + k(q − 2).

Proof. As η− < η+ are periodic of exact period kq, we have η+−η− ≥ 1/(2kq−
1) > 2−kq. For the second inequality let M ′ denote the copy of M with H as
central hyperbolic component. Let θ− < θ+ ∈ IM ′

denote the arguments of the
parameter rays colanding at the root of M ′. Let I = [θ−, θ+] ⊃ I0, I1, IM ′ ⊂
I0∪I1 and κ : IM ′ −→ Σ2 be as above and write π for the binary projection of Σ2

onto T and set κ̂ = π ◦κ. Then τ± = κ̂(η±) are the arguments of the parameter
rays co-landing at the root of the wake WH0

p/q. It is well known that the intervals
σj([τ−, τ+]), 0 ≤ j < q are interiorly disjoint and injective images. Moreover
0 ∈ σ(q−1)([τ−, τ+]) and thus 1/2 ∈ σ(q−2)([τ−, τ+]). Consequently σk(q−2) maps
[η−, η+] injectively into I. Morever I ⊃ σk(q−2)([η−, η+]) ⊃ (Ir(I0 ∪ I1)). Let
p′/2m′ ∈ I be the dyadic with smallest denominator then p′/2m′ ∈ Ir(I0 ∪ I1)
and 1 ≤ m′ ≤ k. Thus m = m′ + k(q − 2).

Corollary 14. For any c ∈ WH
p/q ∩ (M ∪ ∆M) the angle of vision ω(c) of

i2π[η−, η+] from Log(Φ(c)) is bounded from below by

arctan(2π2m′−2k).

Proof. The angle is bounded from below by the angle obtained, when c belongs
to one of the two bounding rays of WH

p/q and on the largest potential of ∆M.
This largest potential is obtained when gM(c) = 1/2m with p/2m the angle of the
parameter ray entering the Wake with smallest denominator, hence log |Φ(c)| ≤
1/2m.

arctan(2π(η+ − η−)/ log |Φ(c)|) ≥ arctan(2π2−kq/2−(m′+k(q−2)))

= arctan(2π2m′−2k).

3.2 Parameter Inequality

Theorem 15 (The Yoccoz-Levin Parameter Inequality). For any hyperbolic
component H of M there exists a constant C = CH > 0 such that for any
relative p/q wake WH

p/q

diam(WH
p/q ∩ (M ∪∆M)) ≤ C

q
.
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Proof. For h = 0 i.e. for the limbs M ∩ WH
p/q, this is essentially proved by

Hubbard in [H]. Note that for primitive hyperbolic components he obtains
an inequality with C/

√
q instead of C/q. Whereas the bounds actually gives

C/q2 assymptotically when p/q tend to 0 or 1. For the extension we use the
Levin-Yoccoz dynamical inequality above instead of the Yoccoz inequality. By
Corollary 14 the angle ω(c) for c ∈ WH

p/q ∩ (M ∪ ∆M) is bounded from below

by the angle ωH = arctan(2π2m′−2k). The argument is then identical to the
argument in Hubbard’s paper [H], except using the Levin-Yoccoz dynamical
inequality with the fixed value ωH . Thus asymptotically for q large we can take

CH =
π

ωH
CYoccoz

H

where CYoccoz
H is the corresponding assymptotic value for Yoccoz parameter

inequality.

Corollary 16. We can assume that the sequence ∆k of carrots belong to WH0
p/q

for some fixed p/q.

Proof. Let us first apply the Yoccoz-Levin parameter inequality. This gives a
constant C = CH0 > 0 such that for all r/s

diam(WH0
r/s ∩ (M ∪∆M)) ≤ C

s
. (1)

The sequence {∆k} of carrots is included in a sequence of Wakes WH0
pk/qk

and

the roots belongs to the corresponding limbs LH0
pk/qk

. If qk tends to ∞ then
the diameter of ∆k tends to 0 by (1). On the other hand if the sequence
{pk/qk} contains a bounded subsequence. Then it contains a constant subse-
quence pkm

/qkm
= p/q. Hence the limit point c∞ ∈ LH0

p/q. For any Q the limb

LH0
p/q is strongly separated from any of the limbs LH0

p′/q′ , p/q 6= p′/q′ with q′ ≤ Q.
Hence either pk/qk = p/q for sufficiently large k or for the remaining elements
in the sequence qk tend to infinity, and thus diam(∆k) tend to zero for these k.
In both cases we can suppose pk/qk = p/q for some p/q ∈]0, 1[.

4 Yoccoz Puzzle and holomorphic motions

4.1 Definition of Yoccoz Puzzles

For c ∈ WH0
p/q the q cycle of external rays with arguments θ0 < · · · < θq−1 land

together at the fixed point αc, where Θ = {θ0, · · · , θq−1} is the unique p/q-cycle
under angle doubling. They thus assign the combinatorial rotation number p/q
to αc.

Definition 17. The p/q-“model” graphs are

G0 = {z | |z| = e} ∪
⋃

0≤j≤q−1

[1, e]e2iπθj , Gn = Q−n
0 (G0).
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For c ∈ LH0
p/q, the p/q-Yoccoz graphs are Yc

0 = φ−1
c (G0), Yc

n = φ−1
c (Gn) =

Q−n
c (Yc

0).
The puzzle pieces of level n are the closures of the bounded connected com-

ponents of C \ Yc
n, where Yc

n is the level n Yoccoz graph.

Definition 18. The p/q-Yoccoz parameter graphs are Y0 = Ψ(G0) and Yn =
Ψ(Gn). The parameter puzzle pieces of level n are the closures of the bounded
connected components of C\Yn, where Yn is the level n Yoccoz parameter graph.

The level n parameter puzzle piece(s) containing c is the closed subset of C
bounded by the closure of Ψ ◦ φc(∂P c

n), where P c
n denotes the (or possibly any

of the q) level n puzzle piece(s) in the dynamical plane containing c. (If c, c′

belong to the same level n parameter puzzle piece Pn, then φ−1
c′ ◦ φc induces

a homemorphism between the Yoccoz graphs for c and c′ at least up to and
including level n.)

4.2 Yoccoz Theorem and its application

Theorem 19 (Yoccoz). For any p/q and any c ∈ LH0
p/q there are two possi-

bilities; either Qc is not renormalizable and ∩Pn = {c} for any nest (Pn) of
parameter puzzle pieces containing c, or c is at least once renormalizable, say
with first renormalization period k and there is a first level n such that for the
dynamical puzzle pieces Int(P c

n) =: U and Int(P c
n+k) =: U ′, Qk

c : U −→ U ′ is
quadratic like with connected filled-in Julia set (fattening U and U ′ if k = q.)

For a proof see [H].

We provide a rough proof of Theorem 2 using the puzzles, the reader shall
easily supply the details:

Theorem (Douady-Hubbard, Yoccoz). For any copy M0 of M in M :

M = M0 ∪
⋃
n≥0

⋃
p/2n∈Q

∆M0
p/2n .

Proof. The copy M0 of M belongs to the limb LH0
p′/q′ of the central hyperbolic

component H0 of M, for some p′, q′ ∈ N with (p′, q′) = 1. Let c ∈ M0 be
the center of M0, i.e. Qk

c (c) = c, where k is the period of M0. Let Pn,
n ∈ N be the level n (p′/q′)-Yoccoz puzzle piece containing the critical value c
of Qc and let Pn denote (p′/q′)-Parameter Yoccoz puzzle piece containing the
parameter c. Then for each n the map Ψ ◦ φc(z) restricted to ∂PnrJc extends
to a homeomorphism of ∂Pn onto ∂Pn preserving argument and potential. Also
for each n the closed puzzle piece Pn contains the ends from potential 2−n and
down of the external rays with arguments in IM0 . Hence the same holds for
the corresponding parameter rays and Pn. It follows that any other level n
parameter puzzle piece as well as MrLH0

p′/q′ is contained in one of the relatively

12



dyadic wakes W ′
p/2m of M0. The theorem then follows from Yoccoz parameter

puzzle theorem for renormalizable parameters, which states that

M0 =
⋂
n≥0

Pn.

Corollary 20. Either the diameter of the sequence ∆k tends to 0 or c∞ is in
a strict copy M ′ of M in M, i.e. that Qc∞ is renormalizable.

Proof. For any p/q the corresponding rotation orbit 0 < θ0 < . . . < θq−1 is
disjoint from the set of dyadic arguments. Thus for any p/q the graph defining
the associated p/q puzzle for LH0

p/q is disjoint from ∆M. Therefore, there exists
an increasing sequence nk such that for k ≥ k0 the carrots are in the nest of
puzzle pieces: ∆k ⊂ Pnk

(c∞) (the Parameter Puzzle Piece containing c∞).
Hence by Yoccoz Theorem 19 either the diameter tends to 0 or the limit-

ing parameter c∞ is renormalizable, that is c∞ ∈ M ′ for some period k first
renormalization copy M ′ of M in LH0

p/q, where q ≤ k.

For the rest of the proof, it is enough now to consider parameters
c∞ in a copy M′ of M.

Remark 21. The key point in the proof of Proposition 6 is that all of the
dyadic carrots ∆p/2n are disjoint from M ′, because their root points Ψ(p/2n)
are disjoint from M ′.

5 Dynamical Estimates

We make here the assumption that the limit point c∞ ∈ M ′ ⊂ LH0
p/q and that

M ′ is a primitive copy of M of period k. and will treat the satellite case later.
Let cb be the center of the hyperbolic component H ′

0 of period k of M′. We
first define, for this parameter cb, a slicing of some neighborhood of the Julia
set that allows to wrap the carrots in annuli. It will yields a lower bound on
the modulus of these annuli. Then we will deform this picture by holomorphic
motion on some neighborhood of M′, keeping the lower bound on the moduli.

5.1 Slicing of some part of the Julia set

Since M ′ ⊂ LH0
p/q, one can define a Yoccoz puzzle as in Definition 17. Then

Theorem 19 says that for c ∈ M ′ there is a first level n such that the puzzle
piece P c

n containing the critical value c defines a quadratic like map as Qk
c :

Int(P c
n+k) → Int(P c

n).
We give now some notations related to the puzzle structure, written for

c = cb :

13



• Let η− < η+ denote the (rational) arguments of the co-landing pair of
external rays for Qc, which are on the boundary of P = P c

n and which
separates c from 0. Then by Douady and Hubbard (see [DH1]) the pa-
rameter rays RM

η± co-land at some Misiurewicz point in M.

• Denote by γc
0 the set Rc

η− ∪Rc
η+
∩ F c(1) and let U c

0 denote the compo-
nent not containing 0 and which is bounded by γc

0 and a subarc of the
equipotential Ec(1).

• Let U c
1 denote the connected component of Q−k

c (U c
0 ) contained in P c

n+k.
It is a disk and fc := Qk

c : U c
1 → U c

0 is quadratic-like, with critical point
ωc satisfying fc(ωc) = c.

Ξ1
c

B c
0

E (1)c

δ1/2
c

δ c
0 γ

0
c

γ c
1

γ̂
1
c

Rc
η+^ ^Rc

θ+ Rc
θ− U c

0
Rc

η−

Rc
η+Ξ0

c
Rc

θ+Rc
θ−^

c
η−^R

c
0V

Ξ1
c^

U c
1

c
1V

cE (2   )−k

Figure 5: The disks U c
0 , U c

1 , and Ξ̂c
1. The set U c

0 is the disk insided Ec(1) and
to the left of γc

0. The set U c
1 is the disk inside Ec(2−k) and bounded to the

right and left by γc
1 and γ̂c

1 respectively. The arc δc
0 separates the two subdisks

V c
0 and Ξc

0 of U c
0 , V c

0 to the left and Ξc
0 to the right of δc

0. The subsets Ξ̂c
1, V

c
1

and Ξc
1 of U c

1 are to the left of δc
1/2, between δc

1/2 and δ0 and to the right of δ0
repsectively.

We give now some notations related to the copy M′, expressed for c = cb :

• Let θ± denote the arguments of the external rays of M co-landing at the
root c′0 of M ′.

• Let δc
0 denote the subarc of Rθ− ∪ {β′c} ∪ Rθ+ consisting of points with

potential up to and including 1, i.e. δc
0 = Rθ− ∪Rθ+ ∩ F c(1).

• Similarly let δc
1/2 denote the subarc of Rbθ− ∪Rbθ+

∩ F c(1).

14



• Let V c
0 be the connected component of U c

0rδc
0 containing ωc. Let Ξc

0

denote the other connected component. Define recursively V c
n = f−n

c (V c
0 )

and Ξc
n = f−n

c (Ξc
0)∩Ξc

0 (see also Fig. 5). The restriction fc : V c
n+1 −→ V c

n

is a 2 : 1 branched covering, whereas fc : Ξc
n+1 −→ Ξc

n is an isomorphism.

• Let γc
1 denote the extension to potential level 1 of Q−k

c (γc
0) ∩ ∂Ξc

0 and let
Bc

0 ⊂ Ξc
0 denote the quadrilateral bounded by γc

0, γ
c
1 and subarcs of Ec(1).

Define recursively the univalently iterated preinages Bc
n+1 = f−1

c (Bc
n)∩Ξc

n.

• For each n ≥ 1 let B̂c
n ⊂ Ξ̂c

n denote the “twin” of Bc
n, i.e. the connected

component of f−1
c (Bc

n−1) ∩ Ξ̂c
n.

• Let γ̂1 = Q−k
c (γc

0) ∩ ∂Ξ̂c
1 extended to equipotential level 3/4 and let Ωc

denote the open disk bounded by γ̂c
1 and the subarc of Ec(3/4) ∩ U c

0

connecting the endpoints of γ̂c
1.

• Let Dc ⊂ V c
0 , denote the disc bounded by δc

1/2 union the subarc of Ec(1)
connecting the endpoints of δc

1/2.

!c

Tc
2

"
c
0

1"
c

Bc
0cB1

^ cB1 B̂c
2

# c
1/2

$ c
1

^

$ c
1

$ c
0

Uc
1

Uc
0E (1)c cD

0
c#

Figure 6: The decomposition of the disk Dc, which is bounded by the equipo-
tential Ec(1) and the arc δc

1/2. The disk Ξc
0 is the subset of U c

0 to the right of

δc
0. The disk Ξ̂c

1 (not labelled) is the subset of U c
1 to the left of δc

1/2. The disc
Ωc is to the left of γ̂c

1 and inside the equipotential Ec(3/4) (not labelled).

Lemma 22. By construction each of the sets, for c = cb, Ωc and B̂c
n, n ≥ 1

are relatively compact in Dc. Moreover, there exists m = m(cb) > 0 such that

mod(DcrΩc) ≥ m, and ∀ n ≥ 1 mod(DcrB̂c
n) ≥ m
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so that
∀ n ≥ 1 mod(Ξc

0rBc
n) ≥ m.

Proof. The restriction fc : Ξ̂c
1 −→ Ξc

0 is biholomorphic so that for all n ≥ 1

mod(DcrB̂c
n+1) ≥ mod(Ξ̂c

1rB̂c
n+1) = mod(Ξc

0rBc
n)

≥ mod(Ξc
n−1rBc

n) = mod(Ξc
0rBc

1)

Thus we may define

m(c) = min{mod(DcrΩc),mod(DcrB̂c
1),mod(Ξc

0rBc
1)}.

5.2 Holomorphic motion of graphs

A holomorphic motion of a set X ⊂ C parameterized by D is a map H(λ, z)
from D×X to C that is holomorphic in λ ∈ D injective in z ∈ C and the identity
for λ0 = 0.

Douady and Hubbard proved (in [DH1]) that the closure R of an external
rays Rcb

t admits a holomorphic motion when t is enventually periodic and if the
orbit of R does not meet neither a critical point nor a parabolic point.

Definition 23. Let θ± denote the arguments of the external rays of M co-
landing at the root c′0 of M ′.

• Let Λ0, resp. Λ1, denote the parameter disk whose closure contains M ′ and
which is bounded by the segments of the rays RM

θ±
with potential up to and

including 2, resp 1, union a connecting subarc of the level 2 equipotential
EM(2), resp. EM(1).

• Denote by ΛP
0 , resp. ΛP

1 , the parameter disk which contains Λ0, resp. Λ1,
and which is bounded by a subarc of RM

η− ∪RM
η+

union a subarc of EM(2),
resp. EM(1).

We need the following result on M presumably due to Douady, Hubbard
and Lavaurs. This theorem is at least folklore. But because we do not have a
precise reference, we have for completeness provided a proof in the Appendix,
on page 27.

Theorem 24. Let 0 < t− < t+ < 1 be rationals for which the parameter rays
RM

t± coland at some point c0 ∈ M and let Wt± denote the parameter sector
bounded by RM

t− ∪ {c0} ∪ R
M
t+ and not containing the main cardioid H0. Then

we have the following properties:

• the forward orbits of t± do not enter the interval ]t−, t+[;

• for any c ∈ Wt± the clousre of the pair of dynamical rays Rc
t± move

homorphically with c;
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• they co-land at some repelling (pre)periodic point z(c) with Qk′+l
c (z(c)) =

Ql
c(z(c)), where l ≥ 0 is the common preperiod of t± and k′ > 0 divides

the common period k > 0 of σl(t±);

• the set Rc
t− ∪ {z(c)} ∪R

c
t+ bounds a sector W c containing c, but not 0.

Lemma 25. • For c ∈ ΛP
0 , the set γc

0 is an arc that moves holomorphically
(within ΛP

0 ). The component U c, not containing 0 and which is bounded
by γc

0 and a subarc of the equipotential Ec(1) is a disk whose boundary
moves holomorphically over ΛP

0 .

• Let U c
1 denote the connected components of Q−k

c (U c
0 ) containing (Rc

θ−
∪

Rc
θ+

) ∩ F c(2−k).

The restriction fc

fc := Qk
c : U c

1 −→ U c
0 (2)

is a degree two ramified covering.

For c ∈ ΛP
0 \ ΛP

1 , U c
1 is the union of two disks and fc is non ramified.

For c ∈ ΛP
1 , U c

1 is a disk whose boundary ∂U c
1 moves holomorphically.

Moreover fc is quadratic like with critical point ωc. The filled Julia set K ′
c

is connected, if and only if c ∈M ′.

Proof. By definition, γc
0 is the set Rc

η− ∪Rc
η+
∩ F c(1) and U c

0 denote the com-
ponent not containing 0. It follows from Theorem 24 that the dynamical rays
Rc

η± co-land for every c ∈ ΛP
0 and admits a holomorphic motion. Moreover by

stability, they separate 0, from c. The rest follows.

Notice that ΛP
1 is precisely the set of parameters for which c ∈ U c

0 , in fact
c ∈ ∂U c

0 if and only if c ∈ ∂ΛP
1 .

Lemma 26.

Ec(1)
⋃ k⋃

j=0

Q−j
c (Rc

θ− ∪ {β
′
c} ∪Rc

θ+
)

moves holomorphically with c ∈ Λ0.

Proof. Here we use Theorem 24. For any c ∈ Λ0 the dynamical rays Rc
θ±

co-land
at a repelling k-periodic point β′c and the rays Rcbθ± co-land at the Qk

c -preimage

coβ′c of β′c all of which moves holomorphically with c ∈ Λ0. Moreover the set

k−1⋃
j=0

Q−j
c (Rc

θ− ∪ {β
′
c} ∪Rc

θ+
)

does not enter the sector W c
θ−,θ+

bounded by the closure of the colanding pair
of rays Rc

θ−
and Rc

θ+
and containing c. Hence

Ec(1)
⋃ k⋃

j=0

Q−j
c (Rc

θ− ∪ {β
′
c} ∪Rc

θ+
)
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moves holomorphically with c ∈ Λ0.

Corollary 27. In particular, δc
0 := Rθ− ∪Rθ+ ∩F c(1) and δc

1/2 := Rbθ− ∪Rbθ+
∩

F c(1) move holomorphically in Λ0.

For c ∈ Λ0 the set ∂U c
1 does not admit a holomorphic motion. Thus,

Lemma 28. For c ∈ Λ0rΛ1, consider Ṽ c the disk included in U c
0 bounded by

δc
0 and δc

1/2. Then the subset of ∂U c
1 outside this disk moves holomorphically

with c ∈ Λ0.

Proof. Indeed, the only place where the boundary of ∂U c
0 does not admits a

holomorphic motion is when the parameter c crosses the equipotential E(1) in
the region bounded by δc

0. At this parameter, the equipotential of ∂U c
0 makes a

figure eight in the region bounded by δc
0 and δc

1/2.

Corollary 29. Let V c
0 be the connected component of U c

0 \ δc
0 containing δc

1
2
.

Then ∂V c
0 admits a holomorphic motion in Λ0. The preimage V c

1 = f−1
c (V c

0 ) is
a disk for c ∈ Λ1 whose boundary ∂V c

1 admits a holomorphic motion in Λ1.
For c ∈ Λ0 \ Λ1, the preimage V c

1 is the union of two disks.
Moroever, for c ∈ Λ0, fc : V c

1 → V c
0 is a degree 2 (maybe) ramified covering.

Proof. Since ωc is only defined for c ∈ Λ1, we have to use δc
1
2
∩ F c(1) here to

defined V c
0 . By the Lemma, the arcs δc

0, δ
c
1
2

move holomorphically in Λ0. The
part of the equipotential Ec(1) bounding V c

0 moves holomorphically in Λ0, and
its preimages moves holomrophically if c /∈ Ec(1), i.e. for c ∈ Λ1.

Note that for c ∈ Λ0 \ Λ1, the preimage V c
1 is the union of two disks. They

ly in the disk Ṽ c bounded by δc
0 and δc

1/2.

Lemma 30. Now for c ∈ Λ0 we can extend the definitions of V c
n , Ξc

n, Bc
n, B̂c

n,
Ξ̂c

n, since they are just pull back by fc of sets like U c
0 and V c

0 that are well defined
in Λ0 and whose boundary admit a holomorphic motion.

We recall here the definitions for c ∈ Λ0 that extends the one given for cb :

• Define recursively V c
n = f−n

c (V c
0 ), Ξc

0 := U c
0rV c

0 and Ξc
n = f−n

c (Ξc
0) ∩ Ξc

0

(see also Fig. 5).

Then the restriction fc : V c
n+1 −→ V c

n is a 2 : 1 branched covering whereas
fc : Ξc

n+1 −→ Ξc
n is an isomorphism.

• Let γc
1 denote the extension to potential level 1 of Q−k

c (γc
0) ∩ ∂Ξc

0 and let
Bc

0 ⊂ Ξc
0 denote the quadrilateral bounded by γc

0, γ
c
1 and subarcs of Ec(1).

Define recursively the univalently iterated preinages Bc
n+1 = f−1

c (Bc
n)∩Ξc

n.

• For each n ≥ 1 let Ξ̂c
n denote the “other” connected component of f−1

c (Ξc
n−1),

having a boundary arc in δc
1/2.
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• For each n ≥ 1 let B̂c
n ⊂ Ξ̂c

n denote the “twin” of Bc
n, i.e. the connected

component of f−1
c (Bc

n−1) ∩ Ξ̂c
n.

• Let γ̂1 = Q−k
c (γc

0) ∩ ∂Ξ̂c
1 extended to equipotential level 3/4 and let Ωc

denote the open disk bounded by γ̂c
1 and the subarc of Ec(3/4) ∩ U c

0

connecting the endpoints of γ̂c
1.

• Let Dc ⊂ V c
0 , denote the disc bounded by δc

1/2 union the subarc of Ec(1)
connecting the endpoints of δc

1/2.

Then it follows that

Lemma 31. The graph

Gc = ∂Dc ∪ ∂Ωc ∪
∞⋃

n=1

(∂Ξ̂c
n ∪ ∂B̂c

n) ∪
∞⋃

n=0

(∂Ξc
n ∪ ∂Bc

n) ∪ ∂U c
0

moves holomorphically with c ∈ Λ0

Proof. Note that Qn
c (Gc) does not meet the critical point 0 for any n ≥ 0

or c ∈ Λ0: When the parameter c ∈ Λ0 the critical value c does not belong
to Ξc

0. Hence the Böttcher-coordinate is defined and depends holomorphically
on c, on the dense subset (∂Ξc

0 ∪ ∂Bc
0)rKc of (∂Ξc

0 ∪ ∂Bc
0), so that the later

moves holomorphically with c. Secondly fc depends holomorphically on c and
its critical value c again still does not belong to Ξc

0. Hence the iterated univalent

preimages of (∂Ξc
0 ∪ ∂Bc

0) inside Ξc
0 and Ξ̂c

1 depend also holomorphically on c.
This takes care of

∞⋃
n=1

(∂Ξ̂c
n ∪ ∂B̂c

n) ∪
∞⋃

n=0

(∂Ξc
n ∪ ∂Bc

n).

Finally ∂Dc moves holomorphically with c, because δc
1/2 does and ∂Ωc moves

holomorphically with c, because γ̂c
1 does.

Corollary 32. There exists m = m(c) > 0 such that ∀ n ≥ 1

mod(DcrΩc) ≥ m, mod(DcrB̂c
n) ≥ m and mod(Ξc

0rBc
n) ≥ m.

Proof. It follows from the fact that these sets admit a holomorphic motion and
from Lemma 22.

5.3 Dynamical carrots

We define the relatively dyadic wakes W c
0 as the open set not containing c and

bounded by the closure of the rays Rc
θ±

and W c
1/2 = W cbθ+,bθ− as the open set

bounded by the closure of the rays Rcbθ± and disjoint from W c
0 . For any c ∈ Λ0

the filled-in Julia set K ′
c ⊂ Kc, defined above, coincides with the points in the
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filled-in Julia set of Kc, whose orbits never enters the relatively dyadic wakes
W c

0 and W c
1/2 (see (2)).

The key point in the proof of Proposition 6 is that if a carrot intersects
Λ0, then it is entirely contained in Λ0 and its dynamical counter part in the
dynamical planes of Qc is either contained in W c

1/2 or has a univalent forward
image, which is. In order to prove the theorem we shall wrap the dynamical
counter part of each dyadic carrot inside the relatively dyadic wake W c

1/2 in an
annulus in W c

1/2 moving holomorphically with c ∈ Λ0 and of modulus bounded
uniformly from below. We do this in the next subsection.

Let ∆c
p/2m denotes the dynamical filed of dyadic carrots. They are defined

as φ−1
c (∆p/2m), where we use for φ−1

c the maximal radial extension. (We can
then view the carrots ∆ of M as the set of parameters for which c belong to the
corresponding carrot ∆c of the Filled Julia set Kc.)

Lemma 33. The graph

Gc = ∂Dc ∪ ∂Ωc ∪
∞⋃

n=1

(∂Ξ̂c
n ∪ ∂B̂c

n) ∪
∞⋃

n=0

(∂Ξc
n ∪ ∂Bc

n) ∪ ∂U c
0

does not intersect any of the dynamical dyadic carrots ∆c
p/2m .

Proof. All such carrots are at dyadic angles and only ∆c
0 extends further than

potential 1/2.

Corollary 34. Such a carrot is thus wrapped by an annulus of modulus at least
m(c) > 0, contained in Dc and thus disjoint from K ′

c.

Proof. No dynamical plane dyadic carrot ∆c
p/2n intersects Gc. Hence any such

dyadic carrot in the relative dyadic wake W c
1/2 of the filled Julia set K ′

c for
fc : U c

1 −→ U c
0 is contained in one of the sets Ωc or B̂c

n for some n ≥ 1. It then
follows from Lemma 22.

6 Transfer to the parameter plane

We shall use an argument to transfer bounds on moduli of dynamical annuli
to bounds on moduli of corresponding parameter annuli. This argument was
pioneered by Shishikura (see also [R]).

We have fixed a base point namely cb ∈ Λ1 ⊂ Λ0 the center of the central
hyperbolic component of M ′. Note that on F (2) ⊃ Λ0 the Böttcher-coordinate
at ∞ defines a holomorphic motion of the set CrF cb(1) extending the Böttcher-
motion of Gcb . By Slodkowski’s extension theorem there exists a global holo-
morphic motion H : Λ0 × C −→ C over Λ0 with base point cb and extending
the Böttcher-motion of the graph Gcb union CrF cb(1), in particular we obtain
holomorphic motions of U cb

0 ⊃ Dcb . As usual for c ∈ Λ0 write Hc(·) = H(c, ·),
then each map Hc : C −→ C is a quasi-conformal homeomorphism with a dilata-
tion bounded uniformly above by log dΛ(c, cb), where dΛ(·, ·) denotes hyperbolic
distance in Λ0.
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Let δM ′

0 , δM ′

1/2 denote the parameter rays of the same angle as δc
0, δ

c
1/2 for

c ∈ M ′ Define similarly to Dc the parameter disk DM ′ ⊂ Λ1rM ′ as the
disc bounded by δM ′

1/2 union the subarc of EM(1) connecting the endpoints

of δM ′

1/2. Then DM ′
is relatively compact in Λ0. Let χ : Λ0 −→ C be the

map χ(c) = H−1
c (c). Then χ is locally quasi-regular with dilatation K(c)

bounded by log dΛ(c, cb). By construction the restriction χ : ∂DM ′

−→∂D
cb is a

homeomorphism. Hence the restriction χ : DM ′ −→ Dcb is the restriction of
a quasi-conformal homeomorphism with dilatation bounded by K = K1/2 =
max{log dΛ(c, cb)|c ∈ DM ′}.

Define ΩM ′
= χ−1(Ωcb) ⊂ DM ′

and B̂M ′

n = χ−1(B̂M ′

n ) ⊂ DM ′
, n ≥ 1. Then

any dyadic carrot ∆p/2n ⊂ WM ′

1/2 is contained in one of the disks ΩM ′
or B̂M ′

n

and is thus wrapped in an annulus with a modulus bounded from below by
K1/2 ·m(cb) according to Lemma 22.

Rename Dc =: Dc
1/2, D

M ′
=: DM ′

1/2 and χ =: χ1/2. We have proved that

any dyadic carrot ∆p/2n in the relative 1/2 wake WM ′

1/2 of M ′ is wrapped in
an annulus of modulus uniformly bounded from below and contained in the
disk DM ′

1/2, which is disjoint from M ′. Moreover the annuli are q-c images of
corresponding annuli in the dynamical plane of Qcb

. We shall prove by induction
the similar statements for any other relative dyadic wake WM ′

r/2s of M ′. The only
difference is that the bounds on the dilatation of the q-c homeomorphisms χr/2s

and hence on the moduli of annuli in the WM ′

r/2s wake depends on r/2s. As a
remedy for this we shall apply the Levin-Yoccoz parameter inequality once more.
Here follow the details.

Recall that V c
0 is the connected component of U c

0rδc
0 containing the critical

point ωc and V c
n = f−n

c (V c
0 ). We shall need also the extension Ṽ c

1 = V c
0 rDc of

V c
1 and its iterated preimages Ṽ c

n = f
−(n−1)
c (Ṽ c

1 ). Define parameter disks Λs,
s > 1 by

Λs = {c|c ∈ Ṽ c
s−1}.

Evidently Λs ⊃ Λs+1. Note that the condition c ∈ Ṽ c
s is equivalent to fs

c (ωc) ∈
Ṽ c

1 . Rename Gc =: Gc
1 and define recursively , Gc

s+1 = f−1
c (Gc

s) ∪ Gc
1 for

s ≥ 1. Then as noted above Gc
1 moves holomorphically in Λ0 ⊃ Λ1 and we

shall prove as part of the induction on s ≥ 2, that for c ∈ Λs the critical value
c /∈ Gc

s−1, so that Gc
s moves holomorphically over Λs.

For s = 2 notice that, by the above c ∈ Dc
1/2 if and only if c ∈ DM ′

1/2. Thus
c /∈ Gc

1 for any c ∈ Λ2, so that Gc
2 moves holomorphically with c ∈ Λ2. For

c ∈ Λ2 let Dc
rj/22 for r = 1, 3 denote the connected components of f−1

c (Dc
1/2)

containing the r/22 dyadic decorations and define DM ′

r/22 ⊂ Λ2 as the parameter
disks bounded by the corresponding parameter ray segments and equipotential
level.

Rename the previous holomorphic motion H to H1 and let H2 denote the
restriction of H1 to Λ2× (CrṼ cb

1 ). Extend H2 to a motion including Ṽ cb
1 rV cb

1

using the Böttcher-motion and extend H2 further to Λ2 × f−1
cb

(Dcb

1/2) by f−1
c ◦
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H1(c, fcb
(z)), where the inverse branches are taken so as to map Dcb

r/22 quasi-
conformically onto Dc

r/22 . Finally use Slodkowski’s extension theorem to extend
this holomorphic motion to a holomorphic motion of C over the disk Λ2 (i.e.
extend the motion by a motion of V cb

2). By the same argument as above
the map χ2 : Λ2 −→ Ṽ cb

1 given by χ2(c) = (H2)−1
c (c) is a locally quasi regular

map. Again by construction χ2 : ∂DM ′

r/22 −→ ∂Dcb

r/22 are homeomorphisms so

that the restrictions χ2 : DM ′

r/22 −→ ∂Dcb

r/22 are quasi-conformal. However on

the sets DM ′

r/22 the holomorphic motion H2 is a conjugacy between the holo-
morphic maps fcb

and fc. Hence the dilatation of (H2)c at z equals that of
(H1)c at fcb

(z). Hence again the dilatation of χ2 on DM ′

r/22 is again bounded by

bound given by Kr/2s = max{log dΛ(c, cb)|c ∈ DM ′

r/22}. Arguing as in the initial
case corresponding to s = 1 completes the case s = 2. The inductive step is
completely similar and is left to the reader.

Let H ′ denote the central hyperbolic component of M ′. Then for k suffi-
ciently large ck belongs to the p′k/q

′
k limb LH′

p′k/q′k
of H ′. Applying the Yoccoz-

Levin parameter inequality Theorem 15 to H ′ we find that the diameter of
LH′

p′/q′ union its attached dyadic carrots is bounded uniformly by C/q′ for some
constant C = CH′ . Arguing as in the beginning of the first reduction we can
assume that p′k/q

′
k = p′/q′ for all large k. The set WH′

p′/q′ ∩ Λ1 is relatively
compact in Λ0 so that

sup{log dΛ(c, cb)|c ∈WH′

p′/q′ ∩ Λ1} = K = KH′

p′/q′ <∞.

Hence the dyadic carrots ∆k either has a diamter which a priori tends to zero
or such carrots are separated from M ′ by an annulus in Λ0rM ′ of modulus at
least m(cb)/K. And in the latter case their diameters are forced to converge to
zero a posteriori. Because the roots ck ∈ ∆k converge to c∞ ∈M ′,

This completes the proof that if Λ0 3 ck → c∞ ∈ M ′, then the diameter of
∆k converge to zero. For the case ck ∈ ΛP rΛ0 we necessarily have c∞ = cr,
where cr denotes the root of M ′. To prove that the diameter of ∆k converge to
zero also in this case let

ΛP
n = {c ∈ ΛP |c ∈ U c

n}.

Where U c
n = f−n

c (U c
0 ), (it may or may not be connected) for n > 1.

For any c ∈ Λ0 the sets ∂Ξc
n, n ≥ 0 move holomorphically with c. Define

Ac
n = Ξc

nrΞc
n+1, then the Ac

n are quadrilaterals with a-sides the boundary arcs
∂Ac

n ∩ Rc
θ−

and ∂Ac
n ∩ Rc

θ+
. Moreover ∂Ac

n even move holomorphically with
c ∈ (Λ0 ∪ ΛP

n ). Let
AM ′

n = {c ∈ ΛP
n |c ∈ Ac

n}

denote the corresponding parameter quadrilaterals. Then the root cr of M ′ be-
long to ΛP

n , for all n. Choose by Slodkowski’s extension theorem a holomorphic
motion

H0 : ΛP
0 ×Acr

0 −→ C
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over ΛP
0 with base point cr of the quadrilateral Acr

0 extending the Böttcher
motion of its boundary.

For c ∈ ΛP
n the restriction fn

c : Ac
n −→ Ac

0 is biholomorphic. Hence we may
lift the motion H0 to a holomorphic motion

Hn : ΛP
n ×Acr

n −→ C.

As with the annuli above define quasi-conformal homeomorphisms

ρn : AM ′

n −→ Acr
n

by ρn(c) = (Hn
c )−1(c). Then as above these have q.-c. distortion bounded by

the distortion of the q.-c. homeomorphisms H0
c (·), c ∈ AM ′

n . That is bounded
by

K = sup{log dΛP
0
(c, cr)|c ∈ AM ′

n }

which is uniformly bounded, because AM ′

n ⊂ ΛP
1 ⊂⊂ ΛP

0 . Thus all the quadri-
laterals AM ′

n have modulus bounded uniformly from below by mod(Acr
0 )/K.

Moreover the a-sides of these quadrilaterals are all contained in the two rays
RM ′

θ−
and RM ′

θ+
co-landing at cr. By the Grötzsch-inequality for annuli the eu-

clidean diameter of AM ′

n tend to zero and the closures converge to cr. By
construction no dyadic carrot intersects the boundary of any of the AM ′

n . Thus
also in this case the diameter of ∆k converge to zero as k →∞. This completes
the proof in the case c∞ belongs to a primitive first renormalization copy.

7 The satelite case

In the complementary satelite case M ′ = Mp/q with central hyperbolic com-
ponent Hp/q attached at internal argument exp(i2πp/q) from the central hy-
perbolic component H0 of M. Let as above θ− < θ+ be the arguments of the
parameter rays co-landing at the root and bounding the wake WH0

p/q. Recall
that c∞ ∈ Mp/q is the limiting parameter of the roots of dyadic carrots and
that these dyadic carrots are eventually contained in WH0

p/q.
We apply the Yoccoz-Levin parameter inequality Corollary 15 similarly as we

have done twice above. This reduces the problem to the case where c∞ belongs
to a relative p′/q′-limb L

Hp/q

p′/q′ of Hp/q for some p′/q′ 6= 0/1 and the dyadic

carrots ∆k are subsets of the corresponding wake WHp/q

p′/q′ for large k. Denote

by τ− < τ+ the arguments of the parameter rays bounding WHp/q

p′/q′ and define

Λ = Λ0 = W
Hp/q

p′/q′ ∩F
M(2). Let IM ′

= IMp/q denote the Cantor set of arguments
of parameter rays accumulating M ′ as given by the Douady tuning algorithm.
Then τ± ∈ IM ′

and each has a unique preimage τ̂± = σ−q(τ±) ∩ IM ′
different

from itself. For c ∈ Λ let U c
0 denote the disk containg the fixed point αc of Qc

and bounded by the segments (Rc
σi(bτ−) ∪R

c
σi(bτ+)) ∩ F c(1) for 0 < i < q union

the connecting subarcs of Ec(1). Denote by ιc the open subarc of ∂U c
0 ∩ Ec(1)
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Figure 7: The disks U c
0 , U c

1 , Bc
0 and Ξc

0.

intersecting the rays Rc
θ±

and let γc
0 = ∂U c

0rιc. As in the primitive case write
δc
0 = (Rc

θ−
∪Rc

θ+
) ∩ F c(1) for c ∈ Λ.

Then the whole setup is similar to the primitive case. We can thus define
Ωc, Ξc

n, B
c
n, Ξ̂c

n+1, B̂
c
n+1 for n ≥ 0 and Gc, all of which moves holomorphically

with c ∈ Λ. There are however two differences: The first is that the center of
Hp/q does not belong to Λ. The arguments we used in the primitive case are
in-sensitive to a change of base point cb to another point in the interior of M.
We shall thus take as base point cb ∈ Λ the center of the central hyperbolic
component HHp/q

p′/q′ ⊂ W
Hp/q

p′/q′ . The second difference is that the Yoccoz-Levin
parameter inequality is applied to the sublimbs of the hyperbolic component
H

Hp/q

p′/q′ . We leave the details to the reader.
This completes the satelite case and thus completes the proof of Proposi-

tion 6.

8 Proving Theorem 3

The proof of Theorem 3 is completely analogous to the proof above of Theorem 1.
Let M ′ be any copy of M inside M or M1. In the arguments above replace
the carrot field ∆ of M by the dyadic decorations ∆′ of M ′. As any decoration
∆′

r/2n is contained in the relatively dyadic wake WM ′

r/2n bounded by the r/2n

pair of co-landing relatively dyadic rays of M ′. And as external rays do not
cross the above arguments applies with the rays replaced by the corresponding
rays relative to M ′. That is use Yoccoz parameter inequality and the iterated
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Yoccoz parameter puzzle theorem relative to M ′ to prove that: diam(∆′
k) → 0

for any sequence of decorations (∆′
k)k with roots ck converging to a relatively

non renormalizable parameter c∞ ∈ M ′. Secondly consider the case c∞ ∈ M ′′,
where M ′′ ⊂ M ′ is a relative to M ′ first renormalizable copy of M belonging
to some p/q limb of the central hyperbolic component H ′ of M ′. Use again the
p′/q′ Yoccoz puzzle relative to M ′ to define the parameter disk Λ containing M ′′

similarly as we defined Λ for M ′ above. And define also ΛP and γn analogously,
i.e. with the aid of the p′/q′ puzzle piece P and rays relative to M ′ given by
Theorem 19 for M ′. Similarly let δn be defined in terms the pairs co-landing
rays which are dyadic relative to M ′′. From here the proof proceeds analogously.

Appendix

In this appendix we supply for completeness proofs of the two theorems we refer
to, but for which we have not been able to find either adequate or complete
proofs in the litterature.

Theorem 12 (The Levin-Yoccoz Dynamical Inequality). Let H be any hyper-
bolic component of M of period k. Let p/q be any non zero reduced rational
and let WH

p/q denote the relative p/q wake of H, bounded by parameter rays with
arguments 0 < η− < η+ < 1. For any c ∈ WH

p/q let λ denote the multiplier of
the repelling k-periodic common landing point α′ of the kq periodic rays Rc

η± .
Then α′ has combinatorial rotation number p/q and λ has a logarithm Λ such
that:

|Λ− p/q2πi| ≤ 2k log 2 cos θ
q

π

ω(c)
,

where θ ∈ ] − π/2, π/2[ is the argument of Λ − p/q2πi and ω(c) is the angle of
vision of the interval i2π[η−, η+] from Log φc(c) ∈ {z = x+ iy|0 < y < 2π}.

Proof. Levin proved the fixed point case k = 1 in [L, TH. 5.1], the general
case is similar. For completeness we sketch here a proof. Let us first recall the
proof of Yoccoz inequality (or the Pommerenke-Levin-Yoccoz inequaltiy), full
details can be found in [P]. Let T denote the quotient torus T = D∗/Qk

c , where
D∗ = {z|0 < |z − α′| < r} and r > 0 is chosen so small that Qk

c is univalent
on D = D∗ ∪ {α′} and D ⊂⊂ Qk

c (D). Let Π : D∗ −→ T denote the natural
projection. The two rays Rc

η± belong to the same orbit and define combinatorial
rotation number p/q for α′. Let γ = Π(D∗ ∩Rc

η−) = Π(D∗ ∩Rc
η+

). Then γ is a
Jordan curve and thus the pair (T, γ) has a conformal modulus which satisfies
a Grötzsch inequality.

Let w± = exp(i2πη±). Then Qk
0(w−) = w+ and Qkq

c (w±) = w±. Simi-
larly to T above let T̂ denote the quotient torus T̂ = D̂∗/Qk

c , where D̂∗ is a
small punctured disk centered at say w− and let Π̂ : D̂∗ −→ T̂ denote the nat-
ural projection. Then Π̂(D̂∗ ∩ S1) are two disjoint Jordan curves in T̂ , with
complement two disjoint, symmetric and straight annuli Ai and Ao. Moreover
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γ̂ = Π̂(D̂∗ ∩Rη−) is the Jordan equator of Ao and

mod(Ai) + mod(Ao) = 2mod(Ao) = mod(T̂ , γ̂).

If c ∈ M so that Kc is connected, the Böttcher coordinate at ∞ induces an
isomorphism between Ao and Π(S) where S is the connected component of
D∗ ∩ Bc(∞) containing the end of Rc

η− . Hence the Grötzsch inequality for
(T, γ) implies that

mod(Ao) ≤ mod(T, γ). (3)

Writting out the values of these two numbers explicitly yields the Yoccoz dy-
namical inequality: The torus T is isomorphic to C∗/λz via the linearizer for Qk

c

at α′, or equivalently to C/(ZΛ+Zi2π) via the log-linearizer. Let Πu : C −→ T
denote the universal covering corresponding to the latter isomorphism. Then
the Jordan curve γ = Π(D∗∩Rc

η−) lifts under Πu to an arc Γ, which is invariant
under the translation z 7→ z + L, where L = qΛ − pi2π for some appropriate
logarithm Λ of λ. A simple computation shows that

mod(T, γ) =
2π cos θ
q|L|

where θ is the angle between the vector L and the positive real axis. A similar
computation shows that

2mod(Ao) = mod(T̂ , γ̂) =
2π

kq log 2
.

Hence (3) is equivalent to

|Λ− p

q
i2π| ≤ 2k log 2 cos θ

q
, (4)

which is Yoccoz inequality.
If c /∈ M let 0 ≤ θ < 1 denote the argument of c, i.e. c ∈ Rc

θ. Then
the Böttcher coordinate φc at infinity does not extend to a biholomorphic map
between Bc(∞) and CrD, but almost: It extends to a biholomorphic map of
CrF c(h) onto CrD(eh) where h = gc(c)/2. Let ψc denote the inverse of this
extension, then ψc extends continuously to C(0, eh), but this extension is not
injective because 0 = ψc(exp(h + 2πiθ/2)) = ψc(exp(h + i2π(θ + 1)/2)). Let
C = gc(c)+ i2πθ, N0 = [ei2πθ, φc(c)] and Nn = Q−n

0 (N0). Define N0
θ = ∪n≥0Nn

and N1
θ = ∪n≥0N1. Then Q0(N1

θ ) = N0
θ and ψc is easily seen to extend by

iterated lifting to a univalent map from Cθ := Cr(D ∪ N1
θ ) into Bc(∞). The

mapQ0 lifts under exp(z) to the map z 7→ 2z on C. That is exp is a simultanuous
linearizer for all the repelling periodic points ofQ0. The corresponding lifted sets
Ñ j

θ = log(N j
θ ), j = 0, 1 are invariant under translation by i2π and 2Ñ1

θ = 2Ñ0
θ .

Thus if w = exp(i2πτ) ∈ S1 is periodic and if 0 ≤ τ < 1 does not belong to
the orbit of θ, then Cθ contains a definite sector around the horizontal R̃τ =
{t + i2πτ |t > 0}, which projects to R0

τ under exp: Let τl < τ < τr be the
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arguments closest to θ of points in the orbit of w. Then the sectors S̃l between
R̃τl

= {t + i2πτl|t > 0} and the oblique line through i2πτl in the direction
vl = C − i2πτl, and S̃r between R̃τr

= {t + i2πτr|t > 0} and the oblique line
through i2πτr in the direction vr = C − i2πτr are contained in Cθ: If not some
line segment L with exp(L) ∈ Nn for some n ≥ 1 intersects say S̃l. But then
2nL intersects the sector 2nS̃l with top point 2nτl, and is also congruent modulo
i2π to L0 = [i2πθ,C] with exp(L0) = N0. Since the 2nτl is an argument for a
point in the orbit of w this contradicts that τl is the closest such argument for
points in the orbit of w.

Consequently the sector S̃ around R̃τ bounded by the two lines through i2πτ
and of directions vl and vr is contained in Cθ.

In the case at hand c ∈WH
p/q implies that η<θ < η+ and for η = η− we have

η− = ηl, η+ = ηr. Let ωl and ωr denote the angle of inclination of the vectors
C − i2πτl and C − i2πτr respectively. Then the opening angle ω of S̃ equals
ωr − ωl and the sector S̃ projects to a straight subannulus Aθ

o of Ao with

mod(Aθ
o) =

ω

π
mod(Ao).

Arguing as for the proof of the Yoccoz inequality we obtain

mod(Aθ
o) =

ω

π
mod(Ao) ≤ mod(T, γ).

Properly rewritten as with (4) above, this is the Levin-Yoccoz inequality except
for the interpretation of ω. This interpretation is however an elementary exercise
in planar geometry and is left to the reader. By continuity the inequality even
holds on ∂WH

p/q, where either ωl or ωr but not both is zero.

Theorem 23. Let 0 < η− < η+ < 1 be rationals for which the parameter
rays RM

η± coland at some point c0 ∈ M and let WM
η−,η+

denote the parameter
sector bounded by RM

η− ∪ {c0} ∪ R
M
η+

and not containing 0. Then the forward
orbits of η± do not enter the interval ]η−, η+[. And for any c ∈WM

η−,η+
the pair

of dynamical rays Rc
η± move homorphically with c, co-land at some repelling

(pre)periodic point z(c) with Qk′+l
c (z(c)) = Ql

c(z(c)), where l ≥ 0 is the common
preperiod of η± and k′ > 0 divides the common period k > 0 of σl(η±) and the
set Rc

η− ∪ {z(c)} ∪R
c
η+

bounds a sector W c containing c, but not 0.

Proof. This theorem is at least folklore. We supply a proof here for complete-
ness. We shall treat separately the strictly preperiodic case l > 0 and the
periodic case l = 0. For the strictly preperiodic case we have k = qk′ with q > 1
and c0 admits precisely q external arguments 0 < θ0 < . . . < θq−1 < 1 both in
dynamical plane and in parameter plane by the Douady-Hubbard ray landing
theorem. The arguments η− < η+ are amongst these. The set

Rc =
q−1⋃
i=0

Rc
θi

27



moves holomorphically with c in CrR̂M, where

R̂M =
q−1⋃
i=0

k+l⋃
j=1

RM
σj(θi)

.

Because the Böttcher coordinate φc depends holomorphically on c and thus
Rc moves holomorphically with c as long as c does not belong to the strict
forward orbit of Rc. Write WM

c0
for the sector bounded by RM

θ0
∪RM

θq−1
. Then

WM
η−,η+

⊆ WM
c0

and it suffices to prove that WM
c0
∩ R̂M = ∅. For the later it is

enough to prove that q−1⋃
i=0

k+l⋃
j=1

σj(θi)

 ∩ [θ0, θq−1] = ∅. (5)

To this end let us consider the Hubbard tree T c0 for Qc0 . In this strictly
preperiodic case T c0 is the minimal connected subset of Kc = Jc containing the
orbit

Oc0(0) =
k+l⋃
j=0

Qj
c0

(0).

As the orbit Oc0(0) is forward invariant, so is T c0 . Moreover any extremal point
of T c0 belongs to Oc0(0) by minimality. As Qj

c0
is a local homeomorphism for

all j the critical value c0 = Qc0(0) is necessarily an extremal point. This implies
(5). Notice that the conclusion of the theorem holds in this case even for c in a
neighbourhood of WM

c0
.

The periodic case is similar and yet slighly different. The common landing
point c0 of the two parameter rays RM

η± is the root of a hyperbolic component
H 6= H0. Let us rename c0 to c1 and use c0 to denote the center of H. As above
the dynamical rays Rc

η± moves holomorphically on CrR̂M, where

R̂M =
k−1⋃
j=0

RM
σj(η−) ∪R

M
σj(η+)

And to prove the theorem it suffices to prove that Rc0
η− and Rc0

η+
coland at a

repelling periodic point z(c0) in the dynamical plane of Qc0 and thatk−1⋃
j=0

σj(η−) ∪ σj(η+)

∩ ]η−, η+[ = ∅.

Again the proof is that c0 is extremal in the Hubbard tree T c0 for Qc0 and
that Rc0

η± coland at a k′ periodic point z(c0), k′|k on the boundary of the Fatou
component F0 of c0. Notice that in this case the Hubbard tree is defined as the
minimal D-H regulated set. Where D-H regulated means that for any Fatou
component F the image φ(F ∩ T c0) under the extended Böttcher coordinate
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consists of radial lines. The proof of extremality of c0 in Tc0 is the same as in
the preperiodic case. Also by minimality z(c0) = ∂F0∩T c0 is the unique periodic
point on the boundary of F0 whose period divides k. By the Douady-Hubbard
ray landing theorem z(c0) is the common landing point of Rc0

η± .
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