Roskilde
University

Editorial from the issue entitled "Special Issue: PEPM 2010"

Gallagher, John Patrick; Voigtlander, Janis

Published in:
Higher-Order and Symbolic Computation

DOI:
10.1007/s10990-011-9081-0

Publication date:
2011

Document Version _
Early version, also known as pre-print

Citation for published version (APA):
Gallagher, J. P., & Voigtlander, J. (2011). Editorial from the issue entitled "Special Issue: PEPM 2010". Higher-
Order and Symbolic Computation, 23(3), 273-274. https://doi.org/10.1007/s10990-011-9081-0

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain.
* You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact rucforsk@kb.dk providing details, and we will remove access to the work
immediately and investigate your claim.

Download date: 18. Jun. 2025


https://doi.org/10.1007/s10990-011-9081-0
https://doi.org/10.1007/s10990-011-9081-0

Editorial

John P. Gallagher & Janis Voigtlinder

Higher-Order and Symbolic
Computation VOLUME 24, NUMBER 1, MAY 2011 ISSN: 1388-3690

ISSN 1388-3690
Volume 23

Number 3 Higher-Ol‘del‘

Higher-Order Symb Comput (2011)

and Symbolic
Computation

Editors-in-Chief:
Olivier Danvy
Carolyn Talcott

@ Springer

@ Springer



Your article is protected by copyright and

all rights are held exclusively by Springer
Science+Business Media, LLC. This e-offprint
is for personal use only and shall not be self-
archived in electronic repositories. If you
wish to self-archive your work, please use the
accepted author’s version for posting to your
own website or your institution’s repository.
You may further deposit the accepted author’s
version on a funder’s repository at a funder’s
request, provided it is not made publicly
available until 12 months after publication.

@ Springer



Higher-Order Symb Comput (2010) 23:273-274
DOI 10.1007/s10990-011-9081-0

EDITORIAL

Editorial

John P. Gallagher - Janis Voigtléiinder

Published online: 24 November 2011
© Springer Science+Business Media, LLC 2011

This special issue of HOSC contains extended versions of selected articles from PEPM’ 10,
the ACM SIGPLAN 2010 Workshop on Partial Evaluation and Program Manipulation,
which took place on 18th and 19th January 2010 in Madrid, Spain [1]. All four were rigor-
ously reviewed subject to journal standards by at least three reviewers each.

PEPM’s focus is on techniques and supporting theory for the analysis and manipulation
of programs, bringing together researchers working in various areas of this general theme.
The articles in this special issue reflect this diversity. It collects articles on static analyses,
program transformation and generation, type-based programming, and runtime optimiza-
tion, for imperative, functional, and object-oriented languages.

The article “Context-sensitive analysis without calling-context”, by Arun Lakhotia,
Davidson R. Boccardo, Anshuman Singh, and Aleardo Manacero Junior, tackles a well
known problem—interprocedural flow analysis—in the relatively new setting of obfuscated
code. Classical interprocedural analysis requires some notion of calling context in order
to be accurate, since the same procedure can be called from different places and in dif-
ferent states. The obfuscation of call and return instructions and of procedure boundaries
renders established techniques for interprocedural analysis (in particular Sharir and Pnueli’s
method) inapplicable or ineffective. The approach proposed in the article is to introduce a
new, more low-level notion of context, called stack-context, that is based purely on the state
of the stack. Using the abstract interpretation framework, the authors develop abstractions of

J.P. Gallagher
Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
e-mail: jpg@ruc.dk

J.P. Gallagher
IMDEA Software Institute, Campus Montegancedo, 28660 Boadilla del Monte, Madrid, Spain

J. Voigtlander ()

University of Bonn, Romerstrafie 164, 53117 Bonn, Germany
e-mail: jv@informatik.uni-bonn.de

@ Springer


mailto:jpg@ruc.dk
mailto:jv@informatik.uni-bonn.de

274 Higher-Order Symb Comput (2010) 23:273-274

semantics incorporating the stack-context, yielding analyses that are on a par with classical
techniques for unobfuscated code while giving more precise results for obfuscated code.

In “Making ‘stricterness’ more relevant”, Stefan Holdermans and Jurriaan Hage extend
strictness analysis for lazy functional languages like Haskell and Clean to take into account
properly and effectively programmer annotations that deliberately increase the strictness of
selected functions. Such annotations are already crucial to giving the programmer a means of
dynamically avoiding certain kinds of performance problems in a lazy setting, but promise
even more benefits if the compiler can statically pick up and widely propagate (and then
use to drive code optimizations) information about the effected change in evaluation order.
Adopting relevance typing, and adapting it appropriately by introducing a concept of ap-
plicativeness of expressions, the authors provide the foundation for performing such static
propagation both safely and vigorously.

The topics addressed by “Generic multiset programming with discrimination-based joins
and symbolic Cartesian products”, by Fritz Henglein and Ken Friis Larsen, are dynamic
symbolic computation on the one hand, and specific algorithmic techniques for executing
common relational algebra operations on the other. The results are embodied in a generic
Haskell library supporting efficient SQL-style queries on rich data types and with user-
defined functions, predicates, and equivalence and ordering relations. The combination of
discrimination-based joins (an algorithmic idea previously introduced by Henglein) and ma-
nipulation of symbolic representations of multiset union and Cartesian products at runtime
leads to good performance. Optimizations are achieved on the fly that require much more
dedicated effort in standard database query planning approaches. The approach makes ele-
gant use of HOT (higher-order and typed) functional programming techniques like General-
ized Algebraic Data Types.

Another impressive instance of HOT programming is “Mnemonics: Type-safe bytecode
generation at run time”, by Johannes Rudolph and Peter Thiemann. They develop a Scala
library for generating bytecode for the Java Virtual Machine. The library, as an embedded
typed domain-specific language, guarantees that only well formed bytecode is generated.
That is, structural constraints that bytecode has to obey concerning the relationship between
instructions are automatically enforced, to a large degree by the type correctness of the
generating program. Thus, a separate verification pass needed in other approaches either
alongside the generation of bytecode, or when loading generated bytecode, is redundant and
can be avoided.

We share, with all the authors who submitted papers to this special issue, gratitude to-
wards the reviewers for sharp, intense, and helpful reviewing. We would also like to express
our sincere appreciation to Patricia Johann as HOSC associate editor for guiding us along
the process of preparing this special issue.

References

1. Gallagher, J.P., Voigtlander, J. (eds.): Partial Evaluation and Program Manipulation, Proceedings. ACM
Press, New York (2010)

@ Springer



	Editorial
	References


