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Is mathematics invading human cells?  
Impressions from a collaboration with diabetes doctors  
Bernhelm Booß-Bavnbek, Roskilde University, Denmark   
 
 
Jointly with another mathematician, a biophysicist and two diabetes doctors, the author has just released a 
textbook, BetaSys - Systems Biology of Regulated Exocytosis in Pancreatic ß-Cells1, in which a broad 
international team summarizes the state of our current understanding of the cell-physiological events 
accompanying both successful – and impaired insulin secretion. The Mathematical Intelligencer has asked 
Bernhelm Booß-Bavnbek to describe some of his experiences as a mathematician cooperating with diabetes 
specialists.  
 
 
Advanced equipment and basic ignorance   
Along with space exploration and military and civilian nuclear power design, medical devices 
belong to the mathematically most sophisticated areas of modern technology. There are, for 
example, many mathematicians that have either contributed or could have contributed to magnetic 
spin resonance imaging (MRI), and there is hardly a single mathematician who masters all the math 
involved in that technology. The same goes for electron tomography, multi-beam confocal laser 
microscopy and many other advanced devices. Medicine has become a mathematical discipline. The 
ominous military-industrial complex has grown into an eminent mathematical sick-and-health 
industry.  
 
But mathematics is encapsulated in the apparatus. Whether it is about a specific diagnosis or 
treatment, most patients will probably, at least when you come from mathematical physics, be 
surprised at how little medical science seems to really know and understand about the individual 
diseases. It is quite normal that a doctor must simply experiment - or just stick to an established 
symptom diagnosis and symptom treatment. Without a detailed identification of the real causes of 
the individual patient's ailment, often a successful treatment, defined as cure, is unattainable.  
 
Physics can also be complicated and in many cases without established answers. But in physics 
there is after all only a very short list of "First Principles", one must stick to. There we have 
relatively well-defined interfaces between certain knowledge, reasoned or vague presumption and 
ignorance. And in most cases, our ignorance in physics can be condensed in some mathematical 
equations (which we, however, may not immediately fully understand). This is not the case so in 
medicine.  
 
Specific nature of the use of mathematics in cell r esearch   
The strong medical pull. From pure mathematical research, we know the feeling of being pulled 
forward by an overarching issue: the relationship between local and global properties, between the 
smooth and the continuous, between analytic and algebraic methods, the Four Color Problem, the 
Poincaré Conjecture, the Riemann Hypothesis, the Clay Millennium Problems. Of course, we 
would never admit such personal ambitions in public. But for me there is no doubt about the role 
that major well-stated problems play and have played in the design of the career paths of many 
                                                 
1 Booß-Bavnbek, B.; Klösgen, B.; Larsen, J.; Pociot, F.; Renström, E. (eds.), BetaSys - Systems Biology of Regulated 
Exocytosis in Pancreatic ß-Cells, series: Systems Biology, Springer, Berlin-Heidelberg-New York, 2011, XVIII, 558 
pages, 104 illustr., 53 in color. With online videos and updates. ISBN 978-1-4419-6955-2. [1] Comprehensive review in 
Diabetologia, DOI 10.1007/s00125-011-2269-3. 
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mathematicians, at least indirectly and in daydreams: with many doubts and a persistent feeling of 
self-deception and of fighting against mountains - or windmills.  
 
Working as a mathematician with diabetes doctors is different. A bristling cascade of medical issues 
pulls the research forward: For nearly 90 years we have known that lack of secretion of the 
hormone insulin is one of the many serious issues in both diabetes type 1 (juvenile) and type 2 
(obesity and age driven). For a large group of these patients, actually insulin is produced in 
pancreatic β-cells and stored in thousands of mini bags, vesicles, in the cell's interior. But the cells 
do not respond correctly to external stimuli with the actual secretion, called regulated exocytosis. 
That manifests itself in elevated blood sugar, which can be tasted and measured by urine sample. 
That has now been done for nearly four thousand years.2 We call it a symptom diagnosis because 
the diagnosis says nothing about the wide range of causes which may underlie the lack of uptake of 
glucose in the muscles.  
 
Previously, failure of insulin secretion automatically led to weakening the muscles, inflammation of 
the extremities, loss of vision and the body's final decay. Since the discovery of insulin, this tragic 
development can be countered by artificial supply of insulin by injection several times a day. We 
call it a symptom treatment because it is not even attempted to cure the patient or to make an effort 
to restore the body's own insulin secretion. Some claim that the relative success of the overall 
symptom diagnosis and symptomatic treatment of diabetes has blocked patient-centered, 
individualized diagnosis and treatment.  
 
In any case collaboration with diabetes doctors is a powerful experience for a mathematician of 
continually being pulled forward by well-defined medical problems. Here it is simply to detect the 
functioning and system behavior of the regulated exocytosis in healthy β-cells and to identify 
everything that can stand in the way in the case of weakened β-cells, see Fig. 1. The purpose is 
clear: mathematician, please come and help find the way to an earlier and more specific diagnosis 
and a cure or alleviation of the specific failure! 
 
The technological push. The technological push is not completely unfamiliar in mathematics, we 
may think: readily available electronic journals, large user-friendly collections of mathematical 
preprints and reviews, efficient numerical software packages, homemade LaTeX editing can put us 
under pressure as mathematicians. But it's nothing compared to the immense technological pressure 
cell research is subject to: with each new generation of equipment, oceans of new data inundate on 
quite different length scales. Rapidly expanding technology-pushed innovations are, e.g., about 
individual genes in the DNA, about proteins and about electrical cell membrane processes, but also 
the structure and function of a β-cell as a whole are attempted to be described in momentary images 
(by electron tomography) or dynamic sequences (by tracking of properly primed nanoparticles in 
living cells).  
 
Heavy preponderance of ad-hoc perceptions. There is no shortage of heroic attempts by some 
scientists to bring a little order and overview into this real wild jungle of data. Most tries, however, 
restrict themselves to ad-hoc fiddled perceptions of unconfined creativity à la: "it should probably 
be the cell nucleus that controls the process" or "there is a certain rate, which determines the 
transition between one stage and the next" or "a correlation between the one process and another 
                                                 
2 The earliest preserved report (in Bendex Ebbell’s Copenhagen interpretation of 1937) is from the Egypt Ebers 
Papyrus of 1536 BCE., instruction 197, column 39, line 7, reproduced in all its ambiguity on 
http://biology.bard.edu/ferguson/course/bio407/Carpenter_et_al_(1998).pdf. 
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process is unquestionable". Explanations hold until overtaken by new data and will then be 
"adjusted". They will never be falsified because they are freestanding and variable and not, as we 
are accustomed to from the world of physics, tied by head and limbs to the basic physical laws and 
the geometric properties of the three-dimensional space. The only quality criterion is whether a 
model looks like the known observations or can be tuned to coincide with them. It is a free kingdom 
of modeling, admitting fancied ghosts to explain actual observations, but a nightmare when looking 
for descriptions and explanations, offering a certain shelf life and a theoretical check for errors.  
 
The phylogenetic heritage. Our insulin-producing β-cells are among the most differentiated human 
cells. They are closely packed with a zoo of different types of organelles. Insulin-like peptides can 
be detected in our distant invertebrate ancestors who have been around for more than 600 million 
years. Something resembling pancreases with a kind of insulin-producing β-cells already exist in 
the hagfish, which have existed for more than 500 million years. For every discovery it must be 
feared that a new observed process, a new measured quantity is quite irrelevant. Maybe you just hit 
a relic, a ruin of the historical development, which has no importance anymore. Of course, this type 
of confusion was also met in the history of physics. How long has it taken to assign to meteors and 
comets their place in our conception of the solar system or to remove Pluto from the list of planets 
formed in our solar system? However, while the ruins and relics ideally sharpen the mind in simple 
research fields such as physics and astronomy, they can be extremely confusing and even 
completely block medical research. Again and again one senses that we mathematicians coming 
from the outside possibly are too early. Perhaps we had better wait for another 150 or 200 years 
until the research has separated essential processes from nonessential processes, before we at last 
can begin the serious work.  
 
Lack of universality. What strikes me most in mathematical cell physiology is the lack of any 
universality or scale invariance. In the world of physics, Maxwell's equations apply both for high-
frequency radio waves and low frequency voltage in power plants; the Navier-Stokes equations 
apply for both the continental atmospheric phenomena and the whirling around a ship hull. In 
physics, we have a field concept relating point measurements with spatially widespread events. It is 
not (yet?) so in cell physiology.  
 
Of course there are cross connections between what we know about β-cell function and our genetic 
data, our conceptions of the mode of operation of single organs (like the pancreas) and a body’s, an 
organism's behavior and the performance of a whole population. For example, genetic data are just 
collected by epidemiological studies of large populations and the feedback is well studied between 
nutrient intake, liver and brain response and the secretion signaling. But - apart from the 
universality of the applied statistical methods for parameter estimation and hypothesis testing – all 
the met methods are closely tied to a specific biological level, a particular length and time scale. We 
know such a hopeless situation also from mathematical physics with the seeming incompatibility 
between the mathematical theories of gravitation and quantum mechanics. That might be considered 
as wounds in physics, but it is a unique wound. In diabetes research, we have hundreds of such 
cracks and ditches where no one knows if there is a bridge or how it then would be built.  
 
Volatility. Medical biology, as it is conducted today is a huge undertaking with a myriad of articles 
published every year. Not many of them will be quoted after two years. That's probably the reason 
that a key parameter for bibliometric research information, the impact factor, only examines the 
current references to papers that are not more than just these two years old. Sure enough, the overall 
goal, the understanding of life and death, of health and illness, is long-lasting. But the angles of 
attack change constantly and appear frequently as dictated by some observational techniques that 
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have just now come to use. The subject seems to be characterized by the absence of established and 
general traditions. As practiced today, cell physiology is a young subject which is just establishing 
itself. Accidental discoveries seem to play a major role. We recognize that also from physics, 
where, e.g., the discovery of high-temperature super-conductivity in conventional insulating 
ceramic materials by Bednorz and Müller in 1986 could hardly be characterized as the result of 
deep theoretical considerations. However, random breakthroughs occur without doubt more often in 
biomedicine.  
 
Systems thinking versus reductionism. It goes without saying that a strictly reductionist program is 
needed in medical research, if the current packing of medical ignorance in ad-hoc assumptions shall 
be replaced by falsifiable references to basic physical laws. But I must also acknowledge that most 
bodily functions and processes involve many different cell components, neighboring cells, various 
organs and the whole organism in an interaction. Understandably, the holistic slogan of systems 
biology has become popular, and great expectations are attached to it.  
 
Both programs will reveal exciting new facts and relations. Both approaches offer the 
mathematician rich working opportunities. To me, the most promising direction is somewhere in the 
middle: maybe a focused systems biology will show its ability to touch the wall, knock a hole in it, 
and achieve a breakthrough. That has not happened yet. The hope is to develop a medicine and a 
biology that simplifies in a reductionist way; fearlessly ignores some probably relevant aspects; and 
focuses on a limited range of processes; but in turn lets itself holistically and equally fearlessly be 
confronted with a multitude of levels and a diversity of length and time scales all at once.  
 
Mathematical helping hand   
What place ,then, has a mathematician in this environment?  
 
The daily practice. Just as in engineering, economics or anywhere else, also in cell physiology the 
daily mathematical exercise consists of the estimation of some parameters, testing the significance 
of some hypotheses and designing compartment models for the dynamics of coupled quantitative 
variables. Often, the role of mathematics is to check whether a random discovery delivers what it 
promised.  
 
Numerical problems can rapidly pile up when one wants, e.g., to simulate a fusion process of a 
simple insulin vesicle to the plasma membrane of the β-cell throughout the process: the bending of 
the plasma membrane into a dimple, the coupling of the vesicle to the dimple, the coalescence of 
vesicle and plasma membrane during the hemifusion, the formation of the fusion pore for emitting 
the insulin molecules, and dissolving the vesicle remains into the plasma membrane. The reason for 
the numerical problems is that we are at a mesoscale: the characteristic lengths vary from 1 nm for 
the lipid heads, to 7nm for the strength of the membrane bilayers of lipids - to 100-250 nm for the 
insulin vesicle diameters. Thus, the relevant lengths of regulated exocytosis considerably exceed the 
lengths that chemists have mastered using Molecular Dynamics (MD). It is even worse with the 
time scale, because a simple β-cell responds to glucose stimulation by insulin secretion over 25-30 
minutes. And everything is in three dimensions, see Fig. 2. This requires the development of special 
software to aggregate both space and time intervals to something that existing current computers 
can work with.3  
 
The dual role of mathematicians. A mathematician coming from the outside must be humble in 
                                                 
3 J. Shillcock, Probing cellular dynamics with mesoscopic simulations, in [1], pp. 459-473. 
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front of the immense calibration and programming work that underlies such models. It's hard not to 
succumb to the fascination of the "lively" graphical output of such simulations. Respectfully and 
humbly, we should make our tool box available and fearlessly lend a hand when needed. But we 
must not abandon our mathematical way of viewing, our acquired competence to inquire into the 
basis for the modeling and the simulations. We must remain skeptical and question everything by 
cross-checking calculations; insisting on relating corresponding phenomena with each other; and 
using our imagination to devise quite simple physical mechanisms that have the ability to generate 
the world of complex phenomena that we observe.  
 
The falsifying and heuristic function of mathematics. There are many jokes about the sharp-nosed 
mathematicians who check up something and afterwards, sometimes annoyed, sometimes smiling 
note that the biologists' data and assumptions do not fit together. This gives mathematicians a 
reputation of pettiness and pedantry, but it is perhaps our most important contribution to all 
biomedical fields. With such a know-all tone, between 1616 and 1628, William Harvey falsified the 
prevalent notions about the cardio-vascular system and discovered the arithmetic existence of the 
blood capillaries that connect arteries and veins - 40 years before Marcello Malpighi’s light 
microscope confirmed their histological reality.4  
 
Similarly, e.g., a harmonic analysis5 of observed electrical vibrations (calcium oscillations) in β-
cells just before secretion indicates that these fluctuations are not only an expression of pulsing 
influx of calcium ions through the plasma membrane, but - contrary to popular perception - may 
also result from a pulsing violent "splashing" of these ions between the cell's internal calcium 
organelles such as mitochondria and the endoplasmic reticulum. Hence, a purely mathematical 
realization of an inconsistence can move the focus from, I must admit, more easily and directly 
measurable local electrical membrane processes (measurement of the change of the static potential 
over time using the patch clamp) to cell-internal global and long-range electro-dynamic processes 
(measurement of fluctuating magnetic field strengths) and give the exocytose research a new 
approach.6  
 
Model-based and simulated measurements. Many biomedical quantities cannot be measured 
directly. That is due to the subject matter, here the nature of life, partly because most direct 
measurements will require some type of fixation, freezing and killing of the cells, partly due to the 
small length scale and the strong interaction between different components of the cell. Just as in 
physics since Galileo Galilei’s determination of the fall law by calculating “backwards” from the 
inclined plan, one must also in cell physiology master the art of model-based experiment design. 
Let us, e.g., look at the eight to twelve thousand densely packed insulin vesicles in a single β-cell. 
They all must reach the plasma membrane within a maximum of 30 minutes after stimulation, to 
pour out their contents. Let us ignore the many processes taking place simultaneously in the cell and 
consider only the basic physical parameter for transport in liquids, namely the viscosity of the cell 
cytosol. From measurements of the tissue (consisting of dead cells) we know the magnitude of 
viscosity of the protoplasma, namely about 1 milli-pascal-seconds (mPa s), i.e., it is of the same 
magnitude as water at room temperature. But now we want to measure the viscosity in living cells: 
before and after stimulation; deep in the cell's interior and near the plasma membrane; for healthy 
                                                 
4 For details, cf. the box Harvey's arithmetical microscope in J. T. Ottesen, The mathematical microscope – making the 
inaccessible accessible, in [1], pp. 97-118, here p. 99. 
5 L. E. Fridlyand and L. H. Philipson, What drives calcium oscillations in β-cells? New tasks for cyclic analysis, in [1], 
pp. 475-488. 
6 D. Apushkinskaya et al., Geometric and electromagnetic aspects of fusion pore making, in [1], pp. 505-538. 
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and stressed cells.  
 
It serves no purpose to kill the cells and then extract their cytosol. We must carry out the 
investigation in vivo and in loco, by living cells and preferably in the organ where they are located. 
The medical question is clear. So is the appropriate technological approach, since techniques have 
been developed which allow iron oxide nanoparticles of a diameter up to 100 nm to be brought 
inside these most vulnerable β-cells without destroying them. It happens with a low frequency 
(around 10 Hz) electromagnetic dynamic field generator that makes nanoparticles so to speak, to 
"roll" on the surface of the cells until they hit a willing receptor and get approach to the cell interior 
across the plasma membrane. These particles are primed with appropriate antigens and with a 
selected color protein, so that their movements within the cell can be observed with a confocal 
multi-beam laser microscope which can produce up to 40 frames per second. The periods of 
observations are only relatively short, perhaps a maximum of 8-10 minutes - before these particles 
are captured by cell endosomes and delivered to the cells' lysosomes for destruction and 
consumption of their color proteins.7  
 
The simplest mathematical method to determine the viscosity of the cytosol in vivo would be just to 
pull the magnetized particles with their fairly well-defined radius a with constant velocity v through 
the liquid and measure the applied electromagnetic force F. Then the viscosity η is obtained from 
Stokes' Law vaF ηπ6= . The force and the speed must be small so as not to pull the particles out of 
the cell before the speed is measured and kept constant. Collisions with insulin vesicles and other 
organelles must be avoided. It can only be realized with a low-frequency alternating field. But then 
Stokes' Law must be rewritten for variable speed, and the mathematics begins to be advanced. In 
addition, at low-velocity we must correct for the spontaneous Brownian motion of particles. 
Everything can be done mathematically: writing the associated stochastic Langevin equations down 
and solve them analytically or approximate the solutions by Monte Carlo simulation.8 However, we 
rapidly approach the equipment limitations, both regarding the laser microscope’s resolution and 
lowest achievable frequency of the field generator.  
 
So we might as well turn off the field generator and be content with intermittently recording the 
pure Brownian motion of a single nanoparticle in the cytosol! As shown in the two famous 1905/06 
papers by Einstein9, the motion's variance (the mean square displacement over a time interval of 
length τ) ><= 22 xσ  = E(|x(t0+τ)- x(t0)|

2) of a particle dissolved in a liquid of viscosity η is given 

by τσ D22 = , where  

ηπ a

Tk
D B

6
=  

denotes the diffusion coefficient with Boltzmann constant Bk , absolute temperature T and particle 
radius a. In statistical mechanics, one expects 1020 collisions per second between a single colloid of 
1 µm diameter and the molecules of a liquid. For nanoparticles with a diameter of perhaps only 30 
nm, we may expect only about 1017 collisions per second, still a figure so large as to preclude 
registration. There is simply no physical observable quantity >< 2x  at the time scale τ = 10-17 

                                                 
7 Details will be disclosed in a US patent in preparation by M. Koch et al. 
8 F. Schwabl, Statistical Mechanics, Springer, Berlin-Heidelberg-New York, 2006; A. R. Leach, Molecular Modelling - 
Principles and Applications, Pearson Education Ltd., Harlow, 2001, Chapter 7.8. 
9 A. Einstein, 'Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden 
Flüssigkeiten suspendierten Teilchen', Ann. Phys. 17 (1905) 549-561; 'Zur Theorie der Brownschen Bewegung', Ann. 
Phys. 19 (1906) 371-381. Both papers have been reprinted and translated several hundred times. 
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seconds. But since the Brownian motion is a Wiener process with self-similarity we get 
approximately the same diffusion coefficient and viscosity estimate, if we, e.g., simply register 40 
positions per second. Few measurements per second are enough. Enough is enough, we can explain 
to the experimentalist, if he/she constantly demands better and more expensive apparatus.  
 
This is beautifully illustrated by a small MatLab program (see Box 1), which first generates a 
Wiener process with a given variance 2σ  and then estimates the variance from the zigzag curves 
generated by taking all points or every second or fourth. Note that 2σ  also can be estimated by the 
corresponding two-dimensional Wiener process of variance 3/2 2σ , consisting of the 2D-
projections of the three-dimensional orbits, as the experimental equipment also will do.10 
 
Beautiful, but it is still insufficient for laboratory use: there we also must take into account the non-
Newtonian character of the cytosol of β-cells. These cells are, as mentioned, densely packed with 
insulin vesicles and various organelles and structures. Since the electric charge of iron oxide 
particles is neutral, we can as a first approximation assume a purely elastic impact between particles 
and obstacles. It does not change the variance in special cases as M. Smoluchowski already figured 
out 100 years ago for strong rejection of particles by reflection at an infinite plane wall.11 Here also 
computer simulations have their place to explore the impact of different repulsion and attraction 
mechanisms on the variance.  
 
Now you can hardly bring just a single nanoparticle into a cell. There will always be many 
simultaneously. Thus it may be difficult or impossible to follow a single particle’s zigzag path in a 
cloud of particles by intermittent observation. Also here, rigorous mathematical considerations may 
help, namely the estimation of the viscosity by a periodic counting of all particles in a specified 
"window".12 
 
The goal of model-based measurements and computer simulations is both to obtain the desired 
quantity from available or realizable observations and to become familiar with the expected 
laboratory conditions. Calculations and simulations can make us on intimate terms with the 
expected results; can support the exploration of a range of a priori unknown conditions; and help to 
identify the best choice of free parameters such as particle diameter, temperature, area of focus etc. 
 
Need for new mathematical ideas? I have described how important a wide solid mathematical 
competence is for success in everyday practice; both for the verification and falsification of current 
assumptions; and for model-based measurements and simulation. Overview and literature study are 
required, not originality, this mother of banalities, as a Ukrainian bon mot says.   
 
But there is also a need for radically new mathematical ideas, especially ideas that can integrate the 
otherwise isolated and local observations and perceptions that characterize molecular biology. How 
localized events propagate from a position at the plasma membrane into a global process involving 
                                                 
10 M. von Smoluchowski, 'Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen', Ann. 
Phys. 21 (1906), 756-780, §9 gives – erroneously - the correction factor 4/π, i.e., the reciprocal value of the average 
shortening of a 3D-length in 2D-projection. 
11 M. von Smoluchowski, 'Einige Beispiele Brownscher Molekularbewegung unter Einfluß äußerer Kräfte', Bull. Int. 
Acad. Sc. Cracovie, Mat.-naturw. Klasse A (1913), 418-434. 
12 M. von Smoluchowski, 'Studien über Molekularstatisktik von Emulsionen und deren Zusammenhang mit der 
Brownschen Bewegung', Sitzber. Kais. Akad. Wiss. Wien, Mat.-naturw. Klasse 123/IIa (Dec. 1914), 2381-2405. All 
three here cited papers by Smoluchowski are available on http://matwbn.icm.edu.pl/spis.php?wyd=4&jez=en. 
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a myriad of ions, proteins and organelles far away and across the cell and let the essential event take 
place: the secretion, back at the plasma membrane? How does the communication taking place; the 
spread of a singularity; the amplification of a signal; and finally the creation of new forms? Many 
mathematical disciplines have something to offer, from algebraic geometry, stochastic processes 
and complex dynamics to parabolic and hyperbolic differential equations and free boundary value 
problems.13  
 
 
Conclusion   
How deep is the gap between mathematics and medicine? Most mathematicians who have tried to 
work with doctors will confirm that cooperation is fairly smooth. You soon find a common 
language and common understanding in spite of widely different backgrounds. Understandably, one 
should not and cannot overstretch the patience of a clinical physician who has his or her patient here 
and now.  
 
The relationship between mathematics and medicine has been quite tumultuous in the history of 
science. Important mathematicians and physicists as R. Descartes, D. Bernoulli, J. d'Alembert, H. 
Helmholtz, E. Schrödinger, I. Gelfand, and R. Thom have been attracted to biomedical questions 
and observations, but have also expressed their reservations. Important doctors, for examples one 
need only go through the list of Nobel Laureates, have apparently not suffered from math phobia, 
but rather retained a lifelong fondness for mathematical ideas and ways of seeing.  
 
Maybe this understanding between physicians and mathematicians has deep roots in the past: 
counting and healing was, by all accounts, magicians’ and medicine men’s mysterious privilege in 
pre-scientific cultures. Both subjects were, however, unlike the previous conjuration spirit and 
belief in magic and the good or evil ghosts, carried by the same rationalistic spirit throughout Greek 
and Roman antiquity (perhaps beside the Asclepiades). Geometric and arithmetic ratios should be 
explained and not adored or cursed! In the same mind, Greek medicine has established itself as a 
strictly materialistic subject who described the disease course in purely objective, observable terms, 
and also envisioned solely objective reasons and pure physical treatment.14  
 
Tasks for mathematics education. All higher educational institutions within mathematics have over 
the last years experiences that often more than half of their graduates were employed in the 
financial sector, especially to the mathematically delicate evaluation of options and other 
derivatives. Some university teachers have been just as pleased as their students over these quick 
appointments. Some went so far as to point to this new job market as an argument to attract new 
math students to their universities.  
 
I agree with the series of critical contributions in the Mathematical Intelligencer: there is no reason 
to be proud to have trained some of our best students just to that task.15 One alternative is to train 
                                                 
13 For the last mentioned approach cf. D. Apushkinskaya et al. 2012, loc. cit. For a more fundamental approach to the 
geometry of biological amplification processes see also M. Gromov’s many related and quite varied contributions of the 
last decade. 
14 Paul Diepgen, Geschichte der Medizin. Die historische Entwicklung der Heilkunde und des ärztlichen Lebens, 
Vol. 1, Walter de Gruyter & Co., Berlin, 1949, pp. 67-158; Fridolf Kudlien, Der Beginn des medizinischen Denkens bei 
den Griechen, Von Homer bis Hippokrates, Artemis, Zürich and Stuttgart, 1967; Fritz Jürss, Geschichte des 
wissenschaftlichen Denkens im Altertum, Akademie-Verlag, Berlin, 1982. 
15 M. Rogalski, 'Mathematics and finance: An ethical malaise', Mathematical Intelligencer 32/2 (2010), 6-8; I. Ekeland, 
'Response to Rogalski', Mathematical Intelligencer 32/2 (2010), 9-10; J. Korman, 'Finance and mathematics: A lack of 
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our students in pure mathematics at its best. Perhaps an even better alternative is to direct students' 
attention to the many fascinating possibilities of cooperation in the medical world at the population 
level, e.g., in the study of infectious diseases and antibiotic resistant bacteria; at the organism and 
organ level, e.g., in the study of cardiovascular diseases; or at the cellular level, e.g., in the study of 
β-cells and other highly differentiated cell types.  
 
   
Thanks  
I thank the doctors Hans-Georg Mannherz (Universität Bochum und Max-Planck-Institute Dortmund), Pierre 
de Meyts (NovoNordisk-Hagedorn Laboratories, Gentofte), Flemming Pociot (Glostrup Hospital, 
Copenhagen) and Erik Renström (University Hospital, Malmö) for many years of inspiration - and patience 
with me as a novice. Engineer Martin Koch has awakened my interest in the area and introduced me to the 
literature and to the electro-dynamic laboratory techniques. My Roskilde colleague Nick Bailey has done his 
to reduce the number of linguistic errors and ambiguities in this report.  
 
   
Illustrations :  
 
Fig. 1. Two-phase secretion of insulin with three different β-cell modes. The figure shows at the 
bottom three β-cells in three different states. The smaller circles symbolize insulin vesicles. The 
graph on top shows the insulin secretion over time for a single cell. As the graph shows, the insulin 
secretion is explosive in the short first phase (mode i). In the longer second phase (mode iii), the 
secretion is rather constant and more evenly distributed. Between the two phases is the waiting state 
ii. As depicted in the β-cells at the bottom of the figure, the three molecular states are similar to 
each other. Consequently, they do not explain the order in the sequence of phases. It is that order 
which one now seeks to explain by means of mathematical models that involve the interplay 
between all processes. After Renström (2011) in [1], p. 40  
 
 
Fig. 2. Cross section of the fusion of a vesicle of 28 nm diameter and a 100 x 100 nm2 plane lipid 
bilayer in computer simulation, instantaneous snapshot 300 ns after the first vesicle-membrane 
contact. The simulation of a complete fusion event requires 4 CPU days on a processor. From 
Shillcock (2011) in [1], p. 468  
 
Box 1. Stump of a MatLab program to visualize the self-similarity of a Wiener process, to be built 
upon for more realistic and investigative purposes. Modified from Gyurov, A., and R. Tokin, 
Modeling the measurements of cytosol viscosity of pancreatic beta-cells by nanoparticle tracing in 
vivo, Basic Studies in Natural Sciences, RU, Spring 2011.  
 
 
 
                                                                                                                                                                  
debate', Mathematical Intelligencer 33/2 (2011), 4-6. Related questions have been addressed in SIAM-News and Mitt. 
Deutsch. Math.-verein. 
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% code1_2Dto3D_v2, , ag&rt, RUC NatBas, modified 8 August, 2011, bbb & jørgen larsen 
% This program explores the most primitive way of e stimating the viscosity of a fluid, 
% e.g., the cytosol of pancreatic beta-cells in viv o, by tracing the Brownian motion {P(i)} 
% of a single suspended nanoparticle by intermittin g laser microscope registration.  
% 
% Problem: by computer simulation, to determine the  expected precision of viscosity estimation in labo ratory, 
% depending (i) on the time resolution of the appli ed laser microscope, (ii) on the 
% duration of possible observation, (iii) on the te mperature: viscosity eta_temp = A exp(b/temp) 
% 
% Program design: Block I specifies laboratory para meters and calculates the corresponding 
% diffusion constant D. Block II generates a sequen ce of Brownian 3D-motions, based on the  
% calculated diffusion constant and a normal random  generator. Each Brownian motion comes  
% in three versions: all 40 frames per second, half  of the frames, and a quarter of the  
% frames. Block III calculates the observed square displacement between consecutive  
% positions; derives estimates of D, and determines  the viscosity eta on that basis. Block IV provides  
% a graphical illustration of the self-similarity a nd of the considerable average maximal displacement  
%  
% Note: "clear" the command window before each run.  
%% Block I: Input data----------------------------- ---------------------  
M=100;             % number of tests of estimation quality  
obs=4*60;                      % basic time length of a single video clip [sec] 
N=obs*40;                      % number of measurements in high resolution 
h=1/40;                        % time step in high resolution [sec] 
t=(0:h:obs);                   % used for various resolutions 
kb=1.38*10^(-23);              % Boltzmann constant 
temp=310;                      % temperature [degrees K] = 37 [C] 
visc=1;                        % viscosity [mPa s] 
npr=0.02*10^(-6);              % NP radius [m] 
D=1000*kb*temp/(6*pi*npr*visc) % diffusion constant; recall the Einstein relation:   
% 2*D*tau=MSD_tau=E(|P(i+tau)-P(i)|^2) for each tim e interval tau 
% Input MSD_h=E(|P(1)-P(0)|^2) mean square displace ment per time unit h 
MSD_h=2*D*h                    % 2 * diffusion constant * unit time; OBS: h = 1/40  
sigma_3D=sqrt((MSD_h)/3);      % factor for randn in coordinates to generate  
% three-dimensional Wiener process of variance MSD_ 1  
%% 
% Block II: Generation of Brownian path in 3D with given variance sigma^2=MSD_h=2*D*h 
for j=1:M 
x(1)=0.0; y(1)=0.0; z(1)=0.0;  % Initial position of the Brownian nanoparticles 
  for i=1:N                    % generating NP positions              
  x(i+1)=x(i)+sigma_3D*randn; y(i+1)=y(i)+sigma_3D*ra ndn; z(i+1)=z(i)+sigma_3D*randn; 
  L(i)=norm([x(i+1)-x(i) z(i+1)-z(i)]); % array of displacements in x-z plane 
  end 
% 1/2th of the initial resolution  
x2=x(1:2:end); y2=y(1:2:end); z2=z(1:2:end); 
  for k=1:N/2         % generating vector with 1/2 jump-lengths 
  L2(k)=norm([x2(k+1)-x2(k) z2(k+1)-z2(k)]);  
  end 
% 1/4th of the initial resolution 
x4=x2(1:2:end); y4=y2(1:2:end); z4=z2(1:2:end); 
  for m=1:N/4         % generating vector with 1/4 jump-lengths 
  L4(m)=norm([x4(m+1)-x4(m) z4(m+1)-z4(m)]); 
  end  
% Block III: MSD observed in x-z plane, to be corre cted by factor 3/2  
MSDout=sum(L.^2)/length(L); MSD2out=sum(L2.^2)/leng th(L2); 
MSD4out=sum(L4.^2)/length(L4);     
% Estimated diffusion constant for different time r esolution 
D_obs=(3/2)*MSDout/(2*h);       % 40 slides/s 
D2_obs=(3/2)*MSD2out/(2*2*h);   % 20 slides/s  
D4_obs=(3/2)*MSD4out/(2*4*h);   % 10 slides/s 
coef=1000*kb*temp/(6*pi*npr); 
% Estimated viscosity for total observation time ob s 
% based on [40 20 10]  slides/s 
visc_est(j)=coef/D_obs; visc2_est(j)=coef/D2_obs; v isc4_est(j)=coef/D4_obs; 
end 
% Predicted error of viscosity estimates  
visc_StandD=[sqrt(mean((visc_est-visc).^2)) sqrt(me an((visc2_est-visc).^2)) sqrt(mean((visc4_est-visc) .^2))] 
% Typical results for naive estimation, based only on the analysis of subsequent pairs of positions  
% obs=1 sec: visc_variance = [0.1306 0.1611 0.2739]  useless for all resolutions 
% obs=10 sec: visc_variance = [0.0491 0.0738 0.0883 ] useless, expected error too large for all time re solutions 
% obs=60 sec: visc_variance = [0.0184 0.0265 0.0380 ] still useless for wanted distinctions \pm few per cent 
% obs=4*60 sec: visc_variance = [0.0093 0.0137 0.02 05] useless for low time resolution 
% obs=10*60 sec: visc_variance = [0.0078 0.0081 0.0 128] yields meaningful viscosity estimation  
% even for low time resolution, i.e., greater obs c an compensate for lower resolution.  
% Block IV: Illustration of self-similarity for [40  20 10] slides/s, best for obs=1 
hold on 
plot3(x,y,z) plot3(x2,y2,z2, 'r' ) plot3(x4,y4,z4, 'g' ) xlabel( 'x' ) ylabel( 'y' ) zlabel( 'z' ) 

 
 


