

Sustainable wood use, decarbonisation of energetic metabolism and forest development

Czeskleba-Dupont, Rolf

Publication date: 2009

Document Version Publisher's PDF, also known as Version of record

Citation for published version (APA): Czeskleba-Dupont, R. (2009). Sustainable wood use, decarbonisation of energetic metabolism and forest development. Poster session presented at International Scientific Congress Climate change. Global risks, challenges & decisions, København, Denmark.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- · Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain.
 You may freely distribute the URL identifying the publication in the public portal.

Take down policy

If you believe that this document breaches copyright please contact rucforsk@kb.dk providing details, and we will remove access to the work immediately and investigate your claim.

Sustainable wood use, decarbonisation of energetic metabolism and forest development

Rolf Czeskleba-Dupont, Ph.D., M.Sc., Roskilde University, Denmark, e-mail: nest@ruc.dk Department of Environmental, Social and Spatial Change (ENSPAC)

RESEARCH AIMS

- IDENTIFY COMMON MECHANISMS OF TOXIC POLLUTION FROM ATMOSPHERIC BURNERS, COLLECTIVE AND INDIVIDUAL
- QUESTION THE SUSTAINABILITY OF CO2-CREDITS FOR BURNING STEM WOOD PRODUCTS
- SENSITISE FOR CHOICES AHEAD IN FOREST MANAGEMENT
- ENVISION COMPREHENSIVE **DE-CARBONISATION** OF ENERGETIC METABOLISM

AIR POLLUTION IN DENMARK

Wood stove emissions cause local health hazards being a mixture of:

WOOD STOVE CHIMNEYS ACT AS DIOXIN REACTORS

Experimental measurements of **dioxin 5 kW wood stove**

90% of national total of PAH (carcinogenic)
60% of primary particles (PM2,5)
50% of dioxins (activate carcinogens)

For diluting 1 m³ contaminated air to urban background 7 x 10⁵ m³ fresh air needed re. PAH 5 x 10⁶ m³ " " re. PM 2,5
- impossible with low chimneys in dense neighbourhoods
- end-of-pipe-solution: particle FILTERS they are, however, NOT designed for dioxins
Dioxins (PCDD/PCDF) emissions:
Limit value for high rise (!) chimneys: 0,1 ng pr. m³

C02-INDULGENCE versus POPs CONVENTION

DANISH REPORT to Stockholm Convention (2006) on dioxins: "Total emissions **could be** reduced with a_ban on burning biomass in small installations without flue gas purification ..." YET: "...such an initiative could have **undesirable** effects in the context of the goals to reduce total CO₂ emissions." The Ministry, thus, accepts 50% of Danish dioxin emissions giving climate indulgence for substituting fossil fuels by tree. In reality, substituting wood e.g. for natural gas means CO₂emissions GO UP 79%!

DANISH LAW on CO2-quotas: "Biomass: Fuels, which according to Annex 1 have a CO2 -emission factor of ZERO" Annex 1 shows figures with DELETED emission factors for ALL biomass fuels: FUEL Real CO2 [kg/G] Law CO2 [kg/G] **pure, dry wood**: birch and beech 6 h **burning test** with 2 **modes of loading** (a) 5 portions à 1,9 kg (normal) (b) 1 portion à 5 kg ('night' firing)

Results: (1) emissions of PCDD/PCDF 1 - 8 times EU limit value for waste incinerators

(2)"Against expectations, **night firing (b) shows lesser emissions of dioxin** than normal firing (a)" (Source: Schleicher et al. 2001, p.38)

Same anomaly as in <u>waste incinerators</u> (Fig. from Commoner 1987)

NO CLIMATE-NEUTRALITY FOR STEM WOOD BURNING

Physicist Bent Sørensen:

"...The **time lag for trees** may be decades or centuries, and in such case the temporary **carbon dioxide imbalance** may **contribute to climatic alterations**." (RENEWABLE ENERGY, 3rd.ed., 2004, 483)

IPCC 2001:

"Natural processes and management regimes may reduce or increase the amount of **carbon stored in pools** with **turnover times** of the order of tens to hundreds of years (**living wood, wood products and modified soil organic matter**) and

De-novo-synthesis of dioxin in waste incerators [µg/h]

Fuel Computition exchangers Stack (a) 780-1080° I30-183°C 58 96 Joint Computition Stack 130-183°C 760 Joint Computer Stack 130-183°C 130-183°C

Only by fast rotation in agriculture, however, the amount of CO2 emitted is re-bound in a time certain (from year to year)

When burning stem wood

a) count the **year's rings**

b) calculate, how many trees You
have to plant, if the emitted amount
of many years' CO₂ binding shall be rebound within a few years from now!
Are You sure You will be part of the
solution – and NOT of the problem?

thus influence the time evolution of atmospheric CO2 over the century." IPCC 2007: Harvested wood products be used for climate mitigation! This is also hindered by wood burning because of emissions of black carbon particles with direct warming (Ramanathan et al. 2008).

LAND AND WOOD USE PROPORTIONS

1990 to 2005: Energetic use of harvested wood products doubled in Denmark Planned: another doubling to 2030 !

The political aim of doubling forest area in a tree generation (as against 1989), is, however, out of sight. Only 11-12% of land area are today covered by forests

Source: MCPFE/UNECE/FAO "State of Europe's

http://www.unece.org/pxweb/DATABASE/STAT/Timber.stat.

Forests 2007*"*, *based* on *data collected by*

UNECE/FAO available at

asp

ENERGETIC OVERUSE versus FOREST SUSTAINABILITY

POTENTIALS OF CONTINUOUS COVER FORESTRY "The high C stock in semi-natural forests...suggests that more C could be stored by conversion from the traditional forest management system based on clear-cutting and replanting to continuous cover forestry with focus on the maintenance of the dead wood component" (Vesterdal et al. 2007) 2-3 times as much C might be stored by intensified near-natural forest management (Vesterdal in Danish radio) If forest management is to maximise **CO2-sink functions of forest** ecosystems, it should expand strategies of 'near-natural forestry'. These were part of the Danish National Forest Programme of 2002, but are today put into question politically

OVEREXPLOITING FORESTS AS ENERGY SUPPLY Research results from Austria: Pre-industrial society threatened forest sustainability by "intensive, multifunctional use"

Fossil energy based industrialisation, especially of agriculture, led to higher C densities and larger forest areas (Erb et al. 2008)
To 2020: "Increases in wood harvest could lead to a reduction of the

functioning of forest ecosystems as carbon sinks" (Haberl et al. 2003, based upon high quality data)

So, Denmark increasingly imports tree for use in domestic heating (40% of Russia's woods are not registered in Kyoto process)

CONCLUSIONS

Defining CO2-neutral biomass:

Exclude tree species with rotation periods longer than a couple of years; Carbon dioxide emitted from burning non-fossil plant matter must also be accounted for nationally (full carbon accounting)

Priority be given for implementing t**he Stockholm Convention** on **out-phasing** persistent organic pollutants (POPs) over promoting wood burning Wood burning should, rather, be substituted by **low- and non-carbon energy procurement e.g.** in a hydrogen economy (Sørensen 2005)

REFERENCES

Promoting the energetic use of stem wood products (e.g. as CO2-neutral) is, after all, incompatible with prudent climate mitigation by forest management

Commoner, B. et al. 1987: The origin and health risks of PCDD and PCDF. WASTE MANAGEMENT & RESEARCH, vol.5, 327-46
Czeskleba-Dupont, R. 2008: Toxic emissions and devalued CO2-neutrality. Stem wood burning violates sustainable development. EECG RESEARCH PAPER 02/08. http://hdl.handle.net/1800/3082
Erb, K-H.et al. 2008: Industrialization, fossil fuels, and the transformation of land use. An integrated analysis of carbon flows in Austria 1830-2000. JOURNAL OF INDUSTRIAL ECOLOGY, vol.12, 5/6, 686-703
Haberl, H. et al. 2003: Land-use change and socio-economic metabolism in Austria, Part II: land-use scenarios for 2020. LAND USE POLICY, vol.20, 21-39
Ramanathan, V. and Carmichael, G. 2008: Global and regional climate changes due to black carbon. NATURE GEOSCIENCE, Vol.1, 4, 221-226
Schleicher, O. et al. 2001: Måling af dioxinemissionen fra udvalgte sekundære kilder . MILJØPROJEKT 649, Danish NEPA Sørensen, B.E. 2004: Renewable Energy, 3rd ed., Academic Press
Sørensen, B.E. 2005: Hydrogen & fuel cells. Elsevier Academic Press
Vesterdal, L. et al.2007: The Carbon pools in a Danish semi-natural forest. ECOLOGICAL BULLETIN, vol. 52, 113-21.