
Roskilde
University

Analysis of Linear Hybrid Systems in CLP

Banda, Gourinath; Gallagher, John Patrick

Published in:
Lecture Notes in Computer Science

Publication date:
2009

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Banda, G., & Gallagher, J. P. (2009). Analysis of Linear Hybrid Systems in CLP. Lecture Notes in Computer
Science, 55-70.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain.
 • You may freely distribute the URL identifying the publication in the public portal.
Take down policy
If you believe that this document breaches copyright please contact rucforsk@kb.dk providing details, and we will remove access to the work
immediately and investigate your claim.

Download date: 18. Jun. 2025

Analysis of Linear Hybrid Systems in CLP ?

Gourinath Banda and John P. Gallagher

Building 43.2, P.O. Box 260, Roskilde University, DK-4000 Denmark
Email: {gnbanda,jpg}@ruc.dk

Abstract. In this paper we present a procedure for representing the se-
mantics of linear hybrid automata (LHAs) as constraint logic programs
(CLP); flexible and accurate analysis and verification of LHAs can then
be performed using generic CLP analysis and transformation tools. LHAs
provide an expressive notation for specifying real-time systems. The main
contributions are (i) a technique for capturing the reachable states of the
continuously changing state variables of the LHA as CLP constraints; (ii)
a way of representing events in the LHA as constraints in CLP, along
with a product construction on the CLP representation including syn-
chronisation on shared events; (iii) a framework in which various kinds of
reasoning about an LHA can be flexibly performed by combining stan-
dard CLP transformation and analysis techniques. We give experimental
results to support the usefulness of the approach and argue that we con-
tribute to the general field of using static analysis tools for verification.

1 Introduction

In this paper we pursue the general goal of applying program analysis tools to
system verification problems, and in particular to verification of real-time con-
trol systems. The core of this approach is the representation of a given system as
a program, so that the semantics of the system is captured by the semantics of
the programming language. Our choice of programming language is constraint
logic programming (CLP) due to its declarative character, its dual logical and
procedural semantics, integration with decision procedures for arithmetic con-
straints and the directness with which non-deterministic transition systems can
be represented. Generic CLP analysis tools and semantics-preserving transfor-
mation tools are applied to the CLP representation, thus yielding information
about the original system. This work continues and extends previous work in
applying CLP to verification of real-time systems, especially [20, 13, 26].

We first present a procedure for representing the semantics of linear hybrid
automata (LHAs) as CLP programs. LHAs provide an expressive notation for
specifying continuously changing real-time systems. The standard logical model
of the CLP program corresponding to an LHA captures (among other things)
the reachable states of the continuously changing state variables of the LHA;
previous related work on CLP models of continuous systems [20, 26] captured
? Work partly supported by the Danish Natural Science Research Council project

SAFT: Static Analysis Using Finite Tree Automata.

only the transitions between control locations of continuous systems but not
all states within a location. The translation from LHAs to CLP is extended to
handle events as constraints; following this the CLP program corresponding to
the product of LHAs (with synchronisation on shared events) is automatically
constructed. We show that flexible and accurate analysis and verification of
LHAs can be performed by generic CLP analysis tools coupled to a polyhedron
library [5]. We also show how various integrity conditions on an LHA can be
checked by querying its CLP representation. Finally, a path automaton is derived
along with the analysis; this can be used to query properties and to generate
paths that lead to given states.

In Section 2 the CLP representation of transition systems in general is re-
viewed. In Section 3 we define LHAs and then give a procedure for translating
an LHA to a CLP program. Section 4 shows how standard CLP analysis tools
based on abstract interpretation can be applied. In Section 5 we report the re-
sults of experiments. Section 6 concludes with a discussion of the results and
related research.

2 Transition Systems

State transition systems can be conveniently represented as logic programs. The
requirements of the representation are that the (possibly infinite) set of reachable
states can be enumerated, that the values of state variables can be discrete
or continuous, that transitions can be deterministic or non-deterministic, that
traces or paths can be represented and that we can both reason forward from
initial states or backwards from target states.

Various different CLP programs can be generated, providing a flexible ap-
proach to reasoning about a given transition system using a single semantic
framework, namely, minimal models of CLP programs. Given a program P , its
least model is denoted M [[P]]. In Section 6 we discuss the use of other semantics
such as the greatest fixpoint semantics.

CLP Representation of Transition Systems A transition system is a triple
〈S, I,∆〉 where S is a set of states, I ⊆ S is a set of initial states and ∆ ⊆ S×S
is a transition relation. The set S is usually of the form V1 × · · · × Vn where
V1, . . . , Vn are sets of values of state variables. A run of the transition system is
a sequence s0, s1, s2, . . . where 〈si, si+1〉 ∈ ∆, i ≥ 0. A valid run is a run where
s0 ∈ I. A reachable state is a state that appears in some valid run. A basic CLP
representation is defined by a number of predicates, in particular init(S) and
transition(S1,S2) along with either rstate(S) or trace([Sk,...,S0]). A
program P is formed as the union of a set of clauses defining the transition rela-
tion transition(S1,S2) and the initial states init(S) with the set of clauses
in either Figure 1(i) or (ii). Figure 1(i) defines the set of reachable states; that
is, s is reachable iff rstate(s) ∈M [[P]] where s is the representation of state s.
Figure 1(ii) captures the set of valid run prefixes. s0, s1, s2, . . . is a valid run of
the transition system iff for every non-empty finite prefix rk of s0, s1, s2, . . . sk,

rstate(S2) :- trace([S2,S1|T]) :-

transition(S1,S2), rstate(S1). transition(S1,S2), trace([S1|T]).
rstate(S0) :- init(S0). trace([S0]) :- init(S0).

(i) Reachable states (ii) Run prefixes

qstate(S1) :- dqstate(S1,Sk) :-

transition(S1,S2), qstate(S2). transition(S1,S2), dqstate(S2,Sk).

qstate(Sk) :- target(Sk). dqstate(Sk,Sk) :- target(Sk).

(iii) Reaching states (iv) State Dependencies

Fig. 1. Various representations of transition systems

trace(rk) ∈ M [[P]], where rk is the representation of the reverse of prefix rk.
Note that infinite runs are not captured using the least model semantics. The
set of reachable states can be obtained directly from the set of valid run prefixes
(since sk is reachable iff s0, . . . , sk is the finite prefix of some valid run).

Alternatively, reasoning backwards from some state can be modelled. Figure
1(iii) gives the backwards reasoning version of Figure 1(i). Given a program
P constructed according to Figure 1(iii), its least model captures the set of
states s such that there is a run from s to a target (i.e. query) state. The
predicate target(Sk) specifies the states from which backward reasoning starts.
This is the style of representation used in [13], where it is pointed out that
relation between forward and backward reasoning can be viewed as the special
case of a query-answer transformation or so-called “magic-set” transformation
[12]. Figure 1(iv) gives a further variation obtained by recording the dependencies
on the target states; dqstate(S,Sk) ∈ M [[P]] iff a target state Sk is reachable
from S. There are many other possible variants; system-specific behaviour is
captured by the transition, init and target predicates while the definitions of
rstate, qstate+and so on capture various semantic views on the system within
a single semantic framework. We can apply well-known semantics-preserving
transformations such as unfolding and folding in order to gain precision and
efficiency. For instance, the transition relation is usually unfolded away.

In Section 3 we show how to construct the transition relation and the init
predicates for Linear Hybrid Automata. These definitions can then be combined
with the clauses given in Figure 1.

3 Linear Hybrid Automata as CLP programs

Embedded systems are predominantly employed in control applications, which
are hybrid in the sense that the system whose behaviour is being controlled
has continuous dynamics changing in dense time while the digital controller
has discrete dynamics. Hence their analysis requires modelling both discrete
and continuous variables and the associated behaviours. The theory of hybrid
automata [24] provides an expressive graphical notation and formalism featuring
both discrete and continuous variables. We consider only systems whose variables
change linearly with respect to time in this paper, captured by so-called Linear
Hybrid Automata [2].

w := 1 w ≤ 10
x = 1
w = 1

l0 l3

w = 10
x := 0

x = 2

x = 2
x ≤ 2
x = 1
w = 1

l1

w ≥ 5
x = 1

w = 2
l2

w = 5
 x := 0

x ≤ 2
x = 1

w = 2

Fig. 2. A Water-level Monitor

3.1 The language of Linear Hybrid Automata

Following [24], we formally define a linear hybrid automaton (LHA) as a 6-tuple
〈Loc, Trans, V ar, Init, Inv,D〉, with:

– A finite set Loc of locations also called control nodes, corresponding to con-
trol modes of a controller/plant.

– A finite set V ar = {x1, x2, . . . , xn} of real valued variables, where n is the
number of variables in the system. The state of the automaton is a tuple
(l, X), where X is the valuation vector in Rn, giving the value of each vari-
able. Associated with variables are two sets:
• ˙V ar = {ẋ1, . . . , ẋn}, where ẋi represents the first derivative of variable

xi w.r.t time;
• V ar′ = {x′1, . . . , x′n}, where x′i represents xi at the end of a transition.

– Three functions Init, Inv and D that assign to each location l ∈ Loc three
predicates respectively: Init(l), Inv(l) and D(l). The free variables of Init(l)
and Inv(l) range over V ar, while those of D(l) range over V ar ∪ ˙V ar. An
automaton can start in a particular location l only if Init(l) holds. So long
as it stays in the location l, the system variables evolve as constrained by
the predicate D(l) not violating the invariant Inv(l). The predicate D(l)
constrains the rate of change of system variables.

– A set of discrete transitions Trans = {τ1, . . . , τt}; τk = 〈k, l, γk, αk, l′〉 is a
transition (i) uniquely identified by integer k, 0 ≤ k ≤ t; (ii) corresponding to
a discrete jump from location l to location l′; and (iii) guarded by a predicate
γk and with actions constrained by αk. The guard predicate γk and action
predicate αk are both conjunctions of linear constraints whose free variables
are from V ar and V ar ∪ V ar′ respectively.

Figure 2 shows the LHA specification of a water-level monitor (taken from [21]).

3.2 LHA Semantics and Translation into CLP

LHA Semantics as a Transition System The semantics of LHAs can be
formally described as consisting of runs of a labelled transition system (LHAt),
which we sketch here (full details are omitted due to lack of space).

A discrete transition is defined by (l,X) → (l′, X ′), where there exists a
transition τ = 〈k, l, γ, α, l′〉 ∈ Trans identified by k; the guard predicate γ(k, l, l′)
holds at the valuation X in location l and k identifies the guarded transition;
the associated action predicate α(k, l, (l′, X), (l′, X ′)) holds at valuation X ′ with

which the transition ends entering the new location l′ (k identifies the transition
that triggers the action). If there are events in the system, the event associated
with the transition labels the relation. Events are explained later in this section.

A delay transition is defined as: (l, X) δ→ (lδ, Xδ) iff l = lδ, where δ ∈ R≥0 is
the duration of time passed staying in the location l, during which the predicate
Inv(l) continuously holds; X and Xδ are the variable valuations in l such that
D(l) and Inv(l), the predicates on location l, hold. The predicate D(l) constrains
the variable derivatives ˙V ar such that Xδ = X + δ ∗ Ẋ.

Hence a delay transition of zero time-duration, during which the location and
valuation remain unchanged is also a valid transition.

A run σ = s0s1s2 · · · is an infinite sequence of states (l,X) ∈ Loc×Rn, where
l is the location and X is the valuation. In a run σ, the transition from state si

to state si+1 are related by either a delay transition or a discrete transition. As
the domain of time is dense, the number of states possible via delay transitions
becomes infinite following the infinitely fine granularity of time. Hence the delay
transitions and their derived states are abstracted by the duration of time (δ)
spent in a location. Thus a run σ of an LHAt is defined as σ = (l0, X0)

δ0→(γ0,α0)

(l1, X1)
δ1→(γ1,α1) (l2, X2) · · · , where δj(j ≥ 0) is the time spent in location lj

from valuation Xj until taking the discrete transition to location lj+1, when the
guard γj holds. The new state (lj+1, Xj+1) is entered with valuation Xj+1 as
constrained by αj . Further τj = 〈j, lj , γj , αj , lj+1〉 ∈ Trans. Again during this
time duration δj , the defined invariant inv(lj) on lj continues to hold, and the
invariant inv(lj+1) holds at valuation Xj+1.

LHA semantics in CLP Table 1 shows a scheme for translating an LHA
specification into CLP clauses. The transition predicate defined in the table is
then used in the transition system clauses given in Figure 1. A linear constraint
such as Init(l), Inv(l), etc. is represented as a CLP conjunction via to clp(.).
The translation of LHAs is direct apart from the handling of the constraints
on the derivatives on location l, namely D(l) which is a conjunction of linear
constraints on ˙V ar. We add an explicit “time stamp” to a state, extending
V ar, V ar′ with time variables t, t′ respectively giving V art, V ar′t. The constraint
Dt(l) is a conjunction of linear constraints on V art∪V ar′t, obtained by replacing
each occurrence of ẋj in D(l) by (x′j − xj)/(t′ − t) in Dt(l), where t′, t represent
the time stamps associated with x′j , xj respectively.

Event Semantics in CLP A system can be realized from two or more inter-
acting LHAs. In such compound systems, parallel transitions from the individual
LHAs rendezvous on events. Thus to model such systems the definition of an
LHA is augmented with a finite set of events Σ = {evt1, . . . , evtne}. The result-
ing LHA then is a seven-tuple 〈Loc, Trans, V ar, Init, Inv,D,Σ〉. Also associ-
ated with events is a partial function event : Trans ↪→ Σ, which labels (some)
transitions with events.

LHA CLP

location l L

state variables x1, . . . , xn X1,. . .,Xn
state with time t and location l S = [L,X1,. . .,Xn,T]

state time timeOf(S,T) :- lastElementOf(S,T).

state location locOf(S,L) :- S = [L|].

temporal order on states before(S,S1) :- timeOf(S,T), timeOf(S1,T1),

T<T1.

Init(l) init(S) :- locOf(S,L) ,to clp(Init(l)).
Inv(l) inv(S) :- locOf(S,L),to clp(Inv(l)).
D(l) (using the d(S,S1):- locOf(S,L), timeOf(S,T),

derivative relation Dt(l) locOf(S1,L), timeOf(S1,T1),

explained in the text) to clp(Dt(l)).

LHA transition 〈k, l, γk, αk, l′〉 gamma(K,L,S) :- locOf(S,L1), to clp(γk).

alpha(K,L,S1,S2) :- locOf(S1,L1),

locOf(S2,L1), to clp(αk).

delay transition transition(S0,S1) :- locOf(S0,L0),

before(S0,S1), d(S0,S1),inv(L0,S1).

discrete transition transition(S0,S2):- locOf(S0,L0),

before(S0,S1), d(S0,S1),

gamma(K,L0,S1),alpha(K,L0,S1,S2).

Table 1. Translation of LHAs to CLP

In our framework we model event notification as constraints. To this end
events are modelled as discrete state variables ranging over values {0,1}; these
variables are initialized to 0; on an event-labelled transition the variable cor-
responding to the labelled event is set to value 1 to raise that event while the
other event variables are reset to 0; on a transition not labelled with an event
all event variables are reset to 0; the event variables remain constant within
a location and thus at most one event variable can have value 1 at any time.
In the CLP translation the state vector of an LHA with events is given by
S = [Loc,X1, . . . , Xn, Evt1, . . . , Evtne, T], where for j = 1 to ne the variable
Evtj represents evtj ∈ Σ. The raising of event evtre is modelled as a constraint
Ere = (

∧ne
i=1 Evti = ci) where the value ci equals 1 if i = re or 0 otherwise. Simi-

larly the constraint corresponding to no event raised is Enone = (
∧ne

i=1 Evti = 0).
We modify the previous translation of the derivative constraints D(l) to

incorporate events, yielding the following definition of d/2.

d([l,X0
1 , . . . , X0

n, Evt01, . . . , Evt0n, T0], [l,X1
1 , . . . , X1

n, Evt11, . . . , Evt1ne, T1])←
LCdEvt

, LCdl
, X1

1 = X0
1 + dx1 ∗ (T1 − T0), . . . , X1

n = X0
n + dxn

∗ (T1 − T0),
Evt11 = 0, . . . , Evt1n = 0.

The translation of predicate α to alpha/4 is modified to encode the event
notification as follows.

alpha(T,L0, [L1, X1, . . . , Xn, Evt1, . . . , Evtne],
[L1, X

′
1, . . . , X

′
n, Evt′1, . . . , Evt′ne]) ←

LAC1, . . . , LACna, Exe.

where if Evtre is the label on the transition Exe = Ere else Exe = Enone when
there is no event label (where Ere and Enone are as defined above). The trans-
lation of the γ and inv constraints is unaffected by the addition of events apart
from the extension of the state vector with the event variables.

3.3 Parallel Composition of Linear Hybrid Automata

The discrete transitions of two automata LHA1 and LHA2 with events Σ1 and
Σ2 respectively, synchronize on an event evt as following:

– if evt ∈ Σ1 ∩Σ2, then the discrete transitions τi ∈ Trans1 and τj ∈ Trans2

labelled with the event evt must synchronize;
– if evt /∈ Σ1 ∩Σ2 but evt ∈ Σ1, then the discrete transition τi ∈ Trans1 can

occur simultaneously with a zero duration delay transition of LHA2, and
similarly if evt ∈ Σ2

Finally, a delay transition of LHA1 with a duration δ must synchronize with a
delay transition of LHA2 of the same duration.

Synchronization is enforced by constructing a product of the associated la-
belled transition systems (LHAt). In our framework, the product of two la-
belled transition systems is realized as the composition � of the correspond-
ing CLP programs, which corresponds closely to the LHA product construc-
tion as defined in [24]. More efficient encodings have been investigated [28,
26]. � is defined as CLP1 � CLP2 = {C1 � C2 | C1 ∈ CLP1, C2 ∈ CLP2}
where C1 = p2(X) ← c1(X,X

′
), p1(X

′
) is a clause in CLP1, C2 = q2(Y) ←

c2(Y , Y
′
), q1(Y

′
) is a clause in CLP2 and C1�C2 = p2 q2(X ∪ Y)← c1(X,X

′
)∧

c2(Y , Y
′
), p1 q1(X ′ ∪ Y ′). Here p2 q2 and p1 q1 are new predicates unique to

the associated predicate pairs in the original programs. The notation X above,
where X is a set, denotes a tuple of the elements of X in some fixed order (e.g.
alphabetical order).

The operation � is quadratic in that the number of clauses in the resultant
CLP1 � CLP2 equals | CLP1 | × | CLP2 |. However with shared events many
of them can be eliminated since their constraints are not consistent due to the
event constraints. If there is a constraint E = 1 on a shared event variable E
in some transition, then it will only form a consistent product clause with other
clauses with E = 1. Following this composition we successfully built product
systems of: (i) a task scheduler (ii) a train gate controller (LHA) (iii) a train
gate controller (TSA/TA), from their constituent automata.

3.4 Integrity Constraints on LHAs

The semantics of LHA given in Section 3 places certain restrictions on runs,
in particular that the relevant invariant is satisfied so long as the automaton
remains in a location. One approach to ensuring that the CLP program generates
only valid runs is to build into the transitions all the necessary constraints. An
alternative is to check statically that certain constraints on the CLP program

are satisfied. This enables us to generate a simpler CLP model than otherwise,
omitting some “runtime” checks. These integrity checks also represent natural
sanity checks on the LHA and checking them can locate specification errors. The
conditions are as follows. (i) The invariants are convex (with respect to the given
rates of change of the state variables). (ii) The invariants are satisfied when a
location is entered via a transition from another location or by initial conditions.
(iii) The enabling constraint (γ) on a transition out of location either implies
the invariant on that location, or becomes true as soon as the invariant ceases to
be true (e.g. the invariant might be x < 10 and the transition constraint x = 10,
where x increases with time). This condition should be checked because the
language does permit discontiguous invariant and guard conditions which might
result in a situation where the invariant becoming invalid with the outgoing
discrete transition guard not yet enabled.

We check these by running queries on predicates representing the negation
of the integrity conditions, which ought to fail if the conditions are met. For
example nonconvex(L) is defined as nonConvex(L)← locOf(S0, L), inv(L, S0),
d(S0, S2), inv(L, S2), d(S0, S1), before(S1, S2), negInv(L, S1). negInv(L, S1) is
the negation of the invariant on location L (the constraint language is closed
under negation) and in general consists of several clauses since the negation of
the invariant may be a disjunction.

We have noticed that condition (iii) above is violated in several LHAs in the
literature. Typically, a transition that can fire “at any time” (perhaps triggered
by an interrupt event) has γ = true. Hence this remains “firable” even when
the invariant is false. If a violation occurs we can repair it by simply conjoining
the invariant on the location to the transition constraint γ; this is the implicit
intention (enforced by the LHA semantics) and achieves the required behaviour.

4 Analysis of the CLP representations

The concrete analysis problem is firstly to obtain an extensional, finite represen-
tation of the model; by extensional is meant a representation in which we can
query and check model properties using simple constraint operations. In fact,
we use CLP clauses in which the bodies consist only of constraints to represent
the model (or an over-approximation of the model) of a CLP program. Thus
checking of properties reduces in many cases to constraint solving [35].

Computing a Model The usual immediate-consequences operator TP for logic
programs is modified for CLP programs [25]. The sequence T i

P (∅), i = 0, 1, 2, . . .
is an increasing (w.r.t. subset ordering) sequence of programs whose clauses
consist of constrained facts, clauses of form p(X̄)← c(X̄) where c(X̄) is a linear
constraint. If the sequence stabilises with T i

P (∅) = T i+1
P (∅) for some i, then T i

P (∅)
is the concrete model of P .

If the sequence does not stabilise (within some predefined resource limits)
we are forced to compute an abstract model. There are various ways of doing
this. Currently we use two abstractions: an abstraction defined in [13] and a

classical abstract interpretation based on convex polyhedral hulls with widening
and narrowing operators [11]. More complex and precise abstractions, such as
those based on the powerset domain consisting of finite sets of convex polyhedra
could be used [4]. The resulting abstract model can be represented as a set of
constrained facts, as in the concrete model (since a convex polyhedron can be
represented as a linear constraint).

Checking Properties The concrete or abstract models can be used to check
state safety properties. Suppose the constraint c(X̄) defines some “bad” state.
Then the query← c(X̄), rstate(X̄) is evaluated on the model. If this query has
no solutions, the safety property is verified. Note that if the query succeeds, with
an answer constraint, this means that the bad state is possibly reachable. The
answer constraints yield a description of the state variables in the unsafe states.

An alternative approach to checking safety properties is to define the unsafe
states as target states and compute the set of reaching states w.r.t. those target
states, namely those states from which there exists a run to a target state. We
then query this set to see whether any of the initial states are among them.
If not, then the safety property is satisfied. This is the approach used in [13]
for example. As before, we obtain in general an answer constraint. Suppose we
obtain the answer that qstate(X̄), c(X̄) is a reaching state that is also an initial
state. Then we can use this information to strengthen the conditions on the
initial states; by adding extra checks to the initial states to ensure that that the
constraint ¬c(X̄) holds, we can ensure satisfaction of the safety condition.

The CLP program constructed according to the schema summarised in Figure
1(iv) gives additional flexibility and prove certain simple path properties. In the
backwards version, the model of the program captures dependencies between the
target state and reaching states. This model can be used to answer queries such
as “Is there a run from a given state s1 to a target state s2?” or “Is it possible
to reach state s1 before state s2?” The answers to the queries, as before, could
yield constraints giving conditional answers, with constraints linking the values
of states in the start and end states.

Checking Path Properties One approach to checking properties of paths in
the transition system is to use an explicit representation of the traces in the
CLP program, using the scheme from Figure 1(ii) for example. However this can
make the model of the program infinite even when the set of states is finite.
Another approach is to build a path automaton while computing a model. A
path automaton is a set of transitions of a tree grammar of the form fi(v)→ v′.
This means that the state v′ can be reached from state v via the ith transition.
During the construction of the model we record which transitions can be applied
in a state, where the states v1, . . . , vk are identifiers for the constrained facts in
the models (see above). With this automaton we can; (a) generate paths that
reach some particular state; (b) check whether there is some “stuck” state which
can be reached but from which no other state is reachable; (c) check regular

path properties using standard automata operations. Analysis techniques based
on tree automata [16, 17] are applied for such analyses.

5 Experiments

In this section, experiments applying the CLP analysis tools to LHA systems are
described. The tool-chain is as follows: LHAspec

parse−→ CLP PE−→ CLPtrans
prod−→

CLPtrans
Reach−→ CLPmodel

FTA−→ CLPpath. Here LHAspec represents LHA specifica-
tions; CLP represents arbitrary CLP programs; CLPtrans represents a subclass
of CLP whose clauses are of the form pi(X̄) ← c(X̄, X̄ ′), pj(X̄ ′), where X̄, X̄ ′

are tuples of distinct variables, c(X̄, X̄ ′) is a conjunction of constraints over the
variables and pi, pj are non-constraint predicates (and pj is possibly absent);
CLPmodel is a subclass of CLPtrans where the clause bodies consist only of con-
straints; CLPpath is a CLP program defining a finite tree automaton.

The
parse−→ step translates LHA specifications given in a simple source language

which is simply a textual representation of the usual graphic specifications, into
CLP according to the procedure defined in Section 3. In step PE−→ the partial eval-
uator Logen [29] is applied in order to unfold the definitions of all the predicates
except the state predicate rstate (or variations such as qstate or dqstate).
Furthermore Logen filters are chosen to cause the single state argument to be
replaced by a tuple of arguments for the state variables, with a separate state
predicate for each location. The resulting programs are in the class CLPtrans. In
step

prod−→ the product of LHAs in CLPtrans form can be computed if necessary,
yielding another CLPtrans program. The step Reach−→ uses an analysis tool to com-
pute (an approximation of) the least model of a CLP program, represented as a
program in the class CLPmodel. This program can be used to check properties
of the set of reachable states in the original LHA. Finally the step FTA−→ derives
a CLP program in the form of a finite automaton generating the set of possible
paths in the preceding CLPtrans program. This program can be used to check
path properties of the original LHA. Steps

parse−→ and PE−→ are standard and are
not discussed in detail here. Step

prod−→ is also a straightforward implementation
of the definition of product. We focus on the analysis phases.

CLP Analysis Tools Our analysis tools are developed to analyse arbitrary CLP
programs, in applications such as termination analysis and complexity analysis
[7, 31, 10, 18]. We have not developed any analysis tools specifically for the CLP
programs resulting from LHA translation. This is an important principle since
CLP is a target representation for many different source languages; thus the same
set of CLP analysis tools is applicable regardless of the source language. We have
previously used similar tools to analyse PIC microprocessor code [23, 22]. We use
an implementation in Ciao-Prolog that employs the Parma Polyhedra Library
(PPL) [5] to handle the constraints. Note that this tool-set is a current snap-
shot; one of the key advantages of the approach is that improved CLP program

analyses can be incorporated as they become available. In particular we expect
that analysis tools based on the powerset of convex polyhedra with widenings
[4] will play an important role.

TP : This computes the model of a program using a least fixpoint iteration.
Well-known optimisations such as the semi-naive technique are incorporated.
If it terminates (within some predefined period) the computed model is pre-
cise (provided the input program contains only linear constraints – the analyser
makes some safe linear over-approximation of non-linear constraints).

DP99: This computes an over-approximation of the least model; the technique
was proposed by Delzanno and Podelski in [13] and used in their experiments.
Each predicate with argument x̄ is approximated by a finite set of conjunctions
of linear constraints over x̄. The “widening” (which as they point out does not
in fact guarantee termination) on successive approximations F, F ′ returns each
conjunction that is obtained from some conjunct c1∧. . .∧cn ∈ F ′ by removing all
conjuncts ci that are strictly entailed by some conjunct dj of some “compatible”
constrained atom d1∧ . . .∧dm ∈ F where “compatible” means that c1∧ . . .∧dm

is satisfiable. It does terminate in some cases where TP does not.
For cases that do not terminate within some resource bound using one of

the above two tools, we use the CHA tool. This is an abstract interpreter com-
puting an over-approximation of the least model, based on convex polyhedral
approximations. It computes one polyhedron for each predicate. Termination is
guaranteed by one of the known widenings [21, 5]. CHA incorporates state-of-
the-art refinements such as an optional narrowing phase, “widening up-to” [21]
and delayed widening. The tool is available on-line (http://saft.ruc.dk/CHA/).

In Table 2 we summarise the results of computing a model or approximate
model for a number of examples. As discussed earlier, querying this model to
check safety properties or dependencies is computationally straightforward using
a constraint solver. The number of locations in the automaton is Q and number
of discrete transitions is ∆. The number of clauses in the translated CLP pro-
grams includes the clauses for the delay transitions. For the FTA size, the table
reports the size for the most precise analysis that terminated. Timings are given
in seconds and the symbol ∞ indicates failure to terminate within a time-out
duration of 300 seconds.

Description of the Examples The Fischer Protocol, Water Level and Scheduler
are taken from [21]; version (E) of the Scheduler is constructed using the product
construction synchronised by events while the other one is specified directly as
a single automaton. The Leaking Burner is taken from [1]; the Train Controller
is specified in [2] including a number of state variables such as the distance
of the train and the angle of the gate. [26] provide a simpler form as a timed
automaton (TA) specifying only the events. The steam boiler problem is work
in progress. The nine last examples are taken from [13]; these are specified as
discrete automata (which can be modelled as special cases of LHAs)1. In all

1 We gratefully acknowledge the use of the examples from [13] which are available for
download and were translated into standard CLP programs for our experiments.

Name Q ∆ |CLP | TP (secs.) DP99 (secs.) CHA (secs.) |FTA|
Fischer Protocol 6 8 53 0.19 0.61 0.23 79
Leaking Burner 2 2 5 ∞ ∞ 0.02 5
Scheduler 3 11 19 1.02 9.59 0.42 101
Scheduler (E) 3 11 15 0.94 40.16 0.63 93
Steam Boiler 10 23 166 0.50 0.74 0.88 146
Switch 2 2 15 0.03 0.08 0.04 33
Train Controller 3 8 26 0.15 1.44 0.15 57
Train Train 3 3 18 0.07 0.38 0.09 51
Train Gate 4 10 29 0.06 0.31 0.09 43
Train Controller System 14 20 143 4.54 ∞ 8.00 324
Train Controller System (TA) 14 20 169 1.01 36.68 2.17 85
Water Level 4 4 27 0.04 1.26 0.16 56

Bakery 2 3 8 9 0.08 0.93 0.04 14
Bakery 3 3 21 24 3.02 127.72 0.07 134
Bakery 4 3 52 58 143.19 ∞ 0.34 1456
Bbuffer 1 1 4 6 0.01 0.07 0.02 4
Bbuffer 2 1 2 4 0.01 0.01 0.01 4
MutAst 7 20 21 0.27 0.60 0.09 30
Network 1 16 17 ∞ 0.12 0.30 13
Ticket 2 3 6 7 ∞ 2.82 0.04 25
Ubuffer 3 6 9 ∞ 0.24 0.05 14

Table 2. Experimental Results

of these examples we check the same properties as in the original references,
though for the examples from [13] we cover only the safety properties. (We
discuss analysis of liveness properties in Section 6).

Many of these examples can be analysed with TP , and thus without using
abstraction since the input programs contain only linear constraints. Though
the number of states is infinite due to continuously changing state variables,
the reachable states can often be captured by a finite set of constraints. We
believe that this observation is related to the existence of a finite number of
regions in timed automata [3]. We were only forced to use the convex polyhedral
analyser for the Leaking Burner problem and the DP99 abstraction for a few of
the discrete examples. We were able to verify some properties that could not
be verified with convex hull analysis, such as the bound on the k1 variable,
which is the number of lower priority tasks waiting and/or preempted in the
Scheduler example [21]. The time to compute a concrete model is of course
often less than that needed for a convex polyhedral abstraction. However, even
when a system can be analysed without abstraction, state-space explosion could
force abstractions to be introduced; the Bakery series of examples indicates the
exponential growth in the time to compute the model as more processes are
introduced. In our experience the abstraction introduced in [13] (DP99 in Table
2) is of limited usefulness. We could find no examples apart from the ones in
[13] in which a system failed to terminate in TP but terminated with DP99.

Nevertheless the ideas behind DP99 are valid; other approaches based on the
powerset of convex polyhedra with true widenings [4] will replace DP99 in future
experiments.

6 Related Work and Conclusions

The idea of modelling transition systems of various kinds as CLP programs goes
back many years. Our work contributes to two areas, CLP modelling and CLP
proof techniques. On the one hand we add to the literature on CLP modelling
techniques in showing that the continuous semantics of LHAs can be captured
in CLP programs. On the other we add to the existing literature showing that
effective reasoning can be carried out on CLP programs, and display a family of
different reasoning styles (e.g. forward, backwards, state dependencies) that can
be generated from a single system specification and handled with a single set of
analysis tools.

Though comparing various formalisms is not the aim of our work, it is note-
worthy that LHAs are more expressive than other formalisms such as Timed
Automata (TA) [3] or other finite automata as discussed in [9]. Consequently,
from the modelling perspective, our framework has two advantages over the Up-
paal [6] model checker or any other TA model checkers. Firstly, we can directly
handle LHAs having multi-rate dynamics2 , whereas Uppaal mandates that an
LHA specification be compiled down into a TA specification before being verified.
Secondly, Uppaal restricts the clock variables to be compared only with natural
numbers, i.e. guards such as x > 1.1, 10 ∗ x > 11 or x > y are not permitted
[27]. , while the CLP(Q) system permits us to handle such constraints. Such ad-
vantages in expressiveness might be balanced by extra complexity and possible
non-termination; in the case of non-termination, we resort to abstraction. Fur-
thermore, the state transition system CLPtrans (see Section 5) can be directly
input to Uppaal after relatively minor syntactic changes. Thus, our approach can
also be regarded as potentially providing a flexible LHA input interface incor-
porating abstraction for TA model checkers (among others). We experimented
with Uppaal, in this manner, to verify the Water-level control system using CLP
as an intermediate representation.

Gupta and Pontelli [20] and Jaffar et al. [26] describe schemes for modelling
timed (safety) automata (TSAs) as CLP programs. Our work has similarities to
both of these, but we go beyond them in following closely the standard semantics
for LHAs, giving us confidence that the full semantics has been captured by
our CLP programs. In particular the set of all reachable states, not only those
occurring at transitions between locations as in the cited works, is captured.
Delzanno and Podelski [13] develop techniques for modelling discrete transition
systems which in our approach are special cases of hybrid systems.

Another direction we could have taken is to develop a direct translation of
LHA semantics into CLP, without the intermediate representation as a transition
2 A timed automaton has variables called clocks that vary at a single rate i.e. ẋ =

1, ẏ = 1, while an LHA can have variables that vary at different rates i.e. ẋ = 1, ẏ = 2.

system. For example a “forward collecting semantics” for LHAs is given in [21],
in the form of a recursive equation defining the set of reachable states for each
location. It would be straightforward to represent this equation as a number of
CLP clauses, whose least model was equivalent to the solution of the equation. A
technique similar to our method of deriving the d predicate for the constraints on
the derivatives could be used to model the operator S↗D in [21] representing the
change of state S with respect to derivative constraints D. The approach using
transition systems is a little more cumbersome but gives the added flexibility
of reasoning forwards or backwards, adding traces, dependencies and so on as
described in Section 2. The clauses we obtain for the forward transition system
(after partial evaluating the transition predicate) are essentially what would
be obtained from a direct translation of the recursive equation in [21]. The tool-
chain in Section 5 differs only in the choice of driver in the PE step.

We focus on the application of standard analysis techniques using the bottom
up least fixpoint semantics, but there are other approaches which are compati-
ble with our representations. In [20] the CLP programs are run using the usual
procedural semantics; this has obvious limitations as a proof technique. In [26]
a method called “co-inductive” tabling is used. Path properties are expressed in
[20] using CLP list programs; again this is adequate only for proofs requiring
a finite CLP computation. [13] contains special procedures for proving a class
of safety and liveness properties. Liveness properties require a greatest fixpoint
computation (also used in [26] and [19], which our toolset does not yet sup-
port. Our approach focusses on using standard CLP analysis techniques and ab-
stractions based on over-approximations. However, the introduction of greatest
fixpoint analysis engines into our framework is certainly possible and interesting.

A somewhat different but related CLP modelling and proof approach is fol-
lowed in [8, 30, 32, 14, 15, 33, 34]. This is to encode a proof procedure for a modal
logic such as CTL, µ-calculus or related languages as a logic program, and then
prove formulas in the language by running the interpreter (usually with tabling
to ensure termination). The approach is of great interest but adapting it for
abstraction of infinite state systems seems difficult since the proof procedures
themselves are complex programs. The programs usually contain a predicate en-
coding the transitions of the system in which properties are to be proved, and
thus could in principle be coupled to our translation. In this approach the full
prover is run for each formula to be proved, whereas in ours an (abstract) model
is computed once and then queried for difference properties. Our approach is
somewhat more low-level as a proof technique but may offer more flexibility and
scalability at least with current tools.

Acknowledgements We thank the LOPSTR’2008 referees and Julio Peralta
for helpful comments and suggestions.

References

1. R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems.

Theoretical Computer Science, 138(1):3–34, 1995.
2. R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho. Hybrid automata: An

algorithmic approach to the specification and verification of hybrid systems. In
Proceedings of Hybrid Systems Workshop, volume 736 of Springer-Verlag Lecture
Notes in Computer Science, pages 209–229. Springer-Verlag, 1993.

3. R. Alur and D. L. Dill. A theory of timed automata. Theor. Comput. Sci.,
126(2):183–235, 1994.

4. R. Bagnara, P. M. Hill, and E. Zaffanella. Widening operators for powerset do-
mains. J. Software Tools for Technology Transfer, 8(4-5):449–466, 2006.

5. R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Possibly not closed convex poly-
hedra and the Parma Polyhedra Library. In M. V. Hermenegildo and G. Puebla,
editors, SAS, volume 2477 of LNCS, pages 213–229. Springer, 2002.

6. G. Behrmann, A. David, and K. G. Larsen. A tutorial on Uppaal. In M. Bernardo
and F. Corradini, editors, Formal Methods for the Design of Real-Time Systems:
4th International School on Formal Methods for the Design of Computer, Com-
munication, and Software Systems, SFM-RT 2004, number 3185 in LNCS, pages
200–236. Springer–Verlag, September 2004.

7. F. Benoy and A. King. Inferring argument size relationships with CLP(R). In
J. P. Gallagher, editor, Logic-Based Program Synthesis and Transformation (LOP-
STR’96), volume 1207 of LNCS, pages 204–223, August 1996.

8. C. Brzoska. Temporal logic programming in dense time. In ILPS, pages 303–317.
MIT Press, 1995.

9. L. P. Carloni, R. Passerone, A. Pinto, and A. L. Sangiovanni-Vincentelli. Lan-
guages and tools for hybrid systems design. Found. Trends Electron. Des. Autom.,
1(1/2):1–193, 2006.

10. M. Codish and C. Taboch. A semantic basic for the termination analysis of logic
programs. The Journal of Logic Programming, 41(1):103–123, 1999.

11. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Proceedings of the 5th Annual ACM Symposium on
Principles of Programming Languages, pages 84–96, 1978.

12. S. Debray and R. Ramakrishnan. Abstract Interpretation of Logic Programs Using
Magic Transformations. Journal of Logic Programming, 18:149–176, 1994.

13. G. Delzanno and A. Podelski. Model checking in CLP. In TACAS, pages 223–239,
1999.

14. X. Du, C. R. Ramakrishnan, and S. A. Smolka. Real-time verification techniques
for untimed systems. Electr. Notes Theor. Comput. Sci., 39(3), 2000.

15. F. Fioravanti, A. Pettorossi, and M. Proietti. Verifying CTL properties of infinite-
state systems by specializing constraint logic programs. In M. Leuschel, A. Podel-
ski, C. Ramakrishnan, and U. Ultes-Nitsche, editors, Proceedings of the Second In-
ternational Workshop on Verification and Computational Logic (VCL’2001), pages
85–96. Tech. Report DSSE-TR-2001-3, University of Southampton, 2001.

16. J. P. Gallagher and K. S. Henriksen. Abstract domains based on regular types. In
V. Lifschitz and B. Demoen, editors, Proceedings of the International Conference
on Logic Programming (ICLP’2004), volume 3132 of LNCS, pages 27–42, 2004.

17. J. P. Gallagher, K. S. Henriksen, and G. Banda. Techniques for scaling up analyses
based on pre-interpretations. In M. Gabbrielli and G. Gupta, editors, Proceedings
of the International Conference on Logic Programming (ICLP’2005), volume 3668
of LNCS, pages 280–296, 2005.

18. S. Genaim and M. Codish. Inferring termination conditions of logic programs by
backwards analysis. In LPAR, volume 2250 of Springer Lecture Notes in Artificial
Intelligence, pages 681–690, 2001.

19. G. Gupta, A. Bansal, R. Min, L. Simon, and A. Mallya. Coinductive logic pro-
gramming and its applications. In ICLP, pages 27–44, 2007.

20. G. Gupta and E. Pontelli. A constraint-based approach for specification and ver-
ification of real-time systems. In IEEE Real-Time Systems Symposium, pages
230–239, 1997.

21. N. Halbwachs, Y. E. Proy, and P. Raymound. Verification of linear hybrid systems
by means of convex approximations. In Proceedings of the First Symposium on
Static Analysis, volume 864 of LNCS, pages 223–237, September 1994.

22. K. S. Henriksen, G. Banda, and J. P. Gallagher. Experiments with a convex
polyhedral analysis tool for logic programs. In Workshop on Logic Programming
Environments, Porto, 2007, 2007.

23. K. S. Henriksen and J. P. Gallagher. Abstract interpretation of PIC programs
through logic programming. In Proceedings of SCAM 2006, Sixth IEEE Interna-
tional Workshop on Source Code Analysis and Manipulation, 2006.

24. T. A. Henzinger. The theory of hybrid automata. In E. M. Clarke, editor, Proceed-
ings, 11th Annual IEEE Symposium on Logic in Computer Science, pages 278–292.
IEEE Computer Society Press, 1996.

25. J. Jaffar and M. Maher. Constraint Logic Programming: A Survey. Journal of
Logic Programming, 19/20:503–581, 1994.

26. J. Jaffar, A. E. Santosa, and R. Voicu. A CLP proof method for timed automata. In
J. Anderson and J. Sztipanovits, editors, The 25th IEEE International Real-Time
Systems Symposium, pages 175–186. IEEE Computer Society, 2004.

27. J.-P. Katoen. Concepts, algorithms, and tools for model checking. A lecture notes of
the course “Mechanised Validation of Parallel Systems” for 1998/99 at Friedrich-
Alexander Universitat,Erlangen-Nurnberg, page 195, 1999.

28. M. Leuschel and M. Fontaine. Probing the depths of CSP-M: A new fdr-compliant
validation tool. In S. Liu, T. S. E. Maibaum, and K. Araki, editors, Formal Methods
and Software Engineering, 10th International Conference on Formal Engineering
Methods, ICFEM 2008, Proceedings, volume 5256 of LNCS, pages 278–297, 2008.

29. M. Leuschel and J. Jørgensen. Efficient specialisation in Prolog using the hand-
written compiler generator LOGEN. Elec. Notes Theor. Comp. Sci., 30(2), 1999.

30. M. Leuschel and T. Massart. Infinite state model checking by abstract interpreta-
tion and program specialisation. In A. Bossi, editor, Logic-Based Program Synthesis
and Transformation (LOPSTR’99), volume 1817 of Springer-Verlag Lecture Notes
in Computer Science, pages 63–82, April 2000.

31. F. Mesnard. Towards automatic control for CLP(χ) programs. In Proceedings of
the 5th International Workshop on Logic Program Synthesis and Transformation
(LOPSTR-95); Utrecht, Holland, volume 1048 of LNCS, pages 106–119, 1995.

32. U. Nilsson and J. Lübcke. Constraint logic programming for local and symbolic
model-checking. In Computational Logic, volume 1861 of LNCS, pages 384–398,
2000.

33. G. Pemmasani, C. R. Ramakrishnan, and I. V. Ramakrishnan. Efficient real-time
model checking using tabled logic programming and constraints. In ICLP, volume
2401 of Lecture Notes in Computer Science, pages 100–114, 2002.

34. J. C. Peralta and J. P. Gallagher. Convex hull abstractions in specialization of CLP
programs. In M. Leuschel, editor, Logic Based Program Synthesis and Tranfor-
mation, 12th International Workshop, LOPSTR 2002, Madrid, Spain, September
17-20,2002, Revised Selected Papers, pages 90–108, 2002.

35. A. Podelski. Model checking as constraint solving. In J. Palsberg, editor, Pro-
ceedings of SAS: Static Analysis Symposium, volume 1824 of LNCS, pages 22–37,
2000.

