
Roskilde
University

From Monomorphic to Polymorphic Well-Typings and Beyond

Schrijvers, Tom; Bruynooghe, Maurice; Gallagher, John Patrick

Published in:
Lecture Notes in Computer Science

Publication date:
2009

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Schrijvers, T., Bruynooghe, M., & Gallagher, J. P. (2009). From Monomorphic to Polymorphic Well-Typings and
Beyond. Lecture Notes in Computer Science, 152-167.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain.
 • You may freely distribute the URL identifying the publication in the public portal.
Take down policy
If you believe that this document breaches copyright please contact rucforsk@kb.dk providing details, and we will remove access to the work
immediately and investigate your claim.

Download date: 17. May. 2025

From Monomorphic to Polymorphic
Well-Typings and Beyond

Tom Schrijvers1?, Maurice Bruynooghe1, and John P. Gallagher2??

1 Dept. of Computer Science, K.U.Leuven, Belgium
2 Dept. of Computer Science, Roskilde University, Denmark

Abstract. Type information has many applications; it can e.g. be used
in optimized compilation, termination analysis and error detection. How-
ever, logic programs are typically untyped. A well-typed program has the
property that it behaves identically on well-typed goals with or without
type checking. Hence the automatic inference of a well-typing is worth-
while. Existing inferences are either cheap and inaccurate, or accurate
and expensive. By giving up the requirement that all calls to a predicate
have types that are instances of a unique polymorphic type but instead
allowing multiple polymorphic typings for the same predicate, we ob-
tain a novel strongly-connected-component-based analysis that provides
a good compromise between accuracy and computational cost.

1 Introduction

While type information has many useful applications, e.g. in optimized compila-
tion, termination analysis, documentation and debugging, most logic program-
ming languages are untyped. In [4], Mycroft and O’Keefe propose a polymorphic
type scheme for Prolog which makes static type checking possible and has the
guarantee that well-typed programs behave identically with or without type
checking, i.e., the types do not affect the execution (of well-typed goals). Laksh-
man and Reddy [3] provide a type reconstruction algorithm that, given the type
definitions, infers missing predicate signatures.

Our aim is to construct a well-typing for a logic program automatically with-
out prescribing any types or signatures. While there has been plenty of other
work on such completely automatic type inference for logic programs (sometimes
called “descriptive” typing), the goal was always to construct success types, that
is, an approximation of the success set of a program represented by typed pred-
icates. A well-typing by contrast represents in general neither an over- nor an
under-approximation of the success set of the program. It was, to the best of
our knowledge, not until [1] that a method was introduced to infer a well-typing
for logic programs automatically, without given type definitions. The paper de-
scribes how to infer a so-called monomorphic well-typing which derives a type
signature for every predicate. The well-typing has the property that the type
? Post-doctoral researcher of the Fund for Scientific Research - Flanders

?? Work supported by the Danish Natural Science Research Council project SAFT.

signature of each call is identical to that of the predicate signature. Below is a
code fragment, followed by the results of the inference using the method of [1].

Example 1. p(R) :- app([a],[b],M), app([M],[M],R).
app([],L,L).
app([X|Xs],Ys,[X|Zs]) :- app(Xs,Ys,Zs).
% type definition:
:- type ablist ---> [] ; a ; b ; [ablist | ablist].
% predicate signatures:
:- app(ablist,ablist,ablist).
:- p(ablist).

Note that the list type ablist is not the standard one. The reason is that app/3
is called once with lists of as and bs and once with lists whose elements are
those lists. The well-typing constraint, stating that both calls must have the
same signature as the predicate app/3 enforces the above unnatural solution.
Hence, the monomorphic type inference is not so interesting for large programs
as they typically use many different type instances of commonly used predicates.

In a language with polymorphic types such as Mercury, [6], one typically
declares app/3 as having type app(list(T),list(T),list(T)). The first call
instantiates the type parameter T with the type elem defined as elem ---> a
; b while the second call instantiates T with list(elem).

The sets of terms denoted by these polymorphic types list(elem) and
list(list(elem)) are proper subsets of the monomorphic type ablist. For
instance, the term [a|b] is of type ablist, but not of type list(elem). Hence,
polymorphic types allow for a more accurate characterization of program terms.

The work in [1] also sketches the inference of a polymorphic well-typing.
However, the rules presented there are incomplete. We refer to [5] for a com-
prehensive set. In this paper, we revisit the problem of inferring a polymorphic
typing. However, we impose the restriction that calls to a predicate that oc-
cur inside the strongly connected component (SCC) that defines the predicate
(in what follows we refer to them as recursive calls, although there can also be
mutual recursion) have the same type signature as the predicate. Other calls,
appearing higher in the call graph of the program have a type signature that is
a polymorphic instance of the definition’s type. The motivation of the restric-
tion is that it can be computationally very demanding when a recursive call is
allowed to have a type that is a true instance of the definition’s type. Indeed,
[2] showed that type checking in a similar setting is undecidable, and [5] gave
strong indications that this undecidability also holds for type inference in the
above setting. Applied on Example 1, polymorphic type inference [5] gives:

Example 2. :- type elem ---> a ; b.
:- type list1(T) ---> [] ; [T | list1(T)].
:- type list2(T) ---> [] ; [T | list2(T)].
:- app(list1(T),list2(T),list2(T)).
:- p(list2(list2(elem))).
:- call app1(list1(elem), list2(elem), list2(elem)).

2

:- call app2(list1(list2(elem)),
list2(list2(elem)), list2(list2(elem))).

Both list1 and list2 are renamings of the standard list type, hence this well-
typing is equivalent to what one would declare in a language such as Mercury.
As for the type signatures of the calls, call appi refers to the ith call to app/3
in p/1’s clause. In the first call, the polymorphic parameter is instantiated by
elem, in the second by list2(elem).

However, applying the analysis on a fragment where the second argument of
the first call to app/3 is not a list but a constant, one obtains a different result.

Example 3.
q(R) :- app([a],b,M), app([M],[M],R).
% type definition
:- type elem ---> a. % <<<
:- type list(T) ---> [] ; [T|list(T)] .
:- type blist(T) ---> [] ; [T|blist(T)] ; b. % <<<
% signatures
:- app(list(T),blist(T),blist(T)).
:- q(blist(blist(elem))).
:- call app1(list(elem), blist(elem), blist(elem)).
:- call app2(list(blist(elem)),

blist(blist(elem)), blist(blist(elem))).

Note that the “erroneous” call spoils the type of app/3 by constructing a type
that makes that call well-typed. Indeed, the type blist(T) has an extra base
case with the functor b. Moreover, it is not clear from the type information
which call is at the origin of the spoiled type. This drawback, together with the
high computational cost of the polymorphic analysis motivated us to search for
another solution. This led to a third approach where different non-recursive calls
to the same predicate can be instances of different polymorphic well-typings of
that predicate. Moreover, the inference can be done SCC by SCC, which lowers
its computational cost. For the lowest SCC, defining app/3, we obtain:

Example 4. :- type list(T) ---> [] ; [T | list(T)].
:- type stream(T) ---> [T | stream(T)].
% signatures
:- app(list(T),stream(T),stream(T)).

Note the stream(T) type for the second and third argument. This is a well-
typing. Nothing in the definition enforces the list structure to be terminated
by an empty list, hence this case is absent in the type for second and third
argument. Note that neither of the two types is an instance of the other one.

For the SCC defining p/1 one obtains the following.

Example 5. :- type elem ---> a ; b.
:- type elist1 ---> [elem|elist1] ; [].
:- type elist2 ---> [elem|elist2] ; [].

3

:- type elistlist1 ---> [elist2|elistlist1] ; [].
:- type elistlist2 ---> [elist2|elistlist2] ; [].
% signatures
:- p(elistlist2).
:- call app1(elist1, elist2, elist2).
:- call app2(elistlist1, elistlist2, elistlist2).

In this SCC, app/3 is called with types that are instances of lists. These instances
are represented as monomorphic types; with a small extra computational effort,
one could separate them in the underlying polymorphic type and the parameter
instances. Finally, for the SCC defining q/1 one obtains the following type.

Example 6.
:- type elem ---> a. % <<<
:- type elist1 ---> [elem|elist1] ; [].
:- type eblist2 ---> [elem|eblist2] ; b. % <<<
:- type elistlist1 ---> [eblist2|elistlist1] ; [].
:- type elistlist2 ---> [eblist2|elistlist2] ; [].
% signatures
:- q(elistlist2).
:- call app1(elist1, eblist2, eblist2).
:- call app2(elistlist1, elistlist2, elistlist2).

This reveals that eblist2 is not a standard list and that it is the first call to
app/3 that employs this type.

This example shows that the SCC-based polymorphic analysis provides more
useful information than the true polymorphic one, identifying which parts of a
predicate’s type originate in the predicate definition itself and which in the re-
spective calls to that predicate. It is interesting also in giving up the usual con-
cept underlying polymorphic typing that each predicate should have a unique
principal typing and that all calls to that predicate should have a type that is
an instance of it. The types of the first and second call to app are equivalent
to instances of the type signatures app(list1(T),blist2(T),blist2(T)) and
app(list1(T),list2(T),list2(T)) respectively, where the types list1(T)
and list2(T) are the standard polymorphic list types but blist2(T) is de-
fined as blist2(T) ---> [T|eblist2(T)] ; b.

Our contributions are summarized as follows.

– A new and efficient SCC-based polymorphic type analysis.
– A comparison with two other analyses, a cheap but inaccurate monomorphic

analysis and an accurate but expensive polymorphic analysis.
– An evaluation showing the respective merits of the different analyses.

In Section 2, we introduce the necessary background on logic programs, types
and well-typings and introduce a notion of minimal well-typing. In Section 3, we
recall the previous work on monomorphic type inference. We do the same, very
briefly, in Section 4 for the polymorphic type inference. In Section 5, we introduce
our new SCC-based analysis. We experimentally compare the three approaches
in Section 6 and conclude in Section 7.

4

2 Problem Statement and Background Knowledge

Logic Programs The syntax of logic programs considered here is as follows.

Program := Clause*;
Clause := Atom ’:-’ Goal;
Goal := Atom | ’(’ Goal , Goal ’)’ | Term ’=’ Term | ’true’ ;
Atom := Pred ’(’ Term ’,’ ... ’,’ Term ’)’ ;
Term := Var | Functor ’(’ Term ’,’ ... ’,’ Term ’)’ ;

Pred, Functor and Var refer to sets of predicate symbols, function symbols and
variables respectively. Elements of Pred and Functor start with a lower case
letter, whereas elements of Var start with an upper case letter.

Types For type definitions, we adopt the syntax of Mercury [6]. The set of Type
expressions (types) T consists of terms constructed from an infinite set of type
variables (parameters) VT and a finite alphabet of ranked type symbols ΣT ;
these are distinguishable —by context— from the set of variables V and alphabet
of functors Σ used to construct terms. Variable-free types are called monomor-
phic; the others polymorphic. Type substitutions of the form {T1/τ1, . . . , Tn/τn},
where Ti and τi (1 ≤ i ≤ n) are parameters and types respectively, define map-
pings from types to types by the simultaneous replacement of each parameter
Ti by the corresponding type τi.

Definition 1 (Type definition). A type rule for a type symbol h/n ∈ ΣT is
of the form

h(T) −→ f1(τ̄1); . . . ; fk(τ̄k); (k ≥ 1)

where T is an n-tuple of distinct type variables, f1, . . . , fk are distinct function
symbols from Σ, τ̄i (1 ≤ i ≤ k) are tuples of corresponding arity from T , and
type variables in the right hand side, if any, are from T . A type definition is a
finite set of type rules where no two left hand sides contain the same type symbol,
and there is a rule for each type symbol occurring in the type rules.

If fi(τ̄i) is one of the alternatives in the type rule for h(T̄), then the mapping
τ̄i → h(T̄) can be considered the type signature of the function symbol fi. As in
Mercury [6], a function symbol can occur in several type rules, hence can have
several type signatures; we say its type is overloaded.

The instance relation – t(τ̄) being an instance of t(T̄) – is a partial order over
the set of types T . However, we want to define a more expressive partial order,
denoted ≤ (and < when strict). While list(T1) ≤ list(list(T2)) in the instance
relation, we also want, in Example 4, that stream(T) < list(T) as the former
has less alternatives than the latter. More subtly, with stream(T,A) −→ [T |A],
we want stream(T,A) < stream(T). With stream1(T) −→ [T |stream2(T)]
and stream2(T) −→ [T |stream1(T)], we want stream1(T) < stream(T) and
stream2(T) < stream(T) as strict relationships. The following definition defines
a preorder achieving this.

5

Definition 2 (≤ Type inclusion). A type τ is included in a type σ (τ ≤ σ) if
there exist (i) a function ρ mapping non variable types used in τ to non variable
types used in σ such that τρ = σ and (ii) a type substitution θ such that for each
type t(τ̄) in the domain of ρ we can show that t(τ̄) is included in t(τ̄)ρ.

To verify (ii), assuming s is the type symbol in t(τ̄)ρ and the type rules
for t and s are t(T̄) −→ f1(τ̄1); . . . ; fm(τ̄m) and s(S̄) −→ g1(σ̄1); . . . ; gn(σ̄n)
respectively, we check that there exists a σ such that for each alternative fi(τi)
in the type rule for t(T̄) there is an alternative gj(σj) such that fi = gj and for
each k, either τi,k{T̄ /τ̄}ρθ = σj,k{S̄/σ̄} or τi,k{T̄ /τ̄}ρθ ≤ σj,k{S̄/σ̄}.

Type inclusion is a preorder; using it to define equivalence classes, one obtains
a partial order (which for convenience we also denote ≤). For the “subtle” exam-
ples above, stream(T,A) < stream(T) with ρ and θ given by ρ(stream(T,A)) =
stream(T) and θ = {A/stream(T)}. Similarly, stream1(T) < stream(T), with
ρ(stream1(T)) = stream(T), ρ(stream2(T)) = stream(T), and θ the empty
substitution. As a final example, the type elistlist1 of Example 5 is equivalent
to the instance list(list(elem)) of the polymorphic type list(T). In one direc-
tion, ρ(elistlist1) = list(list(elem)), ρ(elist2) = list(elem), and θ is empty. In
the other direction, ρ(list(list(elem))) = elistlist1 and ρ(list(elem)) = elist2
while θ is also empty. Note that list(list(T)) < elistlist1 with ρ(list(list(T))) =
elistlist1, ρ(list(T)) = elist2 and θ = {T/elem}.

(Var) Γ, X : τ ` X : τ

(Term)
(:- type τ −→ . . . ; f(τ1, . . . , τn) ; . . .) ∈ Γ Γ ` ti : τ ′

i τ ′
i = τiθ

Γ ` f(t1, . . . , tn) : τθ
(True) Γ ` true : �

(Unif)
Γ ` t1 : τ Γ ` t2 : τ

Γ ` t1=t2 : �

(Conj)
Γ ` g1 : � Γ ` g2 : �

Γ ` (g1,g2) : �

(Clause)
p(τ1, . . . , τn) ∈ Γ Γ ` ti : τi Γ ` g : �

Γ ` p(t1, . . . , tn) :- g : �

(Prog)
Γ ` ai :- gi : �

Γ ` {ai :- gi} : �

Fig. 1. The Common Type Judgement Rules

Typing Judgements A predicate signature is of the form p(τ̄) and declares a type
τi for every argument of predicate p. A type environment E for a program P is
a set of typings X : τ , one for every variable X in P, and predicate signatures
p(τ̄), one for every predicate p in P, and a type definition. A typing judgement
E ` e : τ asserts that e has type τ for the type environment E and E ` e : �

6

asserts that e is well-typed. A typing judgement is valid if it respects the typing
rules of the type system. We will consider three different type systems, but they
differ only in one place, namely in the typing of predicate calls in rule bodies.
Figure 1 shows the typing rules for all the other language constructs, common
to all type systems. The Var rule states that a variable is typed as given in the
type environment. The Term rule constructs the type of a compound term (the
quantifier ∀i is omitted); the other rules state the well-typing of atoms and that
a program is well-typed when all its parts are.

(MonoCall)
p(τ1, . . . , τn) ∈ Γ Γ ` ti : τi

Γ ` p(t1, . . . , tn) : �

(RecCall)
p(τ1, . . . , τn) ∈ Γ Γ ` ti : τi

Γ ` p(t1, . . . , tn) : �

(PolyCall)
p(τ1, . . . , τn) ∈ Γ Γ ` ti : τ ′

i τ ′
i = τiθ

Γ ` p(t1, . . . , tn) : �

(SCCCall)

Γ ` ti : τ ′
i (:- type τ ′

i −→ . . .) ∈ Γ

Γ ′ ∪ {:- type τ ′
i −→ . . .} ∪ {p(τ ′

1, . . . , τ
′
n)} ` subprog(p/n) : �

Γ ` p(t1, . . . , tn) : �

Fig. 2. The Call Rules

The different ways of well-typing a call are given in Figure 2. For the monomor-
phic analysis, the well-typing of a call is identical to that of the predicate in the
environment (MonoCall rule). For the other two analyses, this only holds for
the recursive calls (RecCall rule). The polymorphic analysis requires that the
type of a non-recursive call is an instance (under type substitution θ) of the type
of the predicate (PolyCall rule), while the SCC based analysis (SCCCall
rule) requires that the well-typing of the call in Γ —which has predicate sig-
nature p(τ ′1, . . . , τ

′
n)— is such that there exists a typing environment (that can

be different from Γ) with the following properties: the subprogram defining the
predicate (subprog(p/n)) is well-typed in Γ ′ and the predicate signature of p/n
is p(τ ′1, . . . , τ

′
n) itself. Note that this implies that there exists a polymorphic

type signature for p/n such that p(τ ′1, . . . , τ
′
n) is equivalent to an instance of it;

however, that polymorphic type can be different for different calls.
In all three analyses, we are interested in least solutions. To define formally

the notion of least solution, we define a partial order on predicate signatures.

Definition 3 (�, preorder on predicate signatures). A predicate signature
p(τ̄) is smaller than a predicate signature p(σ̄) (p(τ̄) � p(σ̄)) iff there is a map-
ping ρ from the types in τ̄ to larger types (for all i, τi ≤ τiρ) that preserves
the type variables – it can possibly introduce extra type variables – such that
p(τ̄)ρθ = p(σ̄) for some type substitution θ.

7

This preorder can be extended to a partial order over equivalence classes. For
convenience, we denote the latter also as �, and write ≺ when the order is strict.
With p(τ̄T) denoting the predicate signature of predicate p in a well-typing T ,
we can now also define a partial order over (equivalence classes) of well-typings:

Definition 4 (� Partial order on well-typings). A well-typing T1 of a pro-
gram is smaller than well-typing T2 of the same program (T1 � T2) if, for each
predicate p/n, p(τ̄T1) � p(τ̄T2).

We can now say that a well-typing of a program is a least well-typing if it is
smaller than any other well-typing of the same program.

For example, consider the polymorphic types of app/3 in Examples 2 and 4.
We have app(list(T), stream(T), stream(T)) ≺ app(list1(T), list2(T), list2(T))
using the mapping ρ(list(T)) = list1(T) and ρ(stream(T)) = list2(T) and θ the
identity mapping to satisfy Definition 3. Also, app(list1(T), list2(T), list2(T)) ≺
app(list(T), list(T), list(T)), with ρ(list1(T)) = list(T), ρ(list2(T)) = list(T)).

Note that app(list(T), list(T), list(T)) � app(list1(T), list2(T), list2(T)) is
not the case. The latter well-typing is “better” than the former because it ex-
presses that there can be no aliasing between the backbones of the lists in the
first argument and those in the second argument. Note that app/3 has many
other well-typings such as app(list(list(T)), stream(list(T)), stream(list(T)))
and app(list(list(T)), list(list(T)), list(list(T))). All of them are larger than the
well-typing app(list(T), stream(T), stream(T)). For the former, ρ is the iden-
tity mapping and θ = {T/list(T)}; for the latter, ρ(list(T)) = list(T) and
ρ(stream(T)) = list(T) and θ = {T/list(T)}.

Each type judgement gives rise to a least set of constraints from which a well-
typing can be derived. Adding more constraints results in a larger well-typing.

Theorem 1. There exists a least well-typing under each of the three type judge-
ments introduced above.

Observe that any well-typing satisfying the MonoCall rule also satisfies the
PolyCall rule; furthermore any well-typing satisfying the latter also satisfies
the SCCCall rule, hence also the following holds.

Theorem 2. Let TMono, TPoly and TSCC be the least well-typings of a pro-
gram P obtained with respectively the monomorphic, the polymorphic and the
SCC-based analysis. Then TSCC � TPoly � TMono.

Example 7. : The following program’s three well-typings are all distinct:

r(f(X)). p(Y) :- r(Y). q(Z) :- r(Z).
p(a). q(f(b)).

% Monomorphic analysis | % Polymorphic analysis
:- type t1 ---> a ; f(t2). | :- type t3(T) ---> a ; f(T).
:- type t2 ---> b. | :- type t4 ---> b.
:- pred r(t1). | :- pred r(t3(T)).

8

:- pred p(t1). | :- pred p(t3(T)).
:- pred q(t1). | :- pred q(t3(t4)).
--
% SCC-based analysis
:- type t5(T) ---> f(T). :- pred r(t5(T)).
:- type t6(T) ---> a ; f(T). :- pred p(t6(T)).
:- type t7 ---> f(t8). :- pred q(t7).
:- type t8 ---> b.

r(t5(T)) ≺ r(t3(T)) ≺ r(t1)
p(t6(T)) = p(t3(T)) ≺ p(t1)

q(t7) ≺ q(t3(t4)) = q(t1)
TSCC ≺ TPoly ≺ TMono

3 The Monomorphic Type Analysis

The monomorphic type system is simple. It requires that all calls to a predicate
have exactly the same typing as the signature (rule MonoCall in Figure 2).

The monomorphic type inference (first described in [1]) consists of three
phases: (1) Derive type constraints from the program text. (2) Normalize (or
solve) the type constraints. (3) Extract type definitions and type signatures from
the normalized constraints. A practical implementation may interleave these
phases. In particular, (1) may be interleaved with (2) via incremental constraint
solving. We discuss the three phases in more detail below.

Phase 1: Type Constraint Derivation For the purpose of constraint derivation
we assume that a distinct type τ is associated with every occurrence of a term.
In addition, every defined predicate p has an associated type signature p(τ)
and every variable X an associated type τ ; these are respectively denoted as
pred(p(τ)) and var(X) : τ . The associated type information serves as the initial
assumption for the type environment E; initially all types are unconstrained.

Now we impose constraints on these types based on the program text. For
the monomorphic system, we only need two different kinds of type constraint:
τ1 = τ2: the two types are (syntactically) equal, and τ ⊇ f(τ): the type definition
of type τ contains a case f(τ).

Figure 3 shows what constraints are derived from various language constructs.
The unlisted language constructs do not impose any constraints.

Phase 2: Type Constraint Normalization In the constraint normalization phase
we rewrite the bag of derived constraints (the constraint store) to propagate all
available information. The normalized form is obtained as the fixed point of just
three rewrite steps. The first rewrite step drops trivial equalities.

(Triv) C ∪ {τ = τ} =⇒ C

9

(Var)
X : τ ′ var(X) : τ

τ = τ ′

(Term)
t1 : τ1 . . . tn : τn f(t1, . . . , tn) : τ

τ ⊇ f(τ1, . . . , τn)

(Call)

ti : τ ′
i pred(p(τ1, . . . , τn))

(a :- g) ∈ P p(t1, . . . , tn) ∈ g

τ ′
i = τi

(Unif)
t1 : τ1 t2 : τ2 t1=t2 ∈ P

τ1 = τ2

(Head)
t1 : τ ′

1 . . . tn : τ ′
n pred(p(τ1, . . . , τn)) p(t1, . . . , tn):-g ∈ P

τ ′
i = τi

Fig. 3. Constraint derivation rules

The second rewrite step unifies equal types.

(Unif) C ∪ {τ1 = τ2} =⇒ C[τ2/τ1] ∪ {τ1 = τ2}

where τ1 ∈ C and τ1 6≡ τ2. The third step collapses equal function symbols.

(Coll) C ∪ {τ ⊇ f(τ1), τ ⊇ f(τ2)} =⇒ C ∪ {τ ⊇ f(τ1), τ1 = τ2}

Phase 3: Type Information Extraction Type rules and type expressions are de-
rived simultaneously from the normal form of the constraint store:

– A type α that does not appear as the first argument in a ⊇ constraint gets
as its type expression a unique type variable A.

– A type τ that appears on the lhs of one or more ⊇ constraint is assigned a
type expression t(. . .) with t a unique type name and gives rise to a type rule
of the form t(. . .) −→ The type expression t(. . .) has as its arguments
the type variables Ai occurring in the right hand side of the rule. For each
constraint τ ⊇ f(τ1, . . . , τk), the right hand side has a case f(exp1, . . . expk)
where each expi is the type expression assigned to τi.

– A type τ2 occurring in the right hand side of an equation τ1 = τ2 is assigned
the type expression assigned to τ1.

Theorem 3. The monomorphic type inference terminates and infers a least
well-typing.

Indeed, the constraints created in Phase 1 are the minimal set of constraints
to be satisfied by the well-typing; the first two rewriting steps in Phase 2 preserve
the constraints, while the last one follows from the requirement that the right
hand side of a type rule has distinct functor symbols and Phase 3 extracts the
minimal types satisfying all constraints. Moreover, each phase terminates, hence
the algorithm terminates and produces a minimal well-typing for the program.

Of particular interest is the time complexity of normalization:

10

Theorem 4 (Time Complexity). The normalization algorithm has a near-
linear time complexity O(n · α(n)), where n is the program size and α is the
inverse Ackermann function.

The α(n) factor follows from the Unif step, if implemented with the optimal
union-find algorithm.

4 The Polymorphic Type Analysis

The polymorphic type system relaxes the monomorphic one. The type signature
of non-recursive predicate calls is an instance of the predicate signature, rather
than being identical to it. In [5] a type inference is described that allows this also
for recursive calls. It is straightforward to adapt that approach to the current
setting where recursive calls have the same signature as the predicate (only the
constraint derivation phase needs to be altered). It has a complex set of rules be-
cause there is propagation of type information between predicate signature and
call signature in both directions. A new case in a type rule from a type in the
signature of a call is propagated to the corresponding type in the signature of the
definition and in turn propagated to the corresponding types in the signature of
all other calls. There, it can potentially interact with other constraints, leading
to yet another case and triggering a new round of propagation. When the signa-
ture of recursive calls is allowed to be an instance of the predicate signature, it
is unclear whether termination is guaranteed. Indeed, Henglein [2] showed that
type checking in a similar setting is undecidable while we have strong indica-
tions [5] that type inferencing in the setting of that paper is also undecidable.
The restriction on the signatures of recursive types guarantees termination but
complexity remains high. Experiments indicate a cubic time complexity.

5 The SCC Type Analysis

The SCC type analysis reconstructs type information according to the SCCCall
rule. We first present a simple, understandable, but rather naive approach for
the analysis in Section 5.1, and subsequently refine it in Sections 5.2 and 5.3.

5.1 Naive Approach

A very simple way to implement an analysis of a program P for the SCCCall
rule is to apply the monomorphic analysis of Section 3 to a transitive multi-
variant specialization (TMVS) of P .

Definition 5 (Transitive Multi-Variant Specialization). We say that P ′

is a transitive multi-variant specialization of P if:

– There is at most one call to each predicate p/n ∈ P ′ from outside the predi-
cate’s strongly connected component.

11

– There is an inductive equality relation between predicates of P and P ′ that
implies structural equality.

Effectively, we obtain a TMVS of P by creating named apart copies of each
predicate definition, one for each call to the predicate.

Example 8. For Example 1, we obtain:

p(R) :- app1([a],[b],M), app2([M],[M],R).

app1([],L,L). app1([X|Xs],Ys,[X|Zs]) :- app2(Xs,Ys,Zs).
app2([],L,L). app2([X|Xs],Ys,[X|Zs]) :- app2(Xs,Ys,Zs).
app([],L,L). app([X|Xs],Ys,[X|Zs]) :- app(Xs,Ys,Zs).

Applying the monomorphic analysis, we obtain the type information as shown
in Example 4 (for the app/3 definition) and in Example 5 (for predicate p/1).

While this approach is simple, it is also highly inefficient. Observe that the
size of a TMVS is worst-case exponential in n, the size of the original program.
Hence, this approach has worst-case O(en · α(en)) time complexity.

Example 9. The following program’s TMVS exhibits the exponential blow-up:

p0(L) :- L = [a].
p1(L) :- L = [A], p0(A), p0(L).
...
pn(L) :- L = [A], pn−1(A), pn−1(L).

In the TMVS of this program, there are two copies of pn−1/1, four copies of
pn−2, . . . and 2n copies of p0/1.

Below, we will make the analysis more efficient, but the worst case complexity
remains exponential. However, in practice (see Section 6) the analysis turns out
to be much better behaved than the polymorphic analysis.

5.2 Derive and Normalize Once

There is a clear inefficiency in the naive approach: the same work is being done
repeatedly. Multiple copies of the same predicate definition are created, the same
set of constraints is derived from each copy, and each copy of those constraints
is normalized. This consideration leads us to propose a refined approach:

1. We analyze each predicate definition only once with Phases 1 and 2 of the
monomorphic analysis.

2. We reuse the results for a whole subprogram multiple times.

In order to make good on the above two promises, we must traverse the
program in a specific manner: SCC-by-SCC in a bottom-up fashion. In other
words, we first visit the predicates that do not depend on any other predicates.
Then we visit the predicates that only depend on the previous ones, and so on.

12

SCC Traversal The strongly connected components (SCCs) of a program are
sets of predicates, where each component is either a singleton containing a non-
recursive predicate or a maximal set of mutually recursive predicates. There is a
partial order on the SCCs; for components s1 and s2, s1 � s2 iff some predicate in
s1 depends (possibly indirectly) on a predicate in s2. Hence, the refined analysis
first computes the SCCs and topologically sorts them in ascending ordering wrt
�, yielding say s0, . . . , sm. The SCCs are processed in that order. The SCCs of
a program can be computed in O(|P |) time [7].

Example 10. This means for Example 1 that we first visit app/3 and then p/1:
s0 = {app/3} and s1 = {p/1} . For the program of Example 9 with exponential-
size TMVS, the predicate definitions of pi/1 are visited in the order of increasing
values of i: si = {pi/1}.

SCC Processing For each SCC si we generate a set of constraints and, after
normalisation, we derive a signature for each predicate p/n in si. The set of type
constraints for the clauses of si are generated using the same rules as Phase 1 of
the monomorphic analysis (see Figure 3). There is one exception: the Call rule
is modified for non-recursive calls to NonRecCall.

Let p(t1, . . . , tn) be such a call to a predicate in SCC sj , with sj ≺ si.
Assume τ1, . . . , τn are the argument types for the predicate signature in sj and
τ ′1, . . . , τ

′
n the types of the arguments t1, . . . , tn in the call. Instead of generating

the equalities τ ′i = τi as in Figure 3, one uses a renaming ρ to give new names
σ1, . . . , σn to the types in τ1, . . . , τn as well as new names to all types in the
whole set Cj of constraints in sj . The generated constraint then consists of the
renamed set of constraints Cjρ together with the equalities σi = τ ′i as described
in the rule of Fig. 4.

(NonRecCall)

p/n ∈ sj pred(p(τ1, . . . , τn))
τiρ = σi ti : τ ′

i

(a :- g) ∈ P p(t1, . . . , tn) ∈ g

Cjρ ∧
n̂

i=1

σi = τ ′
i

Fig. 4. Constraint derivation rule for non-recursive calls

Observe that, because of the copying of constraints, each call to a predicate
in a lower SCC has its own type which does not interfere with calls to the same
predicate elsewhere (interference is unavoidable in the polymorphic analysis).

Second, we normalize the derived constraints with the same rules as in Phase
2 of the monomorphic analysis. We call the resulting normalized constraint set
Ci, and remember them for use in the subsequent SCCs.

Finally, we use the algorithm of Phase 3 of the monomorphic analysis to
generate signatures for the predicates in si, based on the constraints Ci.

13

Example 11. Assume that for the program of Example 9 the constraint genera-
tion for p0/1 yields for the signature pred(p0(τ))

C0 ≡ τ ⊇ [τ1|τ2] ∧ τ1 ⊇ a ∧ τ2 ⊇ []

Then for the analysis of p1, we make two copies of C0, one for the call p0(A) and
one for the call p0(L). For instance, for the former call, we derive the constraints

σ ⊇ [σ1|σ2] ∧ σ1 ⊇ a ∧ σ2 ⊇ [] ∧ τ ′ = σ

where the type of A is τ ′ and the substitution ρ = {σ/τ, σ1/τ1, σ2/τ2}.

Efficiency Improvements Although the actual worst-cased complexity is not im-
proved, the actual efficiency is. Not only does this SCC-based approach avoid
actually generating the TMVS of a program, the normalized set of constraints Ci

is usually smaller than the originally generated set. Hence, the repeated copying
of the normalized form is usually cheaper than repeated normalization.

We expect that an approach that shares rather than copies the constraints Cj

of the lower SCC sj would be even more efficient. It looks plausible to keep the
set of constraints linear in the size of the program. However, the final extraction
phase could in the worst case still give an exponential blow up (when each call
has a signature that is an instance of a distinct polynomial predicate signature).
We intend to explore this further in future work.

5.3 Projection

One can observe that there is no need to copy the whole constraint system Cj of
the SCC sj when processing a call to that SCC. For processing a non-recursive
call to p/n, it suffices to copy a projection C

p/n
j : the part of Cj that defines the

types in the signature of p/n. This will usually be smaller than Cj .

Example 12. Consider the program with SCCs s1 = {r/2}, s2 = {q/2} and
s3 = {p/2}:

p(X) :- q(X).
q(Y) :- r(Y,Z).
r(a,b).

We have C2 ≡ (τY ⊇ a ∧ τZ ⊇ b) and signature pred(q(τY)). However, if we

project on the signature, then the second constraint of C2 is dropped: C
q/1
2 ≡

τY ⊇ a. In other words, for the call in s3, we must copy half as many constraints

with C
q/1
2 than with C2.

6 Evaluation

We evaluated the three algorithms on a suite of 45 small programs also used in [1].
Figure 5 displays the relative runtime (in % on a logarithmic scale) of both the
polymorphic and SCC-based analyses with respect to the monomorphic analysis.

14

1 

10 

100 

1000 

10000 

100000 

1000000 

ac
ke
rm

an
n 
 

de
r 
 

fla
tle

ng
th
  

in
   

le
ng
th
  

lis
t  

m
em

be
r 
 

m
ul
t  

or
de

re
d 
 

pa
lin
dr
om

e 
 

pe
rm

ut
a7

on
1 
 

re
ve
rs
e 
 

sl
ow

so
rt
  

su
ffi
x 
 

tr
an
sp
os
e 
 

Poly 

SCC 

Fig. 5. Relative runtime (in %) wrt the monomorphic analysis

The monomorphic analysis finishes quickly, in less than 1 ms on a Pentium
4 2.00 GHz. The SCC analysis provides more accurate analysis in 1 to 3 times
the time of the monomorphic analysis. The complex polymorphic analysis lags
far behind; it is easily 10 to 100 times slower.

A contrived scalable benchmark based on Example 1 shows that the monomor-
phic and SCC analyses can scale linearly, while the polymorphic analysis exhibits
a cubic behavior. The scalable program (parameter n) is constructed as follows:

app([],L,L).
app([X|Xs],Ys,[X|Zs]) :- app(Xs,Ys,Zs).

r(R) :- app([a],[b],M1),
app([M1],[M1],M2), ..., app([Mn],[Mn],R).

Below are the runtimes for the three inferences.3

Program MONO SCC POLY
app-1 0.38 ms 0.65 ms 12 ms
app-10 1.20 ms 2.14 ms 206 ms
app-100 9.60 ms 18.10 ms 88,043 ms
app-1000 115.80 ms 238.05 ms T/O
app-10000 1,402.40 ms 2,955.95 ms T/O

7 Conclusion and Future Work

Within the framework of polymorphic well-typings of programs, it is customary
to have a unique principal type signature for predicate definitions and type sig-
natures of calls (from outside the SCC defining the predicate) that are instances
3 T/O means time-out after 2 minutes.

15

of the principal type. We have presented a novel SCC-based type analysis that
gives up the concept of a unique principal type and instead allows different calls
to have type signatures that are instances of different well-typings of the pred-
icate definition. This offers two advantages. Firstly, it is much more efficient
than a true polymorphic analysis and is only slightly more expensive than a
monomorphic one. In practice, it scales linearly with program size. Secondly,
when an unexpected case appears in a type rule (which may hint at a program
error), it is easy to figure out whether it is due to the predicate definition or
to a particular call. This information cannot be reconstructed from the inferred
types in the polymorphic and the monomorphic analyses.

In future work we plan to investigate the quality of the new analysis by
performing type inference on Mercury programs where all type information has
been removed and comparing the inferred types with the original ones.

References

1. M. Bruynooghe, J. P. Gallagher, and W. Van Humbeeck. Inference of well-typing
for logic programs with application to termination analysis. In C. Hankin and
I. Siveroni, editors, Static Analysis, SAS 2005, Proceedings, volume 3672 of Lecture
Notes in Computer Science, pages 35–51. Springer, 2005.

2. F. Henglein. Type inference with polymorphic recursion. ACM Trans. Program.
Lang. Syst., 15(2):253–289, 1993.

3. T. L. Lakshman and U. S. Reddy. Typed Prolog: A semantic reconstruction of the
Mycroft-O’Keefe type system. In Logic Programming, ISLP 1991, pages 202–217,
1991.

4. A. Mycroft and R. A. O’Keefe. A polymorphic type system for Prolog. Artificial
Intelligence, 23(3):295–307, 1984.

5. T. Schrijvers and M. Bruynooghe. Polymorphic algebraic data type reconstruction.
In A. Bossi and M. J. Maher, editors, Proceedings of the 8th International ACM
SIGPLAN Conference on Principles and Practice of Declarative Programming, July
10-12, 2006, Venice, Italy, pages 85–96, 2006.

6. Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury,
an efficient purely declarative logic programming language. Journal of Logic Pro-
gramming, 29(1-3):17–64, 1996.

7. R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal of
Computing, 1(2):146–160, 1972.

16

