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Abstract

The language and notion of “proportions”, in the senses ascribed to the term during the
epoch, are traced both in ordinary abbacus books and in those extensive works which
were written in the vicinity of the abbacus culture by authors with erudite or Humanist
ambitions, such as Fibonacci’s Liber abaci, Benedetto da Firenze’s Trattato d’aritmetica and
Pacioli’s Summa. The very language turns out to have been initially absent from general
abbacus culture as reflected in the ordinary books, but slowly and modestly crept in.
The authors of the extensive works took up the topic, as indeed they had to if they wanted
to connect to university and Humanist mathematics; but even in their case it generally
remained isolated and did not penetrate their presentation of abbacus mathematics broadly
to any noteworthy extent.
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1. Preliminaries

Before taking up the substance of my topic, I shall make three preliminary
remarks: one on terminology, one on notation, and one on delimitation.

Terminology first. As other texts from the epoch, those I am going to consider
speak of a ratio/λογος (understood as a relation between two integers, not as
a single number) as proportio/proportione. Some of them use proportionalità where
we would speak of a proportion and the Greek mathematicians of αναλογια,
that is, an affirmation that two ratios are “the same” or “similar”; others,
however, use the term proportio/proportione even here, or speak of the numbers
involved as proportionales. In the case of numbers being in continued proportion
(ειης αναλογον), moreover, our texts speak of numeri continui
proportionales[1]/numeros in continua proportione, etc. An attempt to enforce a
modern terminology would either divide the field in a way which does not
correspond to the thought of the authors of the period, or it would force us to
speak of “numbers in continued ratio” – which certainly makes sense, but is not
modern terminology. It would also impose the modern conceptual confusion,
more misleading than the medieval one, which uses “ratio” both in the
historically proper sense, about the relation between two numbers, and about
their quotient. I shall therefore translate proportio/proportione as “proportion”,
etc. – while still speaking in modern ways of ratio and proportion outside direct
and indirect quotations when the relation between two numbers respectively
the “similitude” between two such relations is meant; the single-number “ratio”
I shall refer to as the “quotient”.

Second, notation. When designating explicitly a proportion, our texts mostly
say that “the first number is to the second, as the third to the fourth”,[2] or use
some equivalent expression. For typographical convenience, I shall use instead
the notation : , which should be read as representing the framea

b

c

d

corresponding to what is found regularly in the margin in the Liber abbaci[3]

1 Thus Liber abbaci, [ed. Boncompagni 1857: 171, 399].

2 Thus Liber abbaci, [ed. Boncompagni 1857: 170]; as everywhere in the following,
translations with no identified translator are mine.

3 E.g., [ed. Boncompagni 1857: 170].
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and (according to Rodet as cited in [Silberberg 1895: vi, 109]) consistently in a
pre-1400 manuscript of Ibn Ezra’s Sefer ha-mispar – whence probably more
widespread.[4] The two notations – as well as the line diagram used both in
the Liber abbaci [ed. Boncompagni 1857: 395 and passim] and by Campanus [ed.
Busard 2005: 161 and passim]

are equally fit to serve the visualization and automation of the various operations
that can be performed on the proportion:[5]

e contrario: :b

a

d

c

permutata: :a

c

b

d

conjuncta: :a b

b

c d

d

disjuncta: :a–b

b

c–d

d

conversa: :a

a b

c

c d

eversa: :a

a–b

c

c–d

aequa: :a

b

a c

b d

and also of the equality of the products a d = b c (to which I shall refer in the
following as the “product rule”). The typographically convenient notation thus
involves no serious anachronism – a:b::c:d, while fitting the phrase “the first to
the second, as the third to the fourth”, corresponds less well to the diagrams
on which the medieval authors based their operational thinking. In order to
distinguish, I shall write fractions (including “ratios” understood as quotients)
as a/b . Ratios (not understood as quotients, and not constituents of a proportion)
I shall denote a:b, and numbers in continued proportion will stand as a:b:c:….

Third, delimitation. Any applied arithmetic which goes beyond the simplest
accounting runs into problems of proportionality – say, of the type “for a [coins],
b [units], for c [coins], how much? In Near Eastern and Greek Antiquity, this
would normally be solved in an intuitively transparent way: For a [coins], b
[units], for 1 [coin] therefore b/a [units] , and for c therefore c b/a [units]. Some
Arabic reckoners[6] would prefer the argument “by nisbah [“ratio”]”, for a [coins],
b [units], for c therefore c/a as much, that is, ( c/a ) b [units]. From India, however,
probably via the trade routes and possibly with ultimate roots in China, Arabic

4 It is not, however, in the Liber mahamaleth (Paris, Bibliothèque Nationale, ms latin 7377A),
even though this work makes use of the rectangular frame for other purposes.

5 This way to present them is taken from the Campanus Elements [ed. Busard 2005: 171f].

6 Thus Ibn Thabāt [ed., trans. Rebstock 1993: 43–45], and al-Karajı̄ [ed., trans. Hochheim
1878: II, 17].
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merchants and after them theoretically inclined Arabic mathematicians from al-
Khwārizmı̄ onward adopted the rule of three, stating that c must yield (b c)/a.[7]

Indian practical reckoners appear to have used a formulation in the style
“multiply the thing [whose counterpart] you want to know by that which is not
similar [to it in kind] and divide by that which is similar”. This is not the main
formulation of the erudite Sanskrit writers (Āryabhata, Brahmagupta, Mahāvı̄ra,
etc.), but the formulations of the latter two betray that they know it. Even in
the Arabic world, it appears to have been the formulation of merchants. The
theoretically trained Arabic mathematicians soon saw that the whole matter can
be based on proportion theory as found in Elements VII – if only we forget about
the numbers being concrete and indeed being of two different kinds (for instance,
dinars and cloth), and not abstract. None the less, many of the Arabic
mathematicians betray familiarity with the traditional formulation, in spite of
its conflict with the Euclidean approach (which requires ratios to be between
quantities of the same kind, e.g., abstract numbers[8]).

In the European (that is, Italian and Ibero-Provençal) abbacus environment,
the rule also arrived in “non-Euclidean” interpretation (in Italy and perhaps in
Provence in the traditional (“non-similar/similar”) formulation, in Spain (as we
shall see) apparently in a different shape); even in the Christian world, however,
theoretically trained writers interacting with the abbacus environment, from
Fibonacci to Chuquet, made use of the Euclidean formulation. This, however,
I shall not discuss in any depth – not because it is not interesting but because
it is a separate topic, and treated at best together with other aspects of the
approach to the rule of three.

2. Fibonacci’s Liber abbaci

I have argued on other occasions – for example in [Høyrup 2005] – that
Fibonacci is not the founding father of abbacus culture but rather an early
(towering) exponent of a culture which already flourished in his time, if not in
Italy (which seems unlikely) then in Provence, Catalonia and the Maghreb and
al-Andalus, perhaps even in Egypt, Syria and Byzantium, and which was
connected to a culture of commercial arithmetic ranging at least as far as Iran
and India; on the present occasion I shall refer to this as the “proto-abbacus

7 This, and the remains of the paragraph, builds on [Høyrup 2007b: 1–8].

8 Of course, the Euclidean approach is saved if only we use the equivalent proportion
: . However, the sources never bother to perform this transformation.a

c

b

d
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culture”.
However, the Liber abbaci is not just an early abbacus book. Fibonacci writes

in a mathematically educated perspective about the kind of mathematics thriving
in the environment in question; but his scope is much larger, encompassing not
only what he encountered on business travels to Egypt, Syria, Constantinople,
Sicily and Provence [ed. Boncompagni 1857: 1] but also topics which almost
certainly fell outside the horizon of the proto-abbacus culture.[9] At least part
of his treatment of proportions falls in that category (but see the beginning of
Section 3 for a sharpening of this statement).

The first time numbers in proportion turn up in the Liber abbaci is in the
explanation of the algorithm for multiplying multi-digit numbers [ed.
Boncompagni 1857: 15]. Combining the product rule, for which he gives an
unspecific reference to Euclid, with the observation that the “degrees” or decimal
levels form an infinite continued proportion, Fibonacci concludes that
multiplication of the first degree by the third gives as much as that of the second
degree by itself, while the second by the third gives as much as the first by the
fourth, etc.

The argument could be original; I do not remember having seen it in any
earlier source, not even in hints.[10] Nice though it is, it also seems to have been
a historical dead end, not to be repeated by any later writer.

A next passing reference [ed. Boncompagni 1857: 82] to (four) numbers in
proportion and to the product rule turns up in the explanation of the
decomposition of a fraction – once more with the unspecific reference to Euclid.
This is followed closely by the presentation of the rule of three in simple and
composite shape, which I shall not treat in depth (but see [Bartolozzi & Franci
1990: 5–7]). I shall merely mention
– that Fibonacci does not use what was to become the standard formulation

of the abbacus school (the one which refers to the non-similar and the
similar) – the formulations [ed. Boncompagni 1857: 83f ] are likely to be his

9 Bartolozzi & Franci [1990: 5], though regarding the Liber abbaci as the archetype for
abbacus books, align it more adequately with fifteenth-century encyclopediae like
Benedetto da Firenze’s Praticha d’arismetricha and the anonymous MS Florence, Palatino
573 – on both of which below.

10 It may have been inspired by analogous reasoning about the sequence of algebraic
powers. The parallel between the powers of the algebraic thing and the powers of ten
is pointed out by al-Karajı̄ [Woepcke 1853: 48] and may have been common lore among
Arabic writers 200 years later.
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own;
– that Fibonacci makes use of the rectangular frame mentioned above, leaving

the position for the unknown number empty and indicating the cross-
multiplication by a diagonal;

– that the treatment of the non-composite rule is argued from the product rule
“which has been proved in the arithmetical [books of the Elements] and in
the geometry”;

– that the composite rule (used in barter problems) is presented with a
reference to figura cata, scilicet sectoris [Menelaos’ theorem] “which Ptolemy
teaches in the Almagest”;

Whereas barter problems employ the rule of three “sequentially”, partnership
problems use it “in parallel”; in this case [ed. Boncompagni 1857: 114f, 135–143],
however, Fibonacci speaks of neither “proportions” nor proportionality – nor
indeed to the rule of three itself, but since in general he has no name for that
rule this is not astonishing. However, in connection with a problem about
alloying of three monies [ed. Boncompagni 1857: 149f ], the first and the second
in ratio 2:3, the second and the third in ratio 4:5, he speaks of “proportional
alloying” and teaches how to harmonize these as easily composable ratios by
means of multiplication. The idea of “proportional alloying” turns up repeatedly
in the following pages. Proper interest in our topic only returns in Chapter 12,
Part 2 [ed. Boncompagni 1857: 169–173].

This chapter starts by explaining equal, major and minor ratios, and gives
the examples 3:3, 8:4, 9:3, 16:5, 4:8, 3:9 and 5:16 – providing them with names
which are not in the Boethian tradition but come close to the “denomination”
(though not using this word). For instance, 16:5 is a “triple proportion and a
fifth”. It goes on with the problem of finding the number to which 6 has the
same “proportion” as 3 to 5, giving first the numerical solution (5 6)/3 and
saying then that this question is stated “in our vernacular” (ex usu nostri
vulgaris[11]) in the phrase “if 3 were 5, what would then 6 be?”. Similarly, it
asks for the number to which 11 has the same ratio as 5 to 9, and gives it the
vernacular formulation “if 5 were 9, what would 11 be?”.

11 A complete survey of the references to modus vulgaris and its cognates in the Liber abbaci
shows that the genuine meaning is not the generic spoken vernacular but with one
exception the simple ways of practical reckoners (the exception (p. 111) is the information
that an alloy of silver and tin is called “false silver vulgariter”). Simple, stepwise calculation
is meant in four places (pp. 115, 127, 204, 364). In the last place, the modus vulgaris is
confronted explicitly with how one procedes magistraliter.
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This formulation is remarkable (cf. full documentation in [Høyrup 2007a:
64–67]). Only one Italian abbacus treatise I know of identifies the rule of three
by means of the same phrase, namely the Columbia Algorism [ed. Vogel 1977] –
also untypical in other respects, almost certainly dated no later than 1290 [Høyrup
2007a: 31 n. 70] and thereby probably the earliest extant abbacus text (though
known only from a fourteenth-century copy). Counterfactual questions – and
even “counterfactual calculations” in the style “if 7 were the half of 12, what
would the half of 10 be?” [ed. Boncompagni 1857: 10] – are certainly not absent
from the Italian abbacus record, but they invariably turn up long after the rule
of three is explained, or as secondary examples (the primary examples confront-
ing either different currencies or goods and their monetary value). In all Ibero-
Provençal treatises from before 1500 which I have inspected,[12] on the other
hand, the rule of three is introduced first by counterfactual or abstract-number
questions, “If 3 were 4, what would 5 be?” or “if 4 1/2 are worth 7 2/3 , what are
13 3/4 worth?”. All the Provençal specimens also know the formulation in terms
of the non-similar and the similar, and so does Santcliment’s Catalan Summa
[ed. Malet 1998: 163]. Besides that, however, Santcliment informs us that this
is spoken of “in our vernacular” by the phrase “if so much is worth so much,
how much is so much worth” (si tant val tant: que valra tant). The same phrase
(sy tanto faze tanto, ¿qué sería tanto?) is also used in the Castilian Libro de arismética
que es dicho alguarismo.[13] Wherever Fibonacci encountered the vernacular
tradition he refers to, it left no conspicuous traces in Italy, but many in the Ibero-
Provençal orbit, most clearly in its Iberian section.

Next, Fibonacci presents the counterfactual calculation that was just quoted

12 In chronological order
– the Castilian Libro de arismética que es dicho alguarismo [ed. Caunedo del Potro &

Córdoba de la Llave 2000];
– the “Pamiers Algorism” [partial ed. Sesiano 1984];
– the mid–fifteenth-century Franco-Provençal Traicté de la praticque d’algorisme (I used

the transcription in Stéphane Lamassé’s unpublished dissertation, for access to which
I am grateful).

– Barthélemy de Romans’ Provençal Compendy de la praticque des nombres [ed. Spiesser
2003: 264];

– Francesc Santcliment’s Summa de l’art d’aritmètica [ed. Malet 1998];
– Francés Pellos’s Compendion de l’abaco [ed. Lafont & Tournerie 1967: 132–134].
I also looked at Chuquet’s Triparty en la science des nombres [ed. Marre 1880], not strictly
Provençal but in the Provencal tradition.

13 Ed. Caunedo del Potro, in [Caunedo del Potro & Córdoba de la Llave 2000: 147].
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(“if 7 were the half of 12, what would the half of 10 be?”), and another
counterfactual simple question. He goes on with procedures for finding four
and six integers in proportion if the first two of them are given; shows how to
divide 10 into four unequal parts in proportion – namely by scaling an arbitrary
proportion : by the factor 10/(a+b+c+d) ; explains how to construct a continueda

b

c

d
proportion with an arbitrary number of terms (explaining again the product
rules); and finally demonstrates how to find two or three numbers so that 1/p n1 =
1/q n2 (and, in the case of three numbers, 1/r n2 = 1/s n3) – in a different formulation,
not used by Fibonacci but common in later Italian abbacus algebra, : (and

n1

n2

p

q
: ).

n2

n3

r

s
On the whole, what Fibonacci does in this chapter is thus to connect

procedures and problem types belonging to the “vernacular” proto-abbacus
tradition(s) he had encountered with the notion of “proportions”. The theoretical
field itself is not explored in any way.

Theoretical exploration of a kind comes in Chapter 15, Part 1 [ed.
Boncompagni 1857: 387–397], which claims to treat of “the proportions of three
and four quantities, to which the solution of many questions belonging to
geometry are reduced” [ed. Boncompagni 1857: 387]. Actually it deals with
problems about numbers in proportion. These numbers are spoken of as “the
first/second/third/fourth number” (or, when the numbers are three numbers,
“minor/middle/major”). In most cases, they are represented by letter-carrying
line segments drawn in the margin – for brevity we may designate them P, Q,
R and (when needed) S. At first proportions involving three numbers are
presented, afterwards (much fewer) questions involving four numbers are dealt
with. By means of conjunction, disjunction, permutation etc., the given proportion
is transformed in such a way that the numbers can be found from the product
rules by means of addition or subtraction or, more often, Elements II.5–6 (II.6
being sometimes preferred even in cases where II.5 would seem the obvious
choice). Strikingly, Fibonacci never refers to Euclid here, which he is otherwise
fond of doing [Folkerts 2006: IX].

We may divide into 50 sections, of which some 5 contain theorem-like
observations (the delimitation is not quite sharp) and the remainder solve or
show the solvability of problems.

At first ((1)–(3)) come questions about three numbers in continued proportion,
P:Q:R. One of the numbers is given together with the sum of the other two. The
naming of segments presupposes the alphabetic order a, b, c, ….

(4)–(38) still treat of three numbers, but now differences between the numbers
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are among the given magnitudes. The alphabetic order underlying naming
changes to a, b, g, d, ….

In (4)–(5), the three numbers are still in continued proportion, but now one
of the numbers and the difference between the two others are given. (7)–(38)
are more astonishing. They fall in groups of three, divided by separate headings
by Fibonacci. To each heading corresponds one of the non-arithmetical “means”
of ancient Greek mathematics [Heath 1921: II, 85–88] – geometric, harmonic, their
subcontraries, etc. – and it is shown how each mean can be found from the two
extremes, or one of the extremes from the other extreme and the middle.
Fibonacci deals with all the means defined by Nicomachos [ed. Hoche 1866:
124–144] (as followed by Boethius), but also with a mean defined by Pappos
[Hultsch 1876: I, 70–73, 84–87] but left out by Nicomachos – see the scheme on
the page 9. However, Fibonacci does not speak of means, even though he is likely
to know about them from Boethius; his order is different from those of
Nicomachos and Pappos; and he does not observe that his (27)–(29) represent
the geometric mean, which he has already dealt with in (4)–(5). This, together
with the change of underlying alphabetic order, suggests that he has not
constructed this sequence on his own under inspiration from the ancients but
borrowed for an Arabic or Greek treatise on the matter, which – in the interest
of completeness – had also added the case (26) even though it defines no genuine
mean (as pointed out by Fibonacci, the condition : implies that R ≈ Q).R

Q

R–P

Q–P
(39)–(50) consider four numbers in proportion, : . The underlyingP

Q

R

S
alphabetic order is still a, b, g, d, ... . At first, the e contrario and permutata
transformations are set out, and it is explained how any one of the numbers can
be found from the three others via the product rule. Then follow problems where
two of the numbers are given together with the sum of ((40)–(45)) respectively
the difference between ((46)–(49)) the two others; finally, in (50), two numbers
and the sum of the squares of the remaining two is given.

In (39)–(50) as in (4)–(5) but not in (7)–(38), some segments are labelled by
a single letter, and the letter c is used during the manipulations. We may
therefore assume that these sequences come from Fibonacci’s own pen, or (less
likely, I would say) from different source than the one for (7)–(38).

Chapter 15, Part 2 is claimed to deal with “questions concerning geometry”.
Actually, a number of its problems have nothing to do with geometry, apart from
having solutions based on line diagrams; several of these – all dealing with
composite gain – involve proportions.

The first of them [ed. Boncompagni 1857: 399] is very simple. Somebody goes
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Pappos Nicomachos Liber abbaci

: (arithmet.)
R–Q

Q–P

R

R
P1 N1

: or :
R–Q

Q–P

R

Q
R–Q

Q–P

Q

P
P2 N2 27–29

:R–Q

Q–P

R

P
P3 N3 7–9

:R–Q

Q–P

P

R
P4 N4 (but inverted) 10–12 (inverted)

:R–Q

Q–P

P

Q
P5 N5 (but inverted) 34–36 (inverted)

:R–Q

Q–P

Q

R
P6 N6 (but inverted) 20–22 (inverted)

:R–P

Q–P

R

P
absent N7 16–18

:R–P

R–Q

R

P
P9 N8 13–15

:R–P

Q–P

Q

P
P10 N9 30–32

:R–P

R–Q

Q

P
P7 N10 37–38

:R–P

R–Q

R

Q
P8 absent 23–25

:R

Q

R–P

Q–P
absent absent 26

Means dealt with by Pappos and Nikomachos and in the Liber abbaci



to one place of trade with 100 £ and earns, and afterwards earns proportionally
in another place, and then has a total of 200 £. A continued proportion shows
the possession after the first travel to be √(100 200) ≈ £ 141, s. 8, d. 5 1/8 .

The next case [ed. Boncompagni 1857: 399] is somewhat more tricky. The
initial capital is still 100 £, but after the first travel a partner invests 100 £ in the
enterprise, and after the second travel the total amounts to 299 £. This gives the
proportion (represented by lines) : . The product rule and Elements II.6100

Q

Q 100

299
(still unidentified) lead to the solution Q = 130 £. Interchange of left and right
would reduce this to case (46) above, but Fibonacci does not establish the link.

Then follows [ed. Boncompagni 1857: 399f ] an example with three travels
(100 £ growing to 200 £) and no extra investments, which leads to a continued
proportion with four terms and thus, with reference to Euclid (namely Elements
VII.12), a solution expressible in cube roots. A digression follows discussing
numbers allowing an exact solution (24 and 81) and the notions of duplicate and
triplicate proportion. Fibonacci goes on to the case of four travels, involving five
numbers in continued proportion and a quadruplicate proportion; and to the
concepts of quintuple and sextuple proportion.

A final problem about composite gain [ed. Boncompagni 1857: 401] deals
with two travels with initial capital P, final total R and intermediate possession
Q = 80 £, with : . Fibonacci calculates 5 9 = 45 and claims withoutP

R

52

92

explanation that : , : . The trick is of course that : , while : ;45

80

25

P

45

80

81

R

25

45

45

81

P

80

80

R
a scaling with the factor 45/80 conserves the ratio between the extreme terms and
adjusts the value of the middle term. Finally, Fibonacci explains it to be an
equivalent problem to find two numbers p and q (namely, p = √P, q = √Q) so
that 1/5 p = 1/9 q, p q = 80.[14] This is solved via a single false position, p’ = 5, q’ =
9, and subsequent scaling by the factor √ 80/5 9 .

The notion of “proportion” or proportionality turns up in two further places
in this “geometric” section. In none of them, anything profound is meant. First,
a rule is given [ed. Boncompagni 1857: 401] for producing “two integer roots
whose squares together make the square of a number” – that is, for finding
Pythagorean triples (triangles are not spoken of). Second, in the last problem
of the section [ed. Boncompagni 1857: 405f ], three numbers (say, a, b and c) are
asked for, so that 1/2 a = 1/3 b, 1/4 b = 1/5 c, abc = a+b+c. This is solved by a single
false position, a’ = 8, b’ = 12, c’ = 15, with consecutive proportional scaling.
Similarly to what he did in the last travel problem, Fibonacci goes on to discuss

14 We recognize the structure 1/p n1 = 1/q n2, dealt with already in Chapter 12, Part 2 (see
above, p. 7).

- 10 -



what to do when there are four, five and six numbers, using once again the
notions of double, triple, quadruple and quintuple proportion.[15]

The third and final (and most famous) part of Chapter 15 [ed. Boncompagni
1857: 406–459] deals with “certain problems according to the method of algebra
and almuchabala, that is, by proportion and restoration”.[16] This identification
of algebra with “proportion” and almuchabala with “restoration” is almost certainly
Fibonacci’s own invention.

Fibonacci knows the term “restoration” from Gherardo of Cremona’s
translation of al-Khwārizmı̄ (with which he was familiar, see [Miura 1981: 60])
and also uses it himself quite often about the cancellation of a subtractive term
by addition to both sides of an equation[17] (alternatively he employs a mere
“add”); but Gherardo will not have helped him discover that it translates al-
jabr.[18] On the other hand, the term used by Gherardo to translate al-muqābalah
and the corresponding verb qabila – that is, oppositio/opponere – only occurs thrice
in Fibonacci’s algebra chapter [ed. Boncompagni 1857: 429, 436, 457], every time
in the sense of confronting the two sides of an equation (in all probability the
original function of the term, but not Gherardo’s normal interpretation[19]).

This explains that there was space for Fibonacci’s mistaken guess – he had
two slots for only one technical operation. It does not explain why he used the
other slot for “proportion”, but at least this choice suggests him to have seen
proportions as an important tool in the field. Why?

15 Most remarkable in this problem is presumably the use of tetragonus in the sense of
a numerical square: everywhere else in the work this is spoken of as quadratus, while
tetragonus invariably refers to a geometric square (often, [ed. Boncompagni 1857: 175f,
368, 408f, 421, 426f, 453]) or cube (once, [ed. Boncompagni 1857: 403]). We can presume
that Fibonacci used a source written in Greek without bothering to adjust its style.

16 [...] pars tertia de solutione quarumdam questionum secundum modum algebre et almuchabale,
scilicet ad proportionem et restaurationem.

17 The “equation” as a mathematical object is of course our concept and thus strictly
speaking an anachronism. Fibonacci only has the action of equating – the isolated
appearance of equatio [ed. Boncompagni 1857: 407] is to be understood as a corresponding
verbal noun, pace Barnabas Hughes [2008: xxix, 361], who is seduced by Boncompagni’s
mistaken punctuation (reddigi ad equationem. Vnius (sic) census per diuisionem [...] should
be simply reddigi ad equationem unius census per diuisionem [...]).

18 That Fibonacci does not discover on his own should downplay Fibonacci’s Arabic skills,
pace Barnabas Hughes [2008: xix].

19 There is one exception [ed. Hughes 1986: 255].
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One hypothesis can be rejected straightaway. It has nothing to do with the
proportional reduction of all coefficients when an equation is normalized. For
this, Fibonacci uses redigere, as quoted in note 17, reintegrare [ed. Boncompagni
1857: 420], or performs the operation without naming it; neither “proportion”
nor “proportional” ever occurs in this context.[20]

We may observe instead that Fibonacci inserts occasional pieces of reasoning
based on proportion theory within algebraic or other calculations, and
occasionally solves problems by means of proportion theory instead of algebra.

A simple example of the first type is found in the solution of the problem,
to divide 60 denarii first among a number of men and then among 2 men more,
by which the share of each man decreases by 2 1/2 denarii. Al-Khwārizmı̄ [ed.
Hughes 1986: 255; ed. Rashed 2007: 190–193] solves an analogous problem via
(implicit) subtraction of fractions containing algebraic expressions in the
denominator; Abū Kāmil [ed. Levey 1966: 106; ed. Chalhoub 2004: 76–78, 197;
ed. Sesiano 1993: 370f ] makes use of subtraction of areas within a geometric
diagram; Fibonacci [ed. Boncompagni 1857: 413] replaces this “geometric
arithmetic” by operations on a proportion.

A more advanced instance of the first type deals with the gains of a complex
partnership: Somebody invests 12 £, and has a certain gain after 3 months. Then
somebody else invests 11 £, and after another 12 months with gain at the same
monthly rate, the total gain for the two is 9 £. This is expressed in line diagrams
and treated inter alia by operations on proportions, which in the end allow the
establishment of an algebraic equation.

A simple instance of the second type is an alternative solution to the problem
to find two numbers with difference 6 and quotient 1/3 . The primary solution
goes via algebra: the smaller number is posited as a thing, the larger is thus a
thing plus 6, etc. Alternatively, the larger is a segment ab, the smaller the partial
segment ac, whence bc = 6, : , and disjunctim : , etc. For somebody asab

ac

3

1

3

ac

2

1
familiar with proportion techniques as Fibonacci, this may indeed have been

20 Barnabas Hughes suggests [2004: 324 n. 43] that Fibonacci understood “proportio as a
kind of operation” because “the two verbs proportionari and equari [...] are synonymous”
in the Latin translation of Abū Kāmil’s algebra. Hughes overlooks that the verb equari
is used as an editorial explanation by Jacques Sesiano [1993: 325]. What is relevant is that
the fourteenth-century translator uses the verb proportionari is the sense of “giving/having
comparable size” a single time, in agreement with possible Italian usage (of proporzionare)
of the late Middle Ages. It is not totally excluded – though quite improbable, given that
there are no other traces of this meaning in Fibonacci’s text – that Fibonacci did so too.
Why should he coin a semantic neologism in the heading and never use it afterwards?
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as easy as the primary solution, and for those not yet familiar with algebra it
may have been easier.

Another alternative [ed. Boncompagni 1857: 423f ], this time to an algebraic
method which is mentioned but not presented, asks for a number which, when
1/3 of it and 6 are removed and the remainder multiplied by itself, yields twice
the original number – in symbols,

(x– 1/3 x–6)2 = 2x .
In a line diagram, Fibonacci transforms this into a proportion which in symbols
becomes

.

2

3
x

x– 1

3
x–6

x– 1

3
x–6

3
Disjunctim, this allows him to apply Elements II.6 (unidentified once again). This
time, only a reader who had understood nothing of the algebra that precedes
would be likely to prefer the alternative. If we observe that the underlying
alphabetic order is a, b, g, d (which it rarely is in this section) and that the
problem belongs to a family which was widespread in the “supra-utilitarian”
stratum of proto-abbacus arithmetic inside as well as outside algebra – see
[Høyrup 2007a: 131–133] – one may speculate whether Fibonacci found it in a
source written in Greek and presented it for the sake of completeness (which
would correspond to a general practice of his).

All in all, we may conclude that “proportions” had nothing to do with algebra
as Fibonacci encountered it. He writes, however, as if he thought they should
have. Nothing suggest him to have entertained the idea that existing algebra
should be illegitimate because it was Arabic, nor that he had a consistent program
to replace it with something more “magisterial”, legitimately belonging within
the realm of Greek [21] – but his global view of mathematics, coloured by his
understanding of the Elements, and his possession of a level that enabled him
to merge different approaches in a not fully eclectic manner, still made him go
part of the way taken eventually with greater resolve by some Renaissance
writers on algebra.

21 That is, nothing like the ideal which shines through in Jordanus’s De numeris datis and
to which Regiomontanus, Viète and others paid lip service through references to
Diophantos and analysis – see [Høyrup 1998].
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3. Early abbacus books

Examination of early Italian abbacus books reveals that Fibonacci glued
proportions not only onto algebra but also more generally to the proto-abbacus
tradition, from which they were equally absent.

The Columbia Algorism – almost certainly the earliest extant abbacus text, cf.
above, text before note 12 – does not speak of “proportions” a single time, not
even in the sense of ratio; the rule of three, as explained, is referred to through
the counterfactual “vernacular” structure – for instance [ed. Arrighi 1989: 32]
“if 25 were 12, what would 12 be?”.

Slightly but hardly much younger[22] is a Livero de l’abbecho secondo la
oppenione de maiestro Leonardo de la chasa degli figluogle Bonaçie da Pisa, “Abbacus
book according to the opinion of master Leonardo of Pisa from the house of the
Fibonacci” [ed. Arrighi 1989]. This treatise is a mixed compilation – see [Høyrup
2005]. A little less than half (if we count lines, well over half if we count
problems) has nothing at all to do with the Liber abbaci, the remainder is
borrowed very closely but often demonstrably without understanding from that
book. Apart from the contents of a final chapter containing mixed recreational
problems, everything independent belongs on the basic level, the level corre-
sponding to what should be taught in an abbacus school. What comes from
Fibonacci is sophisticated, advanced – roughly speaking, adornment serving to
show off (a purpose also ministered to by the reference to the famous predecessor
in the title).

In the part of the text that is not borrowed from Fibonacci, the notion of
“proportion” does not occur in any sense. The rule of three is presented in terms
of the similar and the non-similar. The part copied from Fibonacci does borrow
a number of references to the notion, translated either propositione (sometimes
prepositione) or proportione. Propositione also occurs as translation of petitio or
propositio (both referring to requests or propositions that somebody give part
of his possessions to somebody else). The mix-up of propositione and proportione
also turns up in other abbacus texts, facilitated probably by the possibility to
abbreviate both in the same way, which might of course mislead a copyist who
did not understand the text he copied. However, a global survey of the relevant
passages suggests that the present compiler did not know he was sometimes
speaking of proportions, glaringly misunderstood as they are occasionally (see
the scheme on the next page). In any case, they were not part of his own

22 For this revised dating, see [Høyrup 2007a: 31 n. 70].
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Occurrences of proportione/propositione in the Livero de l’abbecho (right,
with page numbers from [Arrighi 1989], and corresponding passages in
the Liber abbaci (left, with page numbers from [Boncompagni 1857].

270 que multiplica per 6 de
proportione superius inventa

49 el quale multiplica per 6 de la
prepositione de sopre trovata

131 que proportio est composita ex
duabus datis proportionibus.
Et cum proportio aliqua est
composita ex quotcumque
proportionibus; tunc proportio
proportionum ipsa appellatur:
que compositio qualiter fiat,
lucidius demonstrabo

30 la quale proportione ène con-
posta da doie prepositione e
proportione dell propositione
è chiamata perch’ella se
mostra chiaramente

145 argenti uncias, que fuerint in
omnibus prepositis monetis,
addiscas

34 le onzie de l’argento che sonno
en tutte le propositione e le
monete en prende

229 positis petitionibus ipsorum
[for the purchase of a horse]

69 noie devemo ponere le pro-
positione

200 ex petitionibus ex proportioni-
bus reliquorum hominum

78 de la petitone e de la propor-
tone degl’altre huomene

201 ex petitionibus et ex propo-
sitionibus reliquorum

78 de la petitone e da proposi-
tione degl’altre

288 secunda aliquam datam pro-
portionem [...] qui sunt in
dicta proportione

81 secondo l’altra propositione
[...] che sonno ella ditta pro-
pusitione

205 hec positio per priman regu-
lam, hoc est per modum arbo-
rum, solui possit; tamen qua-
liter aliter soluatur demon-
strare cupimus

87 quista propositione overo qui-
stione se può fare per la regola
del primo albero, el quale mo-
stramo chusì

286 ut invenias proportionem,
quam habent ad inuicem pri-
mum, et secundum uas

100 truova la propositione che
àggiono emsieme el primo e’l
sechondo vaso

133f proportio uniuscuiusque nu-
meri prime coniunctionis ad 6,
qui est tertius ex numeris se-
cunde, est composita ex du-
abus proportionibus quattuor
reliquorum numerorum

137 la propositione de ciascuno
numero de la prima congion-
tone a 6 el qual’è el terço nu-
mero
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mathematical upbringing and culture as reflected in that part of the compilation
which is not copied (or miscopied) from Fibonacci.

I shall leave aside for a moment Jacopo da Firenze’s Tractatus algorismi,
written in Montpellier in 1307, in which the notion of “proportion” does turn
up a few times in particular contexts, and go on with other early abbacus
treatises.

Two of these were also written in Provence: a Liber habaci from c. 1310, and
Paolo Gherardi’s Libro di ragioni from 1328.[23] None of them speaks of “propor-
tions” at all, neither under this name nor as propositioni – with one specific kind
of exception in Gherardi’s book to which we shall return. The former gives the
rule of three almost exactly as the Livero de l’abbecho, but differs from all other
abbacus writings on one singular account: all its integer numbers are written
with Roman numerals, and all its fractions are spelled out in full words. Even
the brief explanation of the place value system [ed. Arrighi 1987b: 155] does not
show a single Arabic numeral. This might (but need not) reflect a style preceding
the Columbia Algorism.

A Libro de molte ragioni d’abaco written around 1330 in or around Lucca by
three different hands [Van Egmond 1980: 163] (and thus, we must presume, fairly
representative as a total of the linguistic habits of the local environment of the
time) contains two passages of interest: for the digging of a well, the toil is said
[ed. Arrighi 1973: 29] to be aproportionata to the depth; and it is said [ed. Arrighi
1973: 31] to be necessary for a certain problem solution to be valid that Florence
and Lucca are either both proportionata as circles or both as squares. The latter
request thus refers to geometric shape, considered generically as a “proportion-
ing”. In the former case it turns out in the following that the toil for each cubit
is almost but not quite directly proportional to its depth, since the total work
for depth n is as 1+2+...+n.[24] However, this numerical specification comes
afterwards, the word aproportionata seems to stand as an explanatory everyday
term, meaning loosely “corresponding to”. Apart from these two passages, due
to the same hand, neither “proportion” not “proposition“ (in any sense) can be
found anywhere in the compilation. More or less specific notions of
proportionality thus seem to have penetrated general language (perhaps coming

23 Both are in [Arrighi 1987b]. Arrighi ascribes both to Gherardi, but gives no convincing
reasons that the Liber habaci should come from his pen.

24 The toil is thus supposed to be proportional to the depth of the bottom of the stratum,
not to its average depth.
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in particular from the visual arts[25]).
Only texts in modern print allow text recognition and thus (at least fairly

reliable) complete search. Regarding the extensive Trattato di tutta l’arte dell’abacho
(written in Avignon in c. 1334, as shown by Jean Cassinet [2001]), only existing
in manuscript form, I am therefore not able to assert that “proportion”,
“proportionality” and “proposition” used for “proportion” are totally absent;
however, I have consulted such passages in the earliest manuscript (Florence,
Bibl. Naz. Centr., fond. prin. II,IX.57 – the author’s draft autograph) where the
concepts could be expected to turn up if they belonged to the standard
vocabulary of the author, without finding any of them. All in all it seems a
reasonable conclusion that the relation of early abbacus culture with proportions
and proportionality was like that of Molière’s Monsieur Jourdain with prose –
he had spoken it for forty years without knowing anything about it. In other
words: We may find reasoning based on proportions, but this observation of ours
does not correspond to the conceptual world of the abbacus teachers.

It seems reasonable to infer that Fibonacci glued proportions not only onto
algebra but onto the whole of proto-abbacus mathematics.

4. Jacopo da Firenze and early abbacus algebra

Three manuscripts exist which claim in identical colophons to contain Jacopo’s
Tractatus algorismi, written in Montpellier in September 1307: Milan, Trivulziana
MS 90, dated by watermarks to c. 1410; Florence, Riccardiana MS 2236, undated;
and Vatican, Vat. Lat. 4826, dated by watermarks to c. 1450.[26] Editions of all

25 The word family derived from “proportion” has one representative in Dante’s Commedia
divina, namely a reference (XXX.56) to the proporzione of a giant, and one in Boccaccio’s
Decameron (sesta giornata, novella sesta), a reference to the duly proporzionati faces
produced by a painter. Both have to do with geometric shape, the latter with being well-
shaped.

Not clearly linked to shape and aesthetic proportionality, however, are the observation
in Dante’s Convivio IV, that the human intellect is improporzionalmente surpassed by the
divine intellect, and the one in his Vita nuova XXV that “rhyme” in the vernacular is as
much as “verse” in Latin, with the added proviso secondo alcuna proporzione – a mutatis
mutandis with quantitative connotations. (I used the electronic versions of the texts on
http://www.liberliber.it).

26 For these datings, see [Van Egmond 1980: 225, 148, 166]. Van Egmond gives the date
1307 for the Florence manuscript, but this is merely the date stated in the colophon,
common to all three manuscripts. Since this manuscript is close to the Trivulziana 90
(see imminently) but with more errors, a date later in the fifteenth century is plausible.
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three are in [Høyrup 2007a][27]. The Vatican manuscript contains an algebra,
a chapter with problems about wages in growing continued proportion and a
final collection of mixed problems which is absent from the others. As I have
argued in [Høyrup 2007a: 5–25], the Vatican manuscript is a faithful copy of a
shared archetype at least antedating 1328 considerably (and thus likely to be
Jacopo’s original), whereas the other manuscripts, very close to each other,
represent an abridgment adapted to the need of the abbacus school.[28]

Let us therefore look first at the Vatican manuscript. Its algebra contains rules
for all “cases” (simplified equations) until the fourth degree which are either
homogeneous or reducible to second-degree equations by division, and one of
the three possible biquadratic equations. For the six equations of the first and
the second degree, one or several examples are given – ten in total.

Theory of proportions is not used here, not even its simplest level.[29]

However, the problem statements are of some interest. Five are sham commercial
problems,[30] two number problems belong to classical types already found in
al-Khwārizmı̄’s Algebra. Two, however [ed. Høyrup 2007a: 307, 309], have a dress
which appears not to be known from any earlier source:[31]

27 The edition of the Riccardiana manuscript (as included in the critical edition with the
Trivulziana manuscript) is a re-edition of Annalisa Simi’s transcription [1995].

28 In a brief inserted note in his [2008: 313], Van Egmond claims that the Vatican algebra
belongs to a family descending from Benedetto da Firenze. He takes it for granted that
the undated Florence manuscript is actually from 1307, refers to the Milan manuscript
as “several later copies of it”, and overlooks that verbatim repetition of the Vatican text
in the Trattato dell’alcibra amuchabile from c. 1365 (with one improvement showing the
model of the Vatical algebra to be earlier) excludes any date after 1365. His claim can
be safely disregarded – as can much of his construction of “families”, built exclusively
on the appearance and order of equation types, with no regard for formulations, choice
of examples, incipient symbolism, and almost none for terminology.

29 Yet it could have served. In one problem, the partnership serves instead to establish
the equation, in another one dealing with composite interest the rule of three is used.

30 One of these [ed. Høyrup 2007a: 314f ] deals with composite gain; it does not coincide
with any of those found in the Liber abbaci, but it also leads to a problem of the second
degree. In Jacopo’s variant, the gain in the first travel (12 £) and the total possession after
the second (54 £) are known. The problem of course involves a continued proportion,

: (C being the initial capital), but Jacopo deals with it by means of a rule ofC 12

C

54

C 12
three – identified only as la regola – integrated in algebraic reasoning.

31 It may be related, but then only distantly, to Fibonacci’s repeated reference to numbers
for which 1/pn1 = 1/qn2 (two examples above, paragraphs after note 13 and before note
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find me two numbers that are in proportion [propositione] as is 2 of 3 and when each
(of them) is multiplied by itself, and one multiplication is detracted from the other,
20 remains

and

Find me 2 numbers that are in proportion [propositione] as is 4 of 9. And when one
is multiplied against the other, it makes as much as when they are joined together.

At first, these may look intricate, but at slightly closer inspection they are nothing
but more complicated ways to ask for

a number which, when multiplied by itself and by 5, gives 20

and

a number which, when multiplied by itself and by 36, gives as much as when it is
multiplied by 13.

As we shall see presently, later writers use the same principle to show off
cheaply, but for long they mostly use the formulation “the first is such a part
of the second as [say] 2 is of 3”. Jacopo is thus not likely to have invented the
mathematical principle, but the explicit use of the notion of proportion (expressed
as propositione) could a priori have been his idea; see however note 34.

However that may be, the “proportion” concept turns up again slightly later,
in a sequence of problems about the manager of a warehouse (a fondaco, written
fondicho etc.) whose wages are supposed to increase in continued proportion.
The statements run as follows:

Somebody stays in a for warehouse 3 years, and in the first and third year together
he gets in salary 20 fiorini. The second year he gets 8 fiorini. I want to know what
he received precisely the first year and the third year, each one by itself. Do thus,
and let this always be in your mind, that the second year multiplied by itself will
make as much as the first in the third. [...].

Somebody stays in a warehouse for 4 years, and in the first year he got 15 gold fiorini.
The fourth he got 60 fiorini. I want to know how much he got the second year and
the third at that same rate. Do thus, that you divide that which he got in the fourth
year in that which he got in the first year. And you will say that what results from
it is cube root. [...].

Somebody stays in a warehouse for 4 years. And in the first year and the fourth
together he got 90 gold fiorini. And in the second year and the third together he got
60 gold fiorini. I want to know what resulted for him, each one by itself. And let them

15).
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be in proportion and let the first be such part of the second as the second of the third,
and as the third of the fourth. And let it always stay in your mind this, that to
multiply the first year in the fourth makes as much as the second year in the third.
And it makes as much to divide the fourth year in the second as the third year in
the first. [...]. And 40 fiorini he got the third year. And it is done, and you see well
clearly that each of these numbers are in proportion. And such part is the first of
the second as the second of the third, and as the third of the fourth: each is the half.
[...].

Somebody stays in a warehouse for 4 years. And in the first year and the third
together he got gold fiorini 20. And in the second and the fourth year he got gold
fiorini 30. I want to know what was due to him the first year and the second and
the third and the fourth. And that the first be such part of the second as the third
is of the fourth. [...] .

As we see, the geometric proportion is taken for granted, as belonging tacitly
to the dress. As soon as the procedure is explained, however, the necessary
fundaments of proportion theory turn up, and in the third and fourth problem
we even find the word (in the shape propositione[32]) together with the alternative
formulation “to be such a part as”.

The third problem goes beyond what can be found in the Elements, though
it is based on knowledge which had been current in Arabic scientific mathematics
since al-Karajı̄. If a, b, c and d designate the respective yearly wages, the first
step of the solution is to state that

a d = b c =
(b c)3

3(b c) (a d )
This certainly goes beyond Jacopo’s mathematical competence. He cannot have
invented the problems. On his own he may have had the idea to introduce the
term propositione – though no scholar he was not quite without scholarly preten-
sions, his five-line colophon is in Latin. On the whole, however, the appearances
of the word in the algebra and in this quasi-algebraic chapter are more likely
to have been borrowed together with the rest of that text: it turns up nowhere
else in the treatise, and seems well integrated when appearing in the fondaco-
problems. His pretensions may then have caused him not to eliminate it.[33]

Evidently, the references to proportions in the Vatican manuscript have no

32 It should be noted that something which is proposed is spoken of as a proponinento by
Jacopo [ed. Høyrup 2007a: 250, 425].

33 Given the spelling propositione and the general conscientious precision of the manuscript
we possess the term is not likely to have been inserted in the text during the transmission
process.
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counterparts in the Florence and Milan manuscripts, from which the very
chapters where they should turn up are missing. None the less, the word appears
a single time [ed. Høyrup 2007a: 420], namely in the counterfactual calculation
“if 5 times 5 made 26, say me how much 7 times 7 would make in that same
proportion [in quela medesima proportione]” – that is, in the sense of “rate”; the
result is then stated with the words diremo che 7 via 7 facia 50 et 24/25 a quela
medesima rasone, “we shall say that 7 times 7 makes 50 and 24/25 at this same rate”.
Further on, rasone is used in a counterfactual calculation which follows imme-
diately, and in nine places where rates are spoken of. In the Vatican manuscript,
the first counterfactual question [ed. Høyrup 2007a: 238] has ragione where the
Milan and Florence manuscripts have proportione. This single appearance of the
word is probably a secondary modification reflecting a general tendency in the
later fourteenth century to absorb bits of the terminology of university
mathematics.

A number of abbacus texts written between 1307 and 1345 (all mentioned
above) contain a smaller or larger amount of algebra:
– Paolo Gherardi’s Libro di ragioni from 1328;
– The Libro de molte ragioni d’abaco from c. 1330;
– The Trattato di tutta l’arte dell’abacho from c. 1334;
Gherardi has a systematic presentation of algebraic cases – all cases until the
third degree treated by Jacopo, four more cases of the third degree which cannot
be reduced to quadratic equations (the solutions for which are therefore false,
produced by superficial imitation of second-degree solutions), and the case “cubes
equal to square root of number”. Ten of these are illustrated by problems of the
type asking for numbers in given ratio (invariably, when more than two numbers
are involved, as n:m and as m:p, etc., avoiding thus the need for composing
ratios); but in seven of them the formulation of the matter is “such part ... as
m is of n”. Only three [ed. Arrighi 1987b: 102, 106, 107] ask for “3 numbers that
are in position [positione] together, that is, the first of the second as 2 of 3, and
the second of the third, as 3 of 4”.[34]

34 But still three, while one example which is shared with Jacopo has the alternative
formulation. This decreases the likelihood that Jacopo should be the one who introduced
the proportion formulation (and the respective propositione/positione suggests perhaps
shared dependency on a source or environment where proportione was reinterpreted as
one or the other, either because numbers may be positioned in ratio or posited (namely,
as 2 things and 3 things if their ratio is 2:3), or because a specific ratio is proposed (but
cf. note 32).
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In the Libro de molte ragioni d’abaco and the Trattato di tutta l’arte dell’abacho,
problems with the “such part” formulation are found, but never the “proportion”
formulation.

In 1344, a certain Dardi of Pisa wrote the first treatise in the abbacus tradition
dedicated exclusively to algebra.[35] This work contains several hundred
problems, a large part of which deal with two or three numbers in given ratio.
Mostly these use the formula “such part … as m is of n”. In one case, however
([ed. Franci 2001: 89], similarly the manuscripts; counted as no. 10 by Dardi),
a two-number problem asks for “two proportional numbers in continued
proportion [proportionali in continua proportione] so that the first is such a part
of the second as 4 is of 5”. More meaningful is the question ([Franci 2001: 139],
similarly the manuscripts; Dardi’s no. 64) for “three numbers in continued
proportion [in continua proportione], that is, that the first is of the second as the
second of the third, and be such a proportion as 2 of 3” – but we notice that the
final words of the question uses “proportion” as a synonym for “part”. In three
later problems of the same type (Dardi’s nos. 67, 69 and 75), the Arizona
manuscript replaces the information about the continued proportion by the phrase
“that one is such a part of the other as ...”, apparently meant as “each … of the
following one”. The Vatican and Siena manuscripts have the same construction
in no. 75, but state “that the first is such a part of the second as ...” in no. 69,
saying nothing about the ratio between the second and the third. So does the
Vatican manuscript in no. 67, whereas the Siena manuscript adds “and that they
are in continued proportion”. It seems likely that the Arizona manuscript
corresponds to the original on this point, and that Dardi has thus explained the
notion of continued proportion in no. 64 (after having used it wrongly in no.
10), and afterwards just uses “one ...the other” as a way to indicate a repeated
ratio; Siena and Vatican at first overlook this finesse, but in no. 69 Siena sees
that information is then missing; in no. 75, both copyists have discovered.

Dardi, like Jacopo, has scholarly pretensions (and much higher mathematical
competence and ambitions, but that is immaterial in this connection): his preface
explains [ed. Franci 2001: 37] the four Aristotelian causes (rispetti) of his book,
in the best scholastic manner. He may therefore have adopted a term from Latin
university mathematics, without having much use for it (and, as we see in no.
10 and no. 64, without being quite sure of its use). His treatise is thus yet another

35 I have consulted Vatican, Chigi M.VIII.170 from c. 1390; [Franci 2001], an edition of
Siena, I.VII.17 (c. 1470); and Van Egmond’s personal transcription of the Arizona
manuscript written in 1429 (for access to which I am grateful).
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piece of evidence that proportione and proportionalità did not yet belong to the
standard terminology of the abbacus ambience.

Before c. 1340, a master Biagio known later as il Vecchio, “the Old”, wrote
an abbacus treatise which has been lost, but from which a collection of algebraic
problems was copied by Benedetto da Firenze for his encyclopedia (see note 9).
This collection confirms the picture, and adds some shades (with the proviso
that we cannot be quite sure Benedetto did not change the precise wording of
his model).

Firstly, we find again a large number of problems asking for numbers or
quantities in given ratio – 19 in all.[36] Only the last of them [ed. Pieraccini 1983:
126] asks for “2 numbers, or 2 quantities, which are in proportion as 5 to 7, that
is, that the first quantity is to the second as 5 to 7”; all the others ask either for
quantities (10 of them) or numbers (8 of them), and all use the formula “such
part ... as m is of n”.[37] We may speculate that the first 18 occurrences are
borrowed material, and the last one Biagio’s own construction, in which he shows
the applicability of the proportion concepts to this problem type (and points to
the equivalence of number- and quantity-formulations).

This is not the first time Biagio refers to “proportions”. In a problem about
a loan with compound interest over three years [ed. Pieraccini 1983: 67–69] he
introduces the notion of a continued proportion and uses the product rule to
establish the equation. Later on, in Jacopo’s fourth fondaco problem (still told about
the manager of a fondaco, with the data 40 and 60) [ed. Pieraccini 1983: 89–91],
he first shows that the product rule ad = bc gives a tautology, and then that the
rule ac = b2 yields an equation.[38] In an indeterminate problem about three
monies with unknown metal content [ed. Pieraccini 1983: 109f ] he postulates
that the quantities are in continued proportion with ratio 2:1, and thereby gets
a single determinate equation. Finally, in a more intricate problem [ed. Pieraccini
1983: 119–121] about composite gain – given difference between the interest rates

36 One of them [ed. Pieraccini 1983: 18f ] asks for three number in ratios 2:3 and 2:5, but
this does not lead to a presentation or investigation of the composition of ratios: Biagio
simply posits the numbers to be 2 things, 3 things, and 7½ things without explanation.
All others, as usually, have the ratios nicely fitting together.

37 The homonymy should not mislead us into believing that the “quantities” are continuous
magnitudes – lengths, areas, volumes, durations, weights – as they would have been in
contemporary Aristotelian university discourse. None of the authors I treat before Pacioli
uses the term in this way.

38 Jacopo, in contrast, had only provided a rule for determining the solution.
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and given ratio between the total interests of the first and the second year – this
ratio is at first defined as being “as 2 to 3”, but when it is used later we are told
that “the proportion of the interest of the first year and that of the second is as
2 to 3”. The last instance (perhaps also the second-last) sounds as if the idiom
of proportions fell natural for Biagio; the formulations of the final problem about
“2 numbers, or 2 quantities” may then indicate that he was aware that his public
was less familiar with it. However that may be, 7 occurrences of the words
proportione and proportionalità in a text of some 30000 words must be characterized
as a modest intrusion in Biagio’s language.

A final algebraic treatise, written after our limit 1345 but throwing light on
the early epoch, is a Trattato dell’alcibra amuchabile from c. 1365 [ed. Simi 1994].
It consists of three parts
– rules for calculation with signs, square roots and binomials consisting of

number and square root;
– a list of algebraic “cases”, provided in part with examples;
– and a collection of problems.
Only the second of these concerns us at present [cf. Høyrup 2007a: 160, 163].
It contains all of Jacopo’s cases including his examples almost verbatim – and
where Jacopo has no example, the Trattato gives none. This segment of the second
part almost certainly descends from Jacopo’s text, and it is therefore no wonder
that the examples with numbers in given ratio speak of “proportion”, just like
Jacopo. More interesting is that it also presents cases and examples which are
in Gherardi’s algebra but not in Jacopo’s, moreover in a version which appears
to antedate Gherardi’s – seven examples in total, all constructed around numbers
in given ratio(s). Four of these ask for numbers in proporzione, only three use
the “such part” formulation. Of Gherardi’s counterparts, 6 are of the latter type,
only one asks for numbers in positione; this latter question corresponds to a
“proportion”-formulation in the Trattato. It thus looks (but the statistics is not
sufficient to allow any certainty) that Gherardi had a tendency to use “such part”
even when his source had (we may presume) propositione or positione; this
augments the likelihood that Jacopo did not introduce the “proportion” language
on his own but took it over from his source.
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5. Antonio de’ Mazzinghi

Antonio de’ Mazzinghi (probably c. 1355 to 1385/86, see [Ulivi 1996: 109–115])
is praised highly for his algebraic competence in three encyclopedias from the
mid-fifteenth-century,[39] which are also our only sources for his mathematics.
The largest extract is his Fioretti [ed. Arrighi 1967a].

This is an outstanding text, which fully confirms the praises heaped upon
him. That is not what concerns us here, but it is good to know as a background
to what follows.

The Fioretti do not contain a single problem of the kind asking for numbers
or quantities in given ratio. We may guess that Antonio found it below his
mathematical dignity to stoop to using such cheap tricks; alternatively, he may
not have found them fitting for a collection of “blooms”.

Two problems have a formal similarity with the cheap type [ed. Arrighi
1967a: 46–51], asking indeed for numbers in ratio – but this ratio is not given
numerically but as that between two other numbers fulfilling algebraic conditions.
Written in letter symbols, the respective structures are

ab = (a–b)2 , : , 19 = c+d , c d = c2+d2c

d

a

b
and

a2+b2 = 60 , : , c d = 10 , c2+d2 = abc

d

a

b
The first is the one where Antonio famously has to invent a trick that enables
him to calculate with two unknowns.[40]

In problems about compound interest, Antonio points out with greater clarity
than any predecessor [ed. Arrighi 1967a: 36] that interest a chapo d’anno, “[making

39 Benedetto’s Praticha d’arismetricha, see above, note 9; Vatican, Ottobon. lat. 3307; and
Florence, Bibl. Naz., Palatino 573.

40 If for example 10 has to be divided into two parts, it was often found convenient to
take these as 5–thing and 5+thing. As we have seen, an unspecified number is regularly
also spoken of as a “quantity”. Antonio combines the two ideas, taking a to be “a thing
minus a quantity”, b to be “a thing plus a quantity”. The intellectual jump involved in this
seems to have gone almost unnoticed at the time and to have inspired little imitation,
maybe because the use of habitual words made Antonio’s readers (including Benedetto)
overlook that something (potentially) important had occurred – exactly as had happened
to Fibonacci’s similar trick (using res and causa for the two unknowns) in the Flos [ed.
Boncompagni 1862: 236].

Benedetto does use quantity as an algebraic unknown in his Tractato d’abbaco [ed.
Arrighi 1974: 153, 168, 181] (Arrighi ascribes the treatise to Pier Maria Calandri), namely
in solutions by means of modo retto/repto/recto, first-degree algebra designated regula recta
by Fibonacci, who calls the unknown res [ed. Boncompagni 1857: 191 and passim].
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up accounts] at the end of year” (that is, compound interest) “proceeds in
continued proportionality”, not only with correct calculations up to five years
grounded explicitly in the product rules (thus no longer the rule of three) but
also with the finding of equivalent rates of interest if accounts are made up every
8 or every 9 months. Belonging to the same field of theoretical interest is the
problem [ed. Arrighi 1967a: 69] of finding a five-term continued proportion
beginning with 16 and ending with 81.

A large number of problems ask for three or four numbers in continued
proportion which fulfil other algebraic conditions of the first or the second
degree. In symbolic abbreviation and with the numeration of Arrighi’s edition
(which is probably taken from the manuscript) they are:
#1 19 = a+b+c , a (b+c)+b (c+a)+c (a+b) = 228
#2 a (b+c)+b (c+a)+c (a+b) = 888 , a2+b2+c2 = 481
#3 9 1/2 = a+b+c , a2+b2+c2 = 33 1/4

#4 19 = a+b+c , 3a+4b+5c = 81
#5 a+c = 21 , b+d = 39
#8 a b c d = 2916 , a+b = 17 1/2

#23 a+b+c = 14 , a b c = 64
#25 a2+b2+c2 = 84 , 20/a + 20/b + 20/c = 125
#26 10 = a+b+c , 3a+4b = 5c
#29[41] c–a = 50 , d–b = 80

Repeatedly, as can be expected, the solutions make use of the product rules.
A couple of times, however, Antonio appeals to more advanced properties of
proportions or continued proportions. In #25, he finds it “rather clear and
obvious” (è cosa assai chiara e manifesta) that if a, b, and c are in continued
proportion, then the same can be said about 20/a , 20/b and 20/c [ed. Arrighi 1967a:
54]. In #29, the disjuncta mode is described and used [ed. Arrighi 1967a: 63].

The genre as such was not new, neither in general nor to abbacus
mathematics. Abū Kāmil [ed., trans. Levey 1966: 186; Sesiano 1993: 405; Chalhoub
2004: 148] has a problem with the structure

10 = a+b+c , a2+b2 = c2 ,
and there are two examples in the third part of the above-mentioned Trattato

41 Actually, #29 starts with a problem 10 = a+b, a2+b2+√a+√b = 86, and a position a = 5–t,
b = 5+t. When this has been reduced to

= 36–2t25–t 5 t
Antonio comments “I do not like it, and therefore I do not complete it” – and goes on
with the problem about three numbers in continued proportion.
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dell’alcibra amuchabile [ed. Simi 1994: 39] – in symbolic abbreviation
10 = a+b+c , a b = 4 , b c = 8

and
10 = a+b+c , a2+b2+c2 = 40

The former is overdetermined and impossible, and the solution which is proposed
is wrong. The latter, we observe, has the structure of Antonio’s #3. Antonio’s
#5, on its part, has the same structure as Jacopo’s fourth fondaco problem, the
one which was also solved by Biagio. Antonio solves it in the same algebraic
way as Biagio, omitting however Biagio’s pedagogical blind alley. I know of no
evidence allowing to decide whether the number genre as found in the Trattato
dell’alcibra amuchabile has the same ultimate origin as the fondaco genre, or Antonio
fused the two.

What seems fairly certain is that the present type of number problems has
no strong links to Fibonacci’s division of 10 into four unequal parts in proportion
[ed. Boncompagni 1857: 170]; Antonio certainly knew and appreciated
Fibonacci,[42] but nothing suggests the same for the compiler of the Trattato
dell’alcibra amuchabile or his source. Moreover, Fibonacci speaks of any, not a
continued proportion (and uses the example : ); afterwards he shows how3

7

6

14
to construct a sequence of any length of numbers in continued proportion, but
now without constraint on their sum.

Towards the end of the Fioretti comes a section “Mirabile dictum” [ed. Arrighi
1967a: 81–87], showing how to divide a number (say, N[43]) into parts (say, a,
b, c, d and e) in such a way that

N/a + N/b + N/c + N/d + N/e = N.
This section is analyzed in [Bartolozzi & Franci 1990: 10f ]. Since it was certainly
due to Antonio himself and had little further impact in the abbacus tradition
which I know of (apart from being copied by an obviously impressed Benedetto
and being used by Pacioli, see below), I shall not discuss it any further.

Antonio was familiar with Book 15, Part 1 of the Liber abbaci – Palatino 573
from the late 1450s quotes his gran trattato for presupposing “that the proportions
from the first part of the 15th chapter [of the Liber abbaci] be clear to you” [Arrighi
2004/1967: 190]. But this familiarity left no trace in the Fioretti. Whether Antonio
thought of the connection to the Boethian means cannot be decided with

42 Quotation in Ottobon. lat. 3307, ed. [Arrighi 2004/1968: 221].

43 Antonio builds his solution up around the core (√6–√2,√6+√2), but then states that any
couple of binomials √b±√a serves if b:a is a multiple. Unfortunately, as pointed out by
Bartolozzi & Franci [1990: 10 n. 16], Antonio’s condition is insufficient.
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certainty, but since those who read him have not notice it, it is unlikely.

6. Late fourteenth century otherwise

Like Fibonacci, Antonio knew theoretical mathematics well enough to adopt
it creatively into his abbacus heritage. He was exceptional, and in consequence
an exception; to what extent would his near-contemporaries make use of the
notion of “proportion”, in any of its possible senses? Two examples will have
to suffice.

The first is Giovanni de’ Danti d’Arezzo’s Tractato de algorisimo [ed. Arrighi
1987a] from 1370. This is a decent but not sophisticated abbacus book, containing
no systematic presentation of algebra but a short passage about the arithmetic
of square roots and a few algebraic problems [ed. Arrighi 1987a: 52–57, 65–69].
Giovanni’s remoteness from any scholarly mathematical environment is illustrated
by his explanation [ed. Arrighi 1987a: 53] of the existence of surds: God does
not want that anything but himself be perfect.

The word “proportion” (in any of the spellings we have encountered) is as
absent from this treatise as from the non-Fibonacci parts of the Livero, from the
Liber habaci, and from the non-algebraic parts of Jacopo’s Tractatus and Gherardi’s
Libro di ragioni. Propositione is found often, but it means “a question which is
proposed”.

There are seven problems asking for numbers in given ratio; all three use
the “such part” formulation. For once, the same formulation is also found in
a non-algebraic business problem [ed. Arrighi 1987a: 34]: A loan, on which the
interest in the first year is such a part of that in the second year as 3 is of 4. Since
nothing similar is found in treatises from the first half of the century, this type
is likely to be an offset from the analogous pure-number problems.

The second is a Trattato d’algibra, constituting the last fifth of a larger abbacus
treatise (Florence, Bibl. Naz. Centr., fond. prin. II,V.152), according to internal
evidence written in the 1390s – thus after Antonio’s death, but apparently in
the tradition after Biagio (or his source). Only the algebra has been published,
namely in [Franci & Pancanti 1988]. My discussion is restricted to this published
part, I have not seen the manuscript.

In this algebra, the word proporzione turns up in two different contexts – in
the theoretical introduction, and in the problems.

The theoretical introduction [ed. Franci & Pancanti 1988: 3–6] is an investiga-
tion of the sequence of algebraic powers. This introduction is both interesting
and puzzling – see [Høyrup 2008: 30–32]. What concerns us here, however, is
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merely that the sequence of powers is seen to be in continued proportion, which
is used to show that censo times censo is the same as thing times cube, and censo
times cube as much as thing times censo di censo.[44]

Proportions also turn up in four problem types: In problems about compound
interest over three or four years (very similar to what Biagio does); in the fondaco
problem also solved by Biagio;[45] in two problems about the division of ten
in three parts in continued proportion – one analogous to Antonio’s #3 and the
second problem cited from the Trattato dell’alcibra amuchabile,

10 = a+b+c , a2+b2+c2 = 70 ,
and one similar to Antonio’s #4,

10 = a+b+c , 3a+4b+5c = 35 ;
and finally in a problem about three quantities of money (in the sense of coinable
metal) in continued proportion, structurally identical with the problem shared
with Antonio and the Trattato dell’alcibra amuchabile. There are also numerous
problems about two, three or four numbers in given ratio, all in “such part”
formulation. In an inverse variant of the well-digging problem from Libro de molte
ragioni d’abaco nothing is said about the toil being in correspondence (aproportio-
nata or otherwise) with the depth, we only get the solution by means of triangular
numbers.

This treatise is mathematically very sophisticated. None the less, as we see,
the use of proportion theory (or the very recourse to the terminology) expands
only slightly beyond what was known at least since Biagio: proportions fully
displace the rule of three in problems about compound interest, and they enter
the explanation of the sequence of algebraic powers.

44 According to Palatino 573 [Arrighi 2004/1967: 191], Antonio appears to have made the
same observation in his gran trattato.

45 The solution of this fondaco problem [Franci & Pancanti 1988: 80–82] runs almost exactly
as Biagio’s, but there is one telling difference. Biagio takes the wage of the first year to
be two things, whereas the present author chooses 2 censi. He does not know, however,
that this word translates Arabic māl, not only (namely in algebra) the square of the thing
but also an amount of money (a capital, a dowry, etc.). In the end he therefore feels
obliged to find the thing from the censo – only to square it again. This implies that the
(direct or indirect) source cannot be Biagio’s text; it must be traced to an ambience where
the original meaning of the censo/māl was still alive.
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7. The mid-fifteenth-century “abbacus encyclopediae”

Around 1460, three extensive works of encyclopedic character were produced
in the Florentine abbacus environment, already listed together in note 39:
– Benedetto da Firenze’s Praticha d’arismetricha (existing in many copies, see

[Van Egmond 1980: 356]), described in [Arrighi 2004/1965];
– Palatino 573, described in [Arrighi 2004/1967];
– Ottobon. lat. 3307, described in [Arrighi 2004/1968].
All of them contain material which was foreign to the abbacus tradition, and
extensive extracts from the writings of (mostly) named abbacus predecessors (quite
unusual in the abbacus environment). They are indeed our only source for
Biagio’s and Antonio’s mathematics, but also contain long translated extracts
from the Liber abbaci. They may possibly have had a model in Antonio’s lost gran
trattato (see above).

Benedetto’s work is divided into sixteen books. Three of these have to do
specifically with proportions, and build for this on “foreign” material. Book II
about “the nature and properties of numbers” (la natura e propietà de’ numeri)
is a presentation of speculative arithmetic in the Boethian tradition. It also offers
an exposition and explanation of the way ratios were labelled in this tradition
[ed. Arrighi 1967b: 324f ]: multiple, submultiple, superparticular, superpartiens,
sesquialtera, sesquitertia, etc. But it does not use the word proportione (nor ragione)
but speaks of “a number which is referred to another number” (numero che è
riferito ad altro numero). Book V is stated to deal with “the nature of numbers
and proportional quantities” (la nature de’ numeri e quantità proportionali) – see
[Bartolozzi & Franci 1990: 12–14]. Its first part builds on the Campanus version
of Elements V–IX and on Campanus’s De proportione et proportionalitate on the
composition of ratios; the second part concerns metrological conversions. The
first part of Book XI presents Elements II (including the division in extreme and
mean ratio); the second part is a translation of Book XV, Part I of the Liber abbaci.

How much does this general mathematical erudition influence what Benedetto
did within abbacus mathematics? We may look at his own algebra, contained
in Book XIII.

Firstly, it is said more clearly [ed. Salomone 1982: 20] than in the above-
mentioned Florence manuscript, Bibl. Naz. Centr., fond. prin. II,V.152, that the
algebraic powers (termini dell’algebra) are in geometric proportion; on the other
hand, Benedetto does not use this observation for anything. The associative law
for multiplication may have been too obvious for him, he sees no need to do
so; alternatively, this should be said about Antonio, whom Benedetto seems to
follow, cf. note 44.
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Secondly, the word proportione turns up once [ed. Salomone 1982: 40] inside
one of the many problems about numbers given in ratio, which however are
all defined in terms of “such part”.

Palatino 573 was written in the years preceding 1460 by a former student
of one Domenico d’Agostino vaiaio (“the tanner” or “the furrier” – whether this
profession was indeed his or that of an ancestor is not to be decided). Its author
says that he uses Benedetto’s homonymous treatise (which must hence be earlier)
as a model, adding and removing matters as needed [ed. Arrighi 2004/1967: 168].
It falls in eleven parts, subdivided in chapters. I shall discuss the relevant aspects
on the basis of the extracts in [Arrighi 2004/1967: 168–194] (introductions to parts
and chapters) and the description and quotations in [Bartolozzi & Franci 1988:
14–16].

Chapter II.8 [Arrighi 2004/1967: 176; Bartolozzi & Franci 1990: 15], about
“the way to express as part, and, first, the definition”, starts by quoting
Boethius’s, Euclid’s and Jordanus’s definitions of a ratio (proportione) as a relation
between two numbers or quantities, and goes on with the traditional names
(doppia, sexquialtera, etc.). This is not unproblematic, according to the definition
a ratio is not a (possibly broken) number, as is the “part” he wishes to express.
The author glosses over the difficulty by regarding it merely as a questions of
language (thus reminiscent of certain discussions within contemporary
historiography of mathematics): “we in the schools do not use such terms
[vocaboli] but say instead [...] that 8 is 2/3 of 12 and 12 is 3/2 of 8”. The author also
points to the necessity that the two magnitudes in a ratio be of the same kind,
without noticing that this should create difficulties when, later, the concept is
used to explain the rule of three. This is symptomatic of the whole project (as
shared with Benedetto): abbacus mathematics is put into the framework of
scholarly (in Fibonacci’s word, “magisterial”) mathematics, but the author
reinterprets concepts as needed, and does not care much about the contradictions
that may arise.

Part III [Arrighi 2004/1967: 176–178; Bartolozzi & Franci 1990: 15f ] is similar
in its aim. The introduction announces that its first chapter shall deal with “the
4 proportional quantities or numbers, in the vernacular called rule of three
things”. The chapter itself starts by defining the proportionalità as the equality
of two ratios and explaining that such proportionalità may be continued or not
continued, going on to present the product rule and using it to determine one
term in a continued proportion from the two others. Chapter III.2 applies the
rule to commercial examples, and ends by saying that
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it is true that many who want to shows this rule have said that one multiplies the
quantity that one wants to know by the one which is not similar, and divides in the
other quantity. And they actually say the truth. Because when you multiply a quantity
by another one which is not similar, it is as multiplying the first by the fourth or
the second by the third.

Nothing, as we see, is said about the impossibility to speak properly of ratios
between dissimilar quantities; the author obviously thinks of nothing but the
measuring numbers in the already established units of the problem formulation.

Chapter III.3 translates the second part of Chapter XII of the Liber abbaci
(discussed above).

Chapter V.3 [Arrighi 2004/1967: 181] introduces problems about numbers
in given ratio by giving once more the names of ratios. This time, however, it
identifies ratios with numbers in abbacus manner (“5 to 16 are 5/16 because from
5 divided by 16 comes 5/16 ”).

Part IX [Arrighi 2004/1967: 190f ; Bartolozzi & Franci 1990: 16] translates
Chapter XV, Part 1 of the Liber abbaci. The introduction refers to objections against
the relevance of this topic for algebra (“many strain themselves to prove ...”).
In defense of this relevance it cites Paolo dell’Abbaco’s (otherwise unknown)
trattato delle quantità chontinue, Antonio’s gran trattato, and the oral injunctions
of his own teacher, the vaiaio. No argument beyond those depending on authority
is offered (nor could it probably be). The link to Boethius’s presentation of the
ten means once more goes unnoticed.

Part X [Arrighi 2004/1967: 191–194] is dedicated to algebra. The introduction
states that in order to restore the almost lost Maumetto arabicho (that is, al-
Khwārizmı̄), the presentation will be based on him.[46] Chapter 1 starts by
quoting Fibonacci for the explanation that algebra almuchabale means “restoration
and opposition, because the parts are opposed to each other, as you will see in
the examples” – a misquotation, as we know, caused perhaps by al-Khwārizmı̄’s
text, perhaps (and rather) by earlier abbacus writers.[47] It then goes on with
al-Khwārizmi’s text in Gherardo’s translation.

After this pious homage to tradition in Humanist style the author feels the
need to be modern, and starts by explaining the algebraic powers as a continued

46 Similarly, Benedetto [ed. Salomone 1982: 20] presents not Fibonacci’s but al-Khwārizmı̄’s
geometric proofs “because more ancient”.

47 A third possibility is Guglielmo de Lunis’s lost translation of (probably a revised version
of) al-Khwārizmı̄’s algebra, whose introduction (quoted for instance by Benedetto [ed. Salo-
mone 1982: 1f ]) has this interpretation of opposition; cf. also above, text before note 19.
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proportion, following (as he says) Antonio’s trattato (probably the gran trattato
of which he has already spoken).

A large number of problems follow, in part taken from named predecessors.

Ottobon. lat. 3307 was written slightly later by another former student of
the vaiaio. It is divided similarly to Palatino 573. Beyond the chapter headings
as quoted in [Arrighi 2004/1968] I have a photocopy from a microfilm of the
final algebraic part, which already allows me to say (I shall omit the documenta-
tion) that this third encyclopedia is of a markedly lower quality than the other
two, but not to derive much of relevance for the topic of proportions.

Maybe, however, there is not much of relevance at all: the algebraic powers
(for which this author has no general term like Benedetto’s termini dell’algebra)
are not explained to be in continued proportion; further, the 33 folios of problems
contain 2 questions (fols 336r, 342v) about 4 respectively 3 numbers in continued
proportion, and none about numbers in given ratio.

We should be aware that these three encyclopediae all come from a specific
strand in the abbacus tradition, centred upon a specific group of Florentine
abbacus schools and tracing its origins to Antonio, Paolo dell’Abbaco and Biagio.
Its interest in precursors – outside those belonging to the strand itself al-
Khwārizmı̄ and Fibonacci – was not shared generally. All the more telling is it
that their copying of Fibonacci’s sections on proportions did not really influence
what they did themselves in abbacus style, apart from the formulation of the
rule of three as a rule of four quantities in proportion. The interests and
orientation of abbacus mathematics proper, we may perhaps conclude, left no
space for that.

8. Luca Pacioli

Even Luca Pacioli’s Summa de Arithmetica Geometria Proportioni et Proportionalita
[1494; 1523[48]], divided into nine distinctiones,[49] might be characterized as
a kind of encyclopedia, not belonging to the strand discussed in the previous
section. A symptom of this different affiliation is that Pacioli feels no need to
give specific references for his borrowings – Pacioli instead has a general

48 In general, the second edition is faithful to the first word for word and line for line.
There are a few corrections (and different misprints), but the main difference is that a
number of rare abbreviations are expanded in the second edition.

49 I consider only the first, arithmetical part (1–224) and disregard the geometry (76 fols,
8 distinctiones).
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acknowledgment in the initial unfoliated Sommario that most of his volume has
been taken from Euclid, Boethius, Fibonacci, Jordanus, Blasius of Parma,
Sacrobosco and Prosdocimo de’ Beldomandi. Actually, most of it probably comes
from less prestigious, anonymous abbacus sources – whatever the citation strategy
in the encyclopedias, it was always a strategy.

Pacioli’s title might make us predict that ratios and proportions play a greater
role and are more integrated than in the preceding manuscript sources. The list
of his confessed sources could make us expect the same. Actually, “proportions
and proportionalities” are mainly dealt with in the Sixth Distinction (at great
length, fols 67v–98v), but they do serve elsewhere.

The topic is taken up for the first time in connection with the rule of
three.[50] Initially, this rule is presented in terms of the similar and dissimilar,
and in a different but equally “a-theoretical” way (fol. 57r).[51] After some
examples, however, comes an explanation (fol. 57v) unde regula predicta procedat,
“where the said rule comes from”, referring to Elements V. Actually, this
explanation goes beyond what is needed for the purpose, as Pacioli points out,
namely because he wants the reader to “better understand the fundaments” of
the rule given. He starts by stating that the force of the rule of three “proceeds
from the mutual proportionality of quantities, be they continuous or be they
discrete, that is, be they numbers or be they measures, and be the proportional-
ities continued or not continued [incontinua]”, with three respectively four terms.
After pointing out that “in all the calculations of the trading and business world,
4 numbers always occur, of which 3 are always known and the fourth unknown”
and repeating the need for three respectively four terms Pacioli makes a more
interesting point: that in continued proportions all terms must be of the same
nature because (except the extremes) all stand both as antecedent and as
consequent, while the non-continued proportions require only pairwise identical
nature. His explanation of these natures comes from the Aristotelian tradition –
they are numbers, lines, surfaces and bodies. He then goes on with the product
rule, with explanation of a schematic representation, and with examples of what
to do if either of the four terms is unknown.

50 Continued proportions are mentioned but not really treated on fol. 37v, during the
treatment of progressions.

51 The second edition [1523] has this folio number misprinted as 64.
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9. The Sixth Distinction

The Sixth Distinction is described by Bartolozzi & Franci [1990: 17–27], for
which reason I shall elaborate on such things only as go beyond their work. It
is subdivided into six tractati, the first of which (fols 67v–72v) deals with
“proportions”, argued initially to be necessary not only by means of a list of
glorious names – Euclid, the Stoics, the Platonists, the Peripatetics, Boethius,
Jordanus, etc. – but also with reference to the prestigious uses of the concept:
in Archimedes’ De mensura circuli,[52] in law, in medicine (namely in composite
drugs and the determination of diets), in mechanical artifices, in the painter’s
mixing of colours and in the canonical proportions of the human body,[53] in
rhetoric, in architecture, in carpentry, in music etc. Only afterwards (fol. 69r) come
the “definitions of the various proportions”, said to be preceded in Euclid by
the definition of parts “as we did in the definition of fractions” (namely fol. 48r).
A ratio can, with Plato and Boethius, be determined for any two magnitudes
of the same kind – but not, as “in a certain abuse of common speech”, between
the sharpness of a voice and that of a knife.

After this very general “definition” comes the subdivision into geometrical,
arithmetical, and harmonic proportion, the first of which is supposed at this point
to be applicable to continuous quantities only, the second to discrete as well as
continuous quantities,[54] the third to sound and song. As can also be seen from
the examples, Pacioli primarily links the three types to the disciplines from which
they have their name, even though he does explain later on that the arithmetical
proportion has to do with “excesses or differences” and says on fol. 75v that this
linking is what “certain blunt minds” (alcuni roçi) think. The fact that a harmonic
proportion has to involve three terms leads to a digression (provided one can
distinguish digressions from the rest in Pacioli’s almost Borgesian prose) about

52 It may be taken note of that Pacioli follows the abbacus tradition and not the
Archimedean treatise in the value of these ratios; abbacus geometry had always taken
the quotient between perimeter and diameter to be exactly 22/7 (not 22:7, since it was not
interested in ratios), and that between the areas and the circumscript square to be 11/14.
Pacioli’s reading of Archimedes’s treatise must (at best) have been superficial.

53 In this connection there is a laudatory reference to maestro Pietro de li Franceschi nostro
conterraneo del Borgo san Sepolchro and his De prospectiva pingendi.

54 Pacioli even gives an argument for this claim: discrete quantities can only enter in
rational ratios, continuous indifferently in rational and irrational ratios.

Everywhere else Pacioli evidently takes “geometric proportions”, that is, ratios,
between numbers. Interdum dormit Homerus – and lesser spirits too.
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the sloppy habit to say proportione where the precise word would be proportiona-
lità, and about the subdivision of such proportions into continued and discon-
tinued.[55]

The presumed observation that only geometrical proportions can be between
rational as well as irrational quantities (viz because arithmetic as a discipline
considers only rational magnitudes) leads to a discussion of commensurability
and incommensurability, with a reference to Elements X. Since Pacioli’s example
is the diagonal in a square with side 10, this is superfluous sophistication, and
in fact he goes on with an (unreferenced) borrowing from the scholastic theory
of ratios, namely when speaking of the ratio diameter:side as meççadoppia, “half
of double”, explaining (with reference to Elements VII–VIII) that this ratio
duplicated is the double ratio.

Follows a long presentation (fols 71r–72v) of the Boethian subdivisions of the
category of “rational proportions” – now obviously only geometrical, but that
goes unmentioned: equal, major, minor, multiplex, simple and multiplex
superparticular and superpartient, submultiplex, etc. In the end comes the
wonderful admission that “these terms which serve to denominate these many
kinds of proportions serve (for you, practitioner [a te pratico]) no other purpose
than speaking solemnly [proferire] about the species you have found”. Fol. 82r

presents the Boethian categories in a scheme.

The second treatise (fols 72v–76r) takes up proportionalità for good, defining
these (with Elements V) as similitude of ratios.[56] Once more we get the
geometrical, arithmetical and harmonic proportions, this time with numerical
examples for the former two,[57] the harmonic proportion being left explicitly
aside. Those still considered may be continued or discontinued; the need for
similarity of kind is repeated. For continued proportions of both remaining types,
the necessity of equal kind for all members is pointed out.

After a discussion of disproportionality (fol. 74r) – the first “proportion” being
either larger or smaller than the second – Pacioli deals with the six ways to come
to grips with proportions (de sex specibus sive modis arguendi proportionalitatum),

55 Pacioli’s term has changed since fol. 57v, now he uses discontinua instead on incontinua.

56 Bartolozzi & Franci [1990: 19] reproach Pacioli that this similitude is meaningless without
its definition via equimultiples, forgetting that this is not only absent from Pacioli’s Summa
but also from the Campanus Elements.

57 For geometric proportionality, the example is that 6 is to 3 as 4 to 2 – no problem with
numbers, cf. note 54 and the preceding text.
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Pacioli’s schematic presentation of the Boethian categories [1494: 82r].

- 37 -

jens
Stamp



repeating Campanus’s seven modes (see text before note 5) and coming down
to six by conflating e contrario with e conversa. Pacioli says afterwards (fol. 75v)
that he now deals with geometric proportions only, at which point he also asks
how much of it holds for arithmetical proportions. He shows the permutatim mode
to be valid, and then generalizes that it should hold for all – obviously without
calculating, since only the ex aequa mode is true.

The third treatise (fols 76r–80r) begins by explaining the denominations of ratios,
(not to be mixed up with the Boethian names), the number resulting from the
division of one term by the other, in agreement with the terminology of Jordanus
and Campanus in their treatises about proportions [ed. Busard 1971: 205, 213;
Busard 2005: 230]. After the dismissive remark about the utility of the Boethian
terminology in the first treatise (followed up here with references to phylosophi),
Pacioli thus chooses not do as Palatino 573, which identifies ratios with numbers
(or replaces them with numbers); what he does is equivalent, but in the dress
of established theory. The cost (which the loquacious Pacioli may not have seen
as a cost) is that what Palatino 573 does in a couple of lines now needs two dense
pages (fols 76r–77r) to be explained.

Procured with the denomination concept and in agreement with the
Campanus Elements VII [ed, Busard 2005: 230], Pacioli can return (fol. 77r–77v)
to the question of whether one ratio (among numbers, which he does not say)
is equal to, greater than or smaller than another one. He uses the occasion to
show how this can be done also for the Boethian names, translating them into
denominating numbers. He can also take up the composition of ratios (fols
77v–78r), “without comparison much more difficult” than the operations on
integers, fractions and roots, and (once more) necessary for instance for the
physician in his preparation of composite drugs. First he deals with continued
proportions (fol. 78r), where we see that Pacioli spontaneously tends to forget
the distinction between the ratio and its denomination: in order to find the ratio
between the first and the third term “it is sufficient to multiply [that between
the first and the second term] by itself, or its denomination by itself, and it will
make the denomination of the proportion between the first and the third”. The
same tendency underlies an explanatory observation on Campanus, “by
duplicated [ratio] Campanus understands (as true is) multiplied by itself” and
in the corresponding reference to the “multiplication of the double [ratio] by
itself” and in the general claim that “as multiplying a proportion by itself makes
a third proportion, thus to multiply the denomination of the said proportion
by itself will make the denomination of that third proportion”. The composition
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of unequal ratios comes briefly on fol. 79v. Now Pacioli is more faithful to his
theoretical base, speaks of “joining” the ratios 2:1, 6:2 and 24:6; the way is of
course to multiply the denominations 2, 3 and 4.

Next follows (fols 79v–80r) the problem, how to divide a given ratio in several
ratios from which it is composed.[58] It is correctly said, and demonstrated by
examples, that this can be done in many ways, by insertion of intermediate terms
ad libitum.[59] Finally (fol. 80r) Pacioli teaches how to determine one term of
a ratio if the denomination and the other term is known (or the other chosen
freely, if none is fixed).

The fourth treatise (fols 80r–81v) is an attempted Algorismus proportionum,
based once again on Witelo. It teaches how to add (that is, compose) and subtract
ratios and how to “multiply” and “divide” ratios. “Multiplication”, however,
is simply composition of several not necessarily equal ratios, and “division” is
the splitting of a ratio into several not necessarily equal ratios (the examples for
both use unequal ratios). Oresme’s work is clearly no inspiration.

The fifth treatise (fols 832v–84r) examines what happens to ratios and
arithmetical proportions if they are changed in various ways (examples in the
margin combine denominations and Boethian names).[60] Namely that
– a ratio grows if the major term is augmented (all ratios are supposed to have

the major term first) or the minor diminished;
– the same happens if to both terms something is added, to the major

something larger than itself, to the minor something smaller than itself;
– if between the extreme terms of a ratio one or several others are inserted,

then any ratio between any two intermediate terms or one extreme and an
intermediate term is smaller than the original ratio;

– the increase of both major terms or both minor terms or the decrease or
increase of all four terms in an arithmetical proportion by the same amount
conserves the proportionality;

58 Actually, the title asks for several equal ratios, but that does not correspond to what
actually follows. In [1523: 79v] the word “equal” has justly been removed – the publisher
Paganinus de Paganino may have had the assistance of somebody who understood the
matter, or based himself on a copy with corrections inserted. The latter seems plausible;
in the first line of fol. 81v, an erroneous 2/3 is not corrected into 1 2/3 .

59 Pacioli refers for this to Witelo’s Perspectiva, which he has already said on fol. 79r to
have consulted years ago.

60 [Bartolozzi & Franci 1990: 23] offers a translation into modern mathematical symbols.
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– a ratio does not change if both terms increase geometrice – further explained
as increase by the same part;

– a ratio diminishes if to both terms the same absolute (arithmetice) amount
is added, and it increases if the same absolute amount is subtracted from
both;

– if both terms of a ratio are increased geometrically, then their “arithmetical
proportion” (that is, their difference) increases;

– if both are diminished geometrically, then their “arithmetical proportion”
decreases;

– if both terms of a ratio are equal, increasing or decreasing both arithmetically
equally is the same as increasing them geometrically equally, and their ratio
is conserved.

Three corollaries follow which are related to the Peripatetic theory of motion.

According to its title, the sixth treatise (fols 84r–98v) deals with the “seven
marvels [mirabiles] from the proportions between two quantities”. Actually, it
begins with seven “marvels” involving two quantities and then considers others
which concern three or more. The first marvel is that

any two quantities you want in any proportion joined together, and then the sum
divided by each of the said quantities; the results then joined together, and then the
sum of the said results equally divided by the each of the said results; and again
these latter two results joined together, will always be the sum of the first two results,
and it never fails.

In symbols,[61]

(1)

a b
a

a b
b

a b
a

a b
a

a b
b

a b
b

a b
a

a b
b

I shall not go through all seven marvels (all are rendered in symbols in
[Bartolozzi & Franci 1990: 23–24][62]), but two are noteworthy – in symbols,

61 The fraction lines stand for the operation which Pacioli speaks of as “division”; denom
in (5) stands for “denomination of” the ensuing “proportion”.

62 There is a (mathematical as well as translational) error in the fourth, which should be

(4) and

a b
a

a b
b

a b
a

a b
b

a b
a

a b
b

a b
b

a b
a
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respectively,[63]

(3)
a b

a
×

a b
b

a b
a

a b
b

and

(5)
a b

a
a b

b
2 denom(a :b) denom(b :a)

The marvels seem to have to do to with the connection between problems about
the splitting of 10 into two parts a and b, where a/b + b/a respectively 10/a + 10/b is
given. Such problems are known since the beginning of the algebra tradition,[64]

and they had also been taken up by Jordanus in De numeris datis.[65] Even
though I do not remember having seen Pacioli’s rules in earlier sources, I
therefore suspect him to have borrowed at least some of them.

After the seven, as told, others marvels follow (fol. 85r–v) regarding three,
four or five numbers in continued proportions, first of which is that if three
numbers are in continued proportion, then division of their sum by the single
numbers produces another continued proportion. This was (for an arbitrary
dividend) what Antonio considered as “rather clear and obvious” (text after note
41) and in fact a theorem which is useful for certain of the problems about the
splitting of a number into a sum of numbers in continuous proportion. We may
take it for granted that Pacioli took it from the tradition – perhaps indeed directly
or indirectly from Antonio, since he goes on (fols 85v–86r) to apply the rules to
binomials in the way Antonio had done in his “Mirabile dictum” (above, note
43 and surrounding text). As pointed out by Bartolozzi & Franci [1990: 24], Pacioli
generalizes Antonio’s method further than the Antonio himself had done (asking
only for a rational ratio b:a) without controlling – and errs (or so it seems – the
text is not fully clear as to how many conditions Pacioli wants to fulfil).

Next (fols 86v–87v) come a number of rules about three, four or more numbers
in continued or (occasionally) non-continued proportion. Most, as Pacioli states,

The authors have overlooked that the equality between the first and second results are
said to be econverso. As Pacioli points out, the first marvel follows from this, as do the
second versions of (3) and (5), not given by Bartolozzi & Franci, in which the right-hand
sides of (4) are replaced by the left-hand sides.

63 In both cases Pacioli also points out that the rules hold for the “second results” as well.

64 See [Rosen 1831: 44–46; Rashed 2007: 167–165] (al-Khwārizmı̄), [Levey 1966: 94–102,
cf. 132–140; Sesiano 1993: 365–369, cf. 382–388; Chalhoub 2004: 58–65, 103–109] (Abū
Kāmil), and [Woepcke 1853: 91f ] (al-Karajı̄). All three give general rules for the behaviour
of the quotients, e.g., a/b

b/a = 1 and ( a/b + b/a ) ab = a2+b2.

65 I.20 and I.21α, [ed. Hughes 1981: 64].
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follow from Elements VI.15–16 and VII.20 (our VI.16–17 and VII.19 – the product
rule for three or four segments or numbers in proportion/continued proportion):
how, if two (or, an overdetermined case, three) neighbouring quantities in a
continued proportion are known, to find the remaining one(s).

Slightly more intricate are the cases where the first and the last of four or
five quantities in continued proportion are known. In the case of four quantities,
this coincides mathematically with Jacopo’s second fondaco problem, but whereas
Jacopo merely prescribes the extraction of the cube root of the ratio between the
fourth and the first quantity without explaining why, Pacioli uses algebra,
without which he finds it difficult to solve the problem. In the case of five
quantities, the middle quantity is found first from the product rule.[66]

Between these two cases, Pacioli gives the abstract analogue of Jacopo’s third
fondaco problem. Without explanation Pacioli gives the same rule as Jacopo (see
text after note 32); he certainly does not know how it has come about (if so, the
algebraic solution of the preceding problem shows that he would have explained).
However, the last step of his procedure (how to find two numbers from their
sum and their product) suggest that Jacopo is not his source: it contains a hint
of an underlying geometric procedure (a reference to operation with two different
halves of a quantity) which is absent from Jacopo’s text, and which Pacioli is
not likely to have introduced himself.[67]

Pacioli now (fol. 88r) supplies a number of “keys”, likened (nothing less!)
to the two spiritual keys of gold and silver by which “in our Catholic Militant
Church the first shepherd Saint Peter” opens and closes the doors of Paradise
and Hell for us.

The keys – fifteen in total – are theorems (not labelled so by Pacioli), in part

66 In generic terms, Pacioli says that the same method can be used for “6, 7, 8, etc.” terms,
but he abstains (maybe wisely) from implementing this insight – fol 182r he speaks of
the sixth root as the “cube root of the cube root” and of the seventh root as the “root
of the root of the cube root”. Possibly, these composite expressions indicate that Pacioli
believed they could be found by stepwise calculation. This is not quite certain, however:
as we have seen above, Fibonacci speaks in the Liber abbaci [ed. Boncompagni 1857: 400]
of the quintupled proportion as “cube of the square, or square of the cube” and of the
sextupled ratio as the “cube of the cube”, but his numerical examples (32:1 as the
quintuple of 2:1, 729:1 as the sextuple of 3:1) show he was not misled.

67 When solving in the second part of the Summa the corresponding geometric problem,
Pacioli [1494: II, fol. 18r] merely refers to the contents of Elements II.5, as does his ultimate
source (Fibonacci’s Pratica geometrie [ed. Boncompagni 1862: 63]). Similarly also (with
explicit citation of Euclid’s proposition) in the arithmetical part, fol. 93v.
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near- or full repetitions of what he has already explained before or easy
corollaries of familiar stuff, in part new to the book and not easily guessed
without symbolic manipulation. All are illustrated by numerical examples. I list
them in symbolic translation, indicating the beginning of new pages:
(1)(88r) If a:b:c:d, then : .b c

a b c d

b

a c

(2) If a:b:c:d, then : .a b

c d

a

c

(3) If a:b:c:d, then : .a c

b d

a

b
(4) If a:b:c:d and S = a+b+c+d, then S/a : S/b : S/c : S/d ; with three members, this was

the first three-number “marvel” on fol. 85r.
(5) If : , then ad = bc; the product rule, amply used before.a

b

c

d

(6)(88v) If : and if c2+d2 = a b, then has the same value.a

b

c

d
(a 2 b 2 ) (cd )

Actually, given only the proportion, (a2+b2) cd = ab (c2+d2).
(7) If : , then ([a b] c) d = (a d) (b c); evidently, this does not dependa

b

c

d
on the proportionality.

(8) If a:b:c:d, then (a+b+c+d)2 = a (b+c+d)+b (a+c+d)+d (a+b+c)+c (a+b+d)+a2

+b2+c2+d2; this time, Pacioli himself points out that the rule does not
depend on the proportionality.

(9) If a:b:c, then (a b) c = b3.
(10) If a:b:c, and if for some quantity Q Q/a + Q/b + Q/c = a+b+c, then b = √Q.
(11)(89r) If a:b:c, then (a b) c/a = b c, (a b) c/b = a c, (a b) c/c = a b, and (a b) c/a b =

c, (a b) c/a c = b, (a b) c/b c = a; Pacioli points out that this does not depend
on the proportionality.

(12) If a:b:c and further : , then p (b+c) = q (a+b).a

b

p

q
(13) If a:b:c, then 2 (a c+b [a+c]) = a(b+c)+b(a+c)+c(a+b). With references to

Elements II.2 and the formulations “in other words” in Elements VI and
IX Pacioli points out that this does not depend on the proportionality.

(14)(89v) If a:b:c, then a(b+c)+b(a+c)+c(a+b)/2 (a+b+c) = b.
(15) If a:b:c, then : .a 2

b 2

a

c

This is the last key. Under the heading “to find mean proportionals between
two quantities”, two sophisticated counterfactual calculations follow (fol. 89v)
which I guess are Pacioli’s own invention: If 2 is the arithmetical respectively
geometric mean between 5 and 11, what is then the corresponding mean between
7 and 13? In both cases, the true means between 5 and 11 and 7 and 13 are found
(8 and 10 respectively √55 and √91), and the rule of three is applied. In the
arithmetical case, a proof is performed, consisting in corresponding proportional
change of the limits, after which the true means between these limits are shown
to coincide with what was found before; in the geometrical case, a similar proof
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is sketched but not performed.
The “second case” under the same heading is a traditional question “Three

is (too) little and 4 is (too) much”. The “just or due” amount is said to be √12,
the geometric mean; this – not the arithmetical mean – is then stated to be what
is used in all commercial matters (in omnibus mercantiis). Primarily, this probably
extrapolates from the observation that the rule of three is based on geometric
proportionality. But Pacioli may also think of the use of the geometric mean in
certain mathematical problems in commercial disguise.

In any case, such a problem, about three pearls, follows as the “third case”.
The first pearl weighs 1 carat and is worth 200 ducati, the second weighs 2 carats
and is worth 1000 ducati, the third weighs 3 carats. What is its just price?

Pacioli posits a fourth pearl with weight 4 carats. To the weights 1:2:4 in
continued proportion must correspond prices in continued proportion, i.e.,
200:1000:5000. Therefore the price of the 4-carat pearl must be 5000 ducati. 3 carats
being the (arithmetical) mean between 2 and 4, the price of the 3-carat pearl must
be √(1000 5000).

A fourth case is also about justice. The Holy Father, Innocent VIII, orders
that 10000 ducati be distributed justly between the citizens of Perugia for service
rendered. This gives rise to a long discourse (more than 500 words) about
Aristotle’s two kinds of justice from the [Nicomachean] Ethics V.2–5 [Barnes 1984:
II, 1784–1789]: “commutative”[68], applicable to commercial exchange, and
distributive. Both, according to Pacioli, “can, broadly speaking, be understood
in two ways, geometrically and arithmetically, though, strictly and properly
speaking, the maximal distributive sort can only be geometrical”.[69] After the
digression into ethical theory it is then explained that the money is justly
distributed if made in geometric proportion to the “quality” (bontà) of each.

The sixth distinction ends (fols 90v–98r) with 35 problems[70] and an epilogue
(fol. 98r–v). The final two have nothing to do with proportions – #34 is “Bachet’s
weight problem”, and #35 belongs to the same family; parallels in the wording
suggest that they are borrowed from the Liber abbaci [ed. Boncompagni 1857:

68 Nowadays normally translated “rectificatory”, but Pacioli follows his fellow friar Thomas
Aquinas (Summa theologiae 1a q. 21 a. 1 s 1 co, see [Corpus thomisticum]), whom he cites.

69 This point comes from Aristotle, whose Chapter 3 also contains as discourse on
proportion theory. Mathematical proportions (represented by lines and letters) are used
further in Chapters 4 and 5.

70 Pacioli also counts until 35, but has two #18, skips #19 and #28 and has two #29.
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297f ]. In all the others, “proportions” play a role.
First come 23 problems about three numbers in continued proportion. In

seven of them, a number (19, 19, 14, 10, “a number”,[71] 10, 10) is split into these
constituents; towards the end of the sequence, four are dressed as dealing with
economic life.[72] In #1–6, specified “keys” are used as a first step in the pro-
cedure, which in these and the other cases often makes use of algebra or (in #5,
#6 and #18) of Elements II.[73]

Next follows a sequence of ten problems about four magnitudes in continued
proportion, none of them in concrete dress. Once again, the first ones make use
of specified “keys” (#24–27 – but also #31–32). Most interesting are probably
#31–33: #31 and #33 are pure-number versions of Jacopo’s third and fourth fondaco
problems, #32 of a similar problem where the sums of the wages for the first
two and for the last two years are given. In #31, key (1) is used to reduce the
problem; then the second number is taken as the thing and found by second-
degree algebra to be 12 1/2 +√7 37/84 – at which point Pacioli cautiously leaves it
to the reader to continue.[74] Since his present method does not lead easily[75]

71 This problem (#15) is indeterminate. Afterwards, the number is chosen to be 10, whereby
it is made determinate.

72 #18bis deals with a gambler’s gains, where the product rule is explained once again,
suggesting perhaps the text to be borrowed (but Pacioli is too fond of repeating to make
the inference certain); #21, which “was proposed to me in Florence in 1480, the 22nd of
June”, deals with a purchase of saffron, cinnamon and mastic, and #22–23 with alloys.

73 Algebra is thus used by Pacioli well before he presents it systematically. Often, this
algebra is quite complex. In #4, for instance, Pacioli has to operate with two unknowns
in the same way as Antonio, that is, with “a thing less a quantity” and “a thing plus a
quantity”. The problem in which this is used is not the same as the one where Antonio
introduces it in the Fioretti, nor with the one from the Flos where Fibonacci employs it,
cf. note 40.

74 The solution is correct, but corresponds to a decreasing sequence, which is certainly
not what Pacioli intended; in order to have an increasing sequence, he should have chosen
the other root of the equation, 12 1/2 –√7 37/84 . Since Pacioli did not discover, he cannot have
finished the calculations.

When applying later the same method to an analogous wage problem with rational
solutions, Pacioli makes the complete calculation and chooses the correct solution – see
presently.

75 Of course it can lead to it, but only if one is able to express the double root (the second
and the third number, respectively) as
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to the formula used by Jacopo and by Pacioli in the first presentation of the
abstract problem just before the “keys” (above, text before note 67), Pacioli
appears not to have noticed the connection.

The use of the “keys” in problem reductions leaves little doubt that these
new theorems about the behaviour of proportions were created as tools for the
solution of problems – but apparently only problems formulated in terms of
proportions or proportionality, for whose initial reduction they served. Pacioli’s
way to add observations about (8), (11) and (13) strongly suggests that the basic
set was not his own. It is likely to have been created during the fifteenth century
and seems to reflect a more intimate integration between algebra and proportions than
other sources would make us expect.

10. Further “proportions” in Pacioli’s Summa

Proportionality turns up in (at least) three other contexts in the Summa –
in the general presentation of algebra, and in two sets of problems.

Fol. 143r lists a sequence of 30 algebraic powers (dignità) in two different
terminologies and observes that the reader may go on proceeding proportionally
“as long as you want”. On fol. 145v, the same insight (which as we know was
not new) is hinted at in the statement that all solvable cases are proportionati to
the six basic cases.[76] It becomes more explicit (and somewhat more innovative)
on fols 149v–150r, after a short list of select possible and impossible cases. In order
to find out to which basic case a given equation reduces, one shall locate the
dignità in the ordered sequence and reduce[77] geometrically equally to the
lowest possible degree by counting downwards. However, if the intervalli between
the three powers in the equation (the only equations Pacioli considers) are not
equal, it has “so far not been possible to form general rules because of their

P
2

±
P 2

4
–

P 3

3P Q

(P being the sum of the second and the third number, Q that of the first and the fourth).
The product of these is indeed

P 3

3P Q
as required; but this will have been far too complicated for Pacioli.

76 This, certainly, is not true stricto sensu if we consider as solvable, e.g., the case “cubes
equal to number”; but Pacioli’s target is the proliferation of false solutions to non-
homogeneous higher-degree equations.

77 The verb is schizzare, which mostly refers to the reduction of a fraction through division
of numerator and denominator by the same divisor.
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disproportionality”.
On fols 186r–187v, a number of problems deal with gain (occasionally loss)

“at the same rate” in two or more travels. Mostly, the proportionality leads to
the application of the rule of three, but once, in an alternative (“and more
beautiful”/pulchrius) solution (fol. 186r), proportionality is mentioned explicitly,
and the product rule applied. This evidently gives the same calculations as the
rule of three; the aesthetic advantage is solely in the use of “magisterial”
terminology – “speaking solemnly”, in Pacioli’s earlier words.

Finally, fol. 194r brings six problems about the wages of a servant, in two
of which the wage is supposed to increase “at the same rate” each year (four
years in total). In the first of them the wage of the first year is 10, that of the
last year is 60; apart from a change of the wage of the first year, this coincides
with Jacopo’s second fondaco problem. This has to be done “according to what
I showed you in the proportions, and I shall say no more, except that there are
four proportional numbers, and the first is 10, and the last is 60. I ask for the
means” – which are then stated to be 3√6000 and 3√36000.

The second coincides with Jacopo’s third fondaco problem, even in its choice
of parameters. For the solution, Pacioli refers to the “first key” and to what he
has already taught. This time, the numbers are convenient, and Pacioli makes
the complete calculation, finding the second number to be 30–√100 and the third
to be √100+30 (an order which suggest he has not used the double solution but
subtracted from 60).

There may be other scattered references to the concept of proportionality
in the work. All in all, however, “proportions and proportionalities” are mainly
treated in the sixth distinction, which is indeed extensive and profound enough
to justify the appearance of the terms in the title of the work; to this distinction
are also moved traditional abbacus problem types about numbers in proportion,
abstract as well as in commercial dress. Outside the sixth distinction,
“proportions” play as modest a role as in most abbacus treatises.

11. Summing up

In this way, Pacioli’s opus magnum suggests the general summary we may
draw up. Abbacus mathematics, based in practical arithmetic, was always centred
around problems of simple (direct or inverse) proportionality; to this came a
strand of algebraic thought with hight prestige due both to its efficiency and
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to its character of “theoretical level of practical arithmetic”.[78] Initially, neither
the language nor the theory of proportions had anything to do in either;
gradually, but hardly to a larger extent than its penetration in daily discourse,
would the proportion language pop up. Problems might also be formulated in
terms of quantities or numbers in proportion. Theory beyond the product rules
remained outside.

To this, only writers with “magisterial” pretensions – Fibonacci, Antonio,
Benedetto, the author of Palatino 573, Pacioli – and the shadowy inventor of
Pacioli’s “keys” constitute exceptions. Apart from the inventor of the keys, who
to some extent made new theory, what they offer in terms of theory and
technicalities beyond the product rules are isolated chapters, in some cases just
copied from Fibonacci (and never understanding more about these than Fibonacci
himself). They are there rather by pious duty than by mathematical necessity.

As regards the Boethian terminology for ratios, the situation is even more
blatant. Since late Carolingian times, this categorization had been the almost
sacred core of the mathematics of Latin schools and universities. Benedetto and
Palatino 573 introduce them, but the latter dismisses them immediately, and the
former makes no use of them. Only Pacioli employs this “solemn speech” rather
consistently when explaining the composition of ratios in Distinction 6, 4th
Treatise. The general tendency is to speak “at best” (as judged from the
perspective of the schools) of the denominations of ratios, “at worst” to come
close to identifying the ratio with the quotient (as when Pacioli identifies
composition and multiplication of ratios).

All in all, abbacus mathematics is much more modern on this account (and
on several others) than scholarly mathematics of the late Renaissance. As scholars
digested the abbacus heritage, they took over norms, not only technical algebraic
knowledge.

78 Two quotations may suffice to illustrate this prestige. Palatino 573 [ed. Arrighi
2004/1967: 191] opens the part on algebra (as we remember, this encyclopedia falls in
eleven “parts”) with the words “every part would be in vain if this [part] was left out;
because [...] this is the one that gives solution to all cases”. Pacioli [1494: 144r] observes
in the corresponding place that we have now “arrived with the help of God to the much
desired place: that is, to the mother of all the cases popularly called the regola della cosa
or Arte magiore, that is, pratica speculativa, otherwise called algebra & almucabala in the
Arabic or Chaldean tongue”. The words pratica speculativa mean exactly “theoretical [level
of] practical arithmetic”.
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