
Roskilde
University

Mathematical Modeling of Flow Characteristics in the Embryonic Chick Heart

Heebøll-Christensen, Jesper

Publication date:
2011

Document Version
Peer reviewed version

Citation for published version (APA):
Heebøll-Christensen, J. (2011). Mathematical Modeling of Flow Characteristics in the Embryonic Chick Heart.
Roskilde Universitet.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain.
            • You may freely distribute the URL identifying the publication in the public portal.
Take down policy
If you believe that this document breaches copyright please contact rucforsk@kb.dk providing details, and we will remove access to the work
immediately and investigate your claim.

Download date: 04. Jul. 2025



Mathematical Modeling

of Flow Characteristics

in the Embryonic Chick Heart

Ph.D thesis
in Applied Mathematics

by Jesper Heebøll-Christensen

Roskilde University
Department of Science, Systems and Models

Research division IMFUFA

January 2011



Abstract

This ph.d. thesis contains the mathematical modeling of fluid dynamical phenom-
ena in the tubular embryonic chick heart at HH-stages 10, 12, 14, and 16. The
models are constructed by application of energy bond technique and involve the
elasticity of heart walls with elliptic cross-section, Womersley modified inertia,
and resistance due to friction and curvature of the multilayered tubular heart.

Through the modeling, flow conditions in the embryonic heart are character-
ized. The models suggest that eccentric rather than concentric deformation of the
beating heart is optimal for mean flows induced by the Liebau effect. Addition-
ally the elliptic cross-sectional shape of the embryonic heart may be optimally
configured for Liebau induced flow near elliptic eccentricity 0.4. It is furthermore
suggested that both peristaltic and Liebau induced pumping effects may be present
in the embryonic heart, though the models are not conclusive on this point.

In addition the Liebau effect is investigated in a simpler system containing
two elastic tubes joined to form a liquid filled ring, with a compression pump at
an asymmetric location. Through comparison to other reports the system vali-
dates model construction. Furthermore it is concluded that the observed Liebau
effect does depend on the impedance of the tubes, the frequency and position of
the compression pump, but above all the characterization of the pumping func-
tion. Different pumping functions are employed in the modeling but no defining
characteristics of their efficiency have been found.
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Dansk resumé

Denne ph.d.-afhandling indeholder den matematiske modellering af fluid dynamiske
fænomener af det rørformede embryoniske kyllinge-hjerte ved HH-stadie 10, 12,
14 og 16. Modellerne er konstrueret ved anvendelse af energibåndsteknik og
inkluderer elasticiteten af hjertets lag-indelte vægge med et elliptisk tværsnit,
en Womersley-modificeret inerti-funktion, samt modstand skabt ved friktion og
krumning af det rørformede hjerte.

Gennem modelleringen karakteriseres betingelser for flow i det embryoniske
hjerte. Modellerne antyder at excentrisk frem for koncentrisk deformation af
det bankende hjerte er optimalt for middelflow induceret ved Liebau-effekten.
Tilsvarende findes den optimale elliptiske tværsnit af det embryoniske hjerte po-
tentielt omkring den elliptiske excentricitet 0.4. Det foreslås yderligere, at effekter
af både peristaltisk og Liebau-induceret pumpning kan være til stede i det embry-
oniske hjerte, dog er modellerne ikke konkluderende omkring denne antagelse.

Yderligere er Liebau-effekten undersøgt i et simplere system bestående af to
elastiske slanger sammensat i form af en ring fyldt med væske, med en kompres-
sionspumpe placeret i en asymmetrisk position. Gennem sammenligning med an-
dre rapporter validerer dette system modellens konstruktion. Tilmed konkluderes
det, at den observerede Liebau-effekt afhænger af impedansen af slangerne samt
frekvensen og positionen af kompressionspumpen, men frem for alt afhænger ef-
fekten af karakteriseringen af pumpens funktion. Forskellige pumpefunktioner er
anvendt i modelleringen men ingen definerende karakteristikker af deres effek-
tivitet i forhold til Liebau-effekten er fundet.



Preface

This is my thesis for the ph.d. study in applied mathematics at Roskilde Univer-
sity, department of Science, Systems and Models, in the research division IMF-
UFA.

It is, as I see it, at detailed work in a mathematical discipline that has gone
unnoticed by many mathematicians; the discipline involved in the use of energy
bond techniques. To some this may seem as an engineering speciality, but be as-
sured that underneath the layer of seemingly physical language and complicated
networks lies a thoroughly mathematical discipline involving definitions and the-
orems and rules for the construction of models, in fact energy bond graphs are just
a clever way of illustrating some very complicated mathematical equations.

As such the thesis involves a standard approach of applied mathematics to
the problem of modeling the chick embryonic heart: The detailed acquisition and
interpretation of the problems in the field of embryological cardiology, the ba-
sic definition of conditions and assumptions regarding to the modeled case, the
construction of a general model based on the conditions and assumptions, the ad-
justment of the model to fit the actual case, and the solution of the model and
subsequent interpretation of model results in relation to the modeled case. I think,
no more justification than this is required.

The purpose of this work is to construct a model for the beating embryonic
chick heart. In the end of the thesis a model is setup for this case and simulations
of the heart attempted. The result of this attempt is unsuccessful.

The regretful fact is, that following all this work, one of the main goals stands
as incomplete, and I have no desire to hide it or complain about it. A detailed
modeling procedure and many other simulation results are still worth presenting
as well as the whole setup of the embryonic heart.

It has been suggested to me to change the focus of the thesis, such that the
modeling of valveless flow phenomena is the focus, and the embryonic chick heart
only an application of these phenomena. I have decided not to do so, since I feel it
would be dishonest and unwise to change the focus in the 11th hour of the process,
especially if only to cover up what may appear as an incomplete work.
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The modeling of the embryonic chick heart has been the goal of the modeling
procedure all along, and this I feel should be reflected in the thesis as well. As
such whole chapters of the thesis are devoted solely to the description of the chick
heart, which still takes the center stage in the modeling.

I wish to extend my gratitude to Lars Thrane, Jörg Männer and T. Mesud
Yelbuz and all the other guys working at the chicken lab in Hannover for great
discussions and for their help in this work. During the project I stayed with them
at the Medizinische Hochschule Hannover and participated in the measuring of
cardiac activity in the young chicken embryos.

Gratitude should also be extended to my supervisor Johnny Ottesen who has
offered assistance with complicated issues in the modeling and helped me greatly
in my frustration over problems in the project - mathematically and otherwise.

Last but not least I wish to thank my friend and colleague Jon Josef Papini
who has been a good companion and great support for many years. Thanks for
scientific discussions, solution ideas to complicated problems and Diplomacy.

Overall the staff at IMFUFA should be thanked for interesting discussions and
inputs. This project could not have been completed without those conversations.

Jesper Heebøll-Christensen

IMFUFA/NSM, RUC

New Year’s Eve 2010/11
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Chapter 1

Introduction

Embryological genesis and function are important fields in physiological research
and have been for many centuries. Seeing the generation of life and the formation
of a living being in the foetus is not only interesting from a philosophical or evolu-
tionary point of view; with the necessary knowledge embryologists can save many
lives by preventing diseases and malformations before they evolve into problems.

Interestingly the growth of characteristic organs in the early embryonic de-
velopment are similar for almost all higher vertebrate embryos, such is also the
case for the embryonic heart. Therefore it has become common practice among
embryologists to study the embryonic heart of the chick; aside from the obvious
difference in size the development of the embryonic chick heart parallels that of
the human heart almost 1:1 [Taber, 2006a].

The embryonic heart begins its existence as a straight muscle-wrapped tube
that starts beating briefly after is creation. While beating the tubular heart curves
around itself to form a helical structure, which is the earliest demonstration of
left-right asymmetry in the embryo [Männer, 2000]. Subsequently the helical
heart tube grows together and eventually transforms into a mature four-chambered
heart.

The morphology and pumping mechanisms of the early tubular heart have
caught the interests of many researchers, as the heart at this stage of development
portrays an entirely different structure than the four-chambered heart of mature
animals. The questions are, what causes the heart to have this shape at its early
development and what are the mechanisms involved in the tubular heart.

One of the groups working with the tubular heart of the embryo is situated
at the Medizinische Hochschule Hannover (the medical university of Hannover,
Germany) and is lead by Jörg Männer and T. Mesud Yelbuz. This group have so
far made significant contributions to the understanding of the morphology of the
tubular heart; how the heart curves to form the helical heart tube in a process re-
ferred to as cardiac looping [Männer, 2000, 2004, 2006, 2008]. And in 2008 they
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12 Mathematical Modeling of Flow Characteristics in the Embryonic Heart

made a remarkable discovery with the OCT imaging technique that the beating
heart tube contracts in an eccentric, almost elliptic, contraction pattern, contrary
to what was believed [Männer et al., 2008, 2009].

Many years before it was discovered that the tubular heart had a layered struc-
ture, and the importance of this structure was proved to be important for peristaltic
pumping of the heart by use of concentric contractions [Barry, 1948].

Their discovery increased the interest in fluid propagation and pumping mech-
anisms of the embryonic heart, which was already discussed intensely since an-
other research group from California Institute of Technology lead by Farouhar,
Gharib and Hickerson in 2006 made a discovery of tubular hearts that conflicted
with the peristaltic pumping principle that had been assumed so far [Männer et al.,
2010].

Their suggestion was that another pumping principle could explain the phe-
nomenon of the tubular heart better than peristalsis: the Liebau effect. Peristaltic
pumping can be described as a sliding compression of a tube to push liquid for-
ward, while the Liebau effect is comprised of periodic compressions interacting
with the dimensions of the tube to produce a net flow of liquid.

These two principles exists as competing hypotheses for the pumping mecha-
nism of the embryonic heart, and so far it has not been possible to decide which of
them correctly describes the flow phenomena of the elliptic layered tubular heart.

1.1 The thesis

This thesis includes the mathematical descriptions of elastic tubes to model the
pumping mechanism and fluid propagation of the tubular embryonic heart.

The models are made by application the energy bond technique from the
knowledge that pulsating flow and pressure in the elastic tube equals to trans-
port of energy. The construction of the models follows a ‘historical’ perspective
starting with the Windkessel model, expanding to a transmission line and expand-
ing further. Through the thesis the models are continuously expanded to better
approximate the tubular heart, ending with the model of a curved layered tube
with an elliptic cross-section.

The models are made from basic physical theories and fitted to meet known
characteristics of the embryonic heart. The models are setup with material pa-
rameters and dimensions of the tubular heart and subsequently applied to simu-
late the observed compression cycle in a mathematically approximated embryonic
heart.

The goal of the modeling and simulation of the embryonic heart is to prove that
the embryonic heart can be modeled with the use of first principle physics. Though
some additions to the model will be ad hoc approximations to real physical effects
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in the heart, it is believed that a successful simulation of the embryonic heart that
compares to observed measurements of flow and pressure will be a proof that the
heart can be physically described with the model.

Through simulations of the model it is the aim of this thesis to investigate the
different hypotheses for the pumping mechanism of the embryonic heart: peri-
staltic pumping and the Liebau effect. In addition the thesis aims to investigate
the difference between a tube with circular cross-section as opposed to an elliptic
cross-section, specifically in relation to the mentioned pumping principles.

As a means to investigating the Liebau effect it is specifically investigated if
the constructed model is capable of simulating mean flow from a Liebau pump,
this is done in relation to an experimental system consisting of two elastic tubes
joined together to form a ring and filled with liquid; via the periodic compres-
sion at an asymmetric location on the ring a mean flow will be induced from the
interaction between compression waves and the impedance of the tube.

The experimental test case is supposed to validate the constructed model of
this thesis and its results are specifically compared to two other cases involving
a similar Liebau model. Additionally the case is used to investigate different el-
ements and inclusions of the model and thereby to compare different parts of the
model in relation to each other.

The discussion following the modeling and simulations in this thesis will focus
on the functional behavior of the models rather than the embryological research,
it can be summed up by the following three questions:

• Will the complicated flow and pressure conditions exhibited by the

embryonic heart be adequately modeled by the energy bond mod-

els constructed in this thesis?

• In relation to the possible pumping mechanisms of the embryonic

heart are elliptic contractions of the heart tube optimal com-

pared to concentric contractions?

• Given the morphology and cross-sectional shape of the tubular

heart will a peristaltic or Liebau pumping principle be desir-

able for the propagation of blood?

1.1.1 The method in the thesis

The method employed in this thesis and in the modeling and simulation procedure
is a rather brute force approach; to find if something is possible often the best and
easiest way is simply to do it. With this approach the modeling is carried out
continuously through the thesis without hesitation.
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Simulations are produced according to setup of the case of the experimental
Liebau system and the tubular heart for several stages of embryonic development.
Given the comparability of the simulation results to the cases modeled the first of
the three questions above is evaluated.

In the event that the simulated cases are successful and it is thus proved that
the models can simulate both a peristaltic and a Liebau pumping principle, the
third question is answered directly. As it is, there is nothing in the theory stating
that both pumping principles can not exist simultaneously, and if it is proved that
the models can handle both mechanisms and furthermore can adequately simulate
the flow and pressure of the embryonic heart, the third question becomes simply
void.

In the modeling and simulation procedure it will be a priori assumed that the
model is able to produce peristaltic flow, despite that total occlusion of the tube
lumen will be a singularity in the mathematical equations, which is not achievable
in the simulations. Peristaltic flow can be produced even if the lumen is not totally
closed though perhaps not quite as effective. The question is, if the simulations
are able to produce the complicated wave interactions of the Liebau effect, and for
that reason the case of the experimental Liebau system is investigated.

In application of the experimental Liebau system the second question is also
investigated. Other researchers have already produced results that suggest that el-
liptical contractions have higher mechanical efficiency than concentric contraction
for peristaltic pumping, but it has not been investigated for the Liebau effect. By
comparing the results of the Liebau system simulated with concentric and elliptic
contraction a suggestive result may be achieved for this question.

1.1.2 The use of the thesis

The models contained in this thesis are constructed from basic elasticity theory
and fluid dynamics together with mathematical analysis and theory of differential
equations, all fitted into the energy bond formalism. Not many people may under-
stand the energy bond graphs in this thesis, but the equations extracted from them
are very real and physically consistent. As such the modeling contained in this
thesis has value in itself.

Furthermore the simulations of the experimental Liebau case and the embry-
onic heart may prove the validity of the model, while simultaneously the results
of the simulations may shed light on aspects of the cases modeled. Specifically
with regards to the embryonic heart the simulations may improve knowledge of
the three questions posed above.

The thesis does not hold the conclusive answer to those three questions. Even
though the modeling contained herein may produce simulation results compara-
tive to the embryonic heart there are still room for improvement of the models to
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further specialize them in relation to the tubular heart. Regarding the second and
third question the modeling may produce suggestive answers to those but to reach
conclusive answers many more cases must be studied.

In the thesis the energy bond formalism is treated as a mathematical modeling
tool. Though at times reference is made to elements in the energy bond graphs that
have specific physical interpretations they should be regarded as abstract math-
ematical objects that have specific rules and definitions attached to them. The
energy bond graphs are never meant as representations of physical networks or
electrical circuits, both the energy bond graphs and the language of the energy
bond formalism are just convenient tools to handle a complicated modeling disci-
pline.

As such the energy bond technique should be regarded as a specialized math-
ematical modeling tool, which unfortunately is rarely applied by mathematicians.
It will have a central position in the modeling procedure of this thesis and through
the process it should become clear that energy bond technique has qualities that
are seldom seen in other mathematical disciplines.

1.1.3 Outline of the thesis

This thesis basically includes a long an complicated modeling procedure that starts
with the historical introduction to the Windkessel model in section 1.2 below and
ends with the layered tube model at the end of chapter 6, and in some instances
additions to the models are included in both chapter 7 and 8 as well.

Though the models are built as expansions to each other the thesis is con-
structed such that it is reasonably possible to skip some steps and read on from
chapter 4 or chapter 6, which are designed to follow parallel modeling procedures.

In between the modeling the embryological research is presented and the mod-
els will be investigated according to a case involving the Liebau effect. Finally the
simulations of the embryonic heart will be setup and simulation results presented
and discussed.

Below in section 1.2 is an introduction to the modeling procedure starting with
the Windkessel model, progressing to the transmission line and finally introducing
the concept for the complicated models of this thesis.

In chapter 2 an introduction to the chick embryo will be presented, involving
some of the characteristics of the embryonic heart that will be included in the
models and in the simulations of the tubular heart.

In chapter 3 fluid dynamic theory is presented specifically with relation to
liquid transport in elastic tubes. The theory presented in this chapter will be em-
ployed later in the modeling procedure.
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In chapter 4 the first model will be constructed, assuming that the elastic tube
has a circular cross-section. The model is constructed in basically two steps; first
the fundamental elements concerning flow in elastic tubes are modeled, secondly
additional assumptions lead to expansions of the model.

In chapter 5 the cylindric model is tested with respects to a case involving a
simple Liebau pump. The simulations of the Liebau pump is compared to two
other reports of a similar system. Furthermore the additional elements included to
the model in chapter 4 are tested in relation to each other.

In chapter 6 the second and third model are constructed, assuming first that the
cross-section of the tube is elliptic and second that the tube has a layered cross-
section with an elliptic inner lumen and a circular outer perimeter. The modeling
procedure is parallel to that of chapter 4.

In chapter 7 the morphology, materials and pumping function of the embryonic
heart is investigated to setup simulations of the heart by the use of the models.

In chapter 8 the results of the simulations are investigated and compared to
data of flow and pressure in the embryonic heart. Additionally simulations of a
Liebau pump involving an elliptic tube are constructed and investigated.

In chapter 9 the simulation results and models are discussed in relation to the
questions asked in the thesis.

The appendixes of the thesis includes the programs used to make the simula-
tions of the Liebau pump and the embryonic heart.

1.2 The Windkessel model

The first attempt to explain or model the pulsatile behavior of the pressure and
blood flow in the entire cardiovascular system was done by Reverend Stephen
Hales who in his book Haemastaticks from 1733 compared the arterial system
to that of an elastic reservoir made up of a compressed-air-filled tank. In the
German translation of his book this tank was known as a ‘Windkessel’ [Nichols
and O’Rourke, 1998, p. 3].

The Windkessel, which is in fact a common component in present day pipelines
and water works, is in relation to modeling typically depicted as an old fire cart
where a hose and a piston pump in one end of the cart could be used to take water
in from a nearby lake or well into a large reservoir. This reservoir contains water
up to a certain level an above that air in a tightly sealed container, when more
water is pumped into the reservoir the water level rises and the air will be com-
pressed. The excess air pressure forces a steady flow of water out the fire hose,
which is characterized with a very high peripheral resistance. See figure 1.1.
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Figure 1.1: The Windkessel model depicted as an old fire cart with a pump, an
elastic pressure reservoir, and the peripheral resistance of the fire hose.

As such Hales used the Windkessel analogue to explain how a pulsatile flow
from the heart with an elastic reservoir given by the arteries and arterioles could
be transformed into a seemingly steady flow in the veins through the peripheral
resistance given by capillary tissue.

The Windkessel concept was made known in the late nineteenth and early
twentieth century when the German physicist and mathematician Otto Frank con-
sistently used the word for the model by Hales, which he based his research upon.
In fact many modern day researchers in the cardiovascular field ascribe the Wind-
kessel model to Frank - not Hales.

Otto Frank was concerned with manometry and measurement of the arterial
pressure waves, his goal was an understanding of the arterial properties and ar-
terial function, so that ultimately flow could be predicted from pressure change
[Nichols and O’Rourke, 1998, p. 6]. The Windkessel model was the best model
for understanding pulsatile blood pressure that Frank knew, and as such he was
also painfully aware of its severe limitations.

When modeling the entire arterial system as a single elastic reservoir the no-
tion of pressure wave propagation is completely ignored along with the possibility
of wave reflection. In this way Frank sought to explain measured pressure waves
with a model that did not posses the explaining power for these phenomena, and
his resulting compromise has been criticized by many as contradictory and illogi-
cal [Nichols and O’Rourke, 1998, p. 6].

Both Frank and Hales knew that the Windkessel model was not a true picture
of the circulatory system, it was the best they had and in some cases it was only a
model to visualize the property of the elastic capacity of the arterial system. True
criticism should be laid on those that take the Windkessel model too literally.
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1.2.1 The modern interpretation

Today the word ‘Windkessel’ has different meanings in historical and modeling
contexts, it is still used in descriptions of the cardiovascular system, for instance
by Yoshigi and Keller [1997], but mostly as a first-hand approximation to the
concepts of an elastic reservoir and peripheral resistance, which are used to char-
acterize the vascular system and diagnose problems. Researchers refer to the
‘Windkessel principle’ or the ‘Windkessel effect’, which is a generalization of the
Windkessel model to describe the concept of an elastic reservoir and peripheral
resistance.

To see the analogy it is easiest to translate the description of the ‘old fire cart’-
Windkessel into the language of electrical circuits. Let electrical charge represent
the volume of blood, then electrical current is the volume flow, and electrical
potential is the driving pressure in the system. With this analogy the Windkessel
model is translated into an electrical circuit as seen on figure 1.2.

Z

C R

Figure 1.2: The electrically formulated Windkessel model

The capacitor, C, stores charge in the same way the elastic reservoir of the
arteries stores blood, the resistance, R, is the peripheral resistance of the capillary
tissue, and the component, Z, is used to represent the special impedance on the
pulsating blood pressure. In the simpler versions of the model the impedance, Z,
is omitted and in other complicated versions of the model more electrical compo-
nents are included.

Electrical circuits such as this demonstrate the Windkessel principle of an elas-
tic reservoir with an inflow and a resistive outflow. With this kind of analogy it
is clear that a multitude of possible electrical networks based on the Windkessel
principle can expand the concept of the original Windkessel model. Such mod-
els can be made far more advanced, however Hales’ original idea of a conduit
between a pulsating and a seemingly constant flow is lost in the process.
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1.2.2 The transmission line

An example of the expansion of the Windkessel principle through electrical net-
works comes with the transmission line, which will be of importance for the mod-
eling in chapter 4.

Expansions of the Windkessel principle via the electrical network analogue re-
quires a specific interpretation of the included electrical elements in the model. So
to formulate the idea of the transmission line as a plausible model for the cardio-
vascular system take as starting point the main argument against the Windkessel
model that it leaves no possibility for pressure wave propagation in the system.

With the Windkessel principle the capacitor is considered as an elastic con-
tainer for the volume of blood in the entire arterial system, but a capacitor could
equally describe a single arterial section. In this case the capacitance and resis-
tance of the electrically formulated Windkessel model is applied to only a small
section of arteries instead of the entire arterial tree.

The capacitance, C, of the model describes the (inverse) compliance of the
elastic arterial wall and the resistance, R, models the resistance to flow out of
the arterial section. Both of these will depend on the physical properties of the
particular section; radius, wall thickness, elasticity, length etc.

Consider the idea that several arterial sections are modeled one after the other:
The continuity equation states that whatever flows out of one section must be the
inflow to the next, in this way a chain of Windkessel models is achieved.

Additionally the pulsating pressure waves and pulsating volume flow produce
accelerating and decelerating velocities in the liquid, and for this, inertial effects
of the mass of blood inside the arteries are of great importance. Inertia of mass
is conveniently described with an inductance, L, in the electrical analogue, it is
placed in serial connection with the resistance since both inertia and flow resis-
tance reacts to the displacement of the same amount of blood.

Conveniently these arguments reformulates the original Windkessel model
into a transmission line as seen on figure 1.3, which is a well-known object in
standard electro-engineering. The transmission line is terminated in one end with
a terminal resistance, RT , which corresponds to the peripheral resistance in the
original Windkessel model, representing the resistance of the capillary tissue.

The current of this model will be the volume current, Q, defined as the volume
of liquid flowing past a point between two sections per time [m3/s], the potential
of the model is the hydrodynamic pressure in a section, P , measured in the units
of Pascal, [Pa = kg/m·s2]. Resistance is measured as potential difference over
current, ∆P/Q, with the units [kg/s·m4]. Capacitance is defined as charge over
potential, which is volume change over pressure, ∆V/P , with the units [m4s2/kg].
Inductance is defined as the relation between potential difference and the time-
derivative of the current, ∆P/(dQ/dt), with the units [kg/m4].
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Figure 1.3: The transmission line as an expansion from the Windkessel principle.

To complete this electrical analogue model the functions for resistance, capac-
itance and inductance must be defined, which will not be attempted here as that
requires further interpretation of the physiological phenomena.

1.2.3 The energy bond model

The transmission line is the first step in a generalization of the Windkessel prin-
ciple, which will make it applicable to model the pulsating flow and pressure in
an elastic tube. Through construction of chains of transmission lines it is possible
to construct large network models of the cardiovascular system, see for instance
[Rideout, 1991].

When defining the resistance, capacitance and inductance of the transmission
line it will be clear that the elements of the model are non-linear and interrelated.
In an attempt to explicitly describe the non-linear relations a group of physicists
lead by Peder Voetmann Christiansen and Niels Boye Olsen from Roskilde Uni-
versity in the 1980ies constructed an expansion to the transmission line. The
model they built is reported and validated for blood flow in aorta as a students’
project by Nørgaard et al. [1993], and later it is mentioned very briefly in a paper
by Larsen et al. [2006].

The model is included in the first part of the modeling in chapter 4, it takes
its start in the transmission line, and through the definition of the functions of
the electrical elements it is naturally expanded. The model employs the advanced
technique of energy bond formalism to expand the electrical network in figure 1.3.

Energy bond technique is a generalization of electrical analogue technique that
use the same definitions as in electrical circuits but applies another diagram tech-
nique that ensures that the implicit assumptions of electrical circuits are explicitly
reflected in the energy bond graphs. The rules and graphs of the energy bond
technique are constructed to reflect physical consistency, as such the energy bond
technique has more modeling potential than electrical networks.
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One advantage of the energy bond technique is the way that models can be
constructed in stepwise order, and subsequently tested and expanded. The en-
ergy bond technique makes the construction of mathematical models into build-
ing blocks that can be added on top of each other, investigated or removed one
at a time. This is in contrast to other mathematical methods, for instance differ-
ential equations, which are constructed from a set of assumptions that yield a set
of equations to be solved; if there is a small change of assumptions a whole new
model needs to be derived. If there is a small change of assumptions in an energy
bond model, single elements can be removed or changed as desired.





Chapter 2

The Embryonic Heart

The pumping embryonic heart has fascinated scientists for more than two thou-
sand years, visible on top of the yolk as a tiny red spot that seems to pulsate
in color. Aristotle who made the first documented observations of the pulsating
heart described it as “a speck of blood, in the white of the egg. This point beats
and moves as though endowed with life. . . ” [Aristotle., Historia Animalum Book
VI 3].

Since the time of Aristotle generations of scientists have stared at the jumping
point, fascinated by its frailty and its meaning for development of new life. For
instance a quote by William Harvey from his time as a student under Fabricius
of Aquapendente in Padua, years before his discovery of the circulatory system,
illustrates this fascination and possibly the influence the embryonic heart may
have had on the scientific history of medicine:

“I have seen the first rudiments of the chick as a little cloud in the
hen’s egg about the fourth or fifth day of incubation, with the shell
removed and the egg placed in clear warm water. In the center of
the cloud there was a throbbing point of blood, so trifling that it dis-
appeared on contraction and was lost to sight, while on relaxation
it appeared again like a red pin-point. Throbbing between existence
and non-existence, now visible, now invisible, it was the beginning of
life.”

- William Harvey circa 1600 [Gibson, 1978].

It was however not until the 1800th century when the motion of the speck
of blood was correctly interpreted as the mechanical pumping of the embryonic
heart by means of muscular contraction. One of the important researchers in this
discovery was Albrecht von Haller who in 1758 made a description of the contrac-
tion pattern of the heart that led later scientists to formulate the peristaltic theory
of pumping for the embryonic heart [Männer et al., 2010].

23



24 Mathematical Modeling of Flow Characteristics in the Embryonic Heart

Having realized the muscular contractions of the embryonic heart scientists
began to discuss the origin of the contractions. Some held the belief that con-
tractions were motivated externally via the nervous system while others believed
in a local stimulation. In the end the intrinsic theory seemed to get the upper
hand as it was possible to detect a contraction wave going from the venous end of
the heart to the atrium and onwards to the ventricle, furthermore the contraction
was preceded by distension of the heart wall, which was seen as a local stimulus
to contraction. Thus the intrinsic and peristaltic theories appeared to fit together
[Männer et al., 2010].

Later still the peristaltic theory ran into problems as it was for instance dis-
covered by Johnstone in 1925 that at the very early stages of the embryonic de-
velopment only the ventricle shows contractions [Männer et al., 2008]. Scien-
tists instead began to focus on the structure and genesis of the embryonic heart;
the existence of cardiac jelly was discovered by Davis in 1924 and later in 1948
Alexander Barry proved its importance for a peristaltic pumping function of the
embryonic heart [Barry, 1948].

As such the history of the embryonic chick heart is as much a history of imag-
ing techniques. In the early days of Aristotle and William Harvey the chick em-
bryo was observed with the eye or a magnifying glass at best and described as a
tiny speck of blood. With the invention of the microscope by Anton van Leeuwen-
hoek in the 17th century it was possible to better observe the heart, and shortly
thereafter its tubular nature and contraction pattern was recognized. The resolu-
tion of microscopy has steadily increased and with the invention of the electron
microscope in the 1930ies impressive images could be made of the cell structure
of the heart. Movie techniques and modern day optics have further improved the
possibilities in envisioning the embryonic heart.

2.1 Hamburger and Hamilton stages

The chick embryo has been a research specimen for embryological research for
several hundred years, as it is both simple to obtain chicken eggs and simple to get
to the embryo, but in 1951 research in the chick embryo was made even easier.
This was the year when Viktor Hamburger and Howard L. Hamilton published
their report detailing the embryonic chick development in 46 stages of the 21 days
incubation period [Hamburger and Hamilton, 1951].

The work by Hamburger and Hamilton characterizes the embryonic devel-
opment of the chick from distinguishing diagnostics in the embryo such as the
length of the beak, tail, wings or legs, the size and color of the eye, or the number
of somites, which are masses of mesoderm that form along the neural tube and
eventually will become part of the backbone and adjoining muscles.
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By making diagnosis according to the characterizations by Hamburger and
Hamilton it is possible to determine and compare the exact development of the
chick embryo through the identification of its Hamburger and Hamilton stage
(commonly known as HH-stage). The identification of HH-stages has become the
primary way of diagnosing development of the chick embryo since Hamburger
and Hamilton [1951]. Before their report the development of the embryo was typ-
ically characterized according to days and hours of incubation, see for instance
[Barry, 1948], but as embryonic development may vary this method was unreli-
able.

In relation to the overall development of the chick embryo Martinsen [2005]
has made a detailed description applying the HH-stages specifically to the embry-
onic heart (some medical terms are used here and explained later in the text):

HH-stage 6-7 The primary heart tube starts to form.

HH-stage 8-9 First morphological manifestation of the straight heart tube.

HH-stage 10-11 The heart tube is still open ended, onset of the morphological
procedure ‘cardiac looping’, the heart starts to beat.

HH-stage 12-13 The heart tube is a closed system, cardiac looping has com-
pleted its dextral looping phase, early formation of endocardial cushions,
the beating of the heart is stable, flow is observed.

HH-stage 14-15 Cardiac looping forms the s-shaped heart, onset of the epicardial
cell diffusion.

HH-stage 16 Onset of atrial septation, clear atrioventricular and outflow tract
cushions.

HH-stage 17-18 Formation of the s-shaped heart complete, epicardial mantle
begins to form over the myocardium, onset of trabeculation of the ventricle.

HH-stage 19-20 Formation of a primitive interventricular septum, extensive tra-
beculation of the ventricle, epicardium covers the inner curvature of the
heart.

HH-stage 21-23 Two pairs of endocardial cushions are formed at the outflow
tract, valve formation in the atrioventricular cushion begins, epicardial cells
penetrate into the myocardium.

HH-stage 24 Cardiac looping completed with the mature s-shaped heart, onset
of cardiac septation, loss of original tubular character.

HH-stage 25-46 Cardiac septation transforms the embryonic heart to the mature
four-chambered heart.
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The description of the embryonic heart development details how the heart
grows from the heart tube to the four-chambered heart, many morphological changes
happen during this process but only the important ones for this thesis are ac-
counted for here: During HH-stage 15 and onwards epicardium starts to form,
this is outer protective layer of the mature heart that will form on top of the my-
ocardial layer and increase its stiffness. The formation of endocardial cushions
creates cushions of soft gelatinous material at select positions in the heart tube,
and eventually they will grow into the heart valves. The process of cardiac loop-
ing is detailed below. The processes of trabeculation and cardiac septation are
both processes that will undo the morphology of the tubular heart and transform
it to the four-chambered heart, and already from HH-stage 18 the heart tube will
start to include a complicated mesh of fibers at its walls.

The embryonic heart starts beating at HH-stage 10 as the first functional organ
in the embryo [Männer et al., 2009]. This probably happens in conjunction with
the growing of the embryo, which at this stage may have attained a size above the
threshold where cell and nutrient transport may no longer be effectively supplied
by diffusion. In human cells diffusion lengths range up to about 1 mm [Olufsen,
1998], which fits well with this hypothesis.

From this analysis of the HH-stages of the embryonic heart, it is clear that
stages before HH-stage 10 are uninteresting for the modeling, because there is no
heart beat, while stages after HH-stages 18 may still be interesting but increasingly
harder to model using the models in this thesis due to ventricular trabeculation.

2.2 Cardiac looping

Cardiac morphogenesis has been a research field for more than 300 years, while
the knowledge that the embryonic heart actually starts as a simple tube is probably
older still. The first record of the fact that the heart tube shows the morphology of
a loop was made in 1758 by Albrecht von Haller, while Bradley M. Patten in 1922
introduced the concept that the formation of the heart loop was a distinct process
in the development of the heart, effectively coining the term ‘cardiac looping’
[Männer, 2000].

Cardiac looping has seen immense interest from developmental biologists be-
cause the looping of the heart tube and concurrent rightward rotation is the earliest
left-right asymmetry in the developing vertebrate embryo, and also data from ex-
perimental embryology seem to support the idea that abnormal cardiac looping
may be responsible for the development of malformed hearts [Männer, 2000].
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Figure 2.1: Electron microscope images of the looping tubular heart from Män-
ner [2000]. Top left a late HH-stage 10 heart, the lines divide the segments of
the primitive right and left ventricle and the outflow tract. Top right a HH-stage
12 heart, clearly looped in the shape of a ‘c’. Middle left a HH-stage 13 heart,
onset of s-looping. Middle right a HH-stage 14 heart, the ‘s’ shape is barely vis-
ible. Bottom left a HH-stage 15 heart, the heart curves in behind itself. Bottom
right a HH-stage 16 heart, the ‘s’ shape is now hidden behind the ventricle of the
heart. ‘c’ indicates the conotruncus or outflow tract, ‘v’ indicates the ventricle, ‘a’
indicates the atrium and ‘rs’ indicate the right part of the sinus venosis.
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From the formation of the straight heart tube at the very early stages of the
embryo, cardiac looping is the process that transforms the heart into a fully devel-
oped s-shaped curved heart tube at the onset of cardiac septation and the formation
of the four chambered heart, this development is said to go through three phases:
dextral looping, formation of the primitive s-loop, and formation of the mature s-
loop [Männer, 2004]. A series of electron microscope images from Männer [2000]
depicting the looping heart in the stages of interest for the modeling in the thesis
is visible on figure 2.1.

At the beginning of cardiac looping around HH-stage 9 the embryonic heart
has grown from nothing to a straight and almost symmetric tube (in the so called
prelooping phase) oriented along the ventral midline (central) of the embryo. The
heart tube consist of the early stages of the future ventricles connected to two ve-
nous inlets at its lower end and an arterial outlet at its upper end, which quickly
separates into two main arteries destined to become the aorta and pulmonary artery
during later stages of development. During the growth of the embryonic heart in
the following phases additional ‘cardiac segments’ (atrioventricular canal, com-
mon atrium, systemic venous sinus, outflow tract) are added to the heart tube
from its upper and lower end respectively, though the tube remains principally
undivided and valveless [Männer, 2008].

Dextral looping is the process that transforms the straight heart tube to a c-
shaped curved heart tube. The process starts at HH-stage 9-10 and ends at HH-
stage 12. It was previously believed that dextral looping occurred as a result of
a spatially confined growth of the heart tube causing the tube to bulge, though it
was not possible to explain why the tube would always bulge rightwards. Recent
research has however revealed that the looping of the heart is comprised of a
lengthwise growth and a consequently ventral bending (towards the front of the
embryo) combined with a rightward rotation of the upper part of the tube along
the craniocaudal axis (the head-to-toe axis) forcing a counterclockwise rotation of
the tube to the right [Männer, 2004].

Following dextral looping the next process transforms the c-shaped curved
heart tube into an s-shaped looping heart with the onset at HH-stage 13 until HH-
stage 18, with a clear s-shaped loop visible already at HH-stage 14. This process
is primarily characterized by the shortening of the distance between the primitive
outflow tract at the upper end and the primitive atria at the lower end of the heart
tube supposedly combined with a leftward rotation of the lower end of the tube
[Männer, 2004].

The final process of maturing the s-shaped loop occurs from HH-stage 19 until
HH-stage 24, at which the tubular heart effectively ceases to exist. This process
is mainly characterized by an immense growing of the heart and the shift of the
outflow tract and the atria to their final positions [Männer, 2000].
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All the while these processes transform the straight heart tube into the looping
heart, the heart is beating. Starting around early HH-stage 10 the heart beats ir-
regularly and slowly but by the end of stage 10 a clear heart rhythm is present
and during later stages the frequency increase [Castenholz and Flórez-Cossio,
1972], blood flow can be detected as early as HH-stage 11 [Castenholz and Flórez-
Cossio, 1972] and at stage 12 a peristaltic wavelike contraction pattern can be
observed along the length of the heart tube from the atrium to the outflow tract
[Taber, 2006a].

Thus it is clear that the interesting stages for the modeling will be HH-stage 10
when the heart starts beating but before the completion of the c-shaped loop, HH-
stage 12 with a complete c-shaped heart loop and a complete contraction wave
rhythm, HH-stage 14 with an early s-shaped heart loop, and HH-stage 16 with
a fully s-shaped heart including all the heart segments of the looping heart, see
figure 2.1. These four stages will be the ones in question during the model setup
process described in chapter 7.

2.3 Beating of the looping heart

At HH-stage 10 the tubular embryonic heart starts beating. At first the beating
is irregular, slow and only periodic in short intervals but late during HH-stage
10 a stable periodic rhythm is formed [Castenholz and Flórez-Cossio, 1972], still
the contraction pattern is primitive and only in the subsequent stages will that be
improved [Martinsen, 2005].

To achieve propulsion of blood the tubular heart is a layered structure con-
sisting of an inner layer, the endocardium, and an outer layer, the myocardium
(before the onset of epicardial formation), and in between the two resides a gelati-
nous material known as cardiac jelly. The myocardium is a relatively thick layer
that contains the contractile muscular fibers of the heart tube known as sacomeres,
it has no specific fiber architecture and the muscle fibers are distributed rather ran-
domly Lin and Taber [1994]. The endocardium is a thin one-cell thick layer with
composition similar to the myocardium Lin and Taber [1994]. It separates the
cardiac jelly and the inner lumen of the heart, and it appears as if the function of
the endocardium is to shield the blood inside the heart tube.

The cardiac jelly is an extracellular gelatinous material that contain radially
oriented fibers, less at the early HH-stages more at the later stages before trabec-
ulation. It is considerably softer than the other layers but may show existence
of anisotropy [Zamir and Taber, 2004]. Following a peristaltic pumping principle
Barry [1948] proved the essential function of the cardiac jelly to achieve occlusion
of the lumen of the heart tube and hence to propagate liquid in the tube.
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In his argument he constructed a cylindric tube and assumed first that it was
empty of cardiac jelly. It is a reasonable assumption that the heart tube only
achieves about 20 % diametric contraction during systole, and for a tube without
cardiac jelly this will not lead to occlusion of the lumen, which is desired for
effective peristaltic pumping.

If on the other hand it is assumed that cardiac jelly fills the volume from rd
to Rd, where Rd is the outer sleeve of the heart during diastole, it will have the
diastolic volume Vd = π (R2

d − r2d), and the systolic volume assuming 20 % com-
pression of the tube, Vs = 0.8π (R2

s − r2s). Under the assumption that cardiac jelly
occludes the lumen during systole rs is set to zero, thus Vs = 0.8πR2

s.
For approximation assume that the cardiac jelly is incompressible, such that

its volume at diastole equals its systolic volume, π (R2
d − r2d) = 0.8πR2

s. But
with the assumption that the heart contracts to 80 % of its diameter during systole
Rs = 0.8Rd ⇒ R2

s = 0.64R2
d, and thus R2

d − r2d = 0.8 · 0.64R2
d = 0.512R2

d

leading to rd = 0.69Rd. If t describes the thickness of the cardiac jelly, then
rd = 0.69 (rd + t), which leads to t = 0.45rd. Thus Barry [1948] concluded that
the thickness of the concentric layer of cardiac jelly in a cylindric tube needs to
be about 45 % of the diastolic radius of the lumen to effectively propel blood with
a peristaltic pumping principle. However the calculation includes a small error
since Barry multiplied the 80 % compression ratio twice, once as a diametric
contraction and once as a contraction of the cross-sectional area; assuming only
80 % diametric contraction leads to the conclusion that the thickness of concentric
layer of cardiac jelly should be about 66.7 % of the diastolic lumen radius.

The assumption in Barry’s argument is that the heart tube has a concentric
contraction pattern, later in the 1980ies it was speculated by Steding and Seidl that
the contraction could instead be eccentric and later still using the relatively new
imaging technique optical coherence tomography Männer et al. [2008] were able
to produce live images of the cross-section of a contracting heart tube, proving
that the embryonic heart does in fact contract in an eccentric pattern, which is
almost elliptic and can be seen on figure 2.2.

The discovery of the eccentric contracting heart tube does not ruin Barry’s
argument that the cardiac jelly is important for the propulsion of blood in the
embryonic heart, in fact he was right in claiming that the cardiac jelly almost
occluded the heart lumen during systole, which is clearly visible on figure 2.2.

At early HH-stages the lumen of the heart tube is described with a low-eccentricity
ellipse at diastole, it is almost circular, but during systole the heart contracts such
that the elliptic lumen increases its eccentricity until the peak of systole, where
the ellipse degenerates with an eccentricity equal to one, the lumen becomes slit-
shaped and occluded.

At later HH-stages the diastolic lumen is more bell-shaped than elliptic with
the mouth of the bell facing the outer curvature of the looping heart. Additionally
it is possible to see spike-formations where the lumen penetrate the cardiac jelly
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Figure 2.2: OCT images of the layered cross-sections of the beating heart from
Männer et al. [2008]. It is clearly seen how the inner endocardial layer contracts
almost elliptically while the outer myocardial layer contracts in an almost concen-
tric manner.

and reach out to the myocardium of the heart tube. The lumen is not always com-
pletely occluded during systole, yet the contraction pattern is still clearly eccentric
[Männer et al., 2009].

Meanwhile the outer sleeve of the heart, the myocardium, contracts in an al-
most concentric manner, though it is proved by Männer et al. [2009] that the con-
traction is slightly eccentric from HH-stage 14 to 17 and possibly also earlier. The
approximate concentric contraction of the myocardial sleeve seems to confirm the
assumption by Barry that the relatively little outer contraction of the heart tube
makes the cardiac jelly fill up the entire volume inside the heart tube, essentially
through incompressibility.
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The construction of the elliptic layer of cardiac jelly in the heart tube comes
as a consequence of the generation of the tubular heart, as it grows from two
heart-forming fields on either side of the sagittal plane of the embryo (the cross-
sectional plane that divides left and right in the body) in a bilateral process during
HH-stages 6 and 7, and at HH-stage 8 the two halves get fused together along
the major axis of the later elliptic cross-section [Martinsen, 2005]. An interesting
question is if there are other reasons that the heart lumen is elliptic apart from its
genesis.

One advantage of eccentric contraction seems to be the strain endured by cells
in the endocardial inner layer of the heart wall. In hypothetical heart tubes with
concentric contraction, like the one suggested by Barry, the endocardial cells un-
dergo severe strains from diastole to end-systole, while heart tubes with the ob-
served eccentric deformation pattern expose the endocardial cells to much lighter
dimensional changes. It may be that the observed eccentric contraction is made to
minimize stress in the walls of the heart tube [Männer et al., 2008].

Concerning peristaltic transport of fluid it has been proven for technical cases
that tubes of elliptic cross-section have a higher mechanical efficiency of peri-
staltic pumping compared to tubes of circular cross-section, and similar results
have been achieved for simple models of the tubular embryonic heart under as-
sumption of peristaltic pumping [Männer et al., 2008]. Thus evidence suggest
that the tubular heart is made to optimize blood pumping capabilities.

2.3.1 Optical coherence tomography

Optical Coherence Tomography (OCT) is an echo-based imaging modality that
measures the time-of-flight of back-reflected light using low-coherence interfer-
ometry. OCT use a near-infrared light source and measures the light scattering
and reflection of light relative to light traveling a known reference path inside the
OCT apparatus. The system obtains images with a resolution of 10 to 30 µm with
depth penetrations of a few millimeters (typically 2-3 mm), deep enough to scan
the live pumping heart of the chick embryo [Yelbuz et al., 2002].

The imaging technique of OCT is more or less the same as in the more com-
monly applied ultrasound technique; a single two-dimensional image scan (known
as a B-scan) consists of several thousand one-dimensional scans (A-scans) as the
probe beam is laterally scanned across the sample. Alternatively A-scans can be
made sequentially at a stationary location to show time-development in the so
called M-mode images. Naturally sample speed is essential for this technique; a
higher frequency means a higher number of A-scans per second, which can be
translated into a better M-mode resolution or a higher number of A-scans per B-
scan. A-scan resolution is another important factor in this imaging technique; a
typical A-scan beam has a width of 10 to 20 µm in both axial and lateral dimen-
sion, which defines the resolution of B-scan images.
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OCT was introduced in 1991 and has been thoroughly used in the imaging
of semi-transparent tissues (such as the chick embryo) or highly light-scattering
tissues (such as the retina of the eye) in its twenty year lifetime. However the
techniques used in imaging of chick embryos is no more than ten years old [Yelbuz
et al., 2002]. Some of the newest approaches to the technique is the combination
with Doppler theory to achieve dimensional as well as dynamical information
[Davis et al., 2009] and the combination of images to achieve 3D (or even 4D)
images [Liu et al., 2009] as well as a general A-scan resolution and increase in
sampling frequency of the OCT equipment.

2.4 Peristaltic pumping vs. the Liebau effect

Following the discovery of muscular contractions of the embryonic heart it was
quickly discovered by Albrecht von Haller in 1758 that a wavelike contraction
pattern was visible from the venous end of the heart tube towards the arterial
end, and that this contraction wave was preceded by a short distension of the
wall of the tube given by the compliant reaction to the inflow of blood. These
observations made von Haller conclude that the heart contraction reacted to a
local pressure stimulus, which fit well together with a peristaltic pumping theory
of blood propulsion [Männer et al., 2010].

Peristaltic pumping was already recognized by scientists as the pumping prin-
ciple of the gut and the ureter, and it was conspicuous to believe the same principle
would govern the pumping of blood as well. During the 19th century a long range
of scientists succeeded in constructing a convincing description of the embryonic
heart as a peristaltic pumping mechanism that responded to intrinsic stimuli to
produce a stable propulsion of blood out through the vascular system and even
the four-chambered heart was described as peristaltic by Gaskell in 1883 [Männer
et al., 2010].

This reveals that in the 18th and 19th century peristaltic pumping was defined
in a much broader sense than today. Modern peristaltic pumping can be envisioned
as a sliding contraction of the heart tube, or in some cases a sequential contraction,
such that the liquid is pushed forward by the contraction wave. From this follows
that a peristaltic contraction wave requires a certain length of contractile tube to
work.

As such it was contradicting to the peristaltic hypothesis when Johnstone dis-
covered that the HH-stage 10 heart only contracts its ventricle in an almost uni-
form manner [Männer et al., 2008]. But already the peristaltic pumping theory
was in a state of crisis. During the 19th and especially the 20th century peri-
staltic fluid transport became a more specialized mechanical principle as engi-
neers, physicists and mathematicians achieved interest in this phenomenon, and
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at the same time physicians made much more specific definitions of the biological
peristalsis of the gut and ureter, so by the beginning of the 20th century the em-
bryonic heart could hardly be described as a peristaltic pump any longer [Männer
et al., 2010].

And then in 1954 a new pumping theory was introduced. Gerhart Liebau pro-
posed a pumping principle based on an active pumping action at a single point
on the tube creating a pulsating pressure wave that when interacting with the im-
pedance of the heart and vascular system would create a flow. Liebau was mostly
interested in the mature heart and he explained his ideas by construction of sim-
ple mechanical pumping systems that did not catch the interest of embryologists,
but he did in fact speculate about the applicability of his pumping principle as an
alternative to the peristaltic pumping in the embryonic heart [Liebau, 1955].

Liebau’s theories mostly caught the interest of mathematicians and physicists
and for many years after its introduction the so called Liebau effect was mostly
considered a phenomenon of relatively simple experimental setups in fluid me-
chanics. It was speculated that the Liebau effect could have influence on the
embryonic heart but it was not until a research group from the California Insti-
tute of Technology lead by Farouhar, Gharib and Hickerson in 2006 decided to
investigate whether the embryonic zebrafish heart might work as a Liebau pump
that Liebau theory was actually considered as a viable alternative to the peristaltic
pumping theory [Männer et al., 2010].

The Liebau effect has proven to be a competing theory to the peristaltic pump
in relation to the embryonic heart, and it has recently caught interest with many
embryologists. It is however not a complete alternative, just like the peristaltic
pump the embryonic heart demonstrates behavior that can not be explained with
the simple Liebau effect. In a comparison between the two pumping principles
Männer et al. [2010] compiles a list of characteristics for the simple technical
case of a peristaltic pump:

Characteristics of the technical peristaltic pump:

The pump is a positive displacement pump that generate flow by
pushing the liquid forward.

The pump has non-stationary sites of active compression that moves
along the length of a flexible tube.

Movement of active compression sites is seen as a unidirectionally
propagating compression wave.

The flow generated is continuous.

No structurally fixed direction of net flow; flow direction depends
on the direction of the compression waves.
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The generated flow velocity corresponds to the speed of the com-
pression waves.

There is a linear relation between compression wave frequency and
flow rate.

It should be noted that these are characteristics of the technical peristaltic
pumps used in engineering and industry. In biology there is at least one example
of a peristaltic pump that works differently than the technical pump, the gastric
emptying of the stomach produce flow velocities far higher than the corresponding
compression wave. Furthermore recent computational modeling demonstrate that
peristaltic heart tubes can generate pulsatile flow as a consequence of the endocar-
dial cushions at the inflow and outflow regions of the tube [Männer et al., 2010].
Thus it is important to distinguish between technical and biological peristaltic
pumps, as the latter is able to demonstrate characteristics not normally described
with technical peristalsis.

Correspondingly the list for the characteristics of the Liebau effect by Männer
et al. [2010] is compiled for a simple technical Liebau pump involving only a
single compression site, despite the fact that a sequence of compressions is likely
more appropriate for the embryonic heart [Liebau, 1955]:

Characteristics of the simple Liebau pump:

The pumping tube must have a flexible wall of finite length.

There has to be a mismatch of impedance right and left in relation to
the pumping site (preferably at the ends of the flexible tube).

The pump includes only a single stationary site of active compres-
sion.

The active compression site must be at an asymmetric position along
the tube.

The generated flow is pulsatile.

No structurally fixed direction of net flow; flow direction depends
on frequency.

Generation of bidirectional elastic waves traveling along the passive
walls of the tube (both upstream and downstream).

The flow velocity can exceed the speed of the traveling elastic waves.

There is a non-linear relationship between compression frequency
and flow rate.



36 Mathematical Modeling of Flow Characteristics in the Embryonic Heart

Both pumping principles demonstrate valveless pumping action and as such
there is no structural dependency (for instance by valves) of the direction or mag-
nitude of the generated flow. For the peristaltic pump the flow follows the direction
of the compression waves and is linear dependent on compression wave speed and
frequency. For the Liebau pump the flow depends on the frequency of stationary
compressions and their position in relation to the distribution of impedance in the
tube, the dependency is non-linear and at certain frequencies the flow may change
direction.

Generally the embryonic heart demonstrate what appears to be a wave of
contractions along its length, which has prompted the peristaltic hypothesis. It
has been proved that these contractions can not be generated by passive com-
pliance to a strong singular compression function, and furthermore studies show
that when the different cardiac segments are physically isolated they still utilize
the same contraction pattern indicating active compression in all segments of the
heart [Männer et al., 2010], which all support the peristaltic theory. On the other
hand researchers have discovered embryonic hearts in fish and lower vertebrate
that only employ a single contraction site, and at the same time it is reported
that the contraction wave in higher vertebrate embryos (such as the chick) has
a ‘kickstart’ contraction of the atrium while the rest if the contraction pattern is
more steady [Männer et al., 2010], such discoveries seem to support a complicated
Liebau mechanism.

It has been argued how the influence of cardiac jelly and the elliptic cross-
section optimize the embryonic heart for peristaltic transport, but in fact it can
also be hypothesized that cardiac jelly may have a high influence on fluid transport
following the Liebau principle via its elastic nature, such that it may amplify the
elastic waves responsible for the Liebau effect, regardless that lumen occlusion is
not normally observed in standard technical Liebau pumps [Männer et al., 2010].

The two pumping theories have both merits and flaws in relation to the mea-
sured characteristics of the heart, but none are strong enough to completely ex-
clude the theory as a possible explanation of the pumping mechanism of the em-
bryonic heart.

2.5 The questions about the embryonic heart

It is made clear how the embryonic heart starts its genesis as a looped multilayered
tube and begins beating contractions as soon as it is generated, at first the contrac-
tions are simple and irregular but later a clear contraction wave or sequence of
contractions is seen traveling the heart tube from the venous end over the atrium
and ventricle to the outflow tract.
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The tubular heart is generated during HH-stage 9 and 10 as an almost straight
tube, but in the subsequent stages the tube curves into a c-shaped tube at HH-
stage 12 and an s-shaped tube from HH-stage 14 until HH-stage 24. This happens
while the tube is also growing in length by adding new cardiac segments to the
embryonic heart, in this way the tubular heart is fully formed at HH-stage 16, all
though at later stages the cardiac segments grow further. In the stages following
HH-stage 16 the processes of trabeculation and cardiac septation transforms the
multilayered looping heart into the mature four-chambered heart. It is not known
if the morphology of the looping heart is only a process in forming the mature
heart or if the looping has an influence to optimize flow conditions in the heart.

The tube is layered such that between the inner endocardial layer and the outer
myocardial layer resides a layer of gelatinous material known as cardiac jelly. The
distribution of cardiac jelly in the heart tube is eccentric, forming two cushions on
either side of the heart tube such that the inner lumen of the heart tube appears
almost elliptic. It has been reasonably established that the cardiac jelly and the
elliptic cross-section optimizes conditions for peristaltic pumping, but it is not yet
known if it will also have an increased effect on Liebau pumping.

Two hypothetic theories are suggested for the pumping mechanism of the tubu-
lar heart: peristaltic pumping or the Liebau effect. Both theories have characteris-
tics that seem to support or conflict with the observations of the embryonic heart,
the question has recently been which of these are the correct description of pump-
ing in the heart, but perhaps a more relevant question would be if they are mutually
exclusive.





Chapter 3

Flow Theory

The embryonic chicken heart is a special case of bio-mathematical modeling of
blood flow, and the first step in the modeling procedure will be to recount some of
the established theory on the area. The purpose of this chapter will be to present
some of the fundamental concepts and theories, which will be used in the model-
ing, at the while arguing why the embryonic heart can not be modeled solely from
these basic principles.

The concepts and theories herein come from the classic fluid dynamics, which
should be subdivided into aerodynamics, concerning compressible fluids, and hy-
drodynamics, concerning incompressible fluids. Yet many researchers feel the
need to express that blood is a special kind of fluid that is bound to demon-
strate non-Newtonian behavior and a complex compressibility, therefore they have
coined the term ‘hemodynamics’ for the special study of blood and the cardiovas-
cular system [McDonald, 1968].

The three most important concepts here are the nature of the liquid, the elastic
tube walls and the pulsating flow and pressure. This may all be modeled with
hydrodynamical theory as a first approximation, which will also be the starting
point of this chapter but during the course of the chapter (and especially later
chapters) it should be clear that hydrodynamics will not be sufficient, which both
warrants the models of chapter 4 and 6 as well as the name ‘hemodynamics’.

3.1 Basic properties of fluids

A fluid in physics is a continuous material medium that flows, this is in fact the
one thing that distinguishes a fluid from a solid, in more specific terms, a fluid
cannot maintain a shear stress for any length of time [Feynman et al., 1964, 40-1].
Fluids are like any other material characterized by their mass density, ρ [kg/m3],
while the special flow property of a fluid is characterized by the measure of the
viscosity, η [1 Pa·s = 10 Poise], thicker liquids like honey move less easily than
fluids like air or water.

39
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Figure 3.1: The typical model to illustrate viscosity. Imagine two parallel plates
of equal area, A, with distance, d, between them. The plates move with speed, v0,
relative to each other. The viscosity can then be found by measuring the force, F ,
needed to maintain a constant velocity.

The measure of viscosity is usually explained by imagining two parallel plates
of equal area, A, separated by a layer of fluid, one plate is held stationary and the
other is moved parallel to the first with a slow constant speed, v0. See figure 3.1.
The force, F , required to keep the plate moving will be proportional to the area
of the plates and to v0/d, where d is the distance between the plates. Thus the
shear stress, F/A, induced on the liquid is proportional to v0/d, and the constant
of proportionality is called the coefficient of viscosity,

F

A
= η

v0
d
. (3.1)

Usually the viscosity is a fixed constant at all but the most extreme cases, for
blood however it is a little different. The viscosity of blood have two known anom-
alous properties typically referred to as the ‘low shear’ and ‘high shear’ effects;
[Nichols and O’Rourke, 1998, p. 18]

Low shear effect: At low shear stress, the apparent viscosity of blood increases
markedly. It has been shown with almost certainty that flow may cease in
the presence of a very low measurable stress, implying that there is a ‘yield
stress’ under which blood is not a fluid.

High shear effect: In small tubes, the apparent viscosity of blood at high shear
stress is smaller than it is in larger tubes. This effect begins to be detectable
with tubes of less than 1.0 mm internal diameter (i.e. about 100 times the
major diameter of red blood cells).

A fluid in classical physics is either Newtonian or non-Newtonian. A New-
tonian fluid obeys a linear relationship between stress and velocity like the one
described in equation 3.1, which means a Newtonian fluid has a constant viscos-
ity. Clearly the low shear and high shear effects make blood a non-Newtonian
liquid, which in general will make the equations of motion for blood flow un-
solvable. It is however commonly assumed that there is a large interval of shear
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rates for which blood behaves in all aspects like a Newtonian liquid, in particular
it has been demonstrated that for all blood vessels with internal diameter much
larger than the diameter of red blood cells blood behaves like a Newtonian liquid
[Nichols and O’Rourke, 1998, p. 15].

3.2 Fluid motion

The governing equations for the modeling of any fluid movement are the Navier-
Stokes equation together with the equation of continuity,

ρ

(
∂v

∂t
+ (v · ∇)v

)
= f −∇P + η

(
∇2

v +
1

3
∇(∇ · v)

)
, (3.2)

∂ρ

∂t
+∇ · (ρv) = 0, (3.3)

where v is the velocity field, P is pressure and f are the external forces applied to
the fluid. However, for many cases of fluid motion these equations are impractical,
while for other cases they are unsolvable, and so in practice it is common to make
a characterization of the flow before model equations are applied.

For instance for many cases for liquid motion it is customary to assume that
the liquid is incompressible, ρ is a constant, which simplifies the equations above:
the equation of continuity becomes simply ∇ · v = 0, which in turn terminates
the last term of the Navier-Stokes equation. Another example is the assumption
of Newtonian fluid behavior.

In the case of blood it is debatable if ρ and η can be assumed to be constants:
section 3.1 points to the fact that especially η may not be constant under certain
circumstances, and it is well-known that both are functions of the blood hematocrit
number (the volume percentage of red blood cells in the blood), for the viscosity
the low shear and high shear effects are especially dependent on hematocrit levels
[Meier, 1987].

For adult human blood the hematocrit is around 48 % for men and 38 % for
women and may vary in relation to conditions such as age, health, dehydration,
and pregnancy for women. For embryonic blood the hematocrit is much lower,
typically not even 20 %. Under these circumstances at least density is considered
constant, while the non-Newtonian effects of viscosity may still be seen. Density
and viscosity of embryonic blood are discussed further in section 3.5 and 7.3,
though in this thesis they are both assumed to be constant.



42 Mathematical Modeling of Flow Characteristics in the Embryonic Heart

3.3 Laminar flow vs. turbulent flow

Another important characterization of fluid motion, which has become an impor-
tant discussion in hemodynamic research, is the determination of the nature of the
flow.

General hydrodynamics defines the concepts of laminar and turbulent flow: If
there exist an ordering of layers inside the fluid such that each layer, beginning
with the outer layer along the boundaries of the liquid, have a uniform velocity
the flow is said to be laminar, otherwise it is turbulent.

In ordinary hydrodynamic theory the question of laminar versus turbulent flow
can usually be determined by referring to the Reynolds number. This number
is basically a comparison of the magnitude of two terms of the Navier-Stokes
equation, the advective term of velocity change, (v ·∇)v, and the viscous term of
velocity change, ν∇2

v, where ν = η/ρ is the kinematic viscosity.
These two terms govern two properties of all kinds of flow, inertia and viscos-

ity. Inertia attempts to continue the motion of a fluid once it is started whereas
viscosity acts as a brake. If inertia is dominant the flow is said to be ideal, it is
custom to leave out the viscous term from the Navier-Stokes equation in these
cases. If viscosity is dominant the flow is usually known as creeping flow and the
advective term can be omitted. [Lautrup, 2005, p. 237]

To get a measure of these two terms assume that for a certain region of the fluid
the velocity is of a typical size, |v| ≈ U , and that it changes by a similar amount
over a region of size L. The order of magnitude of the first-order spatial derivative
of the velocity will then be |∇v| ≈ U/L and the second-order derivative will
be of magnitude |∇2

v| ≈ U/L2. Consequently the construction of the Reynolds
number will be,

Re =
|(v · ∇)v|
|ν∇2v| ≈ U2/L

νU/L2
=
ρUL

η
. (3.4)

For small values of the Reynolds number the flow is laminar and orderly, hence
creeping flow (Re ≪ 1) is always laminar. For larger values, depending on the
flow geometry and other circumstances (for instance if the flow is pulsatile), there
will be a critical Reynolds number where turbulence sets in. This critical number
is typically in the region of thousands and commonly it is agreed that a flow with
Reynolds number below 1000 is laminar whereas above it is uncertain.

For flow in tubes two conventions of the Reynolds number is used: the typ-
ical velocity in the tube, U , is given by the mean velocity defined as the liquid
flow over the cross-sectional area, U = Q/πr2, however the region of change, L,
may be given by the inner diameter of the tube or by the inner radius. For typical
engineering practice the diameter is used, which will increase the threshold value
between laminar and turbulent flow to 2000 [Crane Co., 1982, Granger, 1995],
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but following mathematical argumentation the region of possible velocity change
should only be the inner radius of the tube, L = r, which is also the standard prac-
tice in hemodynamic modeling [McDonald, 1952]. The two conventions should
never be confused, as that could lead to false assumptions about the nature of the
flow. In this thesis the Reynolds number will be defined by use of the inner radius.

Considering flow of blood it has been debated for many years whether the
pulsatile flow of blood is laminar or turbulent, especially flow in the larger arteries
(of humans and larger animals). It has been observed by McDonald [1952] and
others that blood flow in the aorta is mostly laminar but it can at times be turbulent
(especially in the peak of the systole), and likewise it is well-known that near
bifurcations in the arteries turbulent flow is likely to form.

Many researchers have attempted to calculate typical Reynolds numbers for
the flow of blood, it is a difficult process since blood is generally a non-Newtonian
liquid with complex density and viscosity, depending on the hematocrit number,
and the pulsatile flow makes it hard to determine an average velocity for the
computation. The highest Reynolds numbers calculated for blood in the arter-
ies of larger mammals seems to be around 900-1000 while several lower numbers
have been calculated all the way down to about 300, this should clearly make the
flow laminar yet observations show that turbulent behavior can occur even with
Reynolds numbers as low as 550 [McDonald, 1952].

According to McDonald [1952] the observed sort of turbulent onset during
the peak of the systole should be possible in all larger mammals, yet later studies
show that at least for some larger mammals no turbulence is observed [McDonald,
1955]. Generally it can be debated whether the standard Reynolds number is at all
applicable as an indicator of laminar or turbulent pulsatile blood flow or if another
effective Reynolds number should be calculated [Hale et al., 1955].

For smaller arteries, capillaries and veins the situation is much more clear,
here the vessel dimensions or flow velocity is sufficiently small so that flow is
laminar except for the most rare of cases. This applies for the embryonic heart
as well, where flow appears to be laminar throughout the cardiovascular system.
With viscosity and density as defined in section 7.3, mean velocity, U ≈ 3 mm/s,
and maximum radius, L ≈ 0.25 mm, a Reynolds number is found, Re ≈ 0.2,
which lies far below the threshold of turbulent flow.

3.4 Poiseuille flow

Assuming blood is a Newtonian liquid with laminar flow it is logically from hy-
drodynamic practice to assume that some instances of the blood flow can be de-
scribed with Poiseuille’s equation.
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v(r)d = 2r

Figure 3.2: The flow profile in a section of tube with pressure driven laminar flow.

There are many ways to derive this equation, here the standard mechanical
approach is presented though later other approaches may come into use.

Relate the definition of viscosity from equation 3.1 to a section of tube as-
sumed to be circular with inner radius, R, and length, ∆x. Under normal pressure
driven flow every layer of liquid inside the tube moves with different velocity, so
that the liquid in the center of the tube moves fastest and the liquid near the wall
of the tube moves with speeds close to 0. The viscous force retarding the motion
of a liquid layer in a distance, r, from the center is proportional to the area of its
surface, 2πr∆x, and to the velocity gradient across the vessel, dv/dr,

Fviscous = η · 2πr∆x · dv
dr
. (3.5)

Note that force and velocity are here both scalar since the flow is everywhere
parallel to the wall of the cylindric tube.

The force exerted on the tube section by the pressure is the pressure multiplied
by the cross-sectional area, minus the pressure at the distal end,

Fpressure = πr2(P1 − P2), (3.6)

where P1 and P2 are the pressures at the ends of the tube section.
These two forces are equal and opposite,

πr2(P1 − P2) = 2πrη∆x
dv

dr
, (3.7)

so the velocity gradient is

dv

dr
=
r(P1 − P2)

2η∆x
. (3.8)

By integration of the velocity gradient from r to R,

v(r) =
∫ R

r

r′(P1 − P2)

2η∆x
dr′ =

P1 − P2

4η∆x
(R2 − r2), (3.9)

it is seen the the velocity inside the tube section is parabolic with maximum ve-
locity at r = 0 and v(r) = 0 at r = R, see figure 3.2.
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To obtain the volume flow, determine the volume of the paraboloid which has
this parabola as its profile. That is, integrate the velocity once more over the
cross-sectional area of the tube,

Q =
∫ R

0
2πv(r)rdr =

2π(P1 − P2)

4η∆x

∫ R

0
r(R2 − r2)dr, (3.10)

which yields the Poiseuille equation,

Q =
πR4(P1 − P2)

8η∆x
. (3.11)

The Poiseuille equation is a relation between a steady flow of a liquid com-
pared to the viscous drag in a tube of radius R. It is important to note that volume
flow is related to the fourth power of the radius so that a two-fold increase in
radius causes a 16-fold increase in flow.

The simple derivation of Poiseuille’s equation above differs somewhat from
the general solution to steady flow in a cylindrical tube in that it considers every
layer of liquid as a solid that is only effected by the viscous drag on its surface.
The general solution will however yield the same two equations, 6.44 and 3.11,
for the flow [Lautrup, 2005, p. 251].

The conditions under which Poiseuille’s equation applies to the flow of blood
lies implicit in the method of its theoretical derivation, they are however quite
severe and definitely deserves a mention;

The liquid is homogeneous, incompressible and Newtonian. Both viscosity and
density must be constant in comparison to the size of the blood vessel.

The liquid does not slip at the wall. The assumption that velocity is zero at
the wall is held to be universally true for all liquids, yet some researchers
have suggested that the anomalous flow properties of blood may be due to
special properties of the walls of blood vessels that could cause liquids to
slip [Nichols and O’Rourke, 1998, p. 15].

The flow is laminar. This as discussed above is not necessarily true as turbulent
flow may occur in larger blood vessels.

The rate of flow is steady. If the velocity of the liquid is accelerated or decelerated
the pressure gradient is partly used to alter kinetic energy of the liquid and
thus the equations do not hold. As the flow of all large arteries is markedly
pulsatile Poiseuille’s equation does not apply to those vessels.
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The vessel is long compared to the section being studied. Close to the inlet of
a vessel the paraboloid velocity profile have not yet been established. The
distance required to establish the steady form is known as the inlet length.
Every bifurcation of blood vessels should thus be treated as an inlet to a new
blood vessel. For liquid flow with low Reynolds numbers the inlet length
is very short (only a few tube diameters) and thus it will only have minor
effect on the viscous flow [Meier, 1987].

The blood vessel is cylindrical. Most arteries of the systemic circulation are
circular in cross-section, but many veins and the pulmonary arteries tend to
be elliptical. Many blood vessels taper as they go towards the periphery of
the system [Nichols and O’Rourke, 1998, p. 16].

The blood vessel is rigid. For the equation to hold, the diameter of the blood
vessel must not vary with the internal pressure, yet blood vessels are elastic.
Under these conditions the flow will not be solely a function of the pressure
gradient.

With this list of restrictions it seems obvious that Poiseuille’s equation does
not in itself apply to the pulsatile flow of blood, still if it is considered as only a
relation describing viscous friction of liquid inside a cylindrical tube it will be of
use.

3.5 The Bernoulli effect

It is reasonably established that blood flow is not Poiseuille flow, mainly because
the blood flow is not steady and the walls of the blood vessels are elastic. That
is, the blood vessels change their diameter as a function of the pulsatile pressure.
The flow of blood may still be laminar but the flow profile is not always parabolic
as suggested by Poiseuille’s equation. Under these conditions it is customary
to apply Bernoulli’s equation, which springs from the universal conservation of
energy and thus must apply for blood flow.

It is reasonably assumed that blood flow is incompressible under all conditions
except the most extreme. This means that under normal flow circumstances a
volume of liquid moving along with the flow does not expand or contract but
remains constant in time. Written as, the surface integral over a closed volume of
the velocity field must remain zero at all times,

∮

S
v · dS = 0, (3.12)

which by use of Gauss’ theorem can be changed into the well-known consequence
of incompressible flow that the divergence of the velocity field is zero, ∇ · v = 0.
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Note that incompressible flow is a condition to the characteristics of the flow
not a condition on the liquid itself. Every liquid is in principle compressible and
to state incompressibility for the flow is only an approximation that holds for
ordinary pressure and velocities below the local speed of sound [Lautrup, 2005,
p. 214].

Furthermore it must be reasonable to assume that no place in the heart or
arterial system have a higher density of blood than any other, even though the
density of blood in capillary tissue or in the veins might be different. The density
of blood is spatially independent, then by the equation of continuity,

∂ρ

∂t
+∇ · (ρv) = 0, (3.13)

the density is also time-independent.
Assume now for a small section of tube the flow at time, t, is nearly steady,

i.e. ∂v/∂t = 0, so that the flow into the section, Q, equals the flow out of the
section. At the mouth of the section the cross-sectional area is A1, at the end A2.
The flow can then be calculated,

Q = A1v̄1 = A2v̄2, (3.14)

where v̄1 and v̄2 are average velocities.
The effect of the work done to the liquid at both ends of the section will then

be P1A1v̄1 and P2A2v̄2.
Likewise the effect of the kinetic energy can be calculated from the mass flux,

Φ1 = ρA1v̄1 and Φ2 = ρA2v̄2, and the square of the velocities, E1 = 1
2
Φ1v̄

2
1 and

E2 =
1
2
Φ2v̄

2
2 .

Finally the effect of the potential energy can be calculated assuming gravity is
the only external force on the section, U1 = gh1Φ1 and U2 = gh2Φ2, where h1
and h2 are the heights above zero at opening and final end of the section.

By conservation laws the flux of energy in both ends of the section must be
equal,

P1A1v̄1 +
1

2
ρA1v̄

3
1 + gh1ρA1v̄1 = P2A2v̄2 +

1

2
ρA2v̄

3
2 + gh2ρA2v̄2, (3.15)

which by the steady flow condition in equation 3.14 becomes,

P1 +
1

2
ρv̄21 + gh1ρ = P2 +

1

2
ρv̄22 + gh2ρ. (3.16)



48 Mathematical Modeling of Flow Characteristics in the Embryonic Heart

Equation 3.16 is a generalization of the Bernoulli equation. It would be wrong
to state the conservation of the energy flux, i.e. P+ 1

2
ρv̄2+ghρ = [constant], since

steady flow is only a local approximation to the pulsatile flow. To make a clearer
picture assume that gravitational potential energy has nearly no influence on the
flow, i.e. h1 ≈ h2, which gives a local relation between pressure and velocity of
the liquid,

P1 = P2 +
1

2
ρ
(
v̄22 − v̄21

)
. (3.17)

It can thus be seen that if the velocity of the blood is increased, v̄2 > v̄1, the
pressure must be correspondingly decreased, P2 < P1. This sets a local condition
on the pressure-flow relationship, which will be used in the modeling procedure
in chapter 4 and 6.

3.6 Elasticity of the walls

The elasticity of the vessel walls is one of the main problems for modeling of
blood flow, if blood vessels were rigid the flow could be modeled using constant
boundary values for some variant of the Navier-Stokes equation. Elastic walls
makes the boundaries variable as a function of the pulsatile blood pressure inside
the vessel.

The elastic compliance of a section of tube is a relation of the volume increase
caused by an increased pressure, a compliance relation for a cylindric tube will
be derived here though later in chapter 6 the elastic compliance function will be
expanded to a more general level.

Assume a section of cylindric tube has the length ∆x and wall thickness h,
the section has inner radius R when at rest and the circumference, c = 2πR. The
force needed to extend the circumference by ∆c is given by Hooke’s law,

Felastic =
∆c

c
E h∆x =

∆r

R
E h∆x, (3.18)

where ∆r is the increase of radius given by the stretch in circumference, and
where E in equation 3.18 is Young’s modulus, which is a material parameter for
the linear relation between stress and strain in the same direction.

The increase in pressure inside the liquid is applied directly orthogonal to the
arterial wall, yet the force calculated in equation 3.18 is tangential to the surface.
To find how a pressure increase, ∆P , causes tangential forces find the force on a
small segment of arc of the wall,

Fpressure = ∆P · rdφ ·∆x. (3.19)
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Figure 3.3: The force from the pressure is normal to the tube wall, but it is bal-
anced by the sine-component of the elastic force in the wall.

In the event that the wall has come to rest after the pressure change a new equi-
librium is achieved where the force from the pressure is balanced by the normal
components of the tangential forces, like shown in figure 3.3,

Fnormal = 2Felastic sin
1

2
dφ, (3.20)

since the value of dφ is infinitesimal, sin 1
2
dφ can be approximated with 1

2
dφ.

Therefore by Newton’s third law,

Fnormal = Fpressure
∆r

R
E h∆xdφ = ∆P∆xrdφ

∆r

∆P
=

rR

Eh
. (3.21)

Assuming that the change in volume derived from a change in radius is given
by, ∆V

∆r
= ∆x2πr, the volume increase caused by the increase in pressure can be

calculated,

∆V

∆P
=

∆V

∆r

∆r

∆P
= 2π∆xr

rR

Eh
. (3.22)

Equation 3.22 is non-linear: written in terms of the volume, ∆V
∆P

= 2R
Eh
V (r),

it is clear that a volume change is a function of the new volume, which indicates
that the modeling of blood vessel compliance may not be done sufficiently with
linear stress-strain relations.
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3.7 The Moens-Korteweg equation

An interesting relation can be derived from the elasticity of the tube by use of
Newton’s second law, F = m · a.

Over a section of tube with length ∆x the difference in tension force from
one end to the other is given by the cross-sectional area times the corresponding
change in pressure, assuming that area is unchanged with length over the section,

−∆F

∆x
= πR2∆P

∆x
, (3.23)

but force is given by mass of the volume, ρ∆xπR2, times acceleration, dv
dt

,

−ρ∆xπR
2

∆x

dv

dt
= πR2∆P

∆x
, (3.24)

when taken to the infinitesimal limit of ∆x → dx,

−dP
dx

= ρ
dv

dt
. (3.25)

Over the same infinitesimal volume the change in volume flow can be ex-
pressed as the time-derivative of volume over the infinitesimal length,

−dQ
dx

=
d

dx

dV

dt
=

d

dx

(
∆x2πR

dr

dt

)
= 2πR

dr

dt
. (3.26)

However the change in flow can also be expressed as the change in cross-sectional
area times flow velocity,

−dQ
dx

= − d

dx
(Av) = −πR2 dv

dx
. (3.27)

For both of these equations remember that radius is unchanged with length. Set
equation 3.26 and 3.27 together,

2πR
dr

dt
= −πR2 dv

dx

−dr
dt

=
R

2

dv

dx
. (3.28)

The elastic modulus, E, of the tube wall is given as a relation between the
change in stress, dσ = r

h
dP , and strain, dǫ = dr

R
,

E =
dσ

dǫ
=
R2

h

dP

dr
=
R2

h

dP
dt
dr
dt

, (3.29)
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insert equation 3.28 into equation 3.29,

E = −R
2

h

dP
dt
R
2
dv
dx

−dP
dt

=
Eh

2R

dv

dx
. (3.30)

Take the second derivative of both equation 3.25 and equation 3.30,

−d
2P

dx2
= ρ

d2v

dxdt
, (3.31)

and

−d
2P

dt2
=
Eh

2R

d2v

dxdt
, (3.32)

and put them together,

d2P

dt2
=

Eh

2ρR

d2P

dx2
(3.33)

Recognize that equation 3.33 is the wave equation for a pressure wave that has
the wave speed,

vpw =

√
Eh

2ρR
. (3.34)

Equation 3.34 is known as the Moens-Korteweg equation and the velocity is
known as the pulse wave velocity because it tells how fast the pressure waves
travel along the tube. The pulse wave velocity is an important function for physi-
cians as it is one of the few characteristics that can be externally measured, and
through the Moens-Korteweg equation it can be used as a measure for arterial
stiffness.

It should be noticed however that the Moens-Korteweg only holds under cer-
tain circumstances: there should be no or only insignificant change in tube cross-
sectional area along the length of the tube, there should only be insignificant
change in wall thickness, and the relation dv(dr−1)dx · dt should be small to
the point of insignificance [Butlin, 2007]. Thus for most cases, specifically ar-
terial pulse wave measurements, the Moens-Korteweg equation should only be
considered as an approximation.
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3.8 Inertia of the liquid

Finally when pulsating flow and pressure are the defining phenomena of the liquid
motion of blood, inertia of the liquid will be a factor in the modeling as well.

The inertia of liquid inside a section of tube with length ∆x will simply be a
function of the mass of liquid, governed by the density, ρ. However, since inertia
is a resistance to acceleration of the liquid it will also be a function of the flow
profile, for instance the no-slip condition assumes that liquid near the wall of the
tube has constant velocity zero, and thus it is never accelerated.

Assume for a second that the flow has a completely flat flow profile, then the
accelerated mass of liquid inside a tube section of length ∆x is simply density
times volume of the section,

M = ρ∆x πR2. (3.35)

If on the other hand the flow is constantly bound to a Poiseuille parabolic flow
profile the liquid is not be accelerated equally, close to the wall the acceleration is
zero while at the center of the tube the acceleration must peak in order to accel-
erate the liquid from one parabolic flow profile to another, in fact the acceleration
profile itself will have to parabolic, which corresponds to an accelerated mass of
inertia given by,

M = ρ∆x 2π
∫ R

0

R2 − r2

R
dr =

4

3
ρ∆x πR2. (3.36)

Thus if you want to stop liquid flowing with a Poiseuille parabolic flow profile it
will feel as though the liquid is one third heavier than for a flat profile.

As it has already been established the pulsating liquid flow will have neither
a flat profile nor a Poiseuille profile, so the inertia of the liquid will be a more
complicated function than those suggested here, in section 4.3.3 a theory for mod-
ification of the inertia function will be discussed further.

The inertia is defined in relation to acceleration of flow, or more specifically
the change in momentum of the flow. The product of accelerated mass, M , times
volume flow, Q, is the momentum of flow, p,

p =M ·Q. (3.37)

Notice that momentum of flow is not equal to the momentum of standard kine-
matics, the units are different, thus the change of the momentum of flow over the
length of a section is given by a difference in force times the cross-sectional area,

∆(A · F ) = dp

dt
=M

dQ

dt
, (3.38)
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which is equal to a difference in pressure times area squared. Let it be assumed
that the change in area is insignificant or zero, which is one of the requirements for
the Moens-Korteweg equation, thus the square of the area change may be ignored
while the pressure difference is found using equation 3.22,

∆(A2 · P ) = ∆A2P + A2∆P =
Eh

2R

∆V

V
A2 =M

dQ

dt
. (3.39)

Let the mass be described by the simple accelerated mass from equation 3.35 and
rewrite the equation,

V 2

A2

1

∆V

dQ

dt
=

Eh

2ρR
. (3.40)

Volume flow can be written as velocity times cross-sectional area, and letting the
change in cross-sectional area approach zero the following relation is obtained,

∆x2
1

dV

d

dt
(Av) = ∆x

d

dt

1

dV
(V v) = ∆x

dv

dt
=

Eh

2ρR
. (3.41)

The acceleration of mass is given by an expression that is close to the Moens-
Korteweg equation, using integration in time the velocity is found,

dv

dt
=

Eh

2ρR

1

∆x
⇒ v =

Eh

2ρR

∫

t0
t
1

∆x
dt =

Eh

2ρR

∆t

∆x
, (3.42)

and letting the length of the section become infinitesimal,

∆x

∆t
v =

Eh

2ρR
⇒ v =

√
Eh

2ρR
. (3.43)

Equation 3.43 is the Moens-Korteweg equation, which demonstrates that un-
der ideal conditions a relation exist between the elastic compliance of the tube and
the inertia of liquid, which is responsible for the speed of the pulse wave. This
relation will be used further in section 5.3.

The theory and concepts presented in this chapter are some of the fundamen-
tals for liquid flow in tubes and canals, these should be considered as the basis on
which the models of the later chapters are based. Although mostly presented in
general terms here it should be clear that the concepts presented in this chapter
will not alone be sufficient for modeling the flow of blood in the embryonic heart,
many special conditions apply to the heart and vessels of the embryo, which is not
covered by the simple theory.





Chapter 4

Construction of the Cylindric Tube

Model

The model presented in this chapter builds on the fundament of the transmission
line model explained in section 1.2.2. In general the model will be an expansion
of the transmission line just as the transmission line can be said to be an expansion
of the Windkessel model, though another meaning is given to the elements of this
model, which should not be traced back to the Windkessel model.

The model presented here is a model for the liquid flow in an elastic tube,
it is referred to as the cylindric tube model or circular model as the underlying
assumption in the model is that the tube has a circular cross-section, that is, the
tube is a hollow cylinder. Eventually the model may also be referred to as the
concentric model because it assumes that all deformation of tube volume is a
concentric function of radius, contrary to the eccentric models of chapter 6.

The model is based on the use of energy bond technique to explain the relation
between flow and pressure and the elastic forces of the tube wall. Before the
presentation of the model, a short introduction to this technique is needed.

4.1 Energy bond technique

The energy bond graph technique of just energy bond technique should be viewed
as a modeling language or formalism that focus on specific aspects of a physical
situation and keeps check on physical consistency at while it allows for a rather
simple modular construction of very complicated models. Through this thesis
the modeling power and possibilities of the energy bond graph technique should
become clear, but in order to introduce the model of this chapter it is first necessary
to introduce some basic concepts from the energy bond formalism.

55
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Energy bond graphs are schematic drawings just as electrical networks, but
they are not entirely the same. The first and foremost difference between electrical
networks and energy bond graphs is that energy bonds trace flow of energy where
electric circuits trace current and potential.

Energy bonds include the same elements as electrical networks, i.e. capacitors,
resistances, inductors, and also a few more. The elements are viewed through their
effect on the energy flow, where in electrical networks they were largely viewed
through their effect on current and potential. Mathematically it is equivalent but
physically it is a simple change of perspective.

The fundamental idea is that the product of current and potential is the energy
flow, so for each energy bond is associated a current-variable, f for flow, and a
potential-variable, e for effort. The classical electrical elements of resistance and
capacitance and so on work as they always do on these two variables but in en-
ergy bond formalism more notice is paid to what this means to the energy in the
network. Hence the capacitor is a storage for potential energy, the inductor is a
storage for kinetic energy, and the resistance is a leak of energy. A traditional
electrical resistance has the current as input and the potential is calculated as cur-
rent times the resistance, hence it can be viewed as an energy-sink dependent on
the kinetic energy. In the same manner it is possible to imagine an energy-sink
dependent on the potential energy, which in electrical networks is the same as an
inverse resistance but in energy bond graphs it can be useful to view them as two
different kinds.

The idea is that energy bond graphs contain the same tools as electrical net-
works and a few more, it is formulated in a way to give it more diversity and
more ‘modeling power’, but unfortunately this also makes it more abstract and
un-intuitive. This thesis will not include the complete exhaustive presentation of
the energy bond formalism, instead refer to Christiansen [1979, 1993] in Danish,
or Christiansen [2003] in English for a deeper explanation.

One underlying assumption in the energy bond technique as well as in electri-
cal networks is the use of linear response theory. For all elements in the energy
bond graph it is assumed that the two associated variables of the energy bond are
aligned in a linear relation such that the output from the element is given by a lin-
ear relation of the input with the response function of the element. In the simple
case that may just be a product, for instance voltage loss is given by resistance
times current, but more generally for time-dependent variables the linear relation
is given as a convolution-integral of the input with the response function. Not
all effects in the elastic tube are linear effects, see for instance section 4.2.1, but
through the use of transformations of variables and a knowledge of how the model
is solved in the end the linear response principle is observed.
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An important topic is the way energy bonds are connected. Naturally an en-
ergy bond must lead to each of the elements of the model but sometimes two or
more bonds need to be joined. In electrical networks this would be done either
by serial or parallel connections, which are governed by Kirchhoff’s laws. In en-
ergy bond graphs Kirchhoff’s laws are represented with two new elements: The
O-junction, , where potential is conserved and the current obeys Kirchhoff’s
first law; “the sum of currents into a node equals zero”, this equals to a parallel
connection. The X-junction, , where current is conserved and potential obeys
Kirchhoff’s second law; “the sum of potential differences around a closed loop
equals zero”, this equals to a serial connection.

The transmission line in figure 1.3 is converted into the network shown in
figure 4.1 using the energy bond graphs.

Q0

Z1 Z2 Zn

ef

L1 L2 LnC1 C2 Cn

ZT

Figure 4.1: The energy bond graph representation of the transmission line as a
model for the liquid flow in an elastic tube.

In figure 4.1 is the icon for a potential energy storage, C (a capacitor),
is the icon for a kinetic energy storage, L (an inductor), is the icon for a

an energy leak, Z (a resistor, R is used for radius), and is the icon for another
type of energy leak (admittance which is the inverse of impedance), it is used when
the intention is to indicate that current is lost while voltage is conserved, in the
equations admittance and impedance will look basically the same way however.
Finally is the current input to the system. In addition there is also a symbol
for a voltage input, , which will become relevant during the setup of the tubular
heart model in section 7.5.

Each section of the transmission line corresponds to a section of elastic tube
with length, ∆x. The potential in the model, e, is the pressure in a section, P
[Pa], and current, f , is the volume flow, Q [m3/s], which makes the charge, q, the
excess volume of a section, ∆V [m3], when it expands under the pressure. In the
following the word ‘section’ will be used to refer to such a portion of the tube.
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4.2 The cylindric model

The model presented herein is a model for the liquid flow in an elastic tube, es-
sentially it is an expansion of the transmission line constructed in the process of
explaining each of the elements in figure 4.1, though the elements in the beginning
and the end of the transmission line will not be explained here.

Presently the mean of each of the elements is only explained through words
but with a mathematical analysis of this meaning it will be demonstrated how
an expression for each element can be calculated. In the following this analysis
is completed for each of the three basic elements of figure 4.1 with the use of
material from chapter 3 under the assumption that the modeled elastic tube has a
circular cross-section.

It is assumed for the construction of the tube that it is divided into N smaller
sections of tube and that for each section, n, the elements of that section describe
the physical properties of elasticity, mass of inertia, and resistance to the flow
from one section to the next. This underlying discretization is the basis for the
model and in section 5.6.4 it is tested if the model is convergent for the number of
sections.

Each section is described with a dynamic radius, rn, which has the equilibrium
value, Rn, when flow and pressure difference are zero. The section has cross-
sectional area, πr2n, which gives the dynamic volume Vn = πr2n∆x, where ∆x
is the length of the section. Furthermore the liquid in each section has pressure,
Pn, and the flow, Qn, is defined as the volume of liquid flowing from section n to
section n+ 1.

4.2.1 Elasticity of the tube wall

The capacity to contain an excess volume of liquid for each section of the tube is
a function of the elasticity of the tube wall. This is modeled through the potential
energy storage (a capacitance in the energy bond graph), when an extra volume of
liquid is pumped into a section of the tube the wall expands until the high pressure
is balanced by the elastic force.

The excess volume of liquid is ∆Vn but since the section is modeled as a
hollow cylinder with a circular cross-section and with constant length, ∆x, it is
easier to describe the excess volume of section n with the radial change, ∆rn =
rn − Rn, where Rn is the equilibrium radius of the section. The elastic force of
section n is given by equation 3.18,

Fn =
∆xEh

Rn

(rn − Rn) , (4.1)

where E is Young’s modulus and h is the thickness of the tube wall. Integrate this
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force from Rn to rn to get a potential energy and integrate over the circumference
to get the total potential energy stored in the section when the walls expand from
Rn to rn,

Un =
∫ rn

Rn

∆xEh

Rn
(r −Rn) 2πdr = π

∆xEh

Rn
(rn − Rn)

2 . (4.2)

This expression is inserted into definition of the potential energy of a capacitor,
U = 1

2
∆r2n/Cn, which shows that the capacitance, Cn, is given by,

Cn =
Rn

2π∆xEh
. (4.3)

Notice that this is not the capacitance compared to the original charge and
potential variables, i.e. ∆Vn and Pn. The excess volume, ∆Vn, has been trans-
formed to radial expansion, qn = ∆rn, and pressure has been transformed to
en = ∆rn/Cn = 2πFn. To use the expression for the capacitance in equation 4.3
it is necessary to insert a transformer in front of each potential energy storage of
the model in figure 4.1.

The rule for use of transformers in energy bond graphs is the same as for elec-
trical networks, it is a variable transformation that transforms current and potential
to a new set of current and potential. A transformation ratio, Tn, is multiplied with
the potential to find the new potential, while the current is divided by Tn. Thus
current and potential changes but the energy flow remains the same. When the new
current and potential are transformed back to their original values the multiplica-
tion and division are reversed. In this case the transformation ratio is calculated
through the volume expansion of section n, which must be equal to,

∆Vn = π∆x
(
r2n − R2

n

)
= π∆x (rn +Rn)∆rn ≈ 2π∆x rn ∆rn, (4.4)

which makes the transformation ratio equal to Tn = 2πrn∆x, but notice the ap-
proximation at the end of equation 4.4 where it is assumed that the radial changes
are sufficiently small such that rn +Rn can be approximated by 2rn.

The pressure response to the volume change in section n can be calculated by
using the transformation ratio,

Pn =
2πFn

2πrn∆x
= Eh

rn −Rn

rnRn
=
Eh

Rn

∆rn
rn

, (4.5)

and thus the capacitance in the original charge and potential variables can be cal-
culated,

C ′
n =

∆Vn
Pn

=
2π∆xRnr

2
n∆rn

Eh∆rn
=

2π∆xRn

Eh
r2n. (4.6)



60 Mathematical Modeling of Flow Characteristics in the Embryonic Heart

4.2.2 Inertia of the liquid

Assuming volume flow and pressure are pulsatile functions inertia of the liquid
becomes a factor in the model, this is modeled by the kinetic energy storage (the
inductance) in the transmission line.

The inertia is a function of the mass of liquid, but since it is a function designed
to react to the flow between section n and section n+1 the mass of liquid is defined
as a mean between the two sections,

Mn = ρ∆xπrnrn+1, (4.7)

where rnrn+1 is the square of the geometric mean between the radii of section n
and section n+ 1, in some ways this can be thought of as the mass of an interme-
diate section with cross-sectional area, πrnrn+1. The utilization of the geometric
mean as well as the approximation in equation 4.4 are chosen over the arithmetic
mean to eliminate sums in the model under the assumption that dimensional vari-
ations are reasonably small.

With the geometric mean cross-sectional area the mean laminar flow velocity
of the liquid is defined,

vn =
Qn

πrnrn+1

, (4.8)

with Qn being the volume flow from section n to section n+ 1.
The definition of mass and velocity allows for an expression of the kinetic

energy of the liquid,

En = ψ
1

2
Mnv

2
n = ψ

ρ∆xπrnrn+1

2 (πrnrn+1)
2Q

2
n = ψ

ρ∆x

2πrnrn+1

Q2
n , (4.9)

where ψ is an inertia correction factor, which is decided by the cross-sectional
velocity profile of the liquid flow (see section 3.8). ψ = 1 corresponds to the
case of a flat velocity profile where all liquid layers move with velocity, vn, while
ψ = 4/3 corresponds to normal Poiseuille flow. Further down in section 4.3.3 the
meaning of the inertia correction factor will be investigated.

The next step relies on the energy bond technique and linear response theory.
When potential and current variables are chosen their product should be that of
energy transferred per time, which means that the product of charge and potential
will be that of an energy, which is used for potential energy in capacitors like
above. In the same way kinetic energy is found as the product of current and
momentum, where momentum is defined as the time-integration of the potential.

Define a momentum of flow, p′n, with units [kg/m·s] such that the derivative of
the energy with respect to this momentum is,
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∂En
∂p′n

= Qn, (4.10)

which makes p′n,

p′n = ψ
ρ∆x

πrnrn+1
Qn = ψρ∆xvn. (4.11)

The kinetic energy can then be written as a function of the momentum,

En =
1

ψ

πrnrn+1

2ρ∆x
p′n

2
. (4.12)

By using the momentum definition of the kinetic energy, En = 1
2
p′n

2/Ln, it is
now possible to find the inductance, Ln, of the model,

Ln = ψ
ρ∆x

πrnrn+1
. (4.13)

4.2.3 Poiseuille resistance

The last element of the energy bond graph in figure 4.1 is the impedance, Zn. This
impedance is typically a resistance to movement, in this case a resistance to the
flow caused by friction and the viscosity of the liquid, creating a drop in hydrody-
namic pressure. In most cases this resistance is modeled by a Poiseuille relation so
that the definition of the impedance exactly satisfies the Poiseuille equation (equa-
tion 3.11) though in some cases there may be additional terms to the impedance.

The Poiseuille resistance to the flow between section n and section n + 1 is
defined,

Zn =
∆Pn
Qn

=
8η∆x

πr2nr
2
n+1

, (4.14)

where η is the dynamic viscosity of the liquid, ∆P is the pressure loss from section
n to section n + 1, and rnrn+1 is the square of the geometric mean between the
radii of section n and section n+ 1.

As mentioned earlier, the liquid does not flow with an exact Poiseuille par-
abolic flow profile, which is assumed in section 3.4. Because of the pulsating
pressure and volume flow, the parabolic flow profile never has time to settle com-
pletely. Instead the flow profile appears to be more flat and squared, see for in-
stance Nichols and O’Rourke [1998, p. 39].

Therefore the Poiseuille equation does not give the complete description of
impedance in this model, an investigation of the impedance of the pulsatile flow
profile will be given in section 4.3.3, and furthermore section 4.3.2 will detail
another impedance term given by the curvature of the tube.
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4.2.4 The Bernoulli effect

All elements of the energy bond graph in figure 4.1 are now described, the first
and the last element in the figure are to be considered as boundary conditions for
the model and as such they will change according to the use of the model, for
instance on section 5.2 they are completely absent. The simple explanation of the
elements is complete, but there is more to be done in constructing the cylindric
tube model.

Notice how the dynamic radius, rn, is included in the expression for all the
elements of the model, but at the same time rn is part of the charge variable at
the untransformed capacitance, ∆rn = rn − Rn. It seems that there is a coupling
between the elements, which should be explored.

Let the total energy of the transmission line be named E, it will be a sum of
potential and kinetic energies of all the sections of the tube. The derivative of E
with respect to the charge variable, ∆rn, will yield the potential variable. This
reveals a relation between charge and potential, which is not directly reflected in
the model,

∂E

∂rn
=

∂ (Un + En−1 + En)

∂rn

= 2πFn +
1

ψ

π

2ρ∆x

(
rn−1p

′
n−1

2
+ rn+1p

′
n
2
)

= 2πrn∆x

(
Pn +

ρ

4ψ

(
rn−1

rn
v2n−1 +

rn+1

rn
v2n

))
. (4.15)

Notice that the factor, 2πrn∆x, is the transformation ratio, Tn, from the section
4.2.1. It is seen that the potential is not only composed of the pressure, which
was specified from the start, but also has two extra terms coming from the kinetic
energy. Overall expression 4.15 bear a certain likeness to the Bernoulli equation
(equation 3.17), with the two extra terms being some sort of kinetic pressure. This
connection to the Bernoulli equation will be investigated further below.

Furthermore it is clear that the capacitance and the inductance of the model
are not independent of each other, both are functions of the dynamic radius and
the radius is itself a variable of the section. Thus write the dynamic radius as a
function of the capacitance,

rn =

√

C ′
n

Eh

2π∆xRn
, (4.16)

which makes it obvious that the inductance can be written as a function of the
capacitance,
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Ln = ψ
ρ∆x

πrnrn+1
= ψ

2ρ∆x2

Eτ

√√√√RnRn+1

C ′
nC

′
n+1

. (4.17)

The inductance depends on the capacitance of the section and the capacitance
of the next section, which makes sense since the capacitance models how much
liquid each section can hold (under the given pressure), and the inductance models
the inertia of the total amount of liquid flowing from one section to the next.
Mathematically this is not a problem for the model, but physically it is desirable
to have all elements described as independent physical constants and let current
and potential be the only variables of the system.

The almost-Bernoulli relation of equation 4.15 and the inter-dependency of
the elements point to the fact that this model is still incomplete, there are hidden
qualities of the model that need to be explicitly reflected in the energy bond graph.
To do this, a new momentum variable is introduced by inserting a transformer in
front of the inductance in the energy bond diagram in figure 4.1. Mathemati-
cally this corresponds to a transformation of variables by the transformation ratio,√
rnrn+1/RnRn+1, which gives the momentum,

pn =

√
rnrn+1

RnRn+1
p′n =

√
rnrn+1

RnRn+1
ψρ∆xvn. (4.18)

This yields a new expression for the kinetic energy,
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(√
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)2

=
1

ψ
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2ρ∆x
p2n, (4.19)

and hence also a new rn-independent expression for the inductance,

Ln =
p2n
2En

= ψ
ρ∆x

πRnRn+1
. (4.20)

In the definition of the new momentum of flow it is interesting to observe
what this means for the potential input to the inductance, this is found by taking
the time-derivative of the momentum,
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Notice here that the input potential to the inductance comes partially from the
transformed momentum and partially from two other sources. The time-derivative
of the dynamic radius is the current into the capacitance of the system, and so by
the transformation of the momentum it has become clear that the input potential
to the inductance has contributions from the current at the capacitors on either
side of the inductance. The current is however changed from current to potential
through the ratio, pn/2rn on the lower side and pn/2rn+1 on the upper side.

With this restructuring of the transmission line the energy derivative from
equation 4.15 can be redone,
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, (4.22)

which corresponds exactly to the output potential from the capacitance plus two
contributions from the inductances on either side that have been converted through
the relations pn−1/2rn and pn/2rn. In other words this is the potential given by the
derivative of the total energy with respects to the charge variable, ∆rn, it has the
units of force and through the transformation ratio 2π∆xrn the driving pressure
for section n is found,
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2
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1

2
ρv2n. (4.23)

From this equation it can be seen that the driving pressure consists of the hydro-
dynamic pressure, Fn/∆xrn, and a ‘kinetic pressure’ that is consistent with the
Bernoulli equation except that it is calculated as an average of the inflow and out-
flow velocities of a section of the tube and weighted by the ratio of the radius to
the radii of the adjacent sections.
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4.3 Additional effects

With the Bernoulli coupling the cylindric tube model has come so far that it is
operational, as specified in the descriptions above the energy bond graph has been
modified from that of the transmission line in figure 4.1 through use of variable
transformations to the energy bond graph in figure 4.2.

In the figure it is still possible to see the basic setup consisting of a capacitance,
inductance and a resistor, but in addition the triangle symbols represent the trans-
formation of variables mentioned in equation 4.4 and 4.18 and the fish-shaped
symbols represent another set of variable transformations presented in equation
4.22, though these gyrators as they are called have the special effect that they
transform current to potential and vice versa.

√
rnr

n+1

RnR
n+12π∆xrn 2π∆xrn+1

Qn QnQn−1 Qn+1Pn Pn+1

Zn

pn
2rn

pn
2r

n+1

Cn Ln Cn+1

2πFn

ṙn
2πFn+1

ṙn+1

ṙn ṙn+1
ṗn

Figure 4.2: The energy bond graph of the expansion to the transmission line. The
figure only shows one and a half section in the transmission line, but notice that
the elements of the section have been switched around compared to figure 4.1 so
that the potential storage comes before the kinetic storage.

The definitions of elastic capacitance, inertia of mass, Poiseuille resistance
and the Bernoulli effect constitute the core effects of the model, but the model is
still in the rough. The next step is to improve the model with additional effects
that increase the model’s applicability in relation to the liquid flow in an elastic
tube: the longitudinal tensions of the tube counteracting lengthwise discrepancies
between different radii of neighboring sections, the resistance induced by tube
curvature on the pressure and flow, and the Womersley theory for pulsatile pres-
sure and flow. The three effects will be presented one by one and explained how
they are implemented in the model.
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4.3.1 Longitudinal shear tensions

One adjustment to the model comes from the logical fact that when the radius of
one section of the tube is increased the wall of the section will pull the walls of
the neighboring sections. The sections are not independent and thus the radius
increase is not only a function of the liquid volume of the section itself but also a
function of the radii of the neighboring sections. This interaction of the radii of
the various sections is governed by the elastic forces tangential to the tube, which
are described as shear tensions of the tube wall.

The shear tensions of the tube wall describe the wall’s response to a skew
deformation when one section’s surface area becomes larger than its neighbor’s,
but as all skew deformations can be transformed into right angle deformations the
shear tensions will also describe the wall’s response to a longitudinal strain of its
length. As such this addition to the model is also supposed to reflect how the
periodic pressure waves produce longitudinal stresses in the tube, even though the
length of the tube is fixed in the model. Therefore this addition to the model will
have a more ad hoc character compared to the previous model elements.

When the radii of two neighboring sections differ from their resting values
by unequal increments a force will act between them trying to pull the difference
towards zero. This force, which has both tangential and longitudinal compos-
ites, is proportional to the difference in radial change between the sections and
it is given by the shear modulus, G, which for isotropic materials is one third
of Young’s modulus (since the shear modulus models a one dimensional response
while Young’s modulus has three dimensions). The calculation of the elastic force,
Fsn, is analogue to the elastic force for the radius expansions in section 4.2.1,

Fsn =
Gh

√
RnRn+1

∆x
(∆rn+1 −∆rn) , (4.24)

where
√
RnRn+1 is the geometric mean between the resting radii of the two neigh-

boring sections. This force is integrated over the circumference (multiply with 2π)
and integrated over the difference from ∆rn to ∆rn+1,

Usn =
∫ ∆rn+1

∆rn
2π
Gh

√
RnRn+1

∆x
(∆rn+1 −∆r′) d∆r′

=
πGh

√
RnRn+1

∆x
(∆rn+1 −∆rn)

2 . (4.25)
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Insert the energy from equation 4.25 into the formula for the potential energy
of a capacitor, Usn = 1

2
(∆rn+1 −∆rn)

2 /Csn, to find the capacitance,

Csn =
∆x

2πGh
√
RnRn+1

. (4.26)

The capacitance, Csn, models the elastic attraction between two neighboring
sections, for a soft tube the capacitance is high and the radii of neighboring sec-
tions are allowed to diverge more easily.

On the other hand diverging radii of neighboring sections will also cause fric-
tion inside the tube wall. Friction equals loss of energy thus an resistance is needed
to model the shear tensions of the wall, with impedance proportional to the differ-
ence in radial change between the two sections.

In the model the impedance, Zsn, is an ad hoc determined constant, which
is given from the desire that oscillations with frequencies above 100 Hz should
be damped. The impedance is determined through the fact that the period of an
oscillation in an RC-circuit is given by T = ZsnCsn, which by insertion of the
desired period, T = 0.01 seconds, yields the impedance, Zsn = T/Csn.

4.3.2 Curvature of the tube

Another addition to the model is the resistance given by the curvature of the tube.
When liquid flows through a bent tube a lot of interesting things happen and it is
clear that the standard Poiseuille equation will not fully describe the flow, even if
it is still laminar, in fact it has been demonstrated that the location of maximum
axial velocity shifts towards the outer wall of a curved tube [Berger et al., 1983].

Even more interesting is the establishment of so called secondary flow where
liquid performs a rotating motion at right angles to the axis of the tube. This
secondary flow is a consequence of the centrifugal pressure gradient in the bent
tube acting together with the friction of the tube walls, it is generally superimposed
upon the main flow and is present in both laminar and turbulent flows [Crane Co.,
1982].

Generally the flow through a bent tube depends on only two characteristics
of the bend, the angle of the bend and its curvature. These are compared to the
Reynolds number of the flow to establish if the bend is ’smooth’ in relation to the
flow [Crane Co., 1982]. If the bend is too sharp eddies will form at the inner wall,
which will impact flow before and mainly after the bend and increase energy loss
in the bend. For higher Reynolds numbers the turbulent flow will cover more area
of the bent tube.

Despite of these phenomena the main effect of a bent tube on the liquid flow is
a loss of energy, which can be seen as a pressure drop from the frontal to distal end
of the bend. In general a pressure drop in the tube is given by Darcy’s equation,
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∆P = f
∆x

2R

ρv2

2
, (4.27)

where ∆x is the length of tube andR is its radius, ρ is the density of the liquid and
v is the typical velocity of the liquid through the tube. The typical velocity of the
liquid is unspecified in Darcy’s equation to the extent that it is the same velocity
as used in the definition of the Reynolds number and generally it is taken to be the
mean velocity, v = Q/πR2.

The quantity f in equation 4.27 is the friction factor, which details the energy
loss of the flow through that particular length of tube. For a straight tube the
friction factor is dependent on the Reynolds number, for laminar flow (Re <
1000) the friction factor is a function of the Reynolds number alone, f = 32

Re
=

32η
ρvR

,

∆P =
32η

ρvR

∆x

2R

ρv2

2
=

8η∆xv

R2
=

8η∆x

πR4
Q, (4.28)

thus Darcy’s equation becomes the Poiseuille equation.
For completely turbulent flow (Re > 2000) the friction factor is a function of

the Reynolds number as well as the roughness of the tube wall. There is no simple
equation that governs friction factors in this regime but the Blasius law seems to
be a good approximation for the lower bounds of turbulent friction factors in a
completely smooth tube [Keller, 1978, p. 49],

fturbulent =
0.316
4
√
2Re

. (4.29)

ForRe ∈ [1000; 2000] the flow can be either laminar or turbulent, and thus the
friction factor may vary between the values of the friction factors of laminar and
turbulent flow as the lower and upper bound [Crane Co., 1982].

For any sort of circumstance imposed on the tube, such as bends, contractions,
valves and branches, there is a corresponding friction factor, which will give the
pressure loss for that instance. Collectively these pressure losses are known as
minor losses. For each instance the friction factor will be an empirical number
that has to be found experimentally but common engineering practice dictates that
it will be sufficient to extrapolate from known values of likened effects [Crane Co.,
1982].

The clever thing about writing the pressure loss with Darcy’s equation is that
friction coefficients are cumulative by definition, and thus the pressure loss asso-
ciated with the flow through a curved tube will be defined,

∆P = (fL + fB)
∆x

2R

ρv2

2
, (4.30)
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Figure 4.3: Data from Crane Co. [1982] table A-26 and A-29. To the left the fric-
tion coefficient for completely turbulent flow, fT , together with a power function
fit. To the right the friction factor for a 90◦ bend, KB, as a function of the relative
bend curvature, defined as radius of curvature relative to the tube diameter, RB/d.

where fL is the friction coefficient associated with the length of the curved tube,
by default laminar flow is assumed in this thesis, thus fL is set to fL = 32/Re,
and fB is the friction coefficient associated with a bend in the tube, given by the
curvature and the angle of the bend.

The friction coefficient of a bend is a number that has to be found empirically
or through charts in engineering manuals. The approach through Darcy’s equa-
tion to these sorts of problems is something quite common for engineers in the
plumbing industry and from their field the curves in figure 4.3 are obtained. In
this approach the friction coefficient of a bend is described through the product of
three functions,

fB = ξ(θ) ·KB(RB/d) · fT (d). (4.31)

Starting from the rear of equation 4.31, fT is the friction coefficient for completely
turbulent flow, that is, when the velocity of the liquid is high enough to produce
Reynolds numbers far above 2000. According to Crane Co. [1982] fT is solely
a function of the diameter of the tube, d, and it is easy to see that for density,
viscosity and flow velocity sufficient to reach the completely turbulent regime the
Reynolds number becomes a function of the tube dimension alone. Therefore,
despite the flow is not necessarily turbulent in the bend it is customary to model
the friction coefficients relative to the friction coefficient for completely turbulent
flow. From the fit in figure 4.3 fT is found as a power function of tube diameter,

fT = 0.05 · d−0.22, (4.32)

which fits very well with Blasius law (equation 4.29).
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KB is the friction factor that is multiplied to fT for a tube bend of exactly
90◦. Plumbers work mostly with right angle fittings and thus the data comes from
measurement of pressure loss through those. Different fittings can have different
curvature, and thus KB is a function of the relative curvature defined as the curva-
ture radius for the center-line of the tube bend, RB , relative to the tube diameter,
d. Figure 4.3 shows data from Crane Co. [1982], the data is fitted to the function,

KB(RB/d) = 9.07 (ln(RB/d))
2 − 16.93 ln(RB/d) + 19.64. (4.33)

The final function of equation 4.31, ξ(θ), is the angular factor for bend angles
different from 90◦. The angle of the bend, θ, is defined as the angle between the
directions of the tube before and after the bend, thus a straight tube would have
θ = 0◦. Keller [1978, p. 49] defines the function,

ξ(θ) = 0.042 · θ0.69. (4.34)

In the end the friction factor, f = fL + fB = 32/Re + ξKBfT , lets Darcy’s
equation be converted to the Poiseuille equation plus an extra term,
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(4.35)

As can be seen in equation 4.35 the last term is quadratic with respect to the flow.
Thus it do not directly fit into the linear approach of the energy bond formalism.

With the curvature of the tube two distinct frictional effects are defined in the
relation between flow and pressure, and equation 4.35 demonstrates quite simply
that they will be serially coupled in the energy bond graph. The first frictional
effect is the Poiseuille resistance, which has already been described, the other is
the friction of the bend. In the energy bond graph the friction will be represented
by an impedance symbol, ZB, that links a pressure loss to the flow rate,

ZBn =
∆Pn
Qn

= ξKBfT
ρ∆xQn

4π2√rnrn+1
5 . (4.36)

In terms of the energy bond formalism, which relies on linear response theory, this
equation is erroneous; the volume flow is not allowed to be part of the response
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function while it is input to the function. Instead notice that this equation has
resemblance to the momentum of the flow defined in equation 4.18,

pn =

√
rnrn+1

RnRn+1

p′n = ψ

√
rnrn+1

RnRn+1

ρ∆x

πrnrn+1

Qn, (4.37)

and thus the impedance of the bend can be written using the momentum rather
than the flow (where the numerical value of the momentum is used because the
impedance should cause a loss of energy independent of the direction of flow),

ZBn =
∆Pn
Qn

=
ξKBfT
ψ

√
RnRn+1

4πr2nr
2
n+1

|pn|. (4.38)

Equation 4.38 defines the additional friction of the bend as a relation between
pressure loss to volume flow. Interestingly this impedance is proportional to the
numerical value of the momentum of the flow, thus it grows when flow is acceler-
ated, which is very interesting in relation to pulsating flow and pressure.

4.3.3 Womersley theory

The final addition to the model it the inclusion of Womersley theory to express the
influence by the velocity profile on the nature of the flow in a tube.

With regards to the behavior of regular pulsating blood flow it has been argued
by many physicians and researchers that the Poiseuille equation is not the best
description for the interrelation between volume flow and pressure gradient when
both are pulsating with time, see for instance the list of restrictions in section 3.4.
Such was also the view of mathematician John R. Womersley who in the 1950’ies
struck a productive cooperation with the established doctor of physiology Donald
A. McDonald, and together they became a very important chapter in the history
of blood flow research [Nichols and O’Rourke, 2008].

Womersley’s approach to the problem of pulsatile blood flow was to analyze
the Navier-Stokes equation under assumptions applicable to blood in the arteries.

Under the simple assumption that the pressure gradient, ∇P , and the flow
velocity field, v, are both unchanged with time the Navier-Stokes equation of
incompressible liquid,

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇P + η∇2

v + f , (4.39)

with ρ, η and f being liquid density, dynamic viscosity and external forces on
the infinitesimal liquid volume respectively, under the restrictions of a cylindrical
tube is written,
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d2v

dr2
+

1

r

dv

dr
+

1

η

∆P

∆x
= 0, (4.40)

where ∇P = ∆P/∆x is the pressure gradient found by subtracting pressures
at two different points on the longitudinal axis of the tube and dividing by the
distance between them, ∆x.

Notice that pressure may change with the longitudinal axis of the tube, the
pressure gradient is a constant, whereas the flow velocity may change with the
radial position in the tube but not with the longitudinal coordinate. The solution to
this equation gives the flow velocity, v(r) = ∆P

4η∆x
(R2 − r2), whereR is the radius

of the tube, and with volume flow defined as the integral, Q = 2π
∫R
0 v(r)rdr, the

Poiseuille equation is achieved,

Q =
πR4

8η∆x
∆P. (4.41)

In contrast Womersley allowed both flow velocity field and pressure gradient
to vary with time, though pressure is radially constant and the velocity field is
unchanged with the longitudinal coordinate, which yields the following equation,
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Assume the time variant pressure difference has a constant and a varying term,
∆P (t) = ∆P0 + ∆̃P (t), with ∆̃P (0) = 0 and ∆̃P (T ) = ∆̃P (0) for some
T > 0. Due to linearity a simple particular solution to the constant term will
be the Poiseuille equation, v0(r) = ∆P0

4η∆x
(R2 − r2). The complete solution to

equation 4.42 will be given on the form,
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where J0 and Y0 are Bessel functions of the first and second kinds of order zero,
however the limit, limz→0 Y0(z) = −∞, forces Bn = 0 for a real solution. Fur-
thermore the boundary condition v(R, t) = 0 forces An = −an

ρ∆xJ0(R
√
−kn)

, where

an is a new arbitrary constant that will be determined later, so that,
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(4.44)
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The equation is rewritten with the definition of volume flow,
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The obvious case suggests itself that volume flow and pressure gradient in-
side the blood vessels can be described with a Fourier series, which was exactly
one of the questions in the research by Womersley and McDonald [Nichols and
O’Rourke, 2008]. Assume that the pressure difference is a periodic function, with
angular frequency, ω, described with the Fourier series,

∆̃P (t) =
∞∑

n=1

∆Pne
inωt. (4.46)

The no-slip boundary condition, v(R, t) = 0, will then enforce an = ∆Pn

inω
and

kn = inω ρ
η
. Thus the oscillating volume flow becomes
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η

)einωt
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(
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[
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√
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)
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(
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 e

inωt
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]
. (4.47)
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From equation 4.47 it is clear that the relation between volume flow and pres-
sure gradient is much more complex than the Poiseuille equation, specifically the
relation depends on the angular frequency. To analyze this relation Womersley de-
fined the non-dimensional parameter popularly known as the Womersley number
[Womersley, 1955b],

α = R

√
ω
ρ

η
. (4.48)

With the Womersley number examine the oscillating part of the volume flow, that
is, the constant term Q0 = πR4

8η∆x
∆P0 is disregarded for the moment. Specifically

of interest is the function inside the brackets in equation 4.47,

f(α, n) = 1− 2

α
√
−in

J1
(
α
√
−in

)

J0
(
α
√
−in

) , (4.49)

f(α, n) is a complex function with Ref(α, n) ∈ [0, 1] and Imf(α, n) ≥ 0 and
with limn→∞ f(α, n) = 1+0i. Womersley recognized that the behavior of f(α, n)
could generally be divided into three cases:

For α < 1 and for n small f(α, n) ≈ 0 + 0i. In this case the lowest line of
equation 4.47 is of interest; recognize that the function f(α,n)

inα2 ≈ 1
8
+ 0i for small

values of n and goes to zero for higher values of n. As could be expected for low
values of α equation 4.47 approaches the Poiseuille equation, this let Womersley
conclude that for small frequencies the oscillating flow is dominated by friction,
through one period the flow will have time to establish a parabolic flow profile,
which is sufficiently described with the Poiseuille equation [Womersley, 1955b].

For α > 10 the function f(α, n) ≈ 1 + 0i for all values of n. In this case the
middle line of equation 4.47 is of interest; recognize that with f(α, n) basically a
constant, the flow is given by a relation to the integral of the pressure difference,
which by definition is the momentum of the flow, p̃(t). Therefore with high values
of α the oscillating volume flow is dominated by inertia and in simple terms it can
be approximated with the equation,

Q(t) =
πR2

ρ∆x
p̃(t). (4.50)

In the intermediate regime, 1 < α < 10, the oscillating volume flow is nei-
ther completely dominated by friction or inertia, and the function f(α, n) has a
significant imaginary part. Unfortunately for Womersley blood flow in the larger
mammalian and human arteries tend to fall inside this range [Womersley, 1955a].

To give a tangible solution for the volume flow approximate f(α, n) with n to
the first order,
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for n = 1 as the defining

function for the time variant pressure and volume flow.

f(α, 1) = 1− 2

α
√
−i

J1
(
α
√
−i
)

J0
(
α
√
−i
) , (4.51)

as figure 4.4 demonstrates this function is almost zero for α < 1 and nearly con-
stant and real for α > 10. For higher orders of n the transition from zero to
one will only be more steep. With this function define an approximate solution
to the time variant volume flow given by equation 4.45 through a combination of
frictional and inertial effects (still without the constant term),

Q(t) ≈ πR2

ρ∆x


1− 2

α
√
−i

J1
(
α
√
−i
)

J0
(
α
√
−i
)


 p̃(t)

≈ πR4

η∆x

1

iα2


1− 2

α
√
−i

J1
(
α
√
−i
)

J0
(
α
√
−i
)


 ∆̃P (t). (4.52)

Depending on the scale of α either of the two lines of equation 4.52 may be chosen
as the approximation to the time variant volume flow.

Furthermore, rearranging equation 4.52 yields the relation,

η∆x

πR4
(8 + Ψ(α))Q(t) =

η

ρ

1

R2
iα2p̃(t), (4.53)
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where

Ψ(α) =
iα2

1− 2
α
√
−i

J1(α
√
−i)

J0(α
√
−i)

− 8, (4.54)

and where α2 = R2ω ρ
η

so that the right hand side can be replaced by the time
variant pressure difference. In this way equation 4.53 shows that the pressure
difference is made of two terms, one Poiseuille term defined by the low frequency
limit of the function 1

iα2 f(α, 1) and one other term defined by the function Ψ(α).

Name the Poiseuille term ∆̃Pp(t) and the other term ∆̃Pψ(t),

η∆x

πR4
(8 + Ψ(α))Q(t) = ∆̃Pp(t) +

η

ρ

1

R2
iα2p̃ψ(t), (4.55)

where p̃ψ(t) is the momentum referring to ∆̃Pψ(t). The Poiseuille term cancels
out of the relation by use of Poiseuille’s equation, which leaves the expression,

η∆x

πR4
Ψ(α)Q(t) =

η

ρ

1

R2
iα2p̃ψ(t)

ρ∆x

πR2
ψ(α)Q(t) = p̃ψ(t). (4.56)

The function ψ(α) is defined,

ψ(α) =
1

1− 2
α
√
−i

J1(α
√
−i)

J0(α
√
−i)

− 8

iα2
, (4.57)

and gives the magnitude of the extra term in equation 4.55 for any value of α. As
figure 4.5 demonstrates ψ(α) is a complex function with real values in the range
from 1 for high values of α to 4/3 for low values of α and with imaginary values
different from zero only in the transition, notably for α-values from 1 to 10.

For higher orders of n in equation 4.49 a similar result is obtained, assuming
that cross-terms are negligible, for each n a function like ψ(α) can be defined,
which will have real values in the range from 1 to 4/3 and imaginary values dif-
ferent from zero only in the transition. The transition itself will only be sharper
for higher values of n.

Thus it is assumed that the function ψ(α) for n = 1 is a sufficient approxima-
tion and that the complete description of the volume flow to pressure gradient can
be described with a Poiseuille term of the pressure difference plus a momentum
term given by the function ψ(α),

Q(t) =
πR4

8η∆x
∆P (t) +

1

ψ(α)

πR2

ρ∆x
p̃ψ(t). (4.58)
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the extra momentum contribution to the time variant pressure and volume flow.

Equation 4.58 reveals how the inertia of the liquid depends on the flow profile,
which was discussed in section 3.8, and demonstrates how the inductance defined
in section 4.2.2 is modified with the function ψ(α) defined in equation 4.57.

4.4 The use of the model

The Womersley factor concludes the last addition to the model and reveals how
the factor ψ introduced in section 4.2.2 is given by at function found by the solu-
tion of the Navier-Stokes equations under the assumptions of a pulsatile flow and
pressure.

With the additions of shear tensions, curvature resistance and the Womersley
factor to the model the energy bond graph will be changed as shown in figure 4.6,
both the capacitance and impedance of the shear tensions are visible at the top of
the model, and the resistance from curvature is visible below, while the Womersley
factor is not directly visible in the model as it is a factor in the calculation of the
inductance, Ln.

It is apparent that this model is non-linear and that none of the elements in
the model are directly constant compared to the pressure and volume flow, the
dynamic radius seems to play an important role in their relations as well as the
momentum of flow. Since the value of some elements depend on parameters de-
fined as output from other elements in the energy bond graph it is not possible
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Figure 4.6: The final appearance of the energy bond graph for the cylindrical
model. The standard layout of the transmission line is still an important factor in
the model, but it has been changed to better describe liquid flow in an elastic tube.
The capacitance and resistance, Csn and Zsn, are secondary effects to reduce the
flexibility of the arterial wall, while the resistance ZBn is included to model the
resistance induced by the curvature of the tube.

to make a simple simulation of the model of the kind normally understood from
energy bond graphs or electrical networks. Instead an approximative simulation
procedure must be constructed by a Runge-Kutta iteration of the variables of the
model.

For this iterative solution procedure the rates of change of the radius and the
momentum of the flow are used for a progressive numerical Runge-Kutta solution
of their respective differential equations to find their state variables as functions
of time, and from those the variables of pressure and flow are calculated.

The time-dependent values of pressure and volume flow are used as dummy
variables in the calculations of the rates of change of radial change and momentum
of the flow, it is useful to identify those before calculating the rates of change. In
the energy bond graph in figure 4.6 the volume flow, Qn, is given by the back-
transformed output from the inductance, Ln,
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Qn =
pn
Ln

√
rnrn+1

RnRn+1

. (4.59)

Likewise the pressure is given by the output from the capacitance, Cn, but also
from the adjacent capacitances, Csn, and their related resistances, Zsn. In addition
the Bernoulli effect adds contributions from the adjoined inductances, Ln−1 and
Ln, through the gyration ratios, pn−1

2rn
and pn

2rn
. All this is transformed back by the

transformation ratio, 2π∆xrn. This corresponds to the combined potential in the
first O-junction of the network,
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(
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drn
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)
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2rn
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)
.

(4.60)

The rate of change for the radius of a section of the tube is the current variable
in the left vertical branch of the energy bond graph in figure 4.6, which constitute
the input to the capacitance, Cn. This current variable is given by the transforma-
tion, 2π∆xrn, of the current variable below the first transformer in the network,
and this current is given as the difference between inflow and outflow to the o-
junction in the network. This corresponds to the fact that the change in radius is
found by the change in volume given by the difference in volume flow in relation
to the surface area of the section,

drn
dt

=
Qn−1 −Qn

2π∆xrn
=

1

2π∆xrn

(
pn−1

Ln−1

√
rn−1rn
Rn−1Rn

− pn
Ln

√
rnrn+1

RnRn+1

)
. (4.61)

In the same way the rate of change for the momentum of the flow is the input to
the inductance, Ln, this is a potential variable and thus it is found by adding all the
incoming potential contributions to the X-junction in front of the inductance. The
incoming potential is firstly given by the rate of change of radii of the bordering
sections that is changed into a potential through the gyrators, and secondly it is
given by the transformation of the pressure difference given by the difference in
pressure between two neighboring sections minus the loss from the Poiseuille
resistance and the resistance due to curvature. Combined, the rate of change of
the momentum is calculated from the transformation of the pressure difference
between the the two sections with two contributions from the Bernoulli effect,
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The rates of change of dynamic radius and momentum of flow are the funda-
mental equations of the model. If N is the number of sections in the model the
rates of change will constitute a system of 2N non-linear differential equations,
iterated trough a Runge-Kutta algorithm they yield the time-variant functions of
radius and momentum for all sections of the model, which subsequently can be
used to find the time dependent functions of flow and pressure for all sections of
the model. This will be the solution to the model.

4.5 The continuous limit

An interesting feature of the cylindric tube model worth examination is how the
model behaves when the equations go to the continuous limit by letting ∆x ap-
proach zero. In other words, will the equations of the model approach the con-
tinuous equations for liquid transport when the model goes from a finite element
model to a continuous model. This section is devoted to this question.

Consider the rates of change for a section of the tube, insert the expressions for
Ln, Cn, Csn and Zsn to have the equations described with only radius, momentum
and material constants,
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, (4.64)

but notice that pn is also dependent on ∆x with the relation
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pn =

√
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RnRn+1
ψ(α)ρ∆xvn. (4.65)

To find the continuous limit for the equations use the variables rn and vn,
which will be defined as functions of space and time, r(x, t) and v(x, t). Let the
arterial section n be described by the position x0, thus the equation for the rate of
change of r(x0, t) becomes
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where the last step in the equation comes from a first-order Taylor expansion of
v(x0, t). Next, let ∆x approach zero
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Though it may be hard to see, this corresponds exactly to a one-dimensional
continuity equation for volume in the tube, ∂V

∂t
= − ∂

∂x
(V · v). The volume can

be written as V = πr2s, where s is an infinitesimal length of the tube, put this
volume directly into the continuity equation and observe that the result will be
equation 4.67,
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For the rate of change of the momentum something similar can be done,
though it will not be pretty. Start with equation 4.64 and insert the definition
of the momentum of flow with respect to the mean velocity (equation 4.65),

ψ(α)ρ∆x√
RnRn+1

d

dt
(
√
rnrn+1vn) =

√
rnrn+1

RnRn+1

[
1

2π∆xrn

(
2π∆xEh

rn − Rn

Rn

+2πGh
√
RnRn−1

(rn − Rn)− (rn−1 − Rn−1)

∆x

+
0.01 · 2πGh√RnRn−1

∆x

(
drn
dt

− drn−1

dt

)

−2πGh
√
RnRn+1

(rn+1 − Rn+1)− (rn − Rn)

∆x

−0.01 · 2πGh√RnRn+1

∆x

(
drn+1

dt
− drn

dt

)

+
πrnrn−1 (ψ(α)ρ∆x)

2 v2n−1

2rnψ(α)ρ∆x
+
πrnrn+1 (ψ(α)ρ∆x)

2 v2n
2rnψ(α)ρ∆x

)

− 1

2π∆xrn+1

(
2π∆xEh

rn+1 − Rn+1

Rn+1

+2πGh
√
RnRn+1

(rn+1 −Rn+1)− (rn − Rn)

∆x

+
0.01 · 2πGh√RnRn+1

∆x

(
drn+1

dt
− drn

dt

)

−2πGh
√
Rn+1Rn+2

(rn+2 − Rn+2)− (rn+1 − Rn+1)

∆x



84 Mathematical Modeling of Flow Characteristics in the Embryonic Heart
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(4.69)

Rearrange the expression and define the radius and mean velocity as functions
of position and time, r(x, t) and v(x, t), with x0 once again being the position of
the n’th section of the tube,

∂
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(√
r(x0, t)r(x0 +∆x, t)v(x0, t)

)
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+
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Let ∆x go to zero,
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This expression can be rewritten to,

∂v(x0, t)
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. (4.72)

The pressure, Pn, can be rewritten in a similar way, expressed as a function,
P (x, t), of x and t, where the point x0 corresponds to the center of section n,
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∆x2r(x0, t)

(
∂r(x0, t)

∂t
− ∂r(x0 −∆x, t)

∂t

)

−
Gh

√
R(x0)R(x0 +∆x)
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, (4.73)

which makes it interesting to calculate the pressure difference for a single section,
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(4.74)

which for ∆x going to zero becomes,
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Thus when equation 4.72 and equation 4.75 are compared it is seen that

ψ(α)ρ
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v2(x0, t)
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. (4.76)

Equation 4.76 is a special version of Navier-Stokes equations (equation 3.2) known
as the Euler equation, with the addition of the Womersley inertia correction factor,
ψ(α), and two frictional terms coming from Poiseuille resistance and resistance
due to curvature. The Euler equation explicitly express the momentum conserva-
tion of liquid flow, and it is seen from equation 4.76 that the momentum defined as
ψ(α)ρv(x, t) is influenced by three factors: the pressure gradient, the Poiseuille
resistance and the resistance from curvature of the tube. All in all, it is clear that
the model in the continuous limit yields a set of equations that are well-known
descriptions of liquid flow.



Chapter 5

Case: Liebau’s Ring

For the case of the embryonic chick heart the measurement data and the overall
research practice are of a very visual character, the doctors and researchers are
interested in images and films that illustrate the qualitative behavior of the heart
and combined with their knowledge of medicine and physiology hold a lot of
information to them. This provides the models in this thesis with nice images for
a qualitative comparison but it does however leave them without any empirical
measurement data for a necessary quantitative validation.

Therefore a quantitative validation of the models is sought for externally to
the case of the embryonic chick heart. The choice has fallen on a classical case
of valveless flow phenomena: Liebau’s ring. The name is not universal, in the
reports it is called many things from closed loop and closed elastic tube-system
to simply a valveless pumping system, however as an exemplar demonstrating a
physical principle of valveless pumping it deserves a name of its own.

It is an elegantly simple case where two rubber tubes of different elastic ma-
terials are joined together end-to-end to form a torus filled with liquid, see figure
5.1. Induced with a periodic pinching at a single point on one of the tubes a mean
flow is formed through the ring.

A rigid plastic tube A soft rubber tube

A compression pump
with periodic pinching
at an asymmetric location

Figure 5.1: An illustration of the fundamental setup of Liebau’s ring.
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5.1 The story of Liebau’s ring

Liebau’s ring is named after the German doctor Gerhart Liebau who in the 1950’ies
demonstrated a series of valveless flow phenomena that had never been seen be-
fore his time [Männer et al., 2010].

Valveless flow refers to specially constructed situations where flow is induced
in an elastic tube via external changes to the conditions of the tube, without in-
ternal valves in the tube to guide the flow, for instance through a compression of
the tube radius. It is expected that valveless flow can provide some explanation
to the flow in the veins, and to optimization of current CPR methods [Hoeben,
2009], and also biologists have found invertebrate and vertebrate with valveless
circulatory systems [Larsen et al., 2006], and then of course there is the embryonic
heart.

Until the 1950’ies valveless flow was primarily associated with a peristaltic
pumping mechanism, such as a sliding or sequential compression of a tube along
the direction of the desired flow. Though in the 19th century Franciscus Don-
ders proposed the possibility of the respiratory system acting as an at that time
undiscovered pumping mechanism to aid venous return in the circulatory system
[Noordergraaf et al., 2006]. The resulting discussion between Donders and others
remained inconclusive, but in 1954 inspired by this idea Gerhart Liebau proposed
a pumping mechanism; a periodic squeezing of the tube at a singular point, which
on average would induce a directional flow Liebau [1954].

Liebau proposed that such a valveless pumping mechanism could account for
some of the energetic mismatch between heart pump pressure and peripherally
measured blood pressure. To demonstrate the effects of the pumping mechanism
Liebau [1954] proposed an experiment with two tanks connected by an elastic
rubber tube, one tank was positioned higher than the other, but by pressing on the
rubber tube with a certain frequency it would be possible to pump liquid from the
lower tank to the higher.

A year later in 1955 Gerhart Liebau constructed a series of other cases where
a single periodic pinching on the outside of the tube would create a mean flow,
among those examples were Liebau’s ring [Manopoulos et al., 2006]. The ring
is ideally constructed of two pieces of tube with equal length and radius but with
different rigidity, the tubes are glued together end-to-end to form a ring, actually
a torus, with the inside filled with liquid. When the ring is held horizontally and a
harmonic oscillating external compression of the tube is applied to an asymmetric
point on the ring (ie. not midways on the tubes) a mean flow will form round in the
ring. Among other things this mean flow depends on the frequency of the pressure
oscillations and at certain critical frequencies the flow will change direction.
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This sort of periodic compression pumping has later been known as the Liebau
effect or more generally impedance induced pumping since the general idea be-
hind the mechanism is that the periodic compressions create waves of pressure
and liquid displacement that interact with the impedance of the tube, if the com-
pression pump is positioned at a point with a difference in impedance from left
to right a mean flow will follow from the complicated interaction between the
periodic compressions and the impedance mismatch.

Liebau proposed his models as suggestions to the functionality of the cardio-
vascular system and the discussion raised by Donders, but it was mathematicians
and engineers that caught the interest in the phenomenon of impedance induced
pumping. Thus the Liebau effect has had little or no influence on physiological
research [Männer et al., 2010]. For a full historical review of the mathematical
research in Liebau’s ring refer to Manopoulos et al. [2006].

5.2 Setup of a model of Liebau’s ring

Besides the quantitative validation of the model another reason to include the sim-
ulation of Liebau’s ring into this thesis is that it will function as a fast way to
demonstrate the necessary steps needed to adapt the model to a specific simula-
tion case: boundary conditions, parameter estimation, a tracing of the tube, and a
pumping mechanism.

Boundary conditions refer to what happens at the ends of the tube. The end-
points are very defining for the impedance of the tube, such that it is generally
stated that the tube ends should have a impedance mismatch to produce a Liebau
flow in the tube [Männer et al., 2010]. Though in reality it is the impedance of the
tube together with the impedance at the tube ends that should have a mismatch,
which becomes very clear in the case of Liebau’s ring where the boundary condi-
tion of one tube is simply just another tube of the same length, the two tubes are
joined end to end to form a ring. The boundary condition is cyclic.

A parameter estimation is necessary to obtain values for parameters of the
model. Not that many parameters are needed for the model to function - primarily
three parameters: density, ρ, and viscosity, η, of the liquid and Young’s modulus,
E, for the softness of the tube wall. Secondarily some extra parameters are nice
to have: the outside pressure, P0, sets a baseline for the pressure plots, the typical
period of a cardiac cycle, T , gives an indication of the relevant frequencies, and
the thickness of the tube wall, h, can in many ways be thought of as a model
parameter also. Thirdly the boundary conditions and pumping mechanism will
typically have parameters of their own.
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In the case of Liebau’s ring the parameters used for the simulation are found in
[Snitker et al., 2000] and [Ottesen, 2003], which contain measurement data from
an experiment with a ring consisting of one latex and one PVC tube filled with
water (ρ = 103 kg/m3, η = 10−3 Pa·s). Ideally the only difference between the
two tubes should be their softness, though that is not a necessary condition, and in
the physical experiment the PVC tube is both smaller and thicker: The latex tube
has thickness hα = 0.001 m and Young’s modulus Eα = 4.1 · 105 N/m2 while the
PVC tube has thickness hβ = 0.003 m and Young’s modulusEβ = 4.3 ·105 N/m2.

The tracing of the tube is necessary to find the resting radius at all points in
the tube, the length of the tube, and the curvature of the tube. The tracing is also
used to determine a suitable division into sections for the model, in the case of
Liebau’s ring this only refers to a suitable number of identical sections, but for the
more complicated heart models the sections need not be identical.

Let the model of Liebau’s ring be described with N = 60 sections. The first
N/2 sections will be that of the latex tube described with thickness hα and Young’s
modulusEα and the last N/2 sections will be that of the PVC tube with thickness
hβ and Young’s modulus Eβ. Young’s modulus and the thickness are factors in
the expressions for Cn, Csn and Zsn.

Furthermore let the first N/2 sections be described with a radius of Rn = 0.01
m and the next N/2 sections with a radius of Rn = 0.008 m as the PVC tube
is slightly thinner than the latex tube. The cyclic boundary conditions transform
section 0 to section N and section N + 1 to section 1. Each tube have an exact
length of 0.5 m combining to form a ring with a circumference, l = 1.0 m. The
radius of curvature will be universal for all sections, RB = l

2π
, and likewise for

the bend angle, θ = 360◦

N
.

Finally the pumping mechanism is important to complete the model setup. The
equations of the model will be described by the equations in section 4.4 of chapter
4, except for the sections where the pumping mechanism affects the tube. Ac-
cording to Ottesen [2003] the compression pump is described with a reduction of
the cross-sectional area, A(t, x), in both time and space. The duration of the com-
pression is 10% of the period while A(t, x) is equal to the resting cross-sectional
area, A0, for the remaining 90% of the period. Spatially the compression area is
localized to 10% of the soft latex tube only. The compression pump is described
by the equation,

A(t, x) = A0 − (A0 −Amin) sin
(

π

0.1T
t
)
sin

(
π

0.1lα
x
)

(5.1)

for ((t mod T ), (x mod l)) ∈ [0, 0.1T [×[0, 0.1lα[ and A(t, x) = A0 else, where
T is the period, lα = 0.5 m is the length of the soft latex tube, and Amin is
the minimum cross-sectional area achieved during the compression cycle, defined
such that the compression ratio, c = A0−Amin

A0
, is set to 25% if nothing else is

mentioned.
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In the model in this thesis radius is the defining variable, not cross-sectional
area, thus a similar equation is defined,

R(t, x) =

√
R2

0 − (R2
0 −R2

min) sin
(

π

0.1T
t
)
sin

(
π

0.1lα
x
)

(5.2)

for ((t mod T ), (x mod l)) ∈ [0, 0.1T [×[0, 0.1lα[ and R(t, x) = R0 else, where
R0 is the resting radius and where the minimum radius during a compression cycle
is defined, Rmin = R0

√
1− c.

Implemented into the model where each section is defined with a uniform
radius the above sinusoidal spatial compression of the tube will not be possible.
Instead define a pinching mechanism involving a number tube sections, defined
as the pinching site, such that the minimum radius of each section of the pinching
site is defined so the overall pinching mechanism approximates the sinusoidal
compression profile of equation 5.2. The minimum radius of each section of the
pinching site is defined as,

Rmin,m = R0,m

√
1− c sin

(
π

m

M + 1

)
, (5.3)

wherem = 1, . . . ,M is the index number for the sections included in the pinching
site and M is the total number of sections in the pinching site, and where R0,m is
the equilibrium radius of the section for the tube at rest. Then the compression for
each section of the pinching mechanism is found as a function of time,

Rm(t) =

√√√√R2
0,m −

(
R2

0,m −R2
min,m

)
sin

(
πf

0.1
t

)
, (5.4)

for t mod T ∈ [0, 0.1/f [ and Rm(t) = R0,m else, where f is the frequency of the
pinching mechanism.

The pinching mechanism produces a problem for the simulations of the model
since a time-dependent radius is sought for through its derivative in a Runge-Kutta
algorithm, while the pumping mechanism defines the radius directly as a function
of time. Therefore the radius of those sections affected by the pumping mecha-
nism is removed from the algorithm and overwritten with the radius defined by
equation 5.2. This will create some apparent numerical effects in the sections
where the pinching site is positioned because of discrepancies between the time
solution of the Runge-Kutta algorithm and the function given by equation 5.2.
These effects will not disturb the solution of the equations by the Runge-Kutta al-
gorithm they are merely artifacts of the brute force implementation of the pumping
mechanism into the computer algorithm.
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5.3 Frequency spectrum of Liebau’s ring

It is postulated that the Liebau effect is caused by a mismatch of impedance to
the left and right compared to the position of the pinching site, which creates a
difference in reflection of the pressure waves induced by the periodic pinching.

The pressure waves are induced by the periodic compression at the pinching
site and travel round in the ring as a function of the elastic modules and dimensions
of the two tubes. At two locations the pressure waves are reflected because of the
sharp change in elasticity and tube dimensions; exactly at the junctions between
the tubes. The mismatch between reflected waves creates asymmetry in the ring,
which should be the cause of the Liebau effect. If that is the case, resonance
between reflected pressure waves and the pumping mechanism should amplify
the effect.

From the Moens-Korteweg equation (see section 3.7) the velocity of the pres-
sure wave is,

vα =

√
Eαhα
2Rαρψ

and vβ =

√√√√ Eβhβ
2Rβρψ

, (5.5)

where Rα is the radius of the latex tube and Rβ is the radius of the PVC tube,
notice the factor ψ multiplied to the density as explained in section 3.8.

With parameters described in section 5.2 and ψ = 1.03, which corresponds
roughly to frequencies from 2 to 4 Hz, the pressure wave velocity vα = 4.46 m/s
is achieved for the soft tube and vβ = 8.80 m/s for the rigid tube. Correspondingly
Ottesen [2003] reports vα = 5.22 m/s and vβ = 10.37 m/s by use of a modified
Moens-Korteweg equation similar to the functions in equation 5.5 without ψ but
multiplied with a factor 2/

√
3, which corresponds

√
ψ for a flow with Poiseuille

profile, ψ = 4/3.
The pressure wave velocity gives a relation between the distance the wave

needs to travel and the travel time. Seen in relation to the period of oscillations
it is clear that if travel time and period match the pressure wave will encounter
positive interference.

The interaction between pressure waves in the system is a function of both
the position of the pinching site and the frequency of the pinching; in the simple
case two reflected waves are identified in the system: one pressure wave reflected
at the junction left of the pinching site and another pressure wave reflected at
the junction right of the pinching site. These will be referred to as first order
reflections.

But the pressure waves are not only reflected at the junctions between the
tubes, they are also transmitted across the junctions. Reflection and transmis-
sion will happen every time the pressure wave crosses a junction between the two
tubes, thus a reflected wave from the second junction in the path of the wave will
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also be present as well as higher orders of reflected waves, however for each order
of reflections the energy of the pressure wave will be split between the reflected
and the transmitted wave and so only the first three orders of reflections will be
considered here.

For the first order reflected wave the distance the wave needs to travel left to
reach the left junction is lp, while the distance it needs to travel right is 1

2
l − lp,

with lp being the distance to the center of the pinching site from the left junction.
These reflected waves will resonate with the pump oscillations if the travel time
from the pinching site to the junction corresponds to 2j−1

4
of the oscillation period,

with j being an integer number,

f1,left =
2j − 1

4

vα
lp

and f1,right =
2j − 1

4

vα
1
2
l − lp

. (5.6)

For the second order reflected wave similar arguments apply except that these
waves travel both through the soft and the rigid tube,

f2,left =
2j − 1

4

vαvβ
lpvβ +

1
2
lvα

and

f2,right =
2j − 1

4

vαvβ(
1
2
l − lp

)
vβ +

1
2
lvα

. (5.7)

A third order reflected wave is reflected at the third junction in the path of the
wave, thus it actually completes a full circle in the ring before being reflected,

f3,left =
2j − 1

4

vαvβ
(1
2
l + lp)vβ +

1
2
lvα

and

f3,right =
2j − 1

4

vαvβ
(l − lp) vβ +

1
2
lvα

. (5.8)

However for the third order reflected wave an additional possibility exist where
the wave is reflected twice inside the rigid tube, f ∗

3,left and f ∗
3,right,

f ∗
3,left =

2j − 1

4

vαvβ
lpvβ + lvα

and

f ∗
3,right =

2j − 1

4

vαvβ(
1
2
l − lp

)
vβ + lvα

. (5.9)

In this manner a multitude of different reflected waves exist for higher orders of
reflections.
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Furthermore since waves are transmitted across the junctions there will also be
pressure waves that travel a full circle round in the ring. Those waves have other
conditions for resonance; the distance the wave needs to travel through either tube
is 1

2
l, and for the waves to be resonant the time it takes to travel round the ring must

be a whole number of periods, jT , which gives the condition for the resonance
frequencies,

fcircle =
j

1
2
l
(

1
vα

+ 1
vβ

) . (5.10)

In addition if the travel time corresponds to (j − 1
2
)T the transmitted pres-

sure waves will also experience resonance, though not as powerful, in fact due
to the wave-form of the pinching mechanism a transmitted wave with a period
corresponding to twice the travel time round the ring will appear as a wave with
twice the frequency but with less power. Similarly it is possible to find transmitted
waves with periods corresponding to other “simple factors” of the travel time.

If one pressure wave is resonant with the pinching oscillations it will be at-
tenuated compared to the other waves and dominate the system. For the reflected
waves this domination will create a pressure pulse traveling in a certain direction
round in the ring, which should be associated with an amplified mean flow in the
system. Resonance for the transmitted wave traveling a full circle in the system
will create symmetric waves in the system. These waves does not depend on po-
sition of the pinching site and thus they should never be associated with mean
flow, otherwise it would be possible to have mean flow when the pinching site is
positioned symmetrically in the system. This hypothesis will be tested in section
5.4.3.

Let the parameters of the model be the same as defined above in section 5.2
and let ψ have the approximate value ψ = 1.03, which corresponds roughly to the
frequency range used by Ottesen [2003]. Let furthermore the distance from the
center of the pinching site to the left junction be lp = 10 cm, which corresponds
to the simulations by Ottesen [2003] and experimental measurements by Snitker
et al. [2000], then resonance frequencies for the reflected and transmitted waves
can be calculated, they may be found in table 5.1.

As it is seen in table 5.1 the spectrum of resonance frequencies for different
wave modes is very complicated and it is generally difficult to predict the effect
a given frequency will have on the flow in the system. For instance the first or-
der resonance, f1,right = 2.78 Hz, and the resonance of the transmitted wave,
f 1

2
,circle = 2.96 Hz, lie very close to each other, and in between them a third or-

der resonance is found, f3,right = 2.90 Hz. f1,right is the first mode of reflected
waves from the right and should produce a clear mean flow while f 1

2
,circle is the

first standing mode of the transmitted wave corresponding one half of a period,
which should possibly have a nullifying effect on the mean flow.
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j f1,left f1,right f2,left f2,right fcircle
1 11.23 Hz 2.78 Hz 3.16 Hz 1.70 Hz 5.95 Hz
2 33.46 Hz 8.41 Hz 9.54 Hz 5.14 Hz 11.93 Hz

j f3,left f3,right f ∗
3,left f ∗

3,right f 1
2
,circle

1 1.29 Hz 0.95 Hz 1.83 Hz 1.22 Hz 2.96 Hz
2 3.93 Hz 2.90 Hz 5.54 Hz 3.69 Hz 8.94 Hz

Table 5.1: The resonance frequencies for the reflected and transmitted pressure
waves in Liebau’s ring with ρ = 103 kg/m3, η = 10−3 Pa·s and elastic modules
of the tubes Eα = 4.1 · 105 N/m2, Eβ = 4.3 · 105 N/m2. The dimensions of the
tubes are Rα = 0.01 m, Rβ = 0.008 m, hα = 0.001 m , hβ = 0.003 m and length
of each tube 1

2
l = 0.5 m, with the pinching site positioned 0.1 m from the left

junction on the soft tube.

Furthermore it should be noted that the pressure waves traveling in the sys-
tem are not normal sinusoidal waves; the pumping mechanism only compress the
tube for one tenth of the period and so it creates pressure pulse waves, which
demonstrate a significantly other pattern of interference that does not include the
possibility of destructive interference.

Whenever a pressure pulse wave travels across a section of the tube the liquid
inside will be displaced slightly according to the moving pressure gradient. So
when the pressure pulse waves from the pumping mechanism are reflected by the
impedance given by the dimensions and stiffness of the two tubes, a mismatch of
reflected pressure pulse waves ensues and those reflected waves (resonating with
the pumping mechanism or not) create an uneven displacement of liquid in the
ring, which is the Liebau effect.

5.4 Model results

Liebau’s ring is used to test and validate the energy bond model presented in
chapter 4, the case is selected especially because all the elements of the model,
even curvature, are expressed in a fairly simple way in the ring, as such it is the
perfect test scenario for the model.

The simulation results of the mean flow in Liebau’s ring are compared to
the experimental results of Snitker et al. [2000] and simulation results obtained
through use of another one-dimensional mathematical model involving an average
of the Navier-Stokes equations by Ottesen [2003]. This comparison is detailed in
section 5.5.

Before the comparison and a subsequent investigation of the model parts the
results of the simulations will be presented and investigated here.
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5.4.1 Model programming

The model of Liebau’s ring is setup up according to the equations presented in
section 4.4, detailing the differential equations for the dynamic radius and mo-
mentum of flow for each section of the model. The elements of the model are
calculated as described in chapter 4 with the material parameters presented in sec-
tion 5.2, with the compression pump described by equation 5.4 and with a cyclic
boundary condition such that section N + 1 equals to section 1.

The model is programmed in MatLab v. 7.5 (copyright The MathWorks Inc.)
and makes use of MatLab’s inherent ‘ode45’ Runge-Kutta algorithm to iterate the
differential equations of rn and pn. After the end of the ‘ode45’-solver the values
of Pn and Qn are calculated through equation 4.59 and 4.60. For some simula-
tions mean values are calculated by integrating over a whole number of periods
and dividing with time. The programs used in the simulations are presented in
appendix A.

A simulation involving N = 60 sections with a periodic compression pump
at frequency f = 2.06 Hz (like the simulation presented in figure 5.2) and fifty
periods of iterations took 120 seconds of CPU-time on a computer with a 2.93
GHz CPU and 1.86 GB ram, of these 107 seconds was used by the ‘ode45’-solver,
which divided 44 seconds to the solver-algorithm itself and 62 seconds to the
calculation of rn and pn, and the remains to other functions. The ‘ode45’-solver
reported 21119 successful iteration steps and 3515 failed attempts, which may
have taken up time for the solver. It took less than 3 seconds to calculate Pn and
Qn and more than 10 seconds to save the data.

5.4.2 Oscillations in time

The simulation results are obtained with a pinching pump similar to the one de-
scribed by Ottesen [2003] and detailed for the implementation into the model
in section 5.2, which also explains the setup and parameter values of the model
for Liebau’s ring. For most of the simulations the center of the pinching site is
positioned 10 cm from the left junction, which is comparable to both [Ottesen,
2003] and [Snitker et al., 2000]. An example of the results of a simulation with
frequency, f = 2.06 Hz, is visible in figure 5.2.

The figure demonstrates what appears to be very violent and erratic oscilla-
tions of all functions in the simulation, but for instance the oscillations of the ra-
dius ranges between 0.92 cm and 1.05 cm, that is the tube’s radius varies with 1.3
mm, which seems reasonable. On the other hand the oscillations of flow ranges
from −150 cm3/s to almost 200 cm3/s, that is about 100 times the mean flow,
−1.78 cm3/s. Correspondingly Ottesen [2003] reports flow oscillations about 16
times the mean flow.
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Figure 5.2: Three periods of a simulation of Liebau’s ring at frequency, f = 2.06
Hz with the center of pinching site 10 cm from the left junction. Top left a plot
of the oscillations in radius of the soft tube with mean radius, 0.993 cm. Top
right a plot of the oscillations of the momentum of flow with average momentum,
−9.52 · 10−2 kg/m·s. Bottom left the pressure oscillations with mean pressure,
9.97 · 104 Pa. Bottom right the volume flow oscillations with mean flow, −1.78
cm3/s.

Notice how the graphs of the oscillations appear to be paired; radius compares
to pressure and momentum compares to flow. In the energy bond graph, figure 4.6,
radius is proportional to the force on the tube walls which is given by the pressure
divided by the transformation ratio, 2π∆xrn, so for small changes, radius will
appear to be proportional to pressure. In the same way flow is proportional to mo-
mentum as long as the changes in radius are small, while pressure is proportional
to the derivative of the momentum, and flow is proportional to the derivative of
radius.

All of the oscillations are dependent on the tube dimensions and may vary
from section to section, for radius and momentum the mean values are also strongly
dependent on tube dimensions while the mean value of pressure appears to be less
dependent and the mean value of flow is a universal number for all sections of the
tube, given that oscillations have found a dynamic equilibrium. Thus the mean of
radius and momentum may vary strongly from section to section, especially since
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the radius of the soft and the rigid tube differs, while mean pressure varies only
little depending on the section, with the strongest variance observed in the rigid
tube. The mean pressure of the soft tube will be regarded as almost invariant and
specifically reported for the section opposite to the pinching site from the middle
of the soft tube.

The mean pressure with 9.97 · 104 Pa is a little lower than the equilibrium
pressure, set to atmospheric pressure, P0 = 105 Pa. This may seem counter-
intuitive as reduction of volume, or in this case a reduction of radius, is typically
associated with an increase in pressure. But this argument only holds if energy is
locally contained, instead an increase in pressure will induce an increase in radius,
and similarly for decreases; the mean radius is a little lower than equilibrium
radius, 0.7 %, thus the mean pressure is a little lower than equilibrium pressure,
0.3 %.

But shouldn’t the pressure increase when the pinching compress the tube,
where does that missing pressure go? It is converted to kinetic energy through
Bernoulli’s equation. The kinetic energy defines the flow oscillations, and the
mean kinetic energy will define the mean flow. Furthermore with the oscillations
of the flow energy dissipates through the Poiseuille resistance and the curvature
resistance, effectively due to friction.

The mean flow with −1.78 cm3/s is much less compared to the flow oscilla-
tions. The total volume inside the ring is 257.6 cm3 at equilibrium so a flow of
nearly 200 cm3/s would mean that the liquid moves almost a full circle in one
second, though this only lasts for a moment it is clear that it takes a lot of energy
to accelerate the liquid to such velocities, energy that is supplied by the pressure
oscillations. On the other hand, the mean flow compares to a mean flow veloc-
ity, 0.56 cm/s, so even though the oscillations are massive the liquid moves quite
slowly round in the ring.

5.4.3 The no-flow condition

An important condition to test for the model of Liebau’s ring is if the flow is truly
zero when the pinching site is placed symmetrically in the system, ie. centrally
on the soft tube. As explained the Liebau effect is attributed to the mismatch
between reflected pressure waves in the system, but if the pinching site is placed
symmetrically no mismatch is encountered, and thus no flow.

Therefore a test of the no-flow condition is significant to prove that the model
is in accordance with the simplest physical conditions of the system, or, if not, to
investigate what could be causing an eventual error.

Figure 5.3 shows the plots of flow and pressure from a simulations using the
model setup described in section 5.2 with the number of sections N = 50 and
with the 3 sections wide pinching site situated in section 12, 13 and 14, which is
centrally on the soft tube of the ring.



Chapter 5: Case: Liebau’s Ring 101

44.4 44.6 44.8 45 45.2 45.4 45.6
−250

−200

−150

−100

−50

0

50

100

150

200
The volume flow in a section of the model

Time [seconds]

T
he

 v
ol

um
e 

flo
w

 [c
m

3 /s
]

44.4 44.6 44.8 45 45.2 45.4 45.6

9.7

9.75

9.8

9.85

9.9

9.95

10

10.05

10.1

10.15

10.2

x 10
4 The driving pressure in a section of the model

Time [seconds]

T
he

 d
riv

in
g 

pr
es

su
re

 [P
a]

Figure 5.3: Three periods of a numerical test of the model with the number of sec-
tions N = 50 and the three sections pinching site centered at section 13, midways
on the soft tube. Model setup as defined in section 5.2. Both flow and pressure
oscillations are very dramatic, while mean flow is almost zero, 1.67 · 10−4 cm3/s,
and mean pressure drops a little compared to atmospheric pressure, 9.97 · 104 Pa.

As the figure demonstrates the mean flow is only 1.67 · 10−4 cm3/s despite the
range of oscillations reach from −250 to 200 cm3/s. Clearly this proves that the
model is in accordance with the no-flow condition, the minimal deviation from
zero flow must be attributed to numerical effects in the model or in the computa-
tion of the mean.

Additionally figure 5.3 demonstrates a drop in the mean pressure compared
to pressure at time zero, which is set to atmospheric pressure, P0 = 105 Pa. The
mean pressure drops to 9.97 · 104 Pa though no mean flow is observed, which
means that the mean kinetic energy is zero. This reveals that the greatest leak in
pressure actually comes from the Poiseuille and curvature resistances that dissi-
pate energy due to the flow oscillations.

An interesting question regarding the no-flow condition is, if the transmitted
wave that travels round the ring is capable of inducing flow. Because this wave is
independent of the position of the pinching site it should be able to induce flow
when the pinching site is positioned symmetrically in the system, if this is the
case.

There are two possible cases that should be tested; the transmitted wave en-
counters resonance and the transmitted wave does not encounter resonance. The
last case is tested in figure 5.3 as the frequency, f = 2.06 Hz does not correspond
to any resonance modes of the transmitted wave, no flow is observed in that case.
The first case is visible in figure 5.4.

In the figure flow oscillations are visible for transmitted waves with periods
corresponding to once or twice the travel time round the ring, none of them pro-
duce any mean flow. Figure 5.3 and 5.4 should be enough to prove that the trans-
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Figure 5.4: Three periods of a numerical test of the model with N = 50 sections
and the three sections pinching site centered at section 13. Model setup is defined
in section 5.2. On the left is a simulation with f = 2.96 Hz, corresponding to the
travel time round the ring equal to the half of a period, yielding a mean flow of
6.49 · 10−4 cm3/s. On the right is a simulation with f = 5.95 Hz, corresponding
to the travel time round the ring equal to a full period, yielding a mean flow equal
to 6.51 · 10−4 cm3/s. Mean flow in both simulations is effectively zero safe for
numerical effects.

mitted wave does not induce flow in the system, the mean flow must come from
the reflected waves.

Notice how the range of flow oscillations are greater in figure 5.3, lesser in the
left plot of figure 5.4 and least in the right plot. All three plots are made for section
20 of a model with 50 sections and with the pinching site centered at section 13,
but the oscillations can vary a lot from section to section and depending on the
frequency. The plots in figure 5.4 correspond to modes where the transmitted
wave encounters resonance, thus a standing wave is created with antinode at the
pinching site, so the full oscillations are not visible in those plots. In the plot of
figure 5.3 the frequency does not correspond to any modes of standing waves, so it
is a more complicated picture of the transmitted and reflected waves in the system.

5.4.4 The frequency scan

In relation to the Liebau effect the interesting question is how the dynamical flow
and pressure oscillations lead to conditions that produce a mean flow round in the
ring, and how that situation depends upon a number of different factors. As dis-
cussed in section 5.3 one of those factors is the frequency of the periodic compres-
sions of the tube, which will induce pressure waves in the system and at certain
frequencies these pressure waves will resonate with the periodic pinching mecha-
nism, as presented in table 5.1.
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Figure 5.5: A frequency scan of the mean flow in the ring with setup as described
in section 5.2. The solid curve represent a series of simulations with much finer
resolution in the frequency range that due to long computation time of simulations
with longer periods does not extend all the way to the low frequency range, but
as shown by the figure the coarser resolution scan (dotted curve) demonstrates
the features of the frequency spectrum reasonably well. Several of the resonance
frequencies defined in table 5.1 are visible in the graph as small markers in the
bottom of the plot; green markers are right reflected waves and yellow are left
reflected waves, the size of the markers refer to the reflection order, and the dashed
markers refer to j = 2 in table 5.1.

Naturally it will be interesting to investigate exactly how these resonance fre-
quencies affect the mean flow for the system. To make a frequency scan of the
system the program from appendix A is changed so that for any array of frequen-
cies it will iterate the equations for 70 periods of time and afterwards calculate the
mean values by integrating over the last twenty periods and dividing with time,
assuming the system have found its dynamic equilibrium at that time. This is not
shown in the appendix. This time consuming procedure gives the frequency spec-
trum for mean values of rn, pn, Pn and Qn for every frequency in the array, which
is visible in figure 5.5.

As is visible in the figure the mean flow is primarily negative for the frequency
spectrum, that is the flow moves from the larger part of the soft tube towards the
shorter part. This corresponds to the assumption that in the low frequency range
the right reflected pressure waves will generally be dominant, as the distance they
have to travel is longer and thus their travel time will be better compatible with the
period of the compressions. At higher frequencies more resonance modes of the
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left reflected waves may come into play such that the distribution between positive
and negative mean flow may be more even.

At certain frequencies the spectrum demonstrate clear peaks where the mean
flow is either intensified, nullified or it changes direction, most of these appear to
correspond roughly to the resonance frequencies identified in table 5.1.

The resonance frequencies of 2.78 Hz, 3.16 Hz, 3.69 Hz, 5.14 Hz and 5.54
Hz can be clearly identified, and with some imagination also the resonances at
1.70 Hz and 1.83 Hz. The frequencies of 3.16 Hz and 5.54 Hz correspond to the
resonance of left reflected waves that change the mean flow to a positive direction.
This also helps to identify the resonance at 1.83 Hz, which should be shifted a little
higher to fit with the graph. The other resonances correspond to right reflected
waves that increase the mean flow in the negative direction.

Additionally unidentified peaks are visible in figure 5.5, likely corresponding
to reflection patterns not identified in section 5.3. Specifically for frequencies
larger than 6 Hz it does not appear as if the identified resonances can explain the
graph of the mean flow.

Furthermore the mean flow is not only dependent on the resonance of pressure
waves with the compression pump, for most parts of the frequency spectrum the
mean flow is produced from interference between reflected and transmitted pres-
sure pulse waves, with the the resonances being situations that are easily identifi-
able and should dominate the system at their respective frequencies. The pressure
pulse waves have several modes of interference, it is quite possible that several
reflected waves resonates to amplify each other and even if no waves resonate at a
certain frequency they will not terminate each other either due to the nature of the
pulse waves. Generally at a given frequency it is very difficult to predict the exact
value of the mean flow from the complicated interaction of pressure waves.

5.4.5 Position of the pinching site

From the premise given in the calculation of the resonance frequencies in table 5.1
it is clear that the observed mean flow will depend on the position of the pinching
site, especially since it is proven in section 5.4.3 that the transmitted pressure
wave, which is site-independent, does not produce any mean flow. Thus it will
be interesting to observe how the simulation results change when the position of
the compression pump is moved. For that reason the program from appendix A is
changed just like in section 5.4.4 though this time the mean values are computed
as a function of the position of the pinching site.

Figure 5.6 shows a plot of the mean flow as a function of the position of the
pinching site in the ring. One thing that is clear to see in the figure is the symmetry
between the two halves of each tube, when the pinching site is moved to the
opposite site from the middle of the tube flow is reversed but of equal magnitude.
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Figure 5.6: A set of simulations with N = 60 sections where the pinching site
has been moved around to any position of two tubes, model setup as described in
section 5.2. In the plot the mean flow is visible for frequencies of 2.06 Hz (red
curve), 4.00 Hz (blue curve), 6.00 Hz (green curve) and 8.00 Hz (yellow curve),
the dashed part of the curves are reconstructions from other parts of the curves.
The dotted lines separate the tubes into four quarters, the first two quarters belong
to the soft tube and the other two to the rigid tube. The two black arrows mark
the position of the pinching site for all other simulations presented in this thesis,
except the ones in section 5.4.3 of course.

One other thing that is clearly visible in the figure is the dependency between
frequency and the position of the pinching site. At low frequency it appears that
there is only one optimal position of the pinching site, about one third of the length
from the junction between the two tubes, but with higher frequencies that optimal
position moves closer to the junctions and other positions appear in relation to the
shortening of the wavelength for higher frequencies.

It must be that the site of the compression pump should fit with the distance
that the traveling pressure waves are able to cover in a whole number of periods
going from the pinching site to a point of reflection and back, such that the sites of
optimal mean flow are the positions for which a wave of that frequency encounters
resonance in the ring. As such it is clear that the position of the pinching site
selected for all the other simulations, marked by the arrows in figure 5.6, will
not see the maximum Liebau effect possible with the two tubes for the chosen
frequencies.
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In the report by Snitker et al. [2000] it is claimed how positioning the pumping
mechanism exactly at the junction between the two tubes produces the highest
mean flow with a frequency, f = 2.06 Hz. From that it is speculated that this will
be the case for all frequencies. While figure 5.6 confirms the first result it also
proves that for other frequencies the mean flow may be less, even zero.

Positioning the pinching site at the junction between the tubes is a special case
because it effectively removes one of the possible reflection sites for the waves in
the tube, this completely changes the system and for that reason no more time will
be spent with that case here. Similarly figure 5.6 demonstrate that higher mean
flows may be achieved by pressing on the rigid tube, for a pinching mechanism
designed for pressing the soft tube. This comes only natural since the increased
thickness and elastic module of the rigid tube makes it harder to compress it, in
this way more energy is spent to compress the tube to a compression ratio of 25
%, thus the waves in the system contain more energy yielding a higher pressure
and displacement amplitude. No more time will be spent on that case either.

With that the basic phenomena in the simulations of Liebau’s ring are pre-
sented. In the following focus will be put on a comparison of the simulation
results to other reports and specific elements of the model will be examined to test
the validity, stability and performance of the model.

5.5 Comparison to other results

The simulations of Liebau’s ring are compared to another set of simulations by
Ottesen [2003] and to experimental measurements by Snitker et al. [2000].

The experiments by Snitker et al. [2000] measures the mean velocity of the
flow in Liebau’s ring, specifically pertaining to different compositions of tube
materials and the position of the pump in relation to the junctions between the
tubes. The experiments involve an external physical pump that is connected to
Liebau’s ring through as small tube, it works by producing an excess volume of
liquid inside the ring, which will then induce the flow. The frequency of the pump
is 2.06 Hz in all reported experiments.

The simulation results by Ottesen [2003] are based on a one-dimensional av-
eraging of the Navier-Stokes equations into a system of differential equations,
which are solved using the eigenvalue method and simulated using Richtmeyer’s
two step version of Lax-Wendroff’s method. The pumping mechanism used in
these simulations is described in equation 5.1 and simulation results are specifi-
cally reported for the frequency range from 2.5 Hz to 3.5 Hz.

The setup and pinching mechanism of Ottesen is the same as used for the
simulations of Liebau’s ring here, so results will be comparable to the extend
that in the data by Ottesen the system is subjected to a small pressure increase
before starting the pumping mechanism. This high pressure should not have much
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Figure 5.7: Comparison of the mean flow from the simulations of Liebau’s ring
to data from Ottesen [2003] (square and triangle plots). The simulations are made
with N = 60 and setup as described in section 5.2, though one set is made with
compression ratio c = 25 % (solid and dash-dotted curve as presented in figure
5.5) and another is made with compression ratio c = 50 % (dashed curve).

influence on the observed Liebau effect as demonstrated in section 5.5.1.
Figure 5.7 shows a comparison between mean flow of the simulations to data

supplied in by Ottesen [2003]. The figure compares the mean flow for simulations
with a compression ratio 25 % and 50 %, where the compression ratio is defined
by the compression of cross-sectional area, c = A0−Amin

A0
, according to the setup

in section 5.2.
There seem to be good correspondence between the registered mean flow from

the two sets of simulation data when the compression ratio, c, is set to 25 %, to
the point that deviances can be ascribed to difference in modeling and simulation
procedure. Both sets of data has mean flow about −1.0 to −1.5 cm3/s for most
parts of the frequency range, but in the vicinity of 2.79 Hz, 2.97 Hz and 3.17 Hz
something happens, corresponding to resonance modes defined in table 5.1.

For the compression ratio, c, set to 50 % the comparability is more unclear.
The mean flow is still in the vicinity of −1.0 to −1.5 cm3/s in the low and high
frequency end while something else happens in the frequency band around 3.0 Hz.
The mean flow by Ottesen appear to change direction around the resonances in this
interval, which is also the case in the simulations of the model, though not in the
same way. It appears as if the simulations at c = 25% have good comparability,
yet the lack of data points makes comparison uncertain for higher compression
rates.
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Comparison to the results by Snitker et al. [2000] is more complicated. Their
experiment consisted of two tubes clamped together and an external pump set
into the system through a T-junction and a third tube. The pump consists of a
compliant plastic bag that is periodically compressed to pump an excess volume
into the system, and through the compliance of the bag it is gradually refilled such
that the total volume of liquid pumped into the system during one period is zero.

The pump employed in this experiment has an active duration of 1/4 of the
period and a relaxation duration of 3/4 of the period, the frequency is set to 2.06
Hz for all measurements, and the excess volume pumped into the system the ac-
tive duration is estimated between 10 - 12 cm3. Unfortunately Snitker et al. [2000]
fail to measure compliance of the pump, so a reconstruction will not be attempted
here. It is however possible to make a crude modification of the pumping mecha-
nism in the model to compare with Snitker, such that an excess volume is period-
ically injected and removed not relying on compliance, using the equation,

V (t) = Vtotal

(
1− cos

(
2π

τ
t
))

, (5.11)

for (t mod T ) ∈ [0, τ [ and V (t) = 0 else, where τ it the active duration as
a fraction of the period and Vtotal is the total volume of fluid pumped into the
system during the active duration.

The excess volume is added to the volume flow between two sections of the
model as a function of time by means of its derivative,

dV

dt
= Vtotal

2π

τ
sin

(
2π

τ
t
)
, (5.12)

for (t mod T ) ∈ [0, τ [ and dV
dt

= 0 else.
The excess volume pump periodically injects a volume of 10 - 12 cm3 into

the system, correspondingly the pinching mechanism defined by equation 5.2 and
implemented into a model with N = 60 sections while the pinching site is 3
sections wide compresses the tube with a volume of 3.2 cm3 for a compression
ratio of 25 % and with a volume of 6.3 cm3 with a compression ratio of 50 %. The
pinching mechanism needs to compress the tube with a compression ratio of 80
% or more to compare with the excess volume pump.

Snitker et al. [2000] measure the flow velocity in the ring by timing the move-
ment of small plastic balls suspended in the water inside the tubes, specifically in
the rigid PVC tube, which is transparent. Explained in the report is the concern to
find a material for the plastic balls that would remain suspended in the liquid and
neither sink or float, eventually folded pieces of plastic bags was used. Due to the
volume of the plastic balls compared to the velocity profile the balls will experi-
ence a velocity gradient and thus they will tend to migrate towards the center of
the tube where the velocity is highest in an effect similar to the one encountered
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by blood cells [Meier, 1987], though the rugged shape of the folded pieces of
plastic could disrupt this migration at times. Thus it is expected that the velocity
measured by Snitker et al. [2000] is the peak velocity inside the tube.

Assuming the flow has a Poiseuille velocity profile the measured velocity cor-
responds to the mean volume flow,

Q = 2π
∫ R

0
Vmax

(
1− r2

R2

)
r dr =

πR2

2
Vmax, (5.13)

which is half of the volume flow achieved under the assumption of a flat velocity
profile. The flow however has a Womersley velocity profile, which means that the
corresponding flow lies in the interval from 1

2
πR2Vmax to πR2Vmax.

From an experiment involving two tubes as described in section 5.2 and with a
volume pump positioned 10 cm from the left junction Snitker et al. [2000] obtain
a flow velocity equal to 5.0± 0.5 cm/s, corresponding to a flow from 5.0± 0.5 to
10.0± 1.0 cm3/s.

Correspondingly simulations with the pinching mechanism from section 5.2
yield mean flows of −1.78 cm3/s, −1.31 cm3/s and −0.92 cm3/s for compression
ratios of 25 %, 50% and 75 % respectively. And for a simulation with the above
setup and an excess volume pump as suggested by equation 5.12 a mean flow
of 3.1 cm3/s is obtained if the activity duration is set to one tenth of the period
as suggested by Ottesen [2003] while a mean flow of only 0.3 is obtained if the
activity duration is set to one fourth of the period, much lower than the measured
flow rate.

5.5.1 High pressure results

The results by Snitker et al. [2000] were achieved for a system with high pres-
sure, obtained by injecting 10 or 20 cm3 of liquid into the system and letting it
relax before setting the liquid into motion with the volume pump. It is reported
that the system would not function satisfactory with atmospheric pressure, as the
velocities measured had a large spread in magnitude and did not demonstrate any
systematic behavior.

To compare with those results a set of simulations are prepared where a single
section of the tube is dilated to accommodate either 10 or 20 cm3 of extra volume,
and the system is allowed to relax such that all the sections of the model will have
a slightly dilated radius compared to equilibrium radius. When the system has
found its new stable condition the pumping mechanism is started with the use of
the excess volume pump from equation 5.12. A comparison of flow and pressure
of three simulations involving 10 cm3 extra volume, 20 cm3 extra volume, and no
extra volume is visible on figure 5.8.
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Figure 5.8: A comparison of simulations with the excess volume pump at fre-
quency f = 2.06 Hz: One simulation without higher pressure (solid curve), one
simulation with 10 cm3 extra liquid volume (dashed curve) and one with 20 cm3

extra volume (dash-dotted curve), the increased volume before the onset of the
excess volume pump will increase the equilibrium pressure inside the tube. On
the left is a plot of the volume flow oscillations; all three simulations follow the
same curve, except that amplitude increases with the higher pressure. On the right
is a plot of the pressure oscillations; the curves are nearly identical, except that
the higher pressure shifts the curve towards higher values.

As the figure demonstrates the simulations at higher pressure are not really
that different from the normal simulation: The amplitude on the flow oscillations
increase with higher pressure, and the pressure oscillations are naturally shifted
towards higher pressure.

It is noticeable on figure 5.8 that the mean pressure is almost constant under
the application of the excess volume pump, while it decreases under the use of
the pinching mechanism explained in section 5.2. For the simulations with 0, 10
and 20 cm3 extra volume the mean pressure is 1.0001 · 105 Pa, 1.0131 · 105 Pa and
1.0197·105 Pa respectively, while the corresponding equilibrium pressures are 105

Pa, 1.0119 · 105 Pa and 1.0199 · 105 Pa. The differences between equilibrium and
mean pressures are 100 Pa or less with a tendency to increase rather than decrease,
this may be an indication that the two pumping mechanisms are not comparable
at all.

A further comparison of the mean flow produced by the excess volume pump
to that produced by the pinching mechanism and the data by Ottesen [2003] is vis-
ible on figure 5.9. Furthermore the reported flow velocities by Snitker et al. [2000]
are drawn on the figure as vertical bars, calculated into volume flow through equa-
tion 5.13. It is clear that flow corresponding to the observed velocities is much
larger than any computed flow from the models.

According to Snitker et al. [2000] the difference between experiments with 10
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Figure 5.9: Comparison of the mean flow from the simulations with the excess
volume pump with those of the pinching mechanism (red dotted curve) and data
from Ottesen [2003] (black dotted curve) and the reported velocities from Snitker
et al. [2000] calculated into an interval for the volume flow. The black bar is the
volume flow for their experiment with 10 cm3 extra volume of liquid, ranging
from 5.0 to 10.0 cm3/s, and the gray bar is the volume flow for their experiment
with 20 cm3 extra volume of liquid, ranging from 4.7 to 9.4 cm3/s. Though it
is demonstrated that the excess volume pump is capable of producing flow in the
range reported by Snitker et al. [2000] explicitly at f = 2.06 Hz it produces nearly
no flow at all.

and 20 cm3 extra volume injected prior to the start of the pumping is a decrease in
velocity for the higher pressure measurement, though for other of their measure-
ments the higher pressure demonstrates a higher velocity. Generally that picture is
confirmed here, the simulation with 20 cm3 extra volume constituting higher pres-
sure will sometimes exhibit a lower mean flow and sometimes a higher, compared
to the other simulations. In figure 5.9 this is proved to be dependent on frequency,
but it may as well depend on a number of other things, for instance the position of
the pump on the ring, which seems to be the case for Snitker et al. [2000].

The frequency spectrum demonstrated for the simulations with the excess vol-
ume pump does not particularly resemble that of the pinching mechanism, in some
ways they appear to be mirror images of each other, but the most notable peak of
the excess volume spectrum at f = 3.5 Hz is not recognized in the spectrum of the
pinching mechanism. Furthermore it appears there is a minor peak at f = 2.06
Hz for the simulations at higher pressure, which is not observed for any of the
simulations involving the pinching mechanism.

Many things point to the fact that the pumping mechanisms are fundamentally
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different and incomparable, it has been reported many times for instance by Otte-
sen [2003] that the observed Liebau effect depends on the method of pumping
applied, which is confirmed by figure 5.9. In fact according to Yang and Wang
[2010] valveless systems that differ in configuration or operation conditions (down
to the frequency of compression) may rely entirely upon different mechanisms to
pump fluids.

The excess volume pump involved in the simulations is a very poor resem-
blance of the pump applied by Snitker et al. [2000] due to the fact that the simu-
lated pump actively refills instead of passively though its compliance, in the sim-
ulations the pump interacts with the tube by ‘magically’ introducing an excess
volume in the tube while the real pump has a whole other range of interaction
possibilities not accounted for by the model.

Constructing a hybrid pumping mechanism that works like the excess volume
pump but with the activity duration of the pinching mechanism (1/10 of the period
instead of 1/4 of the period) does not improve the comparison, even through the
hybrid pump will produce 10 cm3 excess liquid volume for only one tenth of
the period corresponding to the pinching mechanism with an 80 % compression
ratio, which compress a volume equal to 1.01 cm3 for one tenth of the period.
The spectrum of the mean flow mostly resembles that of the other excess volume
simulations, but with more modes of resonance. Thus the difference in pumping
mechanisms can not be explained only by the difference of activity duration.

The conclusion is that the model is not able to reproduce the data from Snitker
et al. [2000], mainly out of a lack of information about the pumping mechanism
used in the experiment. Many things are unclear about the experiment: the esti-
mation of elastic modulus of the wall of the tubes, the estimation of mean velocity
based on the timing of plastic balls in the liquid, disturbance of momentum oscil-
lations by the plastic balls, which could produce a more smooth mean flow, but in
the end it all comes down to the pumping mechanism. The pumping mechanism
is extremely important for the observed Liebau effect to the point that it is almost
impossible to compare two cases if not the pumping mechanisms are comparable.

5.6 Testing model parts

One huge advantage of the application of energy bond networks in the modeling
is the possibility to add or remove effects in the model just as a set of building
blocks. This makes it very easy to construct tests of the model to estimate the
importance of different model elements.
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The model is constructed in basically two steps; one step involving the fun-
damental elements of elastic compliance, liquid inertia and flow resistance, and
another step involving three additional elements of the model: Womersley theory,
shear forces in the tube and curvature of the tube. As these three last elements
carry additional assumptions about the behavior of the flow and elasticity of the
tube and sometimes deliberately are left out in reports of valveless flow models,
see for instance [Manopoulos et al., 2006] or [Azer and Peskin, 2007], it will be
interesting to inspect what influence the elements or their absence will have on the
simulations of Liebau’s ring.

5.6.1 Womersley theory

Many reports point to the assumption that Womersley theory does not have much
influence on the flow, for instance Azer and Peskin [2007] state that the results
of their simulations involving Womersley theory are similar to other models as-
suming other shapes of the velocity profile, though some simulations may show
greater effect of the velocity profile, specifically if they involve a Poiseuille ve-
locity profile. In a similar fashion Manopoulos et al. [2006] argue that for high
Womersley numbers the inertia correction factor, ψ, is close to unity and in order
to eliminate parameters from their model they assume ψ = 1 in all their simula-
tions.

With frequencies in the range from 1 to 5 Hz and the model setup described
in section 5.2 the real values of the inertia correction factor lies in the range from
1.07 to 1.03, thus ψ = 1 is a fair simplification of this model, though not in
general. On the other hand setting ψ = 4/3 in assumption of a Poiseuille profile
may be interesting for the model, figure 5.10 shows a comparison of simulations
involving a standard Womersley profile, a flat profile, ψ = 1, and a Poiseuille
profile, ψ = 4/3.

From the figure it is clear that the difference in results between simulations
with a regular Womersley profile and with a flat velocity profile, ψ = 1, are
minimal. The results obtained with at Poiseuille profile, ψ = 4/3, are different
from the other two. It is clear from the left plot of figure 5.10 that the liquid has
higher inertia as the oscillations are slower, for each period the graph appears to
skip an oscillation compared to the other two. On the right plot of figure 5.10 it is
visible that the mean flow of the Poiseuille profile follows the same general curve
as the other two, it is only shifted to lower frequencies. This is not coincidental,
in fact equation 5.5 states how the velocity of the pressure wave depends on ψ and
the resonance frequencies are generally proportional to this velocity, therefore the

whole spectrum of the simulations are multiplied with a factor,
√
1/ψ =

√
3/4 ≈

0.87.
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Figure 5.10: A comparison of simulations with different configuration of the iner-
tia correction factor: regular Womersley profile (solid curve), flat velocity profile
(dashed curve), and Poiseuille profile (dash-dotted curve). On the left is a plot
of the oscillations of flow, f = 2.06 Hz, it is visible how the flat profile and
the Womersley profile produce almost similar results, while the oscillations are
slower for the Poiseuille profile due to higher inertia. On the right is a plot of the
mean volume flow, once again the flat profile and Womersley profile are in good
accordance while the Poiseuille profile is not, if however the plot of the Poiseuille

profile is scaled with a factor,
√
4/3, towards higher frequencies (as marked by the

arrow) it is seen that the shape of the new dotted curve is in much better agreement
with the other two.

Generally Womersley theory does not mean much for the magnitude of the
simulations of pulsating flow it does however have an effect on oscillations and
the frequency spectrum of the mean flow.

5.6.2 Shear tensions

In the model the shear strain between tube sections are added as an ad hoc im-
provement to the model in order to include longitudinal shear effects in the tube.
In section 4.3.1 it is explained how these effects are modeled through the use of a
capacitor representing shear elasticity and an impedance representing energy loss
in the tube wall.

The elements were added to the model after preliminary investigations proved
that a single-capacitance elasticity did not produce accurate results for the model,
as such they represent several effects in the model of the tube. Naturally the sim-
plest effect is the binding of sections to their neighbors such that the deformation
of each section is not independent, physically the elements represent a longitudi-
nal stress-strain relation coming from the fact that the tube will attempt to mini-
mize length stretches of surface area resulting from the dilation or contraction of
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Figure 5.11: A comparison of simulations with normal shear effects (solid curve),
shear effects with no damping (dashed curve), and no shear effects at all (dash-
dotted curve). On the left is a plot of the oscillations of volume flow at frequency
f = 2.06, it is clear how the simulations without damping or shear effects expe-
rience much wilder oscillations. On the right is a plot of the mean volume flow
as a function of frequency, it is interesting how the simulations without damping
or shear effects seem to follow each other at low and high frequencies, while fre-
quencies near the resonances of 2.79 Hz, 2.97 Hz and 3.17 Hz seem to separate
the two curves.

tube sections, and through the energy loss the elements model the fact that the
tube walls are not ideally elastic, energy is lost in the wall due to internal friction.

With the shear capacity described as in equation 4.26, Csn = ∆x

2πGh
√
RnRn+1

,

where G = E/3 is the shear modulus, and the model setup as detailed in section
5.2 the values of the capacity areCsn = 1.94·10−3 m/N for the soft tube andCsn =
0.77 · 10−3 m/N for the rigid tube. With the maximum dilation-distance between
two sections equal to 1.3 mm as described in section 5.4.2 for a simulation with
frequency f = 2.06, the capacity yields a maximum force equal to 0.67 N for the
soft tube and 1.69 N for the rigid tube. For comparison the capacitance reacting
to radial expansion of a section yields 2.79 N for the soft tube and 10.98 N for
the rigid tube for the same dilation. Thus the shear forces are between 1/7 to 1/4
weaker than the radial forces.

Additionally the impedance, defined as Zsn = T/Csn where T = 0.01 s is
the period of eigenfrequencies in the combination of capacitance and impedance
added to the model with inclusion of the shear effects. Zsn yields a resistance
equal to 0.52 · 103 N·s/m for the soft tube and 1.30 · 103 N·s/m for the rigid tube,
depending on the speed of radius oscillations of the neighboring sections the im-
pedance will produce a force to dampen the oscillations.
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Figure 5.12: A comparison of simulations at frequency f = 2.75 Hz with normal
shear effects (solid curve), shear effects with no damping (dashed curve), and
no shear effects at all (dash-dotted curve). On the left is a plot of the flow, the
wildness of the oscillations is confirmed, which makes it very hard to determine
what causes the big difference in mean velocities at the frequency. On the right is a
plot of the pressure, which similarly project wildness when undamped or without
shear effects, the oscillations of the two curves are almost identical and follows the
pressure curve of the normal simulation. However, their mean pressure is closer
to the equilibrium value than for the normal simulation. From this it would appear
that it is the damping effect that matters most for the oscillations of pressure.

Figure 5.11 and 5.12 shows graphs of three simulations: one simulation with
normal shear effects included, one simulation without shear impedance, Zsn = 0,
and one simulation with both shear capacitance and impedance removed, the latter
is achieved by setting Csn = 1010 m/N such that the shear effect will be nearly
non-existent.

The figures demonstrate how the oscillations of volume flow and pressure be-
come wilder when the impedance or the shear effect is removed; both the am-
plitude and number of oscillations per period increase. The oscillating curves of
the simulations without damping and without shear effects appear to follow each
other for most of the period and it is unclear what exactly causes the major dif-
ference in mean flow between the two, at f = 2.75 Hz the simulation without
damping has a mean flow of −4.96 cm3/s while the other has a mean flow of 7.25
cm3/s.

The mean flow of the simulations without damping and without shear effects
are almost in complete agreement for low frequencies until f = 2.25 Hz and
again for high frequencies from f = 3.50 Hz and up. In the intermediate range
the simulation without shear effects remain with a high positive mean flow while
the other becomes negative and almost seems to follow the curve of the regular
simulations with shear effects included. In that intermediate frequency range at
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least three resonance frequencies have been determined at 2.79 Hz, 2.97 Hz and
3.17 Hz, it appears as if the simulation without damping is strongly reacting to
those resonances while the other is almost not affected. This makes sense as the
pressure wave travels as a function of the elasticity of the tube, when the shear
elasticity is removed from the model the circumstances for the pressure wave is
changed dramatically, on the other hand when only the damping is removed the
effect of the pressure wave resonances will be seen much clearer.

The shear effect may be implemented as an ad hoc addition to the model, but
it models a real physical effect in the tube; the longitudinal elasticity, which is not
covered by the standard radial elasticity in the model. The longitudinal elastic-
ity is important for the propagation of pressure waves in the system. Moreover
the damping of oscillations in the wall models a real effect of friction in the tube
generating heat from the oscillations, thereby higher frequency oscillations are
damped, which seem to be the defining discrepancy between curves of the pres-
sure oscillations. From figure 5.11 and 5.12 it is clear to see that both damping
and shear elasticity has a major effect on the simulations.

5.6.3 Tube curvature

Curvature of the tubes in Liebau’s ring is a condition that is quite obvious; of
all the cases proposed by Gerhart Liebau in his papers Liebau’s ring is not the
simplest, yet because of the curvature of the ring it is an interesting case for this
model.

Curvature adds another resistance to the flow but this resistance does not only
depend on the radius, as is the case for the Poiseuille resistance, it also depends
on the momentum of the flow. For flow of small momentum the impedance is
insignificantly small an may be ignored but for flow of higher momentum it may
become more influential than the Poiseuille resistance.

For pulsatile flow the resistance depends on the oscillations of momentum,
which may be important for the Liebau effect as the flow momentum is the integral
of the pressure wave. It is however common to ignore the effects of curvature
in models of Liebau’s ring, it is for instance done by both Ottesen [2003] and
Manopoulos et al. [2006].

The resistance due to curvature is defined in equation 4.38 and while the coef-
ficients αKBfT/ψ adds up to 0.38 for the soft tube and 0.49 for the rigid tube and
momentum oscillations have a magnitude of about 10 kg/m·s the relation defined
by the radii of the tube yields 7.96 ·104 m−3 for the soft tube and 1.55 ·105 m−3 for
the rigid tube, which can make the resistance explode at times of high numerical
momentum.
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Figure 5.13: On the right is a comparison of the momentum of simulations with
normal implementation of curvature (solid curve) and without curvature resistance
(dashed curve) at frequency f = 2.06 Hz, it is clear how the oscillations without
curvature resistance express a larger amplitude. On the right is a comparison of the
Poiseuille resistance (solid curve) to the curvature resistance (dashed curve) for a
standard simulation at f = 2.06 Hz (notice the logarithmic axis), the curvature
resistance increase and decrease in relation to the oscillations of the momentum,
while the Poiseuille resistance is much more stable.

Figure 5.13 and 5.14 show the comparison of two types of simulations: one
normal simulation with curvature resistance included and another one without
curvature, effectively achieved by setting the bending angle of each section to
zero.

The figures demonstrate how the resistance due to curvature is much more
dynamic compared to the Poiseuille resistance. The resistance from curvature
increases and decreases in accordance with the numerical value of the momentum
of flow but most of the time it is larger than the Poiseuille resistance, sometimes
even with a factor 10 or more.

The damping of the curvature has a large effect on the oscillations of all the
variables of the simulation; the amplitude is decreased yet the shape of the curve
is almost similar for simulations with and without curvature, for the flow and the
momentum without curvature the curves are shifted to higher or lower values de-
pending on the frequency compared to the curves of normal flow and momentum,
which creates a dramatic effect for the mean flow, especially in the vicinity of
resonance frequencies. It is possible to identify resonances from table 5.1 at 2.79
- 3.17 Hz, 5.13 Hz, 9.50 Hz and possibly also at 1.71 Hz though it is unclear what
happens at the lower frequencies.

It is clear that the curvature of the tube has a large effect on the oscillating flow
and pressure waves of the model, and that it is very important for the observation
of Liebau phenomena in the tube. Without the curvature the observed Liebau
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Figure 5.14: A comparison of simulations with normal implementation of cur-
vature (solid curve) and without curvature resistance (dashed curve). On the left
is a comparison of the mean flows as a function of frequency, the mean flow
without curvature has much higher numerical values that the flow with curvature,
the dashed curve has been divided by 10 in order to make the comparison, the
mean flow without curvature still appears to respond to resonance effects in the
frequency spectrum. On the right is a plot of the flow oscillations at frequency
f = 3.0 Hz, the curves have an almost similar appearance except that the mean
flow without curvature lies much lower.

effect is many times larger, this alone is a proof that curvature effects may not be
ignored in the model.

Overall it is clear that the damping effects are what defines the observation of
the Liebau effect in the model, both the damping from friction in the walls of the
tube and the damping from the curvature of the tube are very important for the
observed curves of oscillating flow and pressure and in the end for the mean flow
through the system. While the shear elasticity of the tube wall and the Womersley
inertia correction factor are not inconsequential to the outcome of the simulations
it is clearly the damping and resulting energy loss from the shear effects or the
tube curvature that has the most influence.

5.6.4 Difference in the number of sections

Another interesting question about the model is its stability pertaining to the num-
ber of sections, N , that are used in the simulations. All the above simulations
except those of section 5.4.3 are made for N = 60 sections of the model, which
gives a section length, ∆x = 1.67 cm. Here four simulations will be compared
involving 20, 40, 60 and 80 sections.
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Figure 5.15: A comparison of simulations involving 80 sections (solid curve), 60
sections (dashed curve), 40 sections (dash-dotted curve) and 20 sections (dotted
curve) at frequency f = 2.06 Hz. On the left is a plot of the flow oscillations, some
differences are visible between the simulations, especially for the simulation with
20 sections. On the right is a plot of the pressure oscillations, some differences,
especially for for the simulation with 20 sections, are also visible here. However,
as the horizontal line indicates the mean pressure is the same for all simulations,
9.97 · 104 Pa.

When changing the number of sections it is simultaneously needed to change
the position of the pinching pump and how many sections it covers. For the sim-
ulation involving 60 sections the pinching site is 3 sections wide and centered on
the sixth section from the left. Naturally the pinching site will be 1, 2 and 4 sec-
tions wide for the simulations involving 20, 40 and 80 sections, while the position
of the site is at section 2 for the simulation involving 20 sections, at section 4
and 5 for the simulation involving 40 sections, and at section 7, 8, 9 and 10 for
the simulation involving 80 sections. The positions of the pinching site does not
correlate completely for the four simulations.

Figure 5.15 shows a comparison of the four simulations through graphs of
the oscillations of flow and pressure. It is visible how the curves in both graphs
generally follow the same path but with minor deviations mostly at the peak of the
oscillations, especially the curve for the simulation involving 20 sections seems to
deviate from the others.

The mean pressure is similar for all the simulations, 9.97 · 104 Pa, but that is
not the case for the mean flow: the calculations of the mean flow yielded 2.67
cm3/s, −2.86 cm3/s, −1.78 cm3/s and −4.01 cm3/s for the simulations involving
20, 40, 60 and 80 sections respectively.

The large differences in mean flow between the simulations may seem dis-
heartening for the model stability but it is explained with the differences in com-
pression profile. As defined by equation 5.3 the compression profile defined by
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the minimum radius for each section of the pinching site depends on the number
of sections included in the pinching site, which again depends on the number of
sections included in the model, as it is the intention that the pinching site covers
one tenth of the soft tube comparative to [Ottesen, 2003].

Therefore the compression profile will look different for each of the four sim-
ulations: For the first two it will be a square profile, for the third and fourth sim-
ulation it will be a staircase. Generally the more sections in the pinching site the
better it will approximate a sinusoidal profile.

Ottesen [2003] reports a preliminary investigation that showed that the com-
pression profile and the speed of the compressions are very influential to the di-
rection and magnitude of the observed mean flow, which seems to be the case
here.

Furthermore the compressed volume is different for each simulation; for the
simulations involving 20, 40, 60 and 80 sections the compressed volume equals
to 3.9 cm3, 3.4 cm3, 3.2 cm3 and 3.0 cm3 respectively. As this is the volume that
is displaced by the pinching mechanism it will probably have some influence on
the mean flow, though it does not appear to be in any systematic way.

Finally the numerical calculation of the mean flow may experience higher un-
certainties when the number of sections is reduced. Already the computation of
the mean relies on an algorithm to find an exact number of periods in the time-
data, which are not spaced with equal time steps, and a numerical integration of
the data for each of the variables based on a mean between right and left Riemann
sums. Possibly this procedure becomes unstable with less sections in the model.

Though based on figure 5.15 it is seen that the oscillations follow the same
general curves, which is an indication that the dynamics in the system is the same
independent of the number os sections. Naturally more sections would produce
better results, however the computation time is longer and even more problematic,
a simulation with too many sections produce too much data for the computer to
handle.

5.7 Conclusion to the case of Liebau’s ring

The results of the simulations of Liebau’s ring did not produce an exact validation
of the cylindric model. As indicated by the comparison of results Liebau’s ring is a
complicated case where many different factors have influence on the observations
of the Liebau effect; from the material properties of the tube to the frequency,
shape and position of the pumping mechanism down to the very way the model is
built.



122 Mathematical Modeling of Flow Characteristics in the Embryonic Heart

Though it was not possible to reproduce data from Snitker et al. [2000] and the
simulations by Ottesen [2003] only partially agree with the simulations using the
pinching mechanism with compression ratio at 25 % and 50 %, the explanation
for the discrepancies is clear; it all lies in the pumping mechanism, even for the
comparison with the simulation data by Ottesen [2003] the pinching mechanism
is only an approximation and as demonstrated in section 5.6.4 even pinching sites
with different number of sections are hard to compare. Because the pumping
mechanisms are not comparable it is only possible to make a partial comparison
of experimental and simulation data.

On the other hand the simulations of Liebau’s ring demonstrate the strengths
of the cylindric model and the way it is built. Because of the modular construction
of the model it is possible to compare the effect of different additions to the model
and decide how they each influence the observation of flow and pressure in the
model. It is clear from those observations that the impedance in the model has a
very large influence on the observed Liebau effect.

All in all the simulations of Liebau’s ring makes it clear that the model is
able to handle complicated flow phenomena, that would not be possible with a
Windkessel or transmission line model. The difference is that the Liebau effect
is a non-linear phenomenon that would not be visible in a linear model, and even
though the cylindric model is built from the principle of linear response theory
inherent in the energy bond technique the composition of elements and transfor-
mations in the model grants it non-linear qualities.



Chapter 6

Construction of the Eccentric Tube

Models

In this chapter the model constructed in chapter 4 will be expanded to have an
elliptic cross-section, and by the end of the chapter to a layered model with an
elliptic inner layer and circular outer layer following the observations of section
2.3.

The models herein will be referred to as the elliptic model, as the first model
has an elliptic cross-section, and the embedded model, since the final step of the
modeling procedure will be as an elliptic tube embedded inside a cylindric. Oc-
casionally they may also be referred to as the eccentric models because elastic
compliance and cross-sectional contraction are eccentric, as opposed to concen-
tric compliance and cross-sectional contraction, which is the case for the model
presented in chapter 4.

The modeling procedure in this chapter follows the same basic steps as in
chapter 4 on the basis of the energy bond theory; at first the fundamental elements
of elasticity, inertia and impedance are defined, then additional content of shear
forces, tube curvature and Womersley theory is included and the characteristic
equations of the model are derived, finally as an extra step in the modeling pro-
cedure in this chapter the embedded model will be constructed as an additional
structure for the elliptic model.

6.1 The ellipse

An ellipse can be described by its major and minor semi-axis, a and b respectively,
when a = b the ellipse becomes a circle. A parameter describing an ellipse’s
deviance from a circle is known as the eccentricity,

123
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ǫ =

√
a2 − b2

a2
=

√√√√1−
(
b

a

)2

, (6.1)

the range of ǫ belongs to [0, 1[, when ǫ = 0 the ellipse is a a circle and with
increasing ǫ the skewness of the ellipse increases. With ǫ = 1 the ellipse degener-
ates.

The area of an ellipse is described simply by the formula A = πab.
The ellipse is parameterized by x = a cos θ and y = b sin θ with θ ∈ [0, 2π].

Thus the perimeter of the ellipse is described by the complete elliptic integral of
the second kind,
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. (6.2)

Approximations to the perimeter of the ellipse is a classic question of advanced
geometry that have entertained many mathematicians over the centuries, the trick
is to find an approximation that works well for the entire range of ǫ. One of the
more prominent mathematicians who have attempted this is Ramanujan, who in
1914 suggested the formulas [Barnard et al., 2001],

C ≈ π
(
3(a+ b)−

√
(3a+ b)(a + 3b)

)
, (6.3)

or even better for a wider range of ǫ,

C ≈ π(a+ b)


1 +

3
(
a−b
a+b

)2

10 +

√
4− 3

(
a−b
a+b

)2


 . (6.4)

6.2 The elliptic model

In the construction of the elliptic model it is assumed that the elastic tube is di-
vided longitudinally into a finite number of tube sections. For each section, n, the
model describe the physical properties pertaining to the liquid flow, pressure and
elasticity of the tube section.

Each section is described with an elliptic cross-section given by the relation
πanbn of the two semi-axes of the ellipse (henceforth known as the major and
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minor axis of the ellipse). The equilibrium values of the major and minor axis of
section n of the model are An and Bn respectively, which gives the equilibrium
volume of the section, πAnBn∆x, where ∆x is the length of a section of the tube.

The liquid inside the tube is described with a pressure, Pn, for each section
of the tube and a volume flow, Qn, for the volume of liquid flowing from section
n to section n + 1. Another quantity that will be important later in the modeling
procedure is the momentum of flow, pn, which by energy bond definitions is given
by the integral of pressure and through the inertia of the liquid is proportional to
the flow.

By the end of the modeling procedure differential equations for the change in
the major axis, an, minor axis, bn, and flow momentum, pn, will be the character-
istic equations for the elliptic model.

6.2.1 Elasticity of the tube wall

The elastic properties of each tube section is associated with the pressure response
to a change in the volume of the tube. The volume of a section of the tube is a
function of the dynamic major and minor axis, an and bn, that will change as the
tube deforms. Let the dynamical volume be the function, Vn(an, bn) = πanbn∆x,
and by partial derivatives the change in volume is given by the change in the axes
of the elliptic cross section,

dVn =
∂Vn
∂an

dan +
∂Vn
∂bn

dbn = π∆x(bndan + andbn). (6.5)

Thus the elasticity will be associated with the pressure response to the length-
changes of the major axis from An to an and of the minor axis from Bn to bn.
The change of the axes of the elliptic cross-section will produce a change of the
surface area of the wall of the tube, and the elasticity of the wall will produce a
tension force in response to those changes.

The surface area of a section of the elliptic tube is given by the second elliptic
integral,

sn = ∆x
∫ 2π

0

√
a2n sin

2 θ + b2n cos
2 θ dθ, (6.6)

with Sn being the corresponding equilibrium surface area given by An and Bn.
Thus the change in surface area will be given by the change of the axes,

dsn = ∆x
∫ 2π

0

an sin
2 θ√

a2n sin
2 θ + b2n cos

2 θ
dθ dan

+∆x
∫ 2π

0

bn cos
2 θ√

a2n sin
2 θ + b2n cos

2 θ
dθ dbn. (6.7)
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The response to this surface area change is a surface tension, σn, which is
given by the elastic modulus of the tube wall times the relative change in surface
area. The elastic modulus is given by the thickness of the tube wall, h, times
Young’s modulus for the material of the tube wall,E. It is assumed that changes in
the thickness of the tube wall due to stretch of the surface are small to the point of
insignificance and that Young’s modulus is uniform throughout the elliptic surface
wall and throughout the tube in general. Therefore the surface tension will be,

σn = Eh
∆sn
Sn

, (6.8)

where ∆sn is an approximation to the infinitesimal dsn, ie. dsn ≈ sn−Sn = ∆sn.
By definition surface tension equals the derivative of surface energy with re-

spect to surface area, so to get the total potential energy stored in the surface from
the change in surface area integrate the surface tension from Sn to sn,

Uσn =
∫ sn

Sn

Eh

Sn
(s− Sn) ds =

Eh

2Sn
(sn − Sn)

2 . (6.9)

This expression compares to the potential energy of a capacitor, Uσn = 1
2
∆s2n/Cσn,

which defines the elastic capacitance of the surface tension, Cσn,

Cσn =
Sn
Eh

. (6.10)

This is the elastic capacitance of the surface in relation to the variables of sur-
face area and surface tension, to get the capacitance in relation to the variables of
axial length and force (or even volume and pressure) a transformation of coordi-
nates is required.

The surface tension is by assumption uniform throughout the surface area, but
when it is multiplied with the infinitesimal surface area segment and the curvature
at a specific point on the surface an elastic reaction force perpendicular to the sur-
face is obtained, which details how much the surface counteracts an area increase
at that particular point.

The integrand of equation 6.6 gives the area of any segment of the surface,

∆x
√
a2n sin

2 θ + b2n cos
2 θ. The surface curvature of an ellipse with parametriza-

tion (an cos θ, bn sin θ) is for any point on the surface given by the relation [Press-
ley, 2001],

κ(θ) =
anbn√

a2n sin
2 θ + b2n cos

2 θ
3 . (6.11)
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The product of these three is the reaction force at any given point on the surface
to an increase in surface area,

F = anbn∆xEh

√
a2n sin

2 θ + b2n cos
2 θ

√
a2n sin

2 θ + b2n cos
2 θ

3

∆sn
Sn

. (6.12)

In order to separate the force into composites reacting in the direction of the axes
of the ellipse multiply F with the cosine to the angle, φ, between the force vector
and the horizontal plane to find the horizontal component in direction of the major
axis, and similarly multiply with the sine to the angle to find the vertical compo-
nent in direction of the minor axis. In terms of the parametrization of the ellipse
the sine and cosine is given as (notice that θ 6= φ),

sinφ =
an sin θ√

a2n sin
2 θ + b2n cos

2 θ
, (6.13)

cos φ =
bn cos θ√

a2n sin
2 θ + b2n cos

2 θ
. (6.14)

To find the total force working in the horizontal direction each horizontal force
component must be integrated over the angle φ from −π/2 to π/2, and similarly
each vertical force component must be integrated from 0 to π to find the total
vertical force.

Due to symmetry of the ellipse the boundary values of φ and θ are identical
and the integral only needs to cover one quarter of the elliptic curve, thus the two
integrals can be computed with the help of the simpler integrals of the product be-

tween the infinitesimal area segment, ∆x
√
a2n sin

2 θ + b2n cos
2 θdθ, the curvature

of the ellipse, and the angles given by equation 6.13 and 6.14,
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Ib = ∆xa2nbn

∫ π/2

0

sin θ√
a2n sin

2 θ + b2n cos
2 θ

√
a2n sin

2 θ + b2n cos
2 θ

√
a2n sin

2 θ + b2n cos
2 θ

3dθ

= ∆x
√
1− ǫ2

∫ π/2

0

sin θ
√
1− ǫ2 cos2 θ

3dθ = ∆x

√
1− ǫ2√
1− ǫ2

= ∆x. (6.16)
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The product of the surface tension and one of these two integrals gives the
horizontal or vertical force reaction to a change of the surface area,

Fσan = 2Iaσn =
2∆xEh

Sn
∆sn , Fσbn = 2Ibσn =

2∆xEh

Sn
∆sn. (6.17)

To find the force response to a change in the length of the major axis multiply
Fan with the surface change relative to the length-change of the axis, that is the
partial derivative of sn with respect to an. And likewise for the force response to
a change of the minor axis,

Fσan =
2∆xEh

Sn

∂sn
∂an

∆an

=
2∆x2Eh

Sn

∫ 2π

0

an sin
2 θ√

a2n sin
2 θ + b2n cos

2 θ
dθ ∆an, (6.18)

Fσbn =
2∆xEh

Sn

∂sn
∂bn

∆bn

=
2∆x2Eh

Sn

∫ 2π

0

bn cos
2 θ√

a2n sin
2 θ + b2n cos

2 θ
dθ ∆bn, (6.19)

where the partial derivatives of sn are found through equation 6.7, and where
∆an = an −An and ∆bn = bn −Bn are approximations to the infinitesimals dan
and dbn.

Notice that in relation to energy bond conventions the forces defined by equa-
tion 6.18 and 6.19 are not the effort variables comparable to ∆an and ∆bn of
the energy bond model. For example, choose ∆an as one variable of the energy
bond then the corresponding effort variable is defined as eσan = T1(T1∆an +
T2∆bn)/Cσn, where T1 and T2 are coordinate transformation ratios defined by the
integrals in equation 6.7; T1 = ∂sn/∂an and T2 = ∂sn/∂bn. In the case of a
circular cross-section this would lead to an effort eσan = πFσan, though for an
ellipse it is more complicated.

As stated earlier the volume of a section of the tube is computed as the length
of the section, ∆x, times the cross-sectional area, so that Vn = π∆x anbn. It
follows directly from its partial derivative that a change of the volume comes
from the separate changes of the axes,

dVn = π∆x (bndan + andbn) , (6.20)

where each term in the equation can be considered as an individual volume change
where one axis is constrained and the other is changed,
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∆Van = π∆xbn(an −An), (6.21)

∆Vbn = π∆xan(bn −Bn). (6.22)

The total change of the volume of a section is made as a sum of the individual
volume changes from the change in the axes of the elliptic cross-section. Further-
more equations 6.21 and 6.22 detail how the change in the lengths of the axes is
transformed to a volume change.

The volume change gives rise to the dynamical pressure coming from the ten-
sion force from the walls of the tube. The increase in pressure associated with the
change of volume is according to the energy bond graph given through the effort
comparative to the length-change of the axes, ean = T1(T1∆an + T2∆bn)/Cn
and ebn = T2(T1∆an + T2∆bn)/Cn, which are transformed into the pressure by
applying the coordinate transformation found in equations 6.21 and 6.22,

Pan =
ean

π∆xbn
=

Eh

π∆xSnbn

∂sn
∂an

(
∂sn
∂an

∆an +
∂sn
∂bn

∆bn

)
, (6.23)

Pbn =
ebn

π∆xan
=

Eh

π∆xSnan

∂sn
∂bn

(
∂sn
∂an

∆an +
∂sn
∂bn

∆bn

)
. (6.24)

The pressure given by equations 6.23 and 6.24 must be the same for both
axes as it is simply the dynamic pressure, Pn = Pan = Pbn. Setting these two
equations equal to each other gives two possibilities. The first possible outcome
is the relation,

1

bn

∂sn
∂an

=
1

an

∂sn
∂bn

, (6.25)

which looks very satisfying but it only applies if an = bn, that is if the ellip-
tic cross-section is a circle. This condition is not sufficient for the elliptic tube,
though it gives an opportunity to check if the resulting capacitance fits with the
capacitance of the cylindric tube by referring to section 4.2.1,

C ′
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∆vn
Pn

=
π∆x (bn∆an + an∆bn)

Eh
π∆xSnbn

∂sn
∂an
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= π2∆x2
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∂sn
∂an

)2 (
∆an +

an
bn
∆bn

)bn

=
Sn
Eh


π∆x

∂sn
∂an




2

b2n, (6.26)

which fits with equation 4.6 for the capacitance of the circular tube, when an = bn.
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The other possibility by setting equation 6.23 equal to 6.24 is the dynamical
relation,

∂sn
∂an

∆an = −∂sn
∂bn

∆bn, (6.27)

which gives a relation between the surface increase resulting from a change of the
major axis compared to the likewise increase from a change of the minor axis, but
held against equation 6.7 it is clear that it leads to dsn = 0, which implies that
the axial lengths can only be changed in such a way that the surface area is held
constant.

The conclusion is that the description of the elasticity is not yet completed.
It lies implicit in the current description of the elasticity that even though the
cross-section of the tube can be elliptically deformed its preferred state will be
that of a circular cross-section, and only in its circular configuration will the tube
actually change its surface area through the relation in equation 6.25. In order to
complete this description another elastic property must be included; a structural
shear elasticity that will retain the preference of an elliptic cross-section with a

certain eccentricity ǫn =
√
1− b2n/a

2
n.

A change of eccentricity of the elliptic cross-section will be described as a
shear deformation of the tube, and the tube will naturally have an elastic response
to such deformations as well. Shear deformations are described in the terms of the
change of angles in the internal structure of the body under circumstances where
the volume of the body is held constant.

The forces on the principal axes of the ellipse puts the elliptic tube under
conditions of ‘pure shear’, which is defined as equivalent to a combination of
tension and compression stresses at right angles to each other [Feynman et al.,
1964, sec. 38-4]. Pure shear can be visualized by picturing the sheared body
inscribed inside a rectangular shape and then focus on the change in the angle
between the two diagonals of the rectangle when the shape of the body is changed.
For an elliptic body such a rectangle is easily described with length 2an and height
2bn, and thus the angle between the diagonals will be φn = 2 arctan(bn/an).

When the length of an axis is changed, the rectangle will change accordingly,
and so will the angle between the diagonals. The change in this angle is the shear
strain, γn, and it can be found through the derivative [Feynman et al., 1964, sec.
38-2],

γn = dφn =

(
2

1 + b2n/a
2
n

)(
−bn
a2n

dan +
1

an
dbn

)

=

(
2anbn
a2n + b2n

)(
1

bn
dbn −

1

an
dan

)
, (6.28)

which naturally can be ascribed to the changes of an and bn.



Chapter 6: Construction of the Eccentric Tube Models 131

In fact it would be more correct to name the tangent of the angle change as
the shear strain, γn = tan dφn, but this will violate the linear response doctrine of
the energy bond formalism (see section 4.1) and generally it is hardly ever applied
since for small angle changes tan dφn ≈ dφn.

Structurally it is specified that the elliptic configuration of least potential en-
ergy is described by the angle, Φn = 2 arctan(Bn/An), which identifies the state
of zero shear strain, γn0 = 0. Whenever the elliptic cross-section attains another
shape shear forces will try to counter the deformation and return the shape of the
ellipse to its minimum energy state.

The elastic reaction to the shear strain is the shear stress, τn, it is defined pro-
portionally to the strain and the constant of proportionality is the shear modulus,
G. The shear modulus has the same units as Young’s modulus and in many simple
cases it will be defined as one third of Young’s modulus, G = E/3, though it is
typically a little bit less.

The shear stress details the amount of tension the elliptic tube will be under
when it is deformed, when multiplied with the volume of the tube wall. Given by
the thickness of the wall, h, times the surface area, the potential energy stored in
the tube by the shear deformation is achieved,

uγn = Gh dγn ∆x
∫ 2π

0

√
A2
n sin

2 θ +B2
n cos

2 θdθ = GhSn dγn. (6.29)

With the changes in shear strain approximated by the difference dγn = γn − γn0
this expression is integrated over the total shear strain from γn0 to γn in order to
find the total potential energy,

Uγn =
∫ γn

γn0

GhSn (γ − γn0) dγ =
GhSn
2

(γn − γn0)
2 . (6.30)

Through the potential energy, Uγn = 1
2
∆γ2n/Cγn, the capacitance is defined

Cγn =
1

GhSn
. (6.31)

Thus another contribution is added to the force that changes the length of the
axes of the elliptic cross-section, namely that of the structural shear elasticity,
which can be found by applying the transformation ratios between the shear strain
and the change of the axes of the ellipse defined in equation 6.28 to the capacitance
of the structural elasticity in equation 6.31,

Fγan = GhSn

(
2anbn
a2n + b2n

)2
1

an

(
1

an
∆an −

1

bn
∆bn

)
, (6.32)

Fγbn = −GhSn
(

2anbn
a2n + b2n

)2
1

bn

(
1

an
∆an −

1

bn
∆bn

)
. (6.33)
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Together the structural shear elasticity and the surface area elasticity define the
elastic properties of the elliptic cross-section of the tube. The combined elastic
force is the sum of forces from these two elastic properties, which will add a term,
Fγan/π∆xbn, to the pressure in equation 6.23 and another term, Fγbn/π∆xan,
to equation 6.24, thus expanding the expression for the pressure, which will be
explored later in equation 6.95.

6.2.2 Inertia of the liquid

The inductance of the model is a representation of the inertia of mass that the
liquid in the tube posses on the acceleration of flow. In in the model the hydrody-
namic pressure is defined in the center of a section, but the flow is calculated at
the crossing between two sections. Therefore, to know the inertia of the flow the
mass of liquid needs to be defined as an average mass between two sections of the
model,

Mn = ρ∆xπ
√
anan+1

√
bnbn+1, (6.34)

where ρ is the density of the liquid and
√
anan+1 is a geometric mean between

the major axis of a section and the major axis of the next section (the geometric
mean is chosen over the arithmetic mean for practical reasons, which should be
apparent when it is squared further down).

Define the mean velocity of the liquid as the volume flow divided by the cross-
sectional area,

vn =
Qn

π
√
anan+1

√
bnbn+1

. (6.35)

The kinetic energy of the flow in a section is defined as one-half mass times
velocity squared,

En = ψ
1

2
Mnv

2
n = ψ

ρ∆xπ
√
anan+1

√
bnbn+1

2
(
π
√
anan+1

√
bnbn+1

)2Q
2
n

= ψ
ρ∆x

2π
√
anan+1

√
bnbn+1

Q2
n, (6.36)

where ψ is the inertia correction factor specified by the Womersley number in the
elliptical regime, which will be investigated further in section 6.3.3.

Through energy bond techniques every energy bond will be associated with
two variables whose product will be the energy conveyed per time, but it is possi-
ble to transform one of these to a new variable so that the product will only be the
energy - for the volume flow the associated transformed variable is the momentum
of the flow.
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Define a momentum function such that the derivative of the kinetic energy
with respect to this momentum is the volume flow,

∂En
∂p′n

= Qn, (6.37)

which makes the momentum, p′n,

p′n = ψ
ρ∆x

π
√
anan+1

√
bnbn+1

Qn = ψρ∆xvn. (6.38)

This can be proved by substituting the momentum into the equation for the kinetic
energy,

En = ψ
ρ∆x

2π
√
anan+1

√
bnbn+1

(
π
√
anan+1

√
bnbn+1

ψρ∆x

)2

p′n
2

=
1

2

π
√
anan+1

√
bnbn+1

ψρ∆x
p′n

2
, (6.39)

and taking the derivative with respect to p′n,

∂En
∂p′n

=
π
√
anan+1

√
bnbn+1

ψρ∆x
p′n = Qn. (6.40)

Furthermore equation 6.39 can be used to define the inductance of the model,
Ln, through the definition of the energy of a self-inductor, En = 1

2
p′n

2/Ln,

Ln = ψ
ρ∆x

π
√
anan+1

√
bnbn+1

. (6.41)

6.2.3 Poiseuille resistance

The resistance of the model is defined through the Poiseuille equation, which is
reinvented for a tube with an elliptical cross-section. To rephrase, Poiseuille flow
is defined as steady laminar pressure driven flow of a non-compressible liquid,
thus most of the terms of the general Navier-Stokes equation are discarded, which
makes it into the much simpler Poisson equation,

∇P (x) = η∇2v(a, b), (6.42)

in the coordinates (a, b, x), where a and b refer to the cross-sectional dimension in
direction of the major and minor axis, and where x is the longitudinal coordinate
along the length of the tube. The pressure, P (x), only depends on longitudinal
dimension and the velocity, v(a, b), is steady and thus only depends on the cross-
sectional dimensions. η is the dynamic viscosity of the liquid.
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Given the assumption that the flow is driven by a pressure difference between
the endpoints of the tube, the left hand side of equation 6.42 is simply the pressure
difference over the length,

− ∆P

η∆x
=
∂2v

∂a2
+
∂2v

∂b2
, (6.43)

where ∆x is the length between the endpoints of the tube and −∆P is the pressure
difference taken as negative since the pressure in the frontal end of the tube needs
to be higher in order to drive the flow towards the distal end.

A unique solution to this partial differential equation is found through the
constants A, B and K,

v(a, b) =
∆P

η∆x
K

(
1− a2

A2
− b2

B2

)
, (6.44)

where A and B are the major and minor axis of the elliptic cross-section (not
related to the equilibrium axes An and Bn just yet), fulfilling the simple boundary
conditions, v(A, 0) = v(0, B) = 0. The general no-slip boundary condition is
given through the constant K,

K =
A2B2

2 (A2 +B2)
. (6.45)

From equation 6.44 the flow rate through the tube is defined as the integral of
the velocity taken over the cross-sectional area,

Q =
∫

a,b
v(a, b)db da

=
∆P

η∆x

A2B2

2 (A2 +B2)
4
∫ A

0

∫ B
√

1−a2/A2

0

(
1− a2
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B2

)
db da

=
∆P

η∆x

A2B2

2 (A2 +B2)
4
πAB

8
=
π

4

∆P

η∆x

A3B3

A2 +B2
. (6.46)

Therefore the Poiseuille resistance of the elliptical tube becomes

Z =
∆P

Q
=

4

π

η∆x (A2 +B2)

A3B3
. (6.47)

In the terms of the model the flow is defined between two neighboring sections
through the use of the geometric mean between the axes of the two sections,√
anan+1, thus the Poiseuille resistance will have the following equation in the

model, parallel to equation 4.14,

Zn =
∆Pn
Qn

=
4

π

η∆x (anan+1 + bnbn+1)
√
anan+1

3√bnbn+1
3 . (6.48)
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6.2.4 The Bernoulli effect

The total energy in the tube is given by the sum of potential and kinetic energy,
which are again given by the sum of potential energy, Un, and kinetic energy, En,
for each section. When taking the derivative of the total energy of the model with
respect to a certain charge variable (for instance ∆an) the associated potential
variable is achieved (notice that for all the terms in the sum of the total energy,
only four are dependent on an),

∂E

∂an
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∂

∂an
(Uσan + Uγan + En−1 + En)

=
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Sn
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2ψρ∆x
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2
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√
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2ψρ∆x
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2

)
,

(6.49)

by definition the two first terms of this equation is equal to π∆xbnPn, which
makes this complicated expression more simple,
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 .

(6.50)

It is clear that the potential variable is not only the transformed pressure, as
would be expected, two other terms also offer contributions to the potential. A
similar expression would result from taking the derivative with respects to bn. To
investigate those extra terms redefine the momentum from equation 6.38,

pn =

√√√√
√
anan+1

√
bnbn+1√

AnAn+1

√
BnBn+1

p′n. (6.51)

This transforms the kinetic energy,
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En =
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which in turn transforms the inductance,

Ln = ψ
ρ∆x

π
√
AnAn+1

√
BnBn+1

. (6.53)

The new definition of the momentum of flow given by equation 6.51 is inves-
tigated by taking its time-derivative (this should give the potential at the induc-
tance),
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√
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 . (6.54)

In the end the derivative of the momentum is achieved,
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It is clear that the momentum derivative here comes from the transformed deriv-
ative of the original momentum together with four other terms that actually coin-
cide with the length-changes of the axes of the two neighboring sections, between
which the momentum is calculated. The time-derivative of an axis, dan/dt, is a
current input to the combined elastic capacitance of a section, and it is converted
through a new connection to the potential at the inductance.

With that result the derivative of the total energy is investigated once more,
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and likewise for the energy derivative with respects to bn,

∂E

∂bn
= π∆xanPn +

pn−1

4bn

pn−1

Ln−1
+

pn
4bn

pn
Ln
. (6.57)

These two equations clearly support the idea that a connection must exist in
the model between the elastic forces and the inertia of the flow. This connection
given by the potential and kinetic energies in the tube is in accordance with the
Bernoulli equation discussed in section 3.5.

6.3 Additional effects

With the surface area elasticity and structural shear elasticity, the inertia of mass
and the Poiseuille resistance the core elements of the model is defined and with
the Bernoulli effect the connection between potential and kinetic energy of the
model is given with the transformation of variables. The model now includes the
fundamental physical principles of the liquid flow in an elastic elliptic tube, but it
is not done yet.

To further improve the model the next step include three additional effects
that increase the model’s applicability in relation to liquid flow in an elastic tube:
the longitudinal elasticity of the tube to counteract a lengthwise increase in sur-
face area of the tube and to create inter-dependency of the axial lengths between
the sections, the minor loss resistance affecting the pressure when the flow runs
through a curved tube, and the Womersley theory of pulsatile flow and pressure.
These additions are presented one by one and it is explained how that effect is
included in the elliptic model.
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6.3.1 Longitudinal shear tensions

The first adjustment to the model is a term that describes the shear tensions lon-
gitudinal along the length of the tube. This term is more an ad hoc approximation
than a theoretical founded addition to the model. As such the term does not ac-
commodate for changes in the length of the tube but only for differences in the
cross-sectional area between sections.

The shear tensions extend between two neighboring sections of the tube and
depend on the perimeter of the elliptic cross-section of the tube. As the shear
tensions are defined on the intersection between two tube sections they rely on a
mean equilibrium perimeter based on the geometric mean between the axes of the
two neighboring sections,

√
AnAn+1 and

√
BnBn+1. In most cases these will be

equal to An and Bn, but not if the tube is tapered, in any case the mean perimeter
is defined,

Ωn =
∫ 2π

0

√
AnAn+1 sin

2 θ +BnBn+1 cos2 θ dθ. (6.58)

Define the elastic force of section n relative to section n+1 when one section
has the length of one of its axes stretched in relation to the other section, this force
is proportional to the change in length between the axes, inversely proportional to
the length of one section, and proportional to half the perimeter of the ellipse (ten-
sion forces only apply where the ellipse is stretched). The proportionality factor
is the thickness of the tube wall times the shear modulus (where shear modulus
here is defined as, G = E/3),

Fsan =
Gh

2∆x
Ωn ((an+1 −An+1)− (an −An)) , (6.59)

Fsbn =
Gh

2∆x
Ωn ((bn+1 − Bn+1)− (bn − Bn)) . (6.60)

Integrate the force over the length change of the major axis to get the potential
energy of the shear tensions,

Usan =
∫ an+1−An+1

an−An

Gh

2∆x
Ωn ((an+1 − An+1)−∆a) d∆a

=
Gh

4∆x
Ωn ((an+1 − An+1)− (an − An))

2 , (6.61)

and likewise for the change of the minor axis,

Usbn =
Gh

4∆x
Ωn ((bn+1 − Bn+1)− (bn − Bn))

2 . (6.62)
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Use the definition of potential energy of a capacitor to find the capacitance of the
shear elasticity, Usan = 1

2
(∆an+1 −∆an)

2 /Csan,

Csn = Csan = Csbn =
∆x

Gh

2

Ωn
. (6.63)

Furthermore these shear tensions should be damped so that there is a small
energy loss from friction in the tube wall given by the changes in cross-sectional
area. This is modeled by a resistance in series with the capacitance, the value of
this resistance is decided from the relation of the characteristic period of an RC-
circuit, T = ZsCs, such that all oscillations with frequencies above 100 Hz are be
damped,

Zsn =
T

Csn
=

0.01 s

Csn
. (6.64)

6.3.2 Curvature of the tube

The second addition to the model is the resistance induced by the curvature of the
tube, which cause a pressure loss proportional to the product of flow and momen-
tum of the flow.

The curvature resistance is a representative of the so called minor losses, which
cover a range of special conditions that produce resistance and energy loss in the
liquid flow, dependent on the external conditions presented by the tube. Some of
the typical minor losses are bends, branches and valves in the tubes, but it is clear
that for the elliptic tube another condition could be relevant, namely the twisting
of the tube. That condition is not included in the model, and so it is implicitly
assumed that the tube does not twist or that twisting produce a minor loss, which
is small enough to be ignored.

When the tube curves many interesting things happen for the flow, if the flow
has too high Reynolds number the curve may induce turbulence in the flow, even
though the flow in straight tubes may be laminar, the curve introduces secondary
flow in the tube, which makes the liquid rotate in the tube, but the most interesting
effect in this case is the resistance introduced by the tube curvature. This resis-
tance is caused by increased friction in the tube and it is generally dependent on
only two things, the curvature of the tube and the angle of the bend.

The friction of af bent tube is defined as a loss of pressure in relation to the
flow velocity given by Darcy’s equation,

∆P = f
∆x

2R

ρv2

2
, (6.65)

which is defined for a cylindric tube, given by the radius, R.
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To find how a bend on a tube with elliptic cross-section effects pressure loss
in the tube Darcy’s equation is changed to fit an elliptic regime. The length of the
tube, ∆x, the flow velocity, v, and the friction factor, f , is defined as usual, but
the radius of the tube is changed to fit with the axes of the ellipse.

The radius, R, in Darcy’s equation is by definition the region of change de-
fined in the expression of the Reynolds number, equation 3.4, and it refers to a
characteristic region in which a change of flow can occur, incidentally it is equal
to the radius in the cylindric tube but in the elliptic tube it will be more compli-
cated. The characteristic length, lc, is given as an intermediate value between A
and B, the axes of the ellipse, defined by the relation,

lc =
AB√
A2+B2

2

. (6.66)

Thus the elliptic Darcy’s equation becomes,

∆P = f
ρ∆x

4

√
A2 +B2

2A2B2
v2. (6.67)

By insertion of the friction factor, f = 32/Re, for steady laminar flow the Poiseuille
equation is achieved (remember that the flow is defined as Q = πAB · v in the
elliptic tube),
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4
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A3B3
Q, (6.68)

thus proving that the characteristic length defined in equation 6.66 fits in the
scheme of Darcy’s equation.

The friction of the bend of the elliptic tube is found through the elliptic ana-
logue to equation 4.30,

∆P = (fL + fB)
ρ∆x

4

√
A2 +B2

2A2B2
v2, (6.69)

where fL is the friction factor for the length of the tube defined fL = 32/Re and
fB is the friction factor of a bend of the tube defined analogously to equation 4.31,

fB = ξ(θ) ·KB(RB/2lc) · fT (2lc), (6.70)

where fT (2lc) is the friction coefficient for completely turbulent flow, which is
the base that all minor loss coefficients are calculated from, even if the flow in the
specific case is not turbulent,KB(RB/2lc) is a friction factor for a bend of exactly
90◦, dependent on the radius of curvature, RB , relative to the characteristic length,
and ξ(θ) is an angular factor for bend angles less than 90◦.
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In the typical case of a cylindrical tube fT and KB are dependent on the di-
ameter of the tube, and it can be argued that the length lc should not be used
for determination of the numeric values of the functions in equation 6.70 instead
of diameter, but in fact these functions are themselves approximations relative
to a length that appears to be the characteristic length of the Reynolds number.
A more elegant approach would be if it were possible to dissolve the bend into
‘bend composites’ relative to the directions of the major and minor axes of the
elliptic cross-section, but the data from Crane Co. [1982] does not support such
an approach.

The pressure loss in the elliptic bend will be given by the sum,
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A2 +B2

A3B3
Q + ξKBfT

ρ∆x

4π2
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2

1
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Q2, (6.71)

where fT is the friction coefficient for completely turbulent flow defined in equa-
tion 4.32, KB is defined as a function of the radius of curvature, RB , by equation
4.33, and ξ(θ) is defined by equation 4.34.

In terms of resistance to the flow in the energy bond model, the Poiseuille
resistance is already defined, but the resistance of the bend, ZB, becomes,

ZBn =
∆Pn
Qn

= ξKBfT
ρ∆xQn

4
√
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3 , (6.72)

and with the definition of the momentum of the flow,
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the flow is eliminated from the equation to give the final resistance of the bend
usable in the energy bond model (where the numerical value of the momentum is
used because impedance should cause a loss of energy independent of the direc-
tion of flow),
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√√√√
√
AnAn+1

√
BnBn+1

√
anan+1

5√bnbn+1
5

√
anan+1 + bnbn+1

2
|pn|.

(6.74)
Equation 6.74 defines the friction of the bend of the elliptic tube as a relation

between pressure loss to volume flow. This impedance may be an approximation
from the data from Crane Co. [1982] for cylindric tubes, but interestingly it is
proportional to the momentum of the flow, which means that the impedance grows
when the flow is accelerated. This is very interesting in relation to the pulsating
flow and pressure in the embryonic heart.
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6.3.3 Womersley theory

Finally the addition of Womersley theory concerning the influence of the velocity
profile on the inertia of the flow is included in the elliptic model. Womersley’s
approach to the pulsating Navier-Stokes equation must be constructed with an
elliptic geometry. The procedure follows the same steps as in section 4.3.3.

Define the Navier-Stokes equation for the elliptic system under similar as-
sumptions as equation 4.42, the flow is laminar and incompressible but both flow
velocity field and pressure gradient are functions of time, furthermore pressure
gradient is invariant on the cross-section of the tube and the velocity field is un-
changed with the longitudinal coordinate,

∂2v

∂a2
+
∂2v

∂b2
− ρ

η

∂v

∂t
+

∆P (t)

η∆x
= 0, (6.75)

where a and b are the cross-sectional coordinates of the elliptic tube in relation
to major and minor axis respectively. Similar to the procedure for the cylindric
tube it is assumed that the time variant pressure difference ∆P (t) consists of a
constant term, ∆P0, and an oscillating term, ∆̃P (t). The differential equation will
have a particular solution of the constant term that is coincident with the elliptic
Poiseuille equation, for now the existence of this particular solution is ignored,
focus is put on the oscillating pressure term. The general solution to equation
6.75 is

v(a, b, t) =
∞∑

n=1

(
λ1ne

√
kna + λ2ne

−
√
kna
) (
λ3ne

√
lnb + λ4ne

−
√
lnb
)
e

η
ρ
(kn+ln)t

+
∫

∆̃P (t)

ρ∆x
dt+ λ0. (6.76)

v(a, b, t) must obey the no-slip boundary condition, v(A cos θ, B sin θ, t) = 0,
for any θ ∈ [0; 2π], where A and B are the major and minor axis of the elliptic
cross-section, this will force the constant λ0 = 0. Furthermore it is logically
assumed that the velocity profile is a symmetric function on the elliptic domain,
thus equation 6.76 is rewritten,

v(a, b, t) =
∞∑

n=1

µn
ρ∆x

(
e
√
kna + e−

√
kna
) (
e
√
lnb + e−

√
lnb
)
e

η
ρ
(kn+ln)t

+
∫

∆̃P (t)

ρ∆x
dt, (6.77)

where µn is a sequence of constants that will ensure that v(A cos θ, B sin θ, t) = 0.
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Notice that it is not possible to find constants such that each term in the sum will
be zero on the boundary, it is the infinite sum that will be zero while each term of
the sum is different from zero for (a, b) = (A cos θ, B sin θ).

Assume that the pressure difference is an oscillating function with angular
frequency, ω, that can be written as the Fourier series,

∆̃P (t) =
∞∑

n=1

∆Pne
inωt. (6.78)

The pressure equation forces a condition on the exponents, kn + ln = inω ρ
η
,

and a suitable solution is found to be,

kn = inω
ρ

η

B2

A2 +B2
and ln = inω

ρ

η

A2

A2 +B2
, (6.79)

hence v(a, b, t) becomes,

v(a, b, t) =
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]
einωt. (6.80)

With the calculation of the flow velocity in the elliptic domain in equation
6.80 an elliptic parallel to the Womersley number is suggested; choose the elliptic
Womersley number corresponding to the standard Womersley number forA = B,

αe =

√
ω
ρ

η

2A2B2

A2 +B2
. (6.81)

Notice further that the inside the two brackets of equation 6.80 contains the
hyperbolic cosine function, this will become important when the volume flow is
computed as the cross-sectional integral of the flow velocity, as the Taylor series
approximation to the hyperbolic functions will be employed to solve the integral,
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=
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Equation 6.82 shows a remarkable resemblance to equation 4.47 for the os-
cillating flow in the cylindric tube, in fact when µn is set to µn = 1

4J0(αe

√
−in)

it

shows that v(A cos θ, B sin θ, t) = 0. Thus the oscillating flow becomes,

Q(t) =
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(
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e
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(
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√
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(
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√
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)
]
einωt,

(6.83)

where J0 and J1 are the Bessel functions of the first kind of order zero and one.
The bracketed function in equation 6.83 is f(α, n) from equation 4.49 only

with the elliptic Womersley number, αe,

f(αe, n) = 1− 1

αe
√
−in

J1
(
αe
√
−in

)

J0
(
αe
√
−in

) . (6.84)

The earlier analysis of the function revealed that for low values of the Womersley
number f(αe, n) is close to zero for all values of n, and thus the function in the
lower line of equation 6.83 is close to 1/8 making the flow dominated by the
Poiseuille resistance, and for high values of αe the function f(αe, n) is close to 1
for all values of n making the flow dominated by inertia.

For any n the function f(αe, n) behaves in a similar fashion, only the transition
from 0 to 1 becomes steeper for higher values of n, thus it is assumed that equation
6.83 can be approximated by,

Q(t) ≈ πAB

ρ∆x
f(αe, 1)

∞∑

n=1

∆Pn
inω

einωt

≈ 2πA3B3

η∆x(A2 +B2)

f(αe, 1)

iα2
e

∞∑

n=1

∆Pne
inωt. (6.85)
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In the equation ∆̃P (t) =
∑∞
n=1∆Pne

inωt is the time variant pressure difference
and p(t) =

∑∞
n=1

∆Pn

inω
einωt is the momentum of the oscillating flow. Thus,

η∆x(A2 +B2)

2πA3B3
(8 + Ψ(αe))Q(t) ≈

η

ρ

A2 +B2

2A2B2
iα2

e p(t), (6.86)

where Ψ(αe) is defined Ψ(αe) =
iα2

e

f(αe,1)
−8. Notice that the right hand side of this

equation is actually equal to ∆̃P (t) = iωp(t) and thus the equation demonstrates
that the pressure difference is made up of two terms, one Poiseuille term, ∆̃Pp(t),
and one other term, ∆̃Pψ(t),

η∆x(A2 +B2)

2πA3B3
(8 + Ψ(αe))Q(t) ≈ ∆̃Pp(t) +

η

ρ

A2 +B2

2A2B2
iα2

e pψ(t), (6.87)

where pψ(t) is the momentum referring to ∆̃Pψ(t). The Poiseuille terms on each
side of the equation cancel out and leaves the relation,

η∆x(A2 +B2)

2πA3B3
Ψ(αe)Q(t) ≈ η

ρ

A2 +B2

2A2B2
iα2

e pψ(t)

ρ∆x

πAB
ψ(αe)Q(t) ≈ pψ(t), (6.88)

where the function ψ(αe) is defined,

ψ(αe) =
1

1− 2
αe

√
−i

J1(αe

√
−i)

J0(αe

√
−i)

− 8

iα2
e

. (6.89)

The function ψ(αe) is the exact same as ψ(α) in equation 4.57 for the cylindric
tube. It has real values in the range from 1 for high values of αe to 4/3 for low
values of αe and complex values different from zero only in the transition, which
lies in the domain from αe = 1 to αe = 10.

For higher orders of n the same calculations can be made and assuming cross-
terms can be ignored a function similar to ψ(αe) can be defined for each n, with
values in the range from 1 to 4/3. The transition from 1 to 4/3 will only be more
steep for higher values of n.

Thus it may be assumed that the function ψ(αe) for n = 1 is a sufficient ap-
proximation so that the complete description of the time variant volume flow may
be described through a Poiseuille term of the pressure difference, where the par-
ticular solution that was ignored at first is brought back into the complete solution,
together with a momentum term modified by the function ψ(αe),

Q(t) =
πA3B3

4η∆x(A2 +B2)
∆P (t) +

1

ψ(αe)

πAB

ρ∆x
p(t). (6.90)
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Equation 6.90 demonstrates that the solution to a Navier-Stokes equation for
time-oscillating velocity field and pressure gradient ends with a volume flow de-
scribed by the Poiseuille equation with addition of a momentum term where the
inertia of the liquid has been modified by the function ψ(αe) defined by equation
6.89. This result matches the result achieved for the cylindric tube in section 4.3.3
and defines the function multiplied to the inductance in section 6.2.2.
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ḃn ḃn+1
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Figure 6.1: The schematic appearance of the elliptic tube model. Notice how the
branches of an and bn are joined through the capacitances Cσn and Cγn.
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6.4 The use of the model

With the last additions of the longitudinal shear tensions, the resistance due to
curvature and the Womersley theory to the elliptic model the energy bond graph
that represents the model will have an appearance as shown in figure 6.1.

The energy bond graph is split into two branches, one for an and one for bn,
but they are joined again through the capacitances Cσn and Cγn shown at the top
of the figure. Additionally the capacitances and impedances of the shear tensions
join one section to its neighbors, and the resistance from the curvature of the tube,
ZBn, is added next to the Poiseuille resistance, Zn. The Womersley factor is not
visible in the model, as it is a factor in the calculation of the inductance, Ln.

The model is used for numerical computations of the flow inside an elastic tube
or blood vessel, the computations are iterations through a Runge-Kutta algorithm
of the rates of change of the length of the axes and the momentum of flow for each
section of the model.

For each section specify the volume flow, Qn, given by the output from the
inertia relation defined in section 6.2.2 and redefined with equation 6.51 and 6.53,

Qn =
pn
Ln

√√√√
√
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√
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√
BnBn+1

, (6.91)

and the dynamical pressure, Pn, which for the change in an is given by the combi-
nation of elastic forces, equation 6.18 and 6.32 from section 6.2.1, together with
the shear tensions from equation 6.59 and the two Bernoulli terms from equa-
tion 6.56, all transformed with the ratio π∆xbn (equivalently the pressure can be
calculated through the change of bn),

Pn =
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π∆xan

[
∂sn
∂bn

(
∂sn
∂an

an − An
Cσn

+
∂sn
∂bn

bn − Bn

Cσn

)

−
(

2anbn
a2n + b2n

)2
1

bn

(
1

an

an −An
Cγn

− 1

bn

bn − Bn

Cγn

)

+
(bn −Bn)− (bn−1 −Bn−1)

Csn−1

+ Zsn−1

(
dbn
dt

− dbn−1

dt

)

−(bn+1 − Bn+1)− (bn − Bn)

Csn
− Zsn

(
dbn+1

dt
− dbn

dt

)

+
pn−1

4bn

pn−1

Ln−1
+

pn
4bn

pn
Ln

]
. (6.92)

With the definition of volume flow the changes of the length of the axes can
be described with a simple inflow minus outflow relation, but still the resulting
volume change must be divided into changes of the two axes according to the
relation given by equation 6.20,

π∆xbn
dan
dt

+ π∆xan
dbn
dt

= Qn−1 −Qn. (6.93)

To solve this equation use the rule that the pressure is uniform in the energy bond
graph, Pn = Pan = Pbn, which gives a relation between the axial changes,

dan
dt

= χ
dbn
dt
, (6.94)

referring to the end of section 6.2.1 χ is given as,
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where secondary effects of the longitudinal shear tensions are ignored. Alterna-
tively, in some cases the secondary effects may be important as the primary effects
will not show truthful behavior, such as a circular tube with an eccentric deforma-
tion, which could be interesting for Liebau’s ring in chapter 5. In those cases χ
may be given by,
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where the partial derivatives such as ∂an−1

∂an
have to be approximated by functions of

an and an−1. By use of the implicit function theorem if a continuous differentiable
function f exist on an open space, (an, an−1), such that f(an, an−1) = 0 yet its
partial derivatives are different from zero, then that function defines an−1 as a
function an and through its derivatives,

∂an−1

∂an
= −

∂f
∂an
∂f

∂an−1

. (6.97)

Such a function could be the function f(an, an−1) = e
−1

(an−an−1)
2 , which for an−1

close to an is close to zero. With the derivatives, ∂f
∂an

= 2e
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−3, the implicit partial derivative is found,
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−2e−(an−an−1)−2(an − an−1)−3
= 1. (6.98)

Thus for variations between the axes of the different sections the partial deriv-
atives may simply be approximated with 1, which will remove the effect of the
derivatives in equation 6.96, thus proving that the equation 6.95 is a good approx-
imation in the first place. Though to see the effect of the shear elasticity and thus
induce elliptic variations in a cylindric tube in the computations, the partial deriv-
atives are instead approximated with ∂an−1

∂an
= 1 − δ, where δ is a small number

depending on the sign of an − an−1.
The use of secondary effects in the computations heavily increase computation

time, and will not be used except to see necessary eccentric behavior in a non-
eccentric tube.

The resulting rate of change for the axes will be as follows,
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χ
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, (6.99)
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1

an + χbn
. (6.100)



150 Mathematical Modeling of Flow Characteristics in the Embryonic Heart

Finally the rate of change of the momentum is calculated as the pressure dif-
ference minus friction losses from the Poiseuille resistance given by equation 6.48
and the resistance due to tube curvature given by equation 6.74 plus the four extra
terms from the Bernoulli effect given by equation 6.55,
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√√√√
√
anan+1

√
bnbn+1√

AnAn+1

√
BnBn+1

[
Pn − Pn+1 −

4

π

η∆x (anan+1 + bnbn+1)
√
anan+1

3√bnbn+1
3 Qn

+
ξKBfT
ψ(αe)

1

4π

√√√√
√
AnAn+1

√
BnBn+1

√
anan+1

5√bnbn+1
5

√
anan+1 + bnbn+1

2
|pn|Qn

]

+
pn
4an

dan
dt

+
pn

4an+1

dan+1

dt
+

pn
4bn

dbn
dt

+
pn

4bn+1

dbn+1

dt
. (6.101)

The rates of change of the length of the axes and momentum of flow are the
three fundamental equations of the model. If N is the number of sections in the
model the rates of change will constitute a system of 3N non-linear differential
equations, iterated trough a Runge-Kutta algorithm they yield the time-variant
functions of major and minor axis and for the momentum of flow for all sections,
which subsequently can be used to find the time dependent functions of flow and
pressure for all sections of the model. This will be the solution to the elliptic
model.

6.5 The embedded tube model

As an extension to the elliptic tube model another addition is included to make a
model suitable for describing the embryonic heart, as such the elliptic tube model
is changed to the embedded tube model.

At certain stages of the embryonic development the embryonic heart is con-
structed in a very ‘simple’ way relative to our normal understanding of a beating
heart, as a length of tube with a muscle that periodically contracts its outer radius.

The construction of the heart tube is layered. The inner layer of the tube is
called the endocardium it has an almost elliptic cross-section and is very flexible,
the outer layer of the tube known as the myocardium has an almost concentric
cross-section and is strongly elastic. Between the inner and outer layer of the tube
walls is an easily-deformable elastic gelatinous material known as the cardiac
jelly.

The purpose of the cardiac jelly is to convey the muscular contractions of
the outside myocardium to the inside volume of the tube, in such a way that a
relatively small contraction of the outside layer of the tube contracts the inside
elliptical cross-section to almost total occlusion.
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The idea in the embedded model is to construct a layered structure consisting
of a soft elastic tube of elliptic cross-section embedded inside a stronger elas-
tic tube of circular cross-section. In the space between the two tubes an easily-
deformable elastic material resides to convey the periodic contractions of the outer
tube into the inner tube.

This will be an approximation to the embryonic heart as the inner lumen of the
heart is only approximately elliptic and the outer perimeter is not entirely circular,
in addition when the the outer layer of the embryonic heart contracts it achieves an
almost complete closure of the lumen of the inner tube, which will not be possible
in this model.

6.5.1 The tubular cross-section

The layered cross-section of the tube is described through the radius of the outside
layer, rn, and the major and minor axes of the the inner elliptic layer, an and bn,
for each section of the tube. However the inner layer is embedded into the outer
concentric tube in such a way that the major axis of the ellipse is equal to the
radius of the outside layer, an = rn.

rn

an
bn

Cardiac jelly

Inner
volume

Outer
layer

Vjelly = πa2n − πanbn = πan (an − bn)

an = rn

Figure 6.2: The cross-section of the layered tube.

The elastic properties of this complex tube is described with four cross-sectional
compliances and at least two inter-sectional. The four cross-sectional compliances
come from the elasticity of the concentric outer layer, Crn, the elasticity of the
elliptic inner layer, which according to section 6.2.1 must be divided into a com-
pliance for the change of the surface area, Cσn, and one for the shear deformation
of the elliptic layer, Cγn, and the fourth compliance comes from the elastic prop-
erties of the cardiac jelly, Cjn. The inter-sectional compliances are related to the
shear stress along the length of the tube and will be described by the longitudinal
shear tensions from section 6.3.1.
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6.5.2 Elasticity of the tube wall

Following the procedure in section 6.2.1 the elasticity of the inner and outer layer
can be calculated through the potential energy stored by a deformation of the layer.
This energy is given by the pressure on the layer integrated over volume change,
which is unfortunately not a linear relation.

To make it linear the variables are transformed from volume change to a
change in the axes of the inner ellipse, and then the energy is given by the in-
tegral of the surface-specific elastic modulus, the surface area, the curvature of
the surface and the deformation of the axes.

For the outer circular layer this relation is quite simple, since both surface
area and curvature are simple functions in a circular scheme, thus the increase in
energy will be given as in section 4.2.1,

Urn =
∫ π

2

−π
2

∫ an

An

∆xEouthout
An

(a− An) dadθ =
π

2

∆xEouthout
An

(an − An)
2 ,

(6.102)
where surface-specific elastic modulus is given by the thickness of the outer layer,
hout, times Young’s modulus for that type of material, Eout. The equilibrium
radius for the tube at rest is An and ∆x is the length of section n of the tube.

Notice that the energy is only integrated over the arc from −π/2 to π/2 in
contradiction to how it is done in the cylindric model in section 4.2.1. This is due
to the fact that the effort of the energy bond related to the changes of the major
axis only covers half of the force related to one section, ern = πFrn, whereas the
effort of the concentric model is equal to the full force on a section, en = 2πFn.

Given the expression for the potential energy of a capacitor, Urn = 1
2
∆a2n/Crn,

this defines the capacitance associated with the length-change of the radius of the
outer layer,

Crn =
An

π∆xEouthout
. (6.103)

The force subjected by this capacitance is simply computed as the change in
the radius of the outer layer divided by the capacitance (and divided by π because
of the relation of force to effort, ern = πFrn),

Frn =
∆xEouthout

An
∆an, (6.104)

the interesting part about this force is that it only affects the radius of the outer
layer, that is the major axis of the inner elliptic layer. This is in contrast to all the
other forces in the model.
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For the axes of the inner elliptic layer the relation is more complicated because
the surface area and surface curvature are much more complicated functions, fur-
thermore a change of the axes will produce shear forces in the elliptic layer, which
must also be taken into account.

The process of finding the elastic forces from a deformation of the elliptic
layer is described in section 6.2.1. The end result is a pair of coupled forces,
where two forces acts on the major axis of the ellipse,

Fσan =
Einhin
Sn

∂sn
∂an

(
∂sn
∂an

∆an +
∂sn
∂bn

∆bn

)
, (6.105)

Fγan = GinhinSn

(
2anbn
a2n + b2n

)2
1

an

(
1

an
∆an −

1

bn
∆bn

)
, (6.106)

and two other forces, one proper and one shear, acts on the minor axis,

Fσbn =
Einhin
Sn

∂sn
∂bn

(
∂sn
∂an

∆an +
∂sn
∂bn

∆bn

)
, (6.107)

Fγbn = −GinhinSn

(
2anbn
a2n + b2n

)2
1

bn

(
1

an
∆an −

1

bn
∆bn

)
, (6.108)

where hin is the thickness of the inner elliptic layer, Ein is Young’s modulus, and
Gin is the shear modulus for the layer. The surface area of section n of the elliptic
layer is described through the second elliptic integral,

sn = ∆x
∫ 2π

0

√
a2n sin

2 θ + b2n cos
2 θ dθ, (6.109)

where Sn is the corresponding equilibrium surface area, and where ∂sn/∂an and
∂sn/∂bn are its derivatives with respect to the axial changes.

The forth elasticity comes from the volume deformation of the elastic mate-
rial between the two layers, the cardiac jelly. The volume of the space between
the layers is a function of the difference between the volume of the outer layer,
∆xπa2n, and the volume of the inner elliptic layer, ∆xπanbn yielding the volume
of the cardiac jelly, Vjn = ∆xπ(a2n − anbn). Thus the volume change will be,

dVjn = ∆xπ ((2an − bn)dan − andbn) . (6.110)

Transform from an to a∗n by applying the transformation relation,

dan =
an

2an − bn
da∗n, (6.111)

which gives a symmetric expression for the volume change,

dVjn = ∆xπan (da
∗
n − dbn) . (6.112)
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The increased pressure inside the cardiac jelly is given by the relative volume
change, that is the change in volume compared to the original volume,

dPn = K
dVjn
Vj0

= K
dVjn

∆xπ (A2
n − AnBn)

, (6.113)

where K is an unspecific elastic modulus of the cardiac jelly. It is clear that
the elastic modulus involved in this expression will have both proper and shear
qualities corresponding to the complicated deformation of the arc-shaped volume
inhabited by the cardiac jelly, in this thesis it is assumed that the elastic modulus
used can be approximated by a single constant similar to Youngs modulus, though
further investigation may clarify this question.

Let ∆Pn = Pn − P0 and ∆Vjn = Vjn − Vj0 be the first order approximations
to the infinitesimals of equation 6.113, then integrate the pressure over the volume
increase from Vj0 to Vjn to get the potential energy,

Ujn =
∫

∆PndVjn =
∫ Vjn

Vj0

K

∆xπ(A2
n −AnBn)

(V − Vj0) dV

=
K

2∆xπ (A2
n − AnBn)

(Vjn − Vj0)
2 . (6.114)

By the expression for the potential energy of a capacitor, Ujn = 1
2
δV 2

jn/Cjn, the
capacitance is defined,

Cjn =
∆xπ(A2

n −AnBn)

K
. (6.115)

The forces subjected to the layers of the tube by the elasticity of the cardiac
jelly is paired similarly to the elastic forces given in section 6.2.1, one for the mi-
nor axis of the ellipse and one for the major axis. The forces are found by tracing
backwards through the equations, thus the force on the major axis becomes,

Fjan = −∆xπ(2an − bn)
K

A2
n −AnBn

((2an − bn)∆an − an∆bn) , (6.116)

and the force on the minor axis,

Fjbn = ∆xπan
K

A2
n −AnBn

((2an − bn)∆an − an∆bn) . (6.117)

Thereby all four cross-sectional elastic properties have been described, but
notice how the first did only produce one force on the outside layer whereas the
other three produced paired forces on the major and minor axis respectively.
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The intersectional elasticity is given by the longitudinal shear tensions de-
scribed in section 6.3.1. The first, Csan, is made from a combination of the elas-
ticity of the outer layer and the elasticity of the elliptic inner layer and thus also
refers to section 4.3.1,

Csan =
2∆x

4πGouthout
√
AnAn+1 +GinhinΩn

, (6.118)

and the second, Csbn, comes alone from the elasticity of the inner layer,

Csbn =
2∆x

GinhinΩn
, (6.119)

where Ωn is the geometric mean surface area between two neighboring tube sec-
tions defined by equation 6.58 and Gin and Gout are the shear modulus of the wall
layers, equal to one third of Young’s modulus.

As described in section 6.3.1 the longitudinal shear tensions are accompanied
by a damping resistance, Zsan = T/Csan and Zsbn = T/Csbn, where T = 0.01
s is the characteristic time of the RC-circuit made up by the capacitance and im-
pedance in serial coupling in the energy bond graph.

6.5.3 The use of the model

With the description of the four cross-sectional elastic capacitances and the lon-
gitudinal shear tensions the total elastic properties of the tube is described. In
addition the embedded model is equipped with an inductance representing the
inertia, Ln, with the Womersley inertia correction factor, ψ(αe), a Poiseuille re-
sistance, Zn, and a resistance due to curvature of the tube, ZBn. The energy bond
graph of this complicated model is shown in figure 6.3.

The model is used for numerical computations of the flow inside an com-
plicated elastic tube or in the embryonic heart, the computations are iterations
through a Runge-Kutta algorithm of the derivatives of the length of the axes and
the momentum for each section of the model.

For each section specify the volume flow, Qn,

Qn =
pn
Ln

√√√√
√
anan+1

√
bnbn+1√

AnAn+1

√
BnBn+1

, (6.120)

and the dynamical pressure, Pn,
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ȧn ȧn+1
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ṗn
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Figure 6.3: The schematic appearance of the embedded tube model. The branches
of an and bn are joined through three energy bonds; one for the surface area spe-
cific compliance, Cσn, one for the surface structural shear compliance Cγn and
one for the volume specific compliance of the cardiac jelly, Cjn. Additionally the
compliance of the outer myocardial layer is represented through Crn.
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With the definition of volume flow the changes of the volume per section can
be described with a simple inflow minus outflow relation,

π∆xbn
dan
dt

+ π∆xan
dbn
dt

= Qn−1 −Qn. (6.122)

Unfortunately the axial changes can not be derived from this equation alone, a
further condition of the pressure is needed. In the model the pressure can be
described through two ways as demonstrated in equation 6.121, which gives a
relation between the axial changes, dan

dt
= χdbn

dt
, with χ given by,
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which gives the resulting rate of change for the axes,
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, (6.124)
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=
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π∆x

1

an + χbn
. (6.125)

Notice that in section 6.4 another more complicated procedure for calculating χ
was introduced for the cases where the simple approach would not suffice, but
given the already eccentric construction of the embedded model with an asym-
metric distribution of the cardiac jelly that procedure will not be necessary here.

The rate of change of the momentum is calculated as the pressure difference
minus friction loss plus the contributions from the Bernoulli coupling,
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The three derivatives, dan
dt

, dbn
dt

and dpn
dt

constitute a system of 3N non-linear
differential equations, where N is the number of sections in the model. A solution
to this system of differential equations is found numerically using a Runge-Kutta
algorithm, which yields the time-dependent functions of the axes and momentum
for each section of the model, subsequently the functions of flow and pressure
is found through the use of equation 6.120 and 6.121. The set of all five time-
dependent functions of the axial lengths, momentum of flow, pressure and volume
flow is a complete solution to the embedded model.



Chapter 7

The Embryonic Heart Model

As specified in chapter 2 the embryonic heart is formed as a simple straight elastic
tube that gradually twists and turns during the Hamburger and Hamilton develop-
ment stages (HH-stages) 10 to 24. During this process known as cardiac looping
the heart starts beating at HH-stage 10 and from the different looping procedures
and overall growth of the embryo the liquid flow will experience great changes
in heart rate, stroke volume, tubular dimensions and physical parameters (among
other things) during the following HH-stages.

It was argued in section 2.2 that the interesting stages of the tubular heart are
HH-stage 10 with the onset of cardiac looping and the beating of the heart, HH-
stage 12 when the looping heart has formed in the shape of a ‘c’ and a stable flow
rate is observed, HH-stage 14 when the looping heart has formed in the shape of
an ‘s’ and the primitive atrium is fully developed, and HH-stage 16 with a fully
s-shaped heart that includes all the cardiac segments of the looping heart. These
are the four stages of the tubular that will be the focus of this chapter.

In the following a model for the embryonic heart tube will be setup following
the four steps introduced in section 5.2, though here it will make more sense to
include them in a different order: First a tracing of the heart tube, then boundary
conditions, parameter estimation, and finally the pumping mechanism.

7.1 Tracing of the embryonic heart

Acquisition of accurate numbers for the dimensions of the heart tube is unfortu-
nately a problem for embryological research, in vivo imaging techniques are still
at a very early stage of development and the embryonic heart so small that only
approximal data is available - and usually in the form of images rather than numer-
ical values. So far the acquisition of dimensional data has not been the focus of
embryological research although it is of great importance for the understanding of

159



160 Mathematical Modeling of Flow Characteristics in the Embryonic Heart

the pumping function of the tubular embryonic heart, due to its small dimensions
the circulatory system of the embryo has just been regarded as a vascular system
that shows flow at low Reynolds numbers.

In order to make a tracing of the embryonic heart loop the following values are
needed: length of each of the cardiac segments (left and right ventricle, primitive
atrium, outflow tract etc.), end-diastole diameter at defining points along the heart
tube preferably a few measurements for each cardiac segment, measurements of
end-diastole inner lumen of the heart tube or a measurement of the percentage that
cardiac jelly take of the cross-sectional area of the heart tube (for each of the car-
diac segments), thickness of the outer myocardial layer and the inner endocardial
layer, and curvature of the heart, which is not necessarily uniform.

The paper by Männer [2000] includes a number of very nice in ovo (in the egg)
images of embryonic hearts in the relevant stages of development using scanning
electron microscopy, see figure 2.1, from which it is possible to estimate approx-
imal external lengths and diameters (assuming that width in the images can be
translated directly to diameter in the model) of the observed cardiac segments, the
data is presented in table 7.1.

In addition to the data presented in table 7.1 it is possible to estimate an ap-
proximate radius of curvature for the looping heart at the beginning of dextral
looping (HH-stage 10) from Männer [2000] fig. 1.D. The heart appears to have an
almost uniform radius of curvature, RB = 550 µm, from the venous pole to the
outflow tract. Due to the complicated three dimensional looping at later stages it
was not possible to make similar estimates for HH-stage 12, 14 or 16.

Additionally some dimensional data can be found in various papers from ex-
perimental embryological research, below table 7.2 to 7.5 list some dimensional
measurements and model estimations found in the embryological literature. The
combined tracing of the looping heart with dimensional data from table table 7.1
and tables 7.2 to 7.5 is shown on figures 7.1 to 7.4, which include the sketches of
the embryonic heart at the appropriate stages.

The disagreement of the reported dimensional values is notable, for instance
table 7.5 lists five different measurements of the outside dimension of the HH-
stage 16 ventricle, which under the simple assumption of a circular cross section
gives the following diameters for the ventricle 240 µm, 250 µm, 256 µm, 542 µm,
and 800 µm, especially the measurements of outside perimeter and cross-sectional
area from table 7.3, 7.4 and 7.5 seem to suggest diameters twice the size of other
corresponding numbers.

For HH-stage 16 a much larger set of dimensional information is needed to
complete the model with all the cardiac segments present compared to the other
stages, and even though this stage is the most researched of the four some num-
bers are still missing, most importantly the thickness of the myocardial layer and
the radius of curvature for the heart tube. Both are possible to estimate from
knowledge of the surrounding stages.
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Stages HH-10 HH-12 HH-14 HH-16*
Lengths
Sinus venosis 50 µm** 70 µm 170 µm 230 µm
Primitive atrium 200 µm 230 µm 470 µm
Left ventricle 130 µm 270 µm 480 µm 700 µm
Right ventricle 250 µm 370 µm 500 µm 500 µm
Proximal outflow tract*** 230 µm 250 µm 230 µm 270 µm
Distal outflow tract*** 100 µm 170 µm
Diameters
Left vein 150 µm 130 µm 250 µm 200 µm
Right vein 100 µm 130 µm 250 µm 200 µm
Sinus venosis 330 µm** 350 µm 450 µm 470 µm
Venous pole 300 µm 330 µm 250 µm 370 µm
Central atrium 320 µm 270 µm 370 µm
Upper atrium 280 µm 270 µm 350 µm
Atrioventricular canal 250 µm 330 µm
Lower left ventricle 250 µm 280 µm 380 µm
Central left ventricle 270 µm 250 µm 350 µm 470 µm
Upper left ventricle 330 µm 400 µm
Left lateral furrow 250 µm 250 µm 320 µm 350 µm
Lower right ventricle 330 µm 350 µm
Central right ventricle 250 µm 230 µm 320 µm 350 µm
Upper right ventricle 170 µm 250 µm 300 µm
Conoventricular sulcus 200 µm 150 µm 200 µm 270 µm
Proximal outflow tract*** 170 µm 150 µm 200 µm 250 µm
Distal outflow tract*** 150 µm 180 µm 200 µm
Arterial outlet 120 µm 130 µm 130 µm 170 µm

Table 7.1: Estimated external dimensions of the early stages of the looping em-
bryonic heart based on images from Männer [2000] fig. 1.D (HH-stage 10), fig.
1.G (HH-stage 12), fig. 3.A and 3.A´ (HH-stage 14), fig. 3.C, 3.C´, 4.A, 4.A´ and
4.A´´ (HH-stage 16). (*) Notice that at HH-stage 16 the looping heart makes it
difficult to estimate some dimensions due to perspective in the images. (**) At
HH-stage 10 the heart has not yet developed the sinus venosis of the later stages,
here it is merely used to describe the inflow portion of the heart tube. (***) In car-
diac morphology research it is debated at what stages the conus and truncus part
of the outflow tract is formed [Martinsen, 2005], therefore the proximal and distal
outflow tract are not meant as reference to those specific cardiac segments, they
refer only to the dimensions of the outflow tract present at the particular stage.
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Figure 7.1: A sketch of the HH-stage 10 embryonic heart with all the found di-
mensional values noted on the figure.

HH-stage 10 Dimension Reference
Length of the heart tube 500 µm [Latacha et al., 2005]
Length of the heart tube 700 µm [Taber, 2006b]
External diameter of the ventricle 200 µm [Latacha et al., 2005]
External diameter of the ventricle 200 µm [Taber, 2006b]
Lumen diameter of the ventricle 70 µm [Latacha et al., 2005]
Thickness of the myocardial layer 18 µm [Latacha et al., 2005]
Thickness of the myocardial layer 18 µm [Taber, 2006b]
Thickness of the cardiac jelly 47 µm [Latacha et al., 2005]
Thickness of the cardiac jelly 56 µm [Taber, 2006b]

Table 7.2: Reports of HH-stage 10 embryonic heart dimensions. In addition Taber
[1998] reports that the thickness of the myocardial layer is two cells thick whereas
the thickness of the endocardial layer is one cell thick. Notice however that all
three articles assumes a more or less concentric position of the cardiac jelly and
inner lumen of the heart tube.
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Figure 7.2: A sketch of the HH-stage 12 embryonic heart with all the found di-
mensional values noted on the figure. Notice the thickness of the cardiac jelly,
Zamir et al. [2003] estimate the thickness to around 90 % of the tube radius but
from images by Männer et al. [2008] the thickness seems to be closer to 50 %.

HH-stage 12 Dimension Reference
Outer radius of the heart tube 150 µm [Zamir et al., 2003]
Outside perimeter of the ventricle 1800±30 µm [Keller et al., 1990]
Cross-sectional area of the ventricle 0.23±0.01 mm2 [Keller et al., 1990]
Outer diameter of the outflow tract 290±10 µm [Keller et al., 1990]
Diameter, atrioventricular canal 500 µm [Hu et al., 1991]
Cross-sectional area of the aorta 0.01±0.002 mm2 [Hu and Clark, 1989]
Inner radius of the heart tube 25 µm [Zamir et al., 2003]
Thickness of the myocardial layer 15 µm [Zamir et al., 2003]
Thickness of the cardiac jelly 135 µm [Zamir et al., 2003]
Radius of curvature, heart tube 500 µm [Zamir et al., 2003]

Table 7.3: Reports of HH-stage 12 embryonic heart dimensions. In addition the
statement from Taber [1998] that the myocardial layer is two cells thick and the
endocardial layer only one still holds for HH-stage 12, while Hu and Clark [1989]
report the myocardium to be around 3-5 cells thick and the endocardium 1.
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Figure 7.3: A sketch of the HH-stage 14 embryonic heart with all the found di-
mensional values noted on the figure. A measure of the radius of curvature is
missing for this stage, therefore an average between HH-stage 12 and HH-stage
16 is used, RB = 550 µm.

HH-stage 14 Dimension Reference
Outside perimeter of the ventricle 2200±80 µm [Keller et al., 1990]
Cross-sectional area of the ventricle 0.34±0.03 mm2 [Keller et al., 1990]
Outer diameter of the outflow tract 350±10 µm [Keller et al., 1990]
Cross-sectional area of the aorta 0.04±0.004 mm2 [Hu and Clark, 1989]
Ventricular cardiac jelly thickness* 70-100 µm [Männer et al., 2010]
AV-canal cardiac jelly thickness* 40-80 µm [Männer et al., 2010]

Table 7.4: Reports of HH-stage 14 embryonic heart dimensions. For some reason
numerical data for this stage of development is very scarce. (*) The thickness of
the cardiac jelly is estimated from fig. 1.B in [Männer et al., 2010]. The statement
from Taber [1998] that the myocardial layer is two cells thick and the endocardial
layer is one cell thick still holds for HH-stage 14.
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Figure 7.4: A sketch of the HH-stage 16 embryonic heart with all the found di-
mensional values noted on the figure.

For the thickness of the myocardial layer Taber [1998] reports that the thick-
ness of the ventricular wall remains relatively thin with the needs of the my-
ocardium being met entirely by diffusion from the lumen until the onset of tra-
beculation at HH-stage 17, and furthermore Martinsen [2005] reports that the
thickness of the myocardial layer only changes slightly from 1-2 cell layers to
3-4 cell layers during the stages from HH-stage 12 to 21, thus it may be assumed
that the thickness of the myocardial layer is almost constant from HH-stage 10 to
HH-stage 16.

No records of the radius of curvature for a HH-stage 16 heart tube has been
found, however Miller et al. [1997a] reports of a finite element model of a HH-
stage 18 curved heart tube with a average radius of curvature, RB = 670 µm.



166 Mathematical Modeling of Flow Characteristics in the Embryonic Heart

HH-stage 16 Dimension Reference
Outside radius of the ventricle 128 µm [Taber et al., 1992]
Outside diameter, the heart tube 350 µm [Taber et al., 1992]
Outside radius of the ventricle* 271 µm [Lin and Taber, 1994]
Outside perimeter of the ventricle 2510±40 µm [Keller et al., 1990]
Cross-sectional area, the ventricle 0.45±0.02 mm2 [Keller et al., 1990]
Cross-sectional area, the ventricle 0.49 mm2 [Miller et al., 1997a]
Outer diameter, the outflow tract 420±10 µm [Keller et al., 1990]
Cross-sectional area of the aorta 0.06±0.004 mm2 [Hu and Clark, 1989]
Outside perimeter of the atrium 1830 µm [Campbell et al., 1992]
Cross-sectional area, the atrium 0.19 mm2 [Campbell et al., 1992]
Inside radius of the ventricle* 143 µm [Lin and Taber, 1994]
Inside diameter of the tube* 240 µm [Miller et al., 1997a]
Thickness of the heart tube wall 128 µm [Taber et al., 1992]
Thickness of the cardiac jelly** 85 µm [Männer et al., 2009]

Table 7.5: Reports of HH-stage 16 embryonic heart dimensions. (*) Notice that
the measures marked with an asterisk are based on a model of a concentric heart
tube. (**) The thickness of the ventricular cardiac jelly is not reported directly by
Männer et al. [2009] but can be measured on figure 3.B in the paper. HH-stage 16
is the final stage where the statement from Taber [1998] holds, beginning at HH-
stage 17 the endocardial layer and cardiac jelly rapidly disappears in a process
called trabeculation [Taber, 1998].

While this may not be an exact match for a HH-stage 16 looping heart it does give
a range for radius of curvature, in fact from a comparison between HH-stage 16
and HH-stage 18 looping hearts from the figures in [Männer, 2000] the radius of
curvature is probably a little less for the HH-stage 16 tube, approximately RB =
600 µm.

From HH-stage 12 to 16 the cardiac jelly performs differently in the atrioven-
tricular canal and the primitive outflow tract, the so called endocardial cushions
form as an extra expansion of the cardiac jelly in those regions [Martinsen, 2005].
It is speculated that the endocardial cushions function as primitive valves in the
otherwise valveless tubular heart, as they will later grow to form the heart valves
of the mature heart. No reports of the exact difference between cardiac jelly thick-
ness of the ventricle and cardiac jelly thickness of the endocardial cushions have
been found, but initially suggested by Patten et al. [1948] the cushions will oc-
clude the cardiac lumen during systole and based on the figures from that report
the thickness of the cushions appears to be 3/2 - 2 times that of ventricular cardiac
jelly.
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7.2 Boundary conditions

As figure 7.1, 7.2 and 7.4 illustrates the relevant dimensions of the looping heart
include the diameter of the caudal venous pole and an estimate of the diameter of
the arterial branch at the cranial end of the embryonic heart. The model is sup-
posed to include those two regions as the connection to the boundary conditions
given by the systemic venous sinus and the arterial vascular system respectively.

The systemic venous sinus harbors the confluence of the systemic veins of the
embryo, it can be regarded as a small cavity that fills passively with blood from
the veins and leads the blood into the heart during diastolic filling of the atrium
and ventricle. The ventricular filling mechanism is predominantly passive until
HH-stage 21 [Hu et al., 1991], meaning that the ventricle is primarily filled due
to a pressure difference between the venous sinus and the ventricle at diastole and
that the effectiveness of the primitive atrium is still low at these stages, though it is
possible to detect an increase in ventricle pressure during end diastole indicating a
phase of active filling. The ratio of passive to active volume filling of the ventricle
drops almost linearly from 7.89 at HH-stage 12 to 1.21 at HH-stage 18 [Hu et al.,
1991].

The predominantly passive filling of the embryo indicates that the caudal
boundary condition is given by the pressure at the venous sinus. According to
Zahka et al. [1989] pressure at the venous sinus, 0.04±0.01 mmHg, at HH-stage
21 is the lowest of an experiment with embryonic hearts from HH-stage 18 to 29.
This fits well with the statement that the active filling mechanism becomes domi-
nant at this stage, but no records of the venous sinus pressure have been found for
earlier stages.

Taber et al. [1992] have measured ventricular pressure-volume loops for HH-
stage 16 embryos where it is possible to characterize the filling of the ventricle
from early to end diastole. The pressure-volume loops are fitted to a pressure
baseline of 0 mmHg at early diastole, with a variation around ±0.05 mmHg, where
at end diastole it is close to 0.25 mmHg. This picture is confirmed by Keller et al.
[1991] where it is even possible to detect a minimal kink in the pressure curve at
end diastole signifying the effect of active filling. Based on the pressure curves of
these two papers it would appear that the passive filling pressure (the pressure at
the venous sinus) is around 0.2 mmHg, maybe even a bit lower.

For embryos of HH-stage 12, 14 and 16 Hu and Clark [1989] report an end
diastolic pressure of 0.24±0.02 mmHg, 0.32±0.01 mmHg and 0.25±0.02 mmHg
respectively. This confirms the assumption above but no early diastolic pressure
is measured by these authors. From Keller et al. [1991] the reported end diastolic
pressures are 0.23±0.01 mmHg, 0.25±0.01 mmHg and 0.29±0.01 mmHg for
HH-stages 12, 14 and 16 respectively with a baseline of 0 mmHg early diastolic
pressure for each stage. Based on these reports it would appear that a venous sinus
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pressure close to 0.2 mmHg (corresponding to 26.7 Pa) is a good guess of all of
these stages. No reports of pressure measurements of earlier stages than HH-stage
12 have been found but it is assumed that an average pressure of 0.2 mmHg will
apply to the venous sinus of HH-stage 10 as well. It should however be noted
that the heart’s filling rate probably is very sensitive to this preload pressure, in
accordance with observations and models of the mature heart.

Furthermore for the boundary condition at the caudal end of the embryonic
heart, Männer [2008] reports that the systemic venous sinus and the mediastinal
component of the primitive atrium are physically fixed to the dorsal wall of the
embryonic pericardial cavity. The statement is given in the context of heart mor-
phology and not in relation to the beating of the heart but it does indicate that
conditions for the caudal end of the heart is more rigid than for the rest of the
heart tube, thus it is assumed that there is a portion of the lower venous pole that
does not undergo active contraction during the heart cycle and is furthermore only
minimally passively contracted.

For the boundary conditions at the cranial end of the heart tube the arterial
vascular system functions as a large reservoir into which the heart pumps blood
with pulsatile flow and pressure. For the mature circulatory system it is common to
model the vascular system with a three-element Windkessel model, with a serial
connected resistance, Rc, and parallel connected capacitance and resistance, Cp
and Rp, as introduced in chapter 1. Numerous reports have established this as a
suitable approximation for modeling the lumped response of the mature vascular
system, and it is likewise assumed to be a good description of the undeveloped
vascular system, in fact Yoshigi and Keller [1996] have found the model in good
accordance to flow and pressure of a HH-stage 24 vascular system. Generally
however the use of a Windkessel boundary condition should be considered in
relation to the application of the model; the Windkessel model will for instance
typically demonstrate a misleading reflection pattern of the vascular system.

Yoshigi and Keller [1997] have performed a comparison of different Wind-
kessel models to flow and pressure of a HH-stage 24 chick embryonic heart in
frequency domain and later Yoshigi et al. [2000] compared Windkessel models
with HH-stage 18 and 24 chick embryos in time domain, both projects found
that the best fit was in fact obtained with a four-element Windkessel model. This
model consists of a resistance, Rc, and an inductance, Lc, in serial connection and
a capacitance, Cp, and another resistance, Rp, in parallel connection. Rc and Lc
represent the flow resistance and inertia of the blood in the larger arteries, they
are known as characteristic resistance and inertia respectively, while Cp and Rp

are known as the peripheral compliance and resistance (actually compliance is the
inverse of capacitance) and model the lumped compliance of the vascular system
and loss of energy when leading the blood on to the veins. The Windkessel is
illustrated in figure 7.8.
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Assuming that the flow, Q(t), and pressure, P (t), are known functions time
running into such a Windkessel model it is possible to estimate the values of all
the elements of the model. Following Kirchhoff’s laws the pressure loss is given
by the pressure loss through Rc, Lc and Cp (since the pressure loss in Rp and Cp
is the same), and likewise the flow spreads to the flow through Rp and Cp (since
the flow through Rc and Lc is just Q(t)). This yields an equation for the pressure
loss through Cp,

PCp = P (t)−RcQ(t)− Lc
dQ

dt
, (7.1)

and another equation for the branching of the flow,

Q(t) =
PCp

Rp
+ Cp

dPCp

dt
, (7.2)

combining these two equations by inserting equation 7.1 into equation 7.2 gives a
differential equation in Q(t) and P (t),

dP

dt
= − 1

RpCp
P (t) +

Rc +Rp

RpCp
Q(t) +

(
Lc
RpCp

+Rc

)
dQ

dt
+ L

d2Q

dt2
. (7.3)

In the paper by Yoshigi et al. [2000] this differential equation is fitted to flow
and pressure data and for a HH-stage 18 embryo the elements are found to the
values Lc = (0.378± 0.12) · 103 g·cm−4, Rc = (0.406± 0.024) · 106 dyn·s·cm−5,
Rp = (2.16±0.12) · 106 dyn·s·cm−5 and Cp = (0.311±0.025) · 10−6 dyn−1·cm5.
A similar approach could be employed here, but that would require a complete set
of flow and pressure data for each of the stages, which have not been acquired.

Instead the paper by Yoshigi et al. [2000] includes detailed graphs of flow and
pressure variation in the dorsal aorta, which can be transcribed to a rough set of
data points, this will allow that a fitting algorithm like the one introduced in the
paper be applied to reproduce the parameter values found by Yoshigi et al. [2000].
Additionally Hu and Clark [1989] have reported measurements of ventricular and
arterial pressures in both systolic and diastolic configuration along with heart rate
and mean dorsal aortic blood flow for HH-stages 12 to 29, assuming that the flow
and pressure variation curves have a similar shape for HH-stage 12, 14, 16 and 18
it is possible to transform the transcribed data sets to fit all of those stages.

The values of the mean flow by Hu and Clark [1989] seem to be very low
(almost one third) compared to the graphs by Yoshigi et al. [2000], this could be
caused by a problem in their Doppler measurement technique but assuming this
problem is consistent in all measurements (ie. the relative error is zero) the flow
curve can be transformed by multiplication with the factor Qmean/Qmean,HH−18,
where Qmean refer to the mean flow at the appropriate stage.
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The transcribed pressure curve is transformed using the peak systolic ventric-
ular pressures and end diastolic vitelline arterial pressures measured by Hu and
Clark [1989]. The vitelline artery is lower ranked in the arterial tree compared to
the aorta, so it has peak systolic pressure much too low and end diastolic pressure
just a bit too low compared to the pressure of the aorta, on the other hand the peak
systolic ventricular pressure is almost similar to the systolic pressure in the dorsal
aorta while the end systolic pressure is much lower. All in all the transformed
pressure curve will probably have a mean pressure a bit too low compared to the
pressure of the dorsal aorta, scaling the obtained pressure curve with a number
slightly larger than 1 increases the fit of Lc, Rc and Rp and decreases the fit of Cp,
a good scale was found to be 1.1.

Finally the period of the oscillating flow and pressure was scaled according to
the heart rate period reported by Hu and Clark [1989]. The achieved data sets are
naturally of poor quality compared to the original by Yoshigi et al. [2000] or any
other measured data set with a higher number of data points (the transcribed data
set has only 39 data points), which will make the precision of the fit worse. For
comparison the HH-stage 18 embryo produced the following fit, Lc = 0.391 · 103
g·cm−4, Rc = 0.322 · 106 dyn·s·cm−5, Rp = 1.51 · 106 dyn·s·cm−5 and Cp =
0.297 ·10−6 dyn−1·cm5. The relative deviations are 3.6%, 20.6%, 30.3% and 4.4%
respectively, thus the fit of Lc and Cp falls within the listed standard deviation
while Rc and Rp are 3 and 5 standard deviations away from their desired value.

For HH-stage 10 no flow and pressure is recorded in embryological literature,
this is at the very beginning of the beating heart and a stable pulsating flow and
pressure have yet to develop in the later stages. At the early HH-stage 9 and 10 the
heart beats very irregularly but at the end of stage 10 a rhythmic contraction takes
place with a frequency in the interval 0.8 - 1.2 Hz [Castenholz and Flórez-Cossio,
1972]. Furthermore Hu and Clark [1989] report in their paper that vitelline pres-
sure increases linearly with stage while ventricular pressure and mean volume
flow have a geometric increase with HH-stages. Even though the flow and pres-
sure of HH-stage 10 hearts may be hypothetical it can be constructed through
extrapolation.

With this information the four-element Windkessel model is calibrated to fit
the flow and pressure data at the respective HH-stages of the embryo, the resulting
calibrated parameters can be found in table 7.6.

As expected the resistance of the vascular system is higher at the earlier stages
when the arteries are still very small, with the growing of arterial diameters and
the mass of the vascular system the characteristic and peripheral resistances are
reduced.

The embryonic vascular system is reportedly less compliant than the mature
system, in fact it is so that the time constant, τ = RpCp, which represent the decay
of the pressure wave during diastole, is nearly constant in relation to the diastolic
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HH-10* HH-12 HH-14 HH-16
Lc [kg/m4] 14.87 · 108 6.52 · 108 1.38 · 108 0.75 · 108
Rc [Pa·s/m3] 5.41 · 1011 3.55 · 1011 0.86 · 1011 0.51 · 1011
Rp [Pa·s/m3] 10.74 · 1011 9.68 · 1011 3.15 · 1011 1.87 · 1011
Cp [m3/Pa] 0.31 · 10−12 0.36 · 10−12 1.39 · 10−12 2.21 · 10−12

Table 7.6: The calibrated parameter values for a four-element Windkessel model
of the vascular system given in SI-units to fit directly with the model. (*) Notice
that the fitted values for the HH-stage 10 embryonic heart is based on an extrapo-
lation from the other stages.

relaxation time for all the measured HH-stages [Yoshigi and Keller, 1996], thus
when Rp is decreased at higher stages Cp is increased. Furthermore if the venous
pressure (P0 = 0.2 mmHg = 26.7 Pa) is taken as a reference to equilibrium (when
the heart is not beating), an approximate equilibrium volume of the vascular sys-
tem can be calculated, V0 = P0Cp. For the HH-stage 16 embryo this gives the
volume 5.9 · 10−2 mm3, which is approximately one quarter of the volume of the
embryonic heart, 2.2 · 10−1 mm3. Thus the increase in Cp can be seen as an effect
of the increasing volume of the vascular system.

The inertance, Lc, decreases with increasing HH-stages despite that the mass
of blood is increased. This can be explained with the units of inertance, which
are given by pressure over volume acceleration, but pressure is given as force per
area which is again a mass times acceleration per area, the accelerations cancel
and we are left with mass over area squared, but mass is density times volume
which is length times area, one of the areas cancel out and in the end we are left
simply with density times a length divided by an area. As we assume density is
constant through all stages, the inertance is really a measure for the length of the
vascular system compared to the area it covers, as the inertance is higher at the
early stages it must mean that at the early stages the vascular system is actually
a long an complicated tree but the dimensions of the vessels are still very small.
The decreasing inertance with higher HH-stages is consistent with the findings of
Yoshigi et al. [2000] and Yoshigi and Keller [1997], the latter project concluded
furthermore that at least for HH-stage 24 the found inertance compares fairly to
the total length of the vascular system.

7.3 Parameter estimation

The model of the embryonic heart tube needs only a very low number of material
parameters, in fact only three are needed: the density of blood, ρ, the viscosity of
blood, η, and Young’s modulus, E, although Young’s modulus is needed for each
of the myocardial layer, endocardial layer and cardiac jelly.



172 Mathematical Modeling of Flow Characteristics in the Embryonic Heart

The density of embryonic blood is reported to 1.0 g·cm3 by [Yoshigi and
Keller, 1997], due to the low hematocrit level (the volume percentage of red blood
cells in the blood) in chick embryonic blood (17.7 %) the embryonic blood den-
sity is lower than for adults. For comparison the hematocrit of adult humans are
around 42 %, with variance according to gender, and blood density around 1.05
g/cm3 [Rideout, 1991, p. 78].

The viscosity of blood is even more dependent on hematocrit levels than den-
sity, in fact the suspension of red blood cells in the blood has the effect that the ap-
parent viscosity of the blood increases with blood vessel diameter in the so called
Fahraeus-Lindqvist effect [Meier, 1987], furthermore suspended blood cells will
migrate towards the peak of the velocity profile in the flowing blood, this will
change a regular Poiseuille flow towards a more flat flow profile [Meier, 1987].
Both of these non-Newtonian effects are strongly dependent on blood hematocrit
and can be very strong in adult blood, for embryonic blood the hematocrit is suffi-
ciently low that blood can be considered a Newtonian liquid. Meier [1987] reports
a viscosity between 1 - 4·103 Pa·s, and Hu et al. [1991] report a kinematic viscos-
ity of 3.8·10−2 cm2/s, which with the density above equals to 3.8·10−3 Pa·s.

Many authors have reported stress and strain measurements of embryonic
heart tissue, especially with the focus on cardiac looping and morphology, the
question is raised if cardiac looping causes residual stress in the wall of the heart
tube or indeed if the process of cardiac looping is caused or enhanced by dif-
ference in wall stress or directionality in stress-strain relations. Reports indicate
however that at the early embryonic stages the heart’s myocardium is an isotropic
material with randomly arranged sarcomeres (muscle filament) and no significant
fibre architecture [Männer, 2006, Lin and Taber, 1994], furthermore the endo-
cardium shows similar composition as the myocardium the only difference be-
tween the two layers are their thickness [Lin and Taber, 1994]. The cardiac jelly
has radially oriented fibers, which may exhibit a preferred direction, but it is es-
timated that cardiac jelly anisotropy would have relatively little effect because of
its softness compared to the myocardium [Zamir and Taber, 2004].

On the other hand Zamir et al. [2003] have measured differences in the stiff-
ness of the heart wall under the process of dextral looping (HH-stage 12) and
found that the although no significant differences were found between the outer
curvature and the dorsal and ventral sides of the heart tube the inner curvature
was around 2 - 3 times stiffer. Investigating this result they showed that cardiac
jelly exhibit no significant difference in stiffness of the inner and outer curvature,
thus it had to be a stiffness of the myocardium, and with a finite element model
of the looping heart they demonstrated that this increase in myocardium stiffness
could not be caused by the tube’s curvature alone. Therefore it is likely that the
increased stiffness is caused by a variation in the material properties in the inner
curvature of the looping heart. Later Taber [2006b] concluded that the stiffness
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difference may be caused by actin polymerization during cardiac looping, which
causes actin (a muscle protein) to lie predominantly with a circumferential orien-
tation near the inner curvature while there is no preferred orientation at the outer
curvature, thus the assumption of isotropy likely does not hold near the inner cur-
vature, while the residual stress field in the outer curvature of the heart loop is
approximately isotropic [Zamir and Taber, 2004].

Even though the increased inner curvature stiffness of the myocardium is well
known, no recordings of the stiffness is found and it is common to model the
heart tube under assumption of a uniform isotropic stiffness of the entire my-
ocardium [Zamir and Taber, 2004, Latacha et al., 2005, Taber, 2006b], which will
also be the assumption here. The stiffness of the layers of embryonic heart wall
are found through calibration of stress-strain measurements to the formula [Taber
et al., 1995],

σi = λi
∂W

∂λi
− P (7.4)

for i = r, θ, z, where σi are components of the stress tensor, λi are the strain
components in the principal directions, P is the hydrostatic pressure, andW (λi) is
the pseudoelastic strain-energy density function postulated by Taber et al. [1992],

W =
A

B

(
eB(λ

2
r+λ

2
θ
+λ2z−3) − 1

)
. (7.5)

The constants A and B in equation 7.5 are material parameters, which con-
stitute a non-ideal small-strain elastic modulus. For a completely elastic material
the material parameter A is related to Young’s modulus by the relation, E = 6A,
as long as the strains are sufficiently small [Zamir and Taber, 2004]. For both
the myocardial layer and the cardiac jelly reports indicate that the stress-strain
relations present fit better with this expression than with a regular Hooke’s law.
As such a number of reports have recorded material parameters A and B for the
layers of the embryonic tube wall, parameter values can be found in table 7.7.

HH-stage AMY BMY ACJ BCJ Reference
HH-10 10 Pa 1.2 2 Pa 0.25 [Latacha et al., 2005]
HH-12 11.1 Pa 0.49 3.0 Pa 0.30 [Zamir and Taber, 2004]
HH-16 20.0 Pa 1.1 10.0 Pa 0.10 [Lin and Taber, 1994]

Table 7.7: Parameters for the pseudoelastic strain-energy density function, the
parameters AMY and ACJ are related to Young’s modulus through the relation
E = 6A. AMY and BMY refer to the elasticity of the myocardium as well as the
endocardium, ACJ and BCJ refer to the cardiac jelly. No recordings for HH-stage
14 have been found, thus parameters for this stage will be computed as a mean
between HH-stage 12 and 16.
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In relation to the model of the embryonic heart it is assumed that to a first
approximation the cardiac jelly (CJ) as well the myocardial (MY) and endocardial
layers can be modeled as isotropic ideal elastic materials, so that Young’s modulus
can be found as E = 6A for all layers of the tube. This gives the moduli: EMY =
60 Pa and ECJ = 12 Pa for HH-stage 10, EMY = 66.6 Pa and ECJ = 18 Pa for
HH-stage 12,EMY = 93.3 Pa andECJ = 39 Pa for HH-stage 14, andEMY = 120
Pa and ECJ = 60 Pa for HH-stage 16.

However, Zamir et al. [2003] compute a simpler model for the HH-stage 12
embryo with only one stiffness variable, where they chose Young’s moduli, EMY

= 180 Pa and ECJ = 18 Pa, arguing that the modulus of the myocardium should be
one decade higher than the cardiac jelly to reflect the great difference in stiffness
between the two layers. This could indicate an underestimation of myocardial
stiffness or that the modulus should be around three times higher than the listed
values for the myocardium when converting from the pseudoelastic strain-energy
function to a regular Young’s modulus, but no further evidence have pointed to-
wards this notion.

7.4 The pumping mechanism

Finally the pumping mechanism is the big question in the modeling of the em-
bryonic heart, what is the governing pumping principle; peristalsis or the Liebau
effect, different characteristics point to different principles and as made clear by
Männer et al. [2010] the answer as well as the question may not be as simple as
it sounds. But before this question is addressed a description of what is recorded
about the pumping mechanism is needed.

From HH-stage 10 when the embryonic heart starts beating to HH-stage 16
and 17 the myocardial layer of the heart ventricle and outflow tract undergo nearly
concentric contraction during systole, while the endocardial lumen contracts in
an eccentric manner where it is nearly elliptic in shape in end-diastole and slit-
shaped in end-systole [Männer et al., 2008]. The eccentric contraction is caused
by the uneven distribution of cardiac jelly along the original dextral and sinistral
heart walls, which creates the nearly elliptic inner lumen, but in fact Männer et al.
[2009] have reported that from HH-stage 13 and 14 the cardiac jelly starts to rup-
ture with spikes reaching from the inner lumen out to the myocardial mantle, and
from stage 15 to 17 much cardiac jelly has disappeared from the outer curvature
of the heart loop so the inner lumen has more the shape of a bell than an ellipse
at end-diastole, while it is still almost occluded at end-systole. Additionally the
myocardial layer has a more eccentric contraction during these later stages.
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In the modeling process the bell-shape and eccentric deformation of the my-
ocardium at the later stages will be ignored, to a good approximation the elliptic
inner lumen and a concentric deformation of the myocardial layer will cover the
fundamental mechanical aspects of the tube as explained in chapter 6. Addition-
ally the model will not be able to handle a full occlusion of the inner lumen.

Männer et al. [2009] report of a minor contraction in ventricle length during
systole and Alford and Taber [2003] report of a bending and unbending of the
heart tube curvature during systole, both follow from an eccentric deformation of
the myocardial layer and will not be included in the models of this thesis.

As such the model will have a concentric contraction of the myocardial layer
leading to an eccentric contraction of the cardiac jelly and endocardial layer,
which will almost occlude the lumen of the heart tube, this is reported for a fact for
both the ventricle and the outflow tract [Männer et al., 2008] and suggested for the
atrioventricular canal [Männer, 2008], no reports of the contraction of atrial lumen
have been found although Campbell et al. [1992] have reported active contraction
curves of the myocardial layer, thus it is speculated that atrial cardiac jelly follows
the same uneven distribution as ventricular cardiac jelly and the contraction level
is the same.

The time function of the pumping mechanism is made up of the systolic con-
traction phase and the diastolic relaxation phase, together they equal one period.
The period and thus also the frequency is a reference number for the pumping
mechanism of the heart, even though different heart segments have different con-
traction and relaxation patterns their duration must always add up to exactly one
period, otherwise one segment will run faster than another and the synchroniza-
tion of the pumping mechanism will break down. The beating frequency of the
embryonic heart is however very prone to change, even the slightest changes in
the heart’s environment will have effect on the frequency, as such it has become
very common to report the frequency as measure of heart disturbance during ex-
perimental investigations of the embryonic heart. A range of frequencies for the
various HH-stages of the heart can be found at table 7.8.

Though the frequency may change due to environment and stress of the embry-
onic heart the systolic contraction phase and the diastolic relaxation phase seem
to change very little, when they are respectively defined as the time during which
the myocardial layer contracts and the time in which it returns back to its origi-
nal position [Castenholz and Flórez-Cossio, 1972]. Instead there is a third phase,
the diastolic trance phase, during which the myocardial layer lies almost still, this
phase varies a lot with frequency its duration is reported to lie between 410-1440
ms for HH-stage 12 to 18 [Castenholz and Flórez-Cossio, 1972].
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HH-stage Frequency Reference
HH-10 0.8-1.2 Hz [Castenholz and Flórez-Cossio, 1972]
HH-12 1.64 Hz [Castenholz and Flórez-Cossio, 1972]
HH-12 1.25±0.39 Hz [Alford and Taber, 2003]
HH-12 1.72±0.03 Hz [Hu and Clark, 1989]
HH-12 1.32±0.10 Hz [Keller et al., 1990]
HH-12 1.90±0.26 Hz [Hu et al., 1991]
HH-14 1.7 Hz [Castenholz and Flórez-Cossio, 1972]
HH-14 1.90±0.07 Hz [Hu and Clark, 1989]
HH-14 1.93±0.08 Hz [Keller et al., 1990]
HH-14 1.97±0.14 Hz [Hu et al., 1991]
HH-16 2.0 Hz [Castenholz and Flórez-Cossio, 1972]
HH-16 2.03±0.05 Hz [Hu and Clark, 1989]
HH-16 2.00±0.07 Hz [Keller et al., 1990]
HH-16 1.76±0.13 Hz [Hu et al., 1991]

Table 7.8: Frequency measurements of the embryonic heart.

Proximal Distal Proximal Distal
HH contraction contraction relaxation relaxation

stage phase phase phase phase
HH-10 170.0±31.6 ms 228.0±41.4 ms 275.6±84.3 ms 286.0±39.3 ms
HH-12 123.7±30.4 ms 168.6±53.6 ms 193.0±66.3 ms 245.5±58.9 ms
HH-14 88.8±22.8 ms 150.1±49.2 ms 144.5±41.6 ms 145.5±46.5 ms
HH-16 109.6±17.7 ms 154.1±26.2 ms 169.2±39.2 ms 156.0±18.5 ms

Table 7.9: Duration of the systolic contraction phase and diastolic relaxation phase
in the proximal and distal ends of the heart tube. Values are reported by Casten-
holz and Flórez-Cossio [1972].

While the systolic contraction phase and diastolic relaxation phase are invari-
ant to changes in the heart rate they vary with the different HH-stages and they
have different duration for the various heart segments. Both phases are shorter
near the venous end of the heart and progressively become longer near the out-
flow tract and generally they both tend to become shorter for higher HH-stages.
Castenholz and Flórez-Cossio [1972] have reported durations of the systolic con-
traction phase and the diastolic relaxation phase for the proximal and distal end
of the heart tube for HH-stage 10 to 16, the data can be found in table 7.9. In
addition Campbell et al. [1992] have reported atrial contraction time to 140±5 ms
for HH-stage 16.
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Contraction Relative
HH-stage wave diametric

velocity contraction
HH-10 ∼3.3 mm/s 15 %
HH-12 4.2±2.3 mm/s 24-25 %
HH-14 9.4±1.2 mm/s 26.3 %
HH-16 9.4±1.2 mm/s 24.4 %

Table 7.10: The velocity of the apparent contraction wave from the venous pole
to the outflow tract and the mean relative reduction of diameter of the heart tube
during contraction. Values are reported by Castenholz and Flórez-Cossio [1972].

Additionally the contraction and relaxation phases occur later in the period at
the outflow tract than at the venous end of the heart, along the length of the heart
tube the onset of contraction is gradually delayed so that it appears as if a contrac-
tion wave is moving from the venous end towards the outflow tract correspond-
ing to the idea of a peristaltic pumping principle. Castenholz and Flórez-Cossio
[1972] have measured the speed of this apparent contraction wave and have fur-
thermore measured a mean diametric contraction of the outside layer for HH-stage
10 to 16, the data can be found in table 7.10. In addition Campbell et al. [1992]
report a 56.2±3.0 % reduction of atrial area during contraction, corresponding to
a 33.8±2.3 % diametric reduction.

The delay of contraction at the distal end of the heart tube and apparent con-
traction wave along the tube length give rise to a fourth phase in the characteristic
contraction pattern of the myocardial layer, the so called diastolic strain phase,
which is defined by an expansion of the myocardial layer. This phase is not vis-
ible at the venous end of the heart tube and most prominent at the outflow tract,
where it lasts 50-100 ms and increases the diameter of the myocardial layer up to
10 %, it is therefore assumed that this phase is caused by a passive pressure wave
that runs before the contraction wave of the heart tube [Castenholz and Flórez-
Cossio, 1972].

To trace the contraction curve of the cardiac segments of the tubular heart three
optical coherence tomography M-mode images from a HH-stage 16 embryo are
supplied from a laboratory exercise made in collaboration with Jörg Männer, T.
Mesud Yelbuz and Lars Thrane in 2009. The images comes from an experiment to
test the image rendering and depth penetration of the OCT system during M-mode
recording, see section 2.3.1, which was performed outside environmentally stable
conditions for the embryo (ie. at room temperature), therefore the heart rate and
ratio between contraction/relaxation phase and diastolic trance phase can not be
trusted in the images. But as described by Castenholz and Flórez-Cossio [1972]
the contraction and relaxation phases should be fairly unaffected. The images can
be seen on figure 7.5.
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Figure 7.5: Optical Coherence Tomography (OCT) M-mode images from a HH-
stage 16 embryo outside environmentally stable conditions. The images trace the
diametric contraction of the heart tube as a function of time, units are not de-
fined, at the top is a scan of the inflow region (most likely the atrioventricular
canal), in the middle a scan of the ventricle, and below a scan of the proximal
outflow tract. The systolic contraction phase, diastolic relaxation phase and di-
astolic trance phase are all easily identified but the diastolic strain phase is not
recognized in these images, in addition the lower image does not show any trance
phase worthy of mention.

For each of the three M-mode images the contraction pattern from start to end
of contraction have been traced by simply measuring cross-sectional distance as a
function pixel-number, a function is fitted to the resulting numerical arrays defined
as,

D(t) = 1− k1 sin
(
πk2

(
1− e−k3t

))
, (7.6)

with k1, k2 and k3 being the fitted parameters of the contraction function. The fit-
ted function is then scaled according to table 7.9 and 7.10 such that the ventricular
contraction function fits with the contraction ratio from table 7.10 and the other
two functions are scaled accordingly. The scaling actually makes the contraction
function of the inflow region fit very well with the contraction ratio reported by
Campbell et al. [1992], though its duration is somewhat longer than what was re-
ported. The fitted parameters for the HH-stage 16 embryo can be found in table
7.11 and a plot of the function can be seen on figure 7.7.

Though the systolic contraction phase and the diastolic relaxation phase are al-
most time-invariant to changes in the environment of the embryo the contraction
may experience other changes, as a result the fitted contraction function should
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Figure 7.6: A plot of the contraction function from equation 7.6 (dotted curves)
fitted to the tracings of the diametric contraction of the heart in figure 7.5 and
scaled for a HH-stage 16 embryonic heart using table 7.9 and 7.10 (solid curves).

k1 k2 k3 Duration
Inflow region 31.4 % 1.35 7.24 s−1 187 ms
Ventricle 24.4 % 1.06 10.11 s−1 279 ms
Outflow tract 22.5 % 6.66 0.52 s−1 310 ms

Table 7.11: The fitted parameters of equation 7.6 together with the fitted contrac-
tion duration for the HH-stage 16 embryonic heart.

only be seen as an approximation used in this model of the embryonic heart.
Likewise the contraction function is known to be unique for each HH-stage of the
embryo, but regardless of this fact the fitted function from equation 7.6 is scaled
using data from table 7.9 and 7.10 for each of the embryonic stages modeled.

For each of the HH-stages modeled a contraction function is defined for each
of the cardiac segmental areas: atrium, ventricle and outflow tract. It is assumed
that the contraction wave moves along the heart tube with velocity defined in table
7.10 and when crossing the boundary to a new cardiac segment it changes con-
traction characteristics to the new contraction function. The contraction duration
is furthermore only a fraction of the period and for the fraction of time outside the
contraction duration the contraction is assumed to be zero.
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7.5 Model setup

The model of the heart tube is defined through a tracing of the dimensions of the
tubular heart, a set of boundary condition, an estimation of physical parameters
and the definition of a pumping mechanism. The four steps have been carried out
in the sections above, this final step combines them into a model.

The tracing of the dimensions is carried out in section 7.1, especially the
lengths and diameters from table 7.1 are considered of value in this estimation,
table 7.2 to 7.5 include dimensional reports from other researchers which should
be seen as references to the validity of the first mentioned lengths and diameters;
apparently length and size of the embryonic heart may vary and so it should be
considered best to base the modeling on a complete set of data from one embryo
instead of data pieced together from various authors.

The length and diameters from table 7.1 are plotted against each other, and
lines are fitted between the points. Based on the reported dimensions of the cardiac
jelly in table 7.2 to 7.5 an estimate of the inner lumen of the heart tube is made at
similar longitudinal coordinates as the myocardial layer, lines are fitted between
those points as well. Plots of this procedure is visible on figure 7.7. This make the
heart tube look a little rough-edged, but no better solution has presented itself. A
number of sections,N , for the model is chosen and the dimensions of each section
is fitted such that each section has inner and outer dimension corresponding to the
function value taken at the center of the section. This results in two arrays of outer
and inner dimensions of the heart tube corresponding to the variables An and Bn

of the model.
The radius of curvature of the heart tube is recorded in section 7.1. The tube

curves from the point of the venous pole to somewhere around the middle of the
outflow tract, even though it is clear that the curvature is not a constant function of
the length along the heart tube it will be considered as such in this model. For each
HH-stage the first and last sections of heart curvature is determined based on the
total number of sections, N , and the bending angle for each section is calculated
as section length divided by 2π times radius of curvature.

The boundary conditions for the heart tube are found in section 7.2, for the
lower end of the heart it is defined by the venous pressure, for the upper end it is
defined by a four-element Windkessel model. These two conditions can be seen
depicted in the energy bond diagram in figure 7.8.

The venous boundary condition, P0, is a pressure that will go into the model
equations just like any other pressure in the model except that this pressure will
define the equilibrium pressure in the heart tube, if the heart stopped beating. In
addition to this condition at the lower end of the tube it is necessary to include
another condition such that the heart tube is not mechanically isolated from the
veins, to this end an additional ’ghost’ section is added to the tube in the lower
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Figure 7.7: Plots showing longitudinal and radial dimensions of the heart tube
for all the HH-stages modeled. The points marked in the plots comes from the
measured dimensions from table 7.1 and from an estimate of the thickness of the
cardiac jelly relative to the radius of the myocardial layer. The staircase functions
are an illustration of the dimensional arrays used in the model, the number of
sections in the model may change however.
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Figure 7.8: A diagram of the model with boundary conditions. The gray-shaded
area is an icon for the whole complicated layered model, while P0 is the boundary
condition at the venous end and the Windkessel termination with Lc, Rc, Rp and
Cp is the boundary condition at the arterial end of the heart tube.
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end, this section has dimensions similar to the first section of the model except
they do not vary with time, such that the variance of the first section of the model
is felt relative to the ’ghost’ section.

The arterial boundary condition is given by a four-element Windkessel model
with parameters specified in table 7.6. In addition this boundary will also be
modified with an invariant ’ghost’ section that is primarily experienced through
the shear tensions in the model.

The Windkessel expands the model with more equations that have to be iter-
ated in time along with the rest of the model’s equations. For both the inertance
and the capacitance in the Windkessel model a function is specified such that the
differential equation of that function is added to the set of equations in the Runge-
Kutta algorithm step of the simulations. For the inertance it is the momentum of
flow into the vascular system, M , which is the input function to the element Lc,
for the capacitance it is the volume of the vascular system, V , which is the input
to the element Cp. The differential equations are given by,

dV

dt
= QN+1 −

PN+1

Rp
(7.7)

dM

dt
= PN − PN+1 − RcQN+1, (7.8)

where PN is the pressure in the final section of the model and QN+1 and PN+1 are
the flow and pressure in the vascular system given by the equations,

QN+1 =
V − V0
Cp

=
V

Cp
− P0 (7.9)

PN+1 =
M

Lc
. (7.10)

V0 is the equilibrium volume of the vascular system, which may be defined as,
V0 = CpP0, where P0 is the equilibrium pressure corresponding to the pressure in
the venous end of the model.

The parameter estimation is carried out in section 7.3 and consists only in
finding values for the density of blood, ρ = 1.0 · 103 kg/m3, viscosity of blood,
η = 3.8 ·10−3 Pa·s, and the elastic modules for the myocardium, endocardium and
cardiac jelly, EMY , EEN , ECJ , which can be found in table 7.7. There may be
some uncertainty about the elastic modules as Zamir et al. [2003] argue that the
ratio between myocardial and cardiac jelly stiffness should be at least one decade,
which does not fit with the values in table 7.7. Some parameter variance tests may
be interesting to see the difference.
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The pumping mechanism is detailed in section 7.4, it is given by the heart
rate found in table 7.8 and the contraction and relaxation phases found in table
7.9, which detail the duration and frequency of the contractions of the heart tube.
Furthermore table 7.10 details the ratio of contraction relative to equilibrium di-
mensions, the table also details that the heart contractions are seen as a wave
traveling from the caudal to the cranial end of the heart tube with a certain wave
speed.

The exact functions of the contractions are found by a tracing of the contrac-
tion of a HH-stage 16 heart demonstrated in OCT M-mode images in figure 7.5,
which are subsequently scaled in accordance to the reported values and a function
is fitted to the data for all HH-stages modeled. These contraction functions (or
rather their derivatives) will be added to the differential equation of the outside
myocardial layer in the model and for each section they will be phase shifted in
accordance with the reported wave speed of the contraction wave.

Initial values of the model will be given by the dimensions of An and Bn, the
initial momentum of flow is assumed to be zero, pn = 0 and M = 0, which will
also entail that V = V0. The heart will start from equilibrium conditions and a
few periods of simulations is required for it to reach a stable cycle where all the
dynamic variables of the model have found their natural levels.





Chapter 8

Simulation Results

In this chapter results of the simulations will be presented. The embryonic heart
is simulated for HH-stages 10, 12, 14 and 16 according to the setup specified
in chapter 7 and in addition a series of simulations for the case of Liebau’s ring
presented in chapter 5 is setup for the elliptic and embedded model through a
modification of the setup instructions presented in section 5.2.

Through the analysis of the simulations it is attempted to give answers to the
three questions posed in chapter 1. Specifically the first question is of interest for
the simulations of the embryonic heart, to prove via simulation results that the
models can produce data comparable to reported data of flow and pressure in the
embryonic heart.

Comparability between mean flow and pressure curves of the models and the
embryonic heart is important in the argumentation that models adequately de-
scribe the embryonic heart, though not all of the discussion can be decided with
the comparability of data sets. The greater part of the discussion will be a com-
parison of the likely effects of the flow phenomena in the embryonic heart and the
effects included in the model, which will be carried out in chapter 9.

For the simulations of the case of Liebau’s ring with tubes of elliptic or mul-
tilayered cross-section specifically the second of the three questions in chapter 1
is of interest. The simulations are produced from a suggestion that the Liebau
effect may be greater in tubes with elliptical cross-section compared to circular
cross-section, or that eccentric elliptical contraction may have a higher mechani-
cal efficiency compared to concentric contraction.

The results achieved with those simulations will only be suggestive to the
embryonic heart, already research indicate that tubes with elliptical cross-section
may have higher mechanical efficiency for peristaltic pumping, if the same proves
true for the Liebau effect then a strong suggestion to why the embryonic heart has
elliptic cross-section is presented, regardless of the pumping effect employed.

The end of the chapter will have a short analysis and conclusion to the results
of the simulations, specifically regarding those two questions.

185
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8.1 The embryonic heart simulations

Simulations of the tubular looping embryonic heart are made according to the
setup described in chapter 7 and attempted for HH-stages 10, 12, 14 and 16. The
attempt was not successful.

The embedded model presented in chapter 6 is employed in the simulations,
specifically the equations of the rates of change of elliptic major axis, an, of the
elliptic minor axis, bn, and of the momentum of flow, pn, given by equation 6.124,
6.125 and 6.126 respectively, are iterated in a Runge-Kutta algorithm to find their
time-dependent variables and from those the variables of volume flow and pres-
sure are calculated using equation 6.120 and 6.121.

The model equations are setup according to the description in chapter 7. As
such the model includes a tapering three-layered curved heart tube, with cardiac
jelly and an elliptic inner lumen set according to the dimensions of the heart pre-
sented in section 7.3. The pumping mechanism affects nearly the whole length of
the heart tube with a contraction pattern as defined in section 7.4. That is, all the
effects presented in the previous chapters are included into the simulations of the
embryonic chick heart.

It has not been possible to obtain simulation results in time to include them
in this thesis, at time of delivery the simulation routine is still working on its fifth
week of computation. Since the simulation program has not terminated it is be-
lieved that the model actually works, but the complicated setup of the embryonic
heart makes it difficult for the Runge-Kutta iteration algorithm to find convergent
solutions in time, forcing it to decrease time steps to extremely small numbers in
relation to its convergence criteria.

With the simulations of the case of Liebau’s ring with elliptic cross-section,
which will be presented in section 8.2, it is proved that the models themselves are
functional, even the embedded model. Thus the problem must lie in the setup of
the embryonic heart simulations. A suggestion to what causes the problems in the
computations is presented below in section 8.1.1.

The simulation data would have been presented as time-oscillations of flow
and pressure, specifically the outflow from the heart to the dorsal aorta and ven-
tricular pressure curves are interesting in the time domain. Mean flow and pres-
sure would be calculated on the basis of the oscillations, and a contraction curve
of the heart tube visualized as a graphs of the time-dependent axial dimensions as
a functions of the length of the tube, for each developmental stage of the embryo.

The data from the simulations of the embryonic heart would be compared to
reports of aortic mean flow and ventricular pressure from the works of Castenholz
and Flórez-Cossio [1972] and Hu and Clark [1989]. The comparison will not
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offer a complete validation of the model as the data material is too poor, instead
the comparison is meant to check the plausibility of the simulations in relation to
reported data. This would have been an important link in the investigation of the
first of the three questions presented in chapter 1.

8.1.1 Model programming

The programming of simulations of the embryonic heart is setup with the embed-
ded model and uses the differential equations presented in section 6.5.3 giving the
rates of change for the momentum and the elliptical axes of the inner lumen, where
the major axis is also the radius of the outer myocardial layer. The setup condi-
tions for the simulations are presented in chapter 7, and especially the boundary
condition at the arterial end adds the two differential equations given by equation
7.7 to the model.

The models are divided into N sections in the simulations, where N is a spe-
cific number that fit with the measured dimensions of the embryonic heart. Not
all numbers are viable, lengths and diameters of the different cardiac segments of
the embryonic heart dictate the possible number of sections, which is different for
the simulations of each HH-stage. The values of N used in the simulations lie in
the range from 30 to 60, though smaller numbers have been used in an attempt
to produce data results from the simulations. The possible values of N are are
calculated and written in the programs presented in appendix B.

The cross-sectional dimensions of each section of the model are set according
to a fit to the dimensions specified in section 7.1 and modified with respect to N
and an overall assumption of the distribution of cardiac jelly in the heart, as such
the dimensions in the simulations will appear as the staircase functions depicted
in figure 7.7.

The pumping function in the simulations will be approximated by the func-
tions depicted in figure 7.7 and applied through the derivative of the functions
added to the rate of change of the major axis of the elliptic cross-section. For
the pumping function the compression ratio presented in table 7.10 is a defining
number, it is believed that the combination of the staircase functions of the cross-
sectional axes of the tube and the compression ratio causes the problems for the
computations of the model.

The model is programmed in MatLab v. 7.5 (copyright The MathWorks Inc.)
and makes use of MatLab’s inherent ‘ode45’ Runge-Kutta algorithm to iterate
the differential equations of rn and pn and the functions V and M of the arterial
boundary condition of the model. After the end of the ‘ode45’-solver the values
of Pn and Qn are calculated. The programs used in the simulations are presented
in appendix B.
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Due to the complicated nature of the simulations is has not been possible to
estimate the computation time. The ‘ode45’ solver is extremely time consuming
for the simulations and in addition the amount of data created gives problems for
MatLab’s virtual memory so that a swap disk is created by MatLab; saving and
loading data to such a disk uses even more time. Even if the simulation programs
are changed to run for very short intervals of one period or if fewer data points are
saved in the recorded simulation data the problem persists. This indicates that the
problem created by the simulation programs is a problem for the ‘ode45’ solver
itself.

8.1.2 Comparison with reported data

The simulation data from the embryonic heart would have been compared to re-
ported data of the mean outflow from the heart to the dorsal aorta and to systolic
and diastolic ventricular pressure measurements.

The outflow from the embryonic heart to the dorsal aorta is measured by Hu
and Clark [1989] for HH-stages 12, 14 and 16 to the values 0.02 ± 0.004 mm3/s,
0.08 ± 0.01 mm3/s and 0.15 ± 0.01 mm3/s respectively, corresponding to mean
velocities of 0.86± 0.07 mm/s, 1.89± 0.12 mm/s and 2.77± 0.20 mm/s.

Castenholz and Flórez-Cossio [1972] measure the flow velocities in the dorsal
aorta between 0.16 to 0.93 mm/s for HH-stage 12, between 0.50 to 0.80 mm/s
for HH-stage 14, and up to around 3.0 mm/s for HH-stage 16. This confirms the
measurements of Hu and Clark [1989] except for HH-stage 14, where they seem
to disagree about a mean flow velocity between 0.70 to 1.89 mm/s.

No volume flow or mean velocity have been measured for HH-stage 10, likely
because at that stage the tubular heart is still too undeveloped and the contraction
pattern too irregular to decide flow conditions.

Diastolic and systolic pressure in the ventricle is measured by Hu and Clark
[1989] to 0.24±0.02 mmHg and 0.95±0.04 mmHg for HH-stage 12, 0.32±0.01
mmHg and 1.04±0.04 mmHg for HH-stage 14, and 0.25±0.02 mmHg and 1.15±
0.04 mmHg for HH-stage 16. In addition the pressure of a first-order vitelline
artery is measured 0.23 ± 0.01 mmHg and 0.32 ± 0.01 mmHg for HH-stage 12,
0.35 ± 0.01 mmHg and 0.52 ± 0.02 mmHg for HH-stage 14, and 0.39 ± 0.02
mmHg and 0.62 ± 0.03 mmHg for HH-stage 16. The vitelline arterial pressure
may be seen as a good approximation to the pressure at the outlet of the embryonic
heart. Additionally Lin and Taber [1994] report the peak systolic pressure of the
ventricle to around 1.0 mmHg, confirming the values above. The data is presented
in table 8.1.

The comparison of data has not been possible since no data from the embry-
onic heart simulations is achieved. Though from the simulations of Liebau’s ring
below in section 8.2 it can be said that a mean flow in the range from 0.02 to 0.20
mm3/s is high yet not unlikely for Liebau effect driven flow with elliptical con-
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HH-stage 12 HH-stage 14 HH-stage 16
Dorsal aortic Qmean [mm3/s] 0.02± 0.004 0.08± 0.01 0.15± 0.01
Ventricular Pdiastole [mmHg] 0.24± 0.02 0.32± 0.01 0.25± 0.02
Ventricular Psystole [mmHg] 0.95± 0.04 1.04± 0.04 1.15± 0.04
Vitelline Pdiastole [mmHg] 0.23± 0.01 0.35± 0.01 0.39± 0.02
Vitelline Psystole [mmHg] 0.32± 0.01 0.52± 0.02 0.62± 0.03
Vitelline Pmean [mmHg] 0.28± 0.01 0.40± 0.01 0.49± 0.03

Table 8.1: Experimental data of mean flow in the dorsal aorta and systolic, di-
astolic pressure in the ventricle and a first-order vitelline artery, and the mean
vitelline pressure reported by Hu and Clark [1989]. No data from HH-stage 10 is
reported.

traction. Similarly the mean pressure is increased compared equilibrium pressure,
defined by the boundary condition at the venous end, P0 = 0.2 mmHg, which is
also seen in the simulations of Liebau’s ring with elliptical contraction. Thus from
a short comparison of effects it is clear that a Liebau pumping principle can not
be ruled out for the embryonic heart.

8.1.3 Conclusion to the embryonic heart simulations

The simulations of the embryonic heart have not been successful. The compu-
tation time is simply too long and the amount of data to great for the computer
to handle it. This may be an effect of a model setup that causes diverging ef-
fects in the simulation results, which can create problems for the ‘ode45’ solver
in MatLab.

The modeling and simulation of the embryonic heart was expected to act as
a proof of principle, to demonstrate that the embryonic heart can be described
through these models. Thus it would prove that whatever details are true for the
models will also be true for the embryonic heart. For instance could it be proved
that Liebau pumping is more effective in a model with elliptic cross-section com-
pared to circular cross-section, that would also count for the embryonic heart.

This is the essence in the first of the three questions in chapter 1, to provide a
link between the model and the embryonic heart. Furthermore this makes the cir-
cumstances for the investigation of the third question posed in chapter 1 insecure.
This will be discussed further in chapter 9.

The lack of simulation data is disappointing but as a result the simulations
of an elliptic equivalent to Liebau’s ring becomes even more important, despite
its loose connection to the embryonic heart. Through those simulations it will
be proved that the elliptic models are actually working while it is simultaneously
investigated what an elliptic cross-section does for the Liebau effect in Liebau’s
ring.
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8.2 Liebau’s ring revisited

It has been suggested that tubes with elliptic cross-sections are better suited for
peristaltic propulsion of liquid and some experiments indicate that this may be
true [Männer et al., 2008], but so far it is not known if the same is the case for
tubes with liquid flow caused by the Liebau effect. To investigate this hypothesis
the case of Liebau’s ring is applied to a tube of with an elliptic cross-section.

The elliptic model introduced in chapter 6 is applied with the setup of Liebau’s
ring introduced in section 5.2: Material parameters and dimensions are the same,
the only difference is that the tube has an elliptic cross-section defined by the

eccentricity e =
√
1− B2/A2, where A and B are the equilibrium lengths of the

major and minor axis.
The elliptic tube is defined such that it has cross-sectional area similar to the

cylindric tube, πAB = πR2, where R is the equilibrium radius of the cylindric
tube. Thus as a function of the eccentricity the equilibrium lengths of the elliptic
axes become,

A =

√
R2

1√
1− e2

and B =
√
R2

√
1− e2. (8.1)

To utilize the possibilities in the elliptic model two pumping mechanisms are
applied. One pumping mechanism has concentric contraction just as described by
equation 5.3 and 5.4, only with A and B substituted instead of R.

The other pumping function is specified with an elliptic contraction, such that
the minor axis of the ellipse is reduced while the major axis is increased such that
the compression ratio, c = AB−AmaxBmin

AB
, is still set to 25% just as the simulations

in chapter 5. The maximum length of the major axis, Amax, and the minimum
length of the minor axis, Bmin, are defined,

Amax,m = A0,m

(
1 +

√
c sin

(
π

m

M + 1

))
and

Bmin,m = B0,m

(
1−

√
c sin

(
π

m

M + 1

))
, (8.2)

wherem = 1, . . . ,M is the index number for the sections included in the pumping
function and M is the total number of sections in the pumping function, and A0,m

andB0,m are the length of the axes of the section for the tube at rest. Unfortunately
some of the simulations were progressed without the sine-factor in equation 8.2,
for those simulations the compression profile is simply Amax,m = A0,m(1 +

√
c).

But as shown in figure 8.2 it does not make a great difference.
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The dynamic axes are then defined as functions of time,

Am(t) = A0,m + (Amax,m − A0,m) sin

(
πf

0.1
t

)
and

Bm(t) = B0,m − (B0,m − Bmax,m) sin

(
πf

0.1
t

)
, (8.3)

for t mod T ∈ [0, 0.1/f [ and Am(t) = A0,m and Bm(t) = B0,m else, where f is
the frequency of the pumping function.

The simulations are made with MatLab v. 7.5 (copyright The MathWorks Inc.)
and program codes can be found in appendix C.

8.2.1 An elliptic Liebau’s ring

It is stated by Männer et al. [2008] that other researchers have produced results
indicating that tubes with elliptic cross-sections have a higher mechanical effi-
ciency in relation to peristaltic pumping, but it has not yet been investigated for
the Liebau effect. It is however unclear from that report if the mechanical pump-
ing mechanism in the peristaltic pumping is also of elliptical eccentric character
or if it is concentric. Thus both pumping mechanisms will be investigated here.
Figure 8.1 shows a comparison between an elliptic Liebau’s ring with concentric
contraction and with the elliptic pumping function defined in by equation 8.3.

From figure 8.1 it is clear that the elliptic deformation is far superior to the
concentric contraction employed for both the tube with circular cross-section and
elliptic cross-section. The induced oscillations have far greater amplitudes and
do not seem to oscillate more than the oscillations of the concentric pumping.
The mean flow is greater in magnitude and the mean pressure increase rather than
decrease, which is the typical case for the concentric deformations.

The eccentric deformation involves a combination of shear and pure defor-
mations while the concentric contraction is only pure, thus in order to produce a
reduction of the cross-sectional area given by the compression ratio, c, the eccen-
tric pumping function has to deform the tube more than the concentric pumping
function. For a compression ratio c = 25% the length of the minor axis is halved
while the length of the major axis is increased by a factor 1.5. For the concentric
pump they are both only reduced by a factor 0.87.

Naturally this means that the eccentric deformation costs more energy, which
is reflected in the higher oscillations in figure 8.1. The increase in energy in a
section of the tube is defined as the pressure times the change in volume, ∆E =
P∆V , yet the volume change is the same with concentric and eccentric deforma-
tion, thus the ratio of energy cost between the pumping functions must be a ratio
between the pressures they both produce, ∆Eecc/∆Econ = Pecc/Pcon.
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Figure 8.1: Comparison of the simulations, one cylindric tube with concentric
contraction (red dash-dotted curve), one elliptic tube with concentric contraction
(blue dashed curve) and one elliptic tube with eccentric contraction (green solid
curve). Eccentricity in the elliptic tube is set to e = 0.1, only slightly elliptic.
On the left is a plot of the flow oscillations, notice that two of the curves lie on
top of each other, mean flow is −1.78 cm3/s for the cylindric tube, −1.59 cm3/s
for the elliptic tube with concentric deformation and 7.11 cm3/s for the elliptic
tube with eccentric deformation. On the right is a plot of the pressure oscillations,
mean pressure is 9.97 · 104 Pa for the cylindric and elliptic model with concentric
contraction and 10.11 · 104 Pa for the elliptic model with eccentric deformation.
It is clear that the eccentric deformation far supersedes the performance of the
concentric contraction and qualitatively it gives a completely different flow.

The pressure of the elliptic model is defined in equation 6.92 and with sec-
ondary effects of the shear elasticity assumed to be insignificant the ratio between
the energy requirements for the two pumping mechanisms is found to be 2.86 for
the particular model setup, yet the ratio between the mean flows of the two pump-
ing mechanisms is 4.47. Thus the eccentric deformation has higher mechanical
efficiency.

Furthermore the concentric contraction appears as an essentially unrealistic
pumping mechanism in Liebau’s ring. In a realistic setting the pinching of the
tube at an asymmetric location will never be done by contracting the radius of the
tube. Instead pinching the tube by pressing it with two fingers seems much more
realistic, this will create an eccentric deformation of the tube though the elliptic
deformation described by equation 8.3 is probably an idealized approximation to
such a deformation, and for high numbers of the eccentricity it will certainly also
be unrealistic.

Figure 8.2 shows the mean flow in the tube as a function of pumping frequency
for the cylindric tube, the elliptic tube with concentric contraction and the elliptic
tube with eccentric deformation. It is clear that the eccentric deformation produce
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Figure 8.2: A comparison of mean flow as a function of frequency. Four series are
graphed: The results of the cylindric Liebau’s ring (dotted curve), the elliptic tube
with concentric contraction (dash-dotted curve), the elliptic tube with eccentric
deformation (solid curve) and the elliptic tube with eccentric deformation, where
the sine-factor of equation 8.2 were omitted by mistake (dashed curve). Com-
pression ratio is set to 25 % and eccentricity is 0.1 for the elliptic models. It is
seen that the cylindric model and the elliptic model with concentric contraction
produce results that are almost similar, which is expected since the elliptic cross-
section is very close to circular. The simulations with eccentric deformation are
also nearly identical, which indicate that the sine-factor in equation 8.2 has only
little influence on the Liebau effect. The mean flow of those simulations is much
higher than the other two, and in fact it fits perfectly with the experimental data
from Snitker et al. [2000], indicated by the black and grey bars.

much higher mean flow for all frequencies, in fact considering that the eccentric
deformation of the tube is a more realistic pumping function it is interesting to
see that the mean flow compares to the experimental data reported by Snitker
et al. [2000], which none of the simulations in chapter 5 could reproduce. Further
comparison to these experimental results have no meaning as explained in section
5.5, but it illustrates clearly the difference between the pumping effects.

Furthermore it is clear that the elliptic tube with concentric contraction com-
pares fully with the cylindric tube simulation, which is also expected since the
eccentricity of 0.1 makes the elliptic cross-section very close to circular. This
demonstrates that the elliptic and cylindric tube models are essentially similar in
the limit when the elliptic cross-section becomes circular.
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Figure 8.2 includes two simulations with the elliptic tube with eccentric cross-
section; both are described by equation 8.3 though for one of them the sine-factor
in equation 8.2 was accidentally omitted. The figure demonstrates that the simula-
tions are essentially identical, only little difference is shown between them, which
will be used in figure 8.3.

The frequency spectrum of the eccentric deformation appears to be differ-
ent from the concentric deformation even though the tubes are similar. As it is
demonstrated in section 5.3 the frequency spectrum depends on the resonance of
pressure waves traveling in the tube. The speed of those pressure waves is given
by the Moens-Korteweg equation, which can be calculated as a function of elas-
ticity of the tube compared to the inertia of the liquid as specified in section 3.8.
However for the elliptic tube the elasticity of the tube walls is a very complicated
function and thus it is not possible to give a simple expression for the speed of the
pressure waves.

Yet if the eccentricity of the elliptic cross-section is sufficiently low the Moens-
Korteweg equation of the circular tube may be regarded as a suitable approxi-
mation, and thus the frequency spectrum should be approximately similar to the
spectrum given in figure 5.5. Indeed it is seen that the elliptic tube with concentric
contraction demonstrate almost exactly the same mean flow as the circular model
in figure 8.2, but the tube with eccentric deformation does not.

This points to the conclusion that the simple picture presented in section 5.3
does not hold in the general case. The Liebau effect is not only caused by the
resonance between reflected pressure waves in the system, but the nature and cre-
ation of those waves seem to have influence as well, specifically with relation to
the modes of deformation of the tube. Here it seems that the eccentric deforma-
tion is defining for the spectrum such that at the previously determined resonance
frequencies at 2.78 Hz, 2.96 Hz and 3.16 Hz the level of the mean flow seems to
change rather than show resonance peaks.

The simulations of the elliptic Liebau’s ring is made for several configurations
of the eccentricity, which is demonstrated in figure 8.3. If it makes a difference to
the Liebau effect that the tube is elliptic then eccentricity of the ellipse must have
an influence on the effect, and for some value of the eccentricity the Liebau effect
has to be optimal.

As the figure demonstrates the mean flow of the tube with concentric contrac-
tions decline with increasing eccentricity, in fact it appears to change direction
with high eccentricity. It makes sense that the flow should go to zero when the
eccentricity is increased as the ellipse becomes more and more stretched and thus
friction is increased, though it does not explain why the flow should change direc-
tion. This could however be a numerical effect.

The mean flow of the tube with eccentric deformation increases with increas-
ing eccentricity. This is probably a result coming from the fact that with increasing
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Figure 8.3: A comparison of the elliptic and concentric pumping functions as a
function of the eccentricity of the cross-section of the tube. for the tube with
eccentric contraction the magnitude of mean flow increases with eccentricity of
the elliptic cross-section, for the concentric it goes to zero or the flow changes
direction.

eccentricity the pumping function becomes increasingly unrealistic; the pumping
function reduces the length of the minor axis by a factor 0.5 and increases the
major axis by a factor 1.5, when the ellipse has a high eccentricity the change in
the major axis of the pump becomes even greater, which is more costly in energy
(the energy ratio for e = 0.7 equals Eecc/Econ = 4.10). At extreme eccentricities
this becomes absurd.

8.2.2 An embedded Liebau’s ring

For the embedded model it is also possible to make a setup of Liebau’s ring, this is
done similarly to the cylindric and elliptic Liebau’s ring, specifically concerning
the cross-sectional area of the tube lumen, which is set equal to the cross-sectional
area of the other models. The model has two additional modifications.

Firstly the elasticity should be specified for all three layers of the embedded
model. For the outer layer the elastic modulus is specified according to section 5.2,
and following the assumptions of Zamir et al. [2003] the elastic modulus of the
inner layer is similar to the outer layer and the elasticity of the intermediate layer
(the cardiac jelly) is one decade less. Additionally the outer layer has thickness
specified as in section 5.2 while the thickness of the inner layer is half of that
according to the reports of section 7.1.
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Figure 8.4: The oscillations of flow and pressure of the embedded Liebau’s ring
with N = 60 sections and a pinching function as described in section 5.2 with
compression ratio, c = 10% (solid curve). The eccentricity in the simulations is
set to e = 0.3. The results are compared to a simulation of the cylindric tube also
with compression ratio, c = 10% (dashed curve). On the left the oscillations of
the volume flow, which have clearly less amplitude than for the cylindric model,
mean flow is computed to −0.16 cm3/s compared to −1.04 cm3/s for the cylindric
model. On the right the oscillations of the pressure, which have also less amplitude
than the cylindric model, mean pressure stays at 1.00 · 105 Pa. Notice that the
embedded model have more oscillations than the cylindric model though they
appear more damped.

Secondly the concentric pinching mechanism specified by equation 5.3 and
5.4 in section 5.2 is used to compress the outer layer of the embedded model.
The computations will however not tolerate a compression ratio of 25 %, so the
compression ratio is instead set to 10 %. This is possibly due of the strain pro-
duced in the intermediate layer, with a higher elastic module for this layer a higher
compression ratio should be possible for the simulations, though this is not tested.
Figure 8.4 shows the oscillations of a simulation with the embedded Liebau’s ring.

As the figure demonstrates the time-functions of flow and pressure in the em-
bedded tube have much less amplitude but more oscillations per period. The mean
flow, −0.16 cm3/s, is lower than for the cylindric tube, −1.04 cm3/s, and mean
pressure holds steady near the equilibrium pressure, P0 = 1.00 ·105 Pa. It appears
as if the intermediate elastic layer (the cardiac jelly) acts as a form of cushion
such that the contraction of the outside layer by use of the pumping function is
not transmitted in full to the inside layer, that is the absolute value of the contrac-
tion of the outside layer is reduced for the inside layer, yet the relative contraction
given by the compression ratio remains almost the same, for the simulation shown
in figure 8.4 the inside compression ratio is 9.8 %. This will dampen the oscilla-
tions of flow and pressure and reduce the effect of the pumping function.
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Figure 8.5: The mean flow of the embedded Liebau’s ring as a function of fre-
quency on the left and as a function of eccentricity of the lumen of the tube on
the right (both solid curves). The frequency scan on the left is compared to the
cylindric tube (compression ratio 25 %, dash-dotted curve) and an elliptic tube
with concentric contraction (eccentricity 0.1 and compression ratio 25 %, dashed
curve). The eccentricity of the embedded tube is 0.3 and the compression ratio
10 %. The mean flow is less outspoken but the frequency spectrum resembles the
two other curves, which is clear to see if the function is multiplied with 5 (dotted
curve). The function of eccentricity on the right demonstrates a peak in the mean
flow around e = 0.4.

The function of the intermediate layer is according Barry [1948] to transmit
contraction of the outside layer to the inside lumen, and it is clear that the elasticity
of the layer will have the consequence that some of that contraction is lost as
deformation of the layer. Thus the energy cost will be increased with the inclusion
of this layer compared to a simple one-layer tube, for the simulations in figure 8.4
the energy ratio is Eemb/Econ = 1.02, between an embedded tube and a simple
cylindric tube both with compression ratio, c = 10 %. Some of the energy usage
goes to compression of the intermediate layer, which will store it as potential
energy. This energy will be released again once the tube relaxes and thus it is
possible that the intermediate layer will help the contracted tube to spring back to
its original configuration. This could potentially be an important function of the
cardiac jelly in the embryonic heart, as suggested by Männer et al. [2009].

Figure 8.5 demonstrate how the mean flow in the embedded Liebau’s ring
compares to frequency and eccentricity of the elliptic lumen. The function of
frequency is compared to two other simulations both with compression ratio 25
%m where the compression ratio of the embedded simulation is only 10 % due to
numeric reasons. It is clear that the mean flow is less as would be expected, but it
can be seen that the frequency spectra of the simulations are comparable.
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For the dependence on the eccentricity of the ellipse it is clear that there is an
optimal eccentricity for the elliptic lumen, e = 0.4, for which the mean flow in the
embedded tube is about one fifth of the corresponding mean flow in the cylindric
tube (see figure 8.4). This was not similarly detected for the mean flow in the
elliptic tube in figure 8.3, which can probably be explained through the existence
of the intermediate layer for the embedded tube. It makes sense that there is
an optimal distribution of this layer such that it best transmits contractions to the
inner layer. Similarly it can be seen on the figure that when the eccentricity goes to
zero the flow will also increase, when the embedded tube more and more resemble
a normal concentric tube. In fact the eccentricity chosen for the simulations in
figure 8.4 and the frequency plot, e = 0.3, appear to be the worst possible choice.

8.3 Conclusion to the simulation results

It is a disappointing fact that the simulations of the embryonic heart did not suc-
ceed, but the simulation results of the case of Liebau’s ring with elliptic or em-
bedded cross-section prove that the lack of simulation results for the embryonic
chick heart is not caused by an error in the model; the model itself is functional.
Thus the problem must lie in the setup of the embryonic simulations.

In that respect it should be noted that the differences between the simulation
of the embedded Liebau’s ring and the embryonic heart simulations primarily
consist in the tracing of the radial dimensions of the embryonic heart through the
staircase functions in figure 7.7 and the implementation of the pumping function
that stretches over nearly all sections of the embryonic heart models compared
to only a few sections in the Liebau simulations. Specifically it is seen in the
simulation of the embedded Liebau’s ring that compression ratios too large did
not converge in the simulations, thus c = 10 % was chosen in section 8.2.2.
Other differences could be the boundary conditions and the material parameters,
of which especially the elastic modulus of the cardiac jelly should be considered.

On the other hand the simulations of the elliptic and embedded Liebau’s ring
are very successful. The simulations are made with setup according to section 5.2
with some modifications of pumping functions and assumptions about the elliptic
cross-section. For a simulation of the elliptic Liebau’s ring with N = 60 sections,
eccentricity e = 0.3 and compression ratio c = 0.25 it took 67 seconds of CPU
time to compute 10 periods of the model, of those were 57 used by the ‘ode45’
solver in MatLab that spent 43 seconds to iterate the derivatives of an, bn and pn
and 13 seconds to the solver algorithm itself and the remains to other functions. It
took less than 2 seconds to compute the values of Pn andQn and almost 5 seconds
to save the data. The simulation programs can be found in appendix C.
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As it was concluded in section 5.7 the pumping mechanism is very important
for the behavior of flow and pressure in the system, that same conclusion can be
repeated here. The eccentric pumping mechanism described with 8.2 and 8.3 ap-
pears to be superior compared to the concentric contraction employed in chapter
5. The pumping function is more energy costly but compared to the mean flow
it produces, it is much more energy effective. Furthermore the energy efficiency
increases with higher values of the elliptic eccentricity, which is probably an ar-
tifact of the idealized pumping mechanism that loose physical realism with high
numbers of the eccentricity.

The elliptic cross-section is in itself not better suited for Liebau flow compared
to circular tubes, in fact an elliptic tube with concentric contraction produces about
the same mean flow as a circular tube, yet the mean flow will go towards zero when
the eccentricity of the ellipse is increased as demonstrated by figure 8.3. For the
embedded Liebau’s ring it is however clear that there is a optimal eccentricity of
the elliptic lumen such that mean flow is at its highest. The optimal eccentricity
lies around e = 0.4 for the simulations in figure 8.5.

Thus it appears that a suggestive answer to the second of the three questions in
chapter 1 is emerging. It appears that it is not the elliptic tube that will give better
conditions for the Liebau effect but instead the eccentric contraction of the tube.





Chapter 9

Discussion and Final Remarks

The basis for the modeling in this thesis was that the ‘simple’ tubular nature of
the embryonic heart made a probable case for the type of modular modeling of the
flow through an elastic tube.

The purpose of the modeling is an investigation of the pulsating flow and pres-
sure of the embryonic heart specifically with regards to the conditions of an ellip-
tical inner lumen of the layered tube and the possibility of Liebau driven flow as
opposed to peristaltic driven flow. Though of course for the modeling to answer
those questions it is necessary to prove that the models adequately portray the
effects of the tubular heart.

In this chapter the modeling and investigation of the embryonic heart is dis-
cussed and suggestive answers to the questions posed in chapter 1 is given. First
the modeling and the assumptions made in the interpretation of the model case are
discussed, then the simulations themselves and finally the questions of the elliptic
tube and the proposed pumping principles.

9.1 The models

Of the three questions presented in chapter 1 the first is probably the most inter-
esting from a mathematicians perspective: Will the complicated flow and pressure
conditions exhibited by the embryonic heart be adequately modeled by the energy
bond models constructed in this thesis?

The simulations with the models are discussed below but in addition a discus-
sion of the mathematical interpretation of the characteristics of the tubular heart is
found here. It is important that the limitations and assumptions the model pose on
the complicated nature of the embryonic heart does not conflict with its real life
behavior.

201
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The mathematical interpretation should always simplify the modeled case, but
it should not be made too simple, and on the other hand it should only be made so
complex as to include the behavior investigated by the model. The mathematical
interpretation of the embryonic heart needs to be adequate to see the difference
that a layered elliptic cross-section does to the flow and pressure incited by peri-
staltic of Liebau effects, and it needs to suggest the additions and exclusions of
theoretical effects in relation to the modeling procedure; for instance tube curva-
ture is included while non-Newtonian liquid behavior is excluded.

9.1.1 Assumptions in the models

The mathematical interpretation leads to a one-dimensional model of pulsatile
flow and pressure in an elastic tube, thus equating blood flow in the tubular heart
with water in a rubber tube. The tube is described with a one-dimensional elastic-
ity (two-dimensional in the elliptic case) and an ad hoc shear elastic effect, while
the pulsating flow is characterized by a Womersley modified inertia, a Poiseuille
resistance and a resistance due to curvature.

It could be considered if one-dimensionality is a too harsh limitation on the
flow properties in the embryonic heart, so that the constructed model is not able to
model blood flow satisfactorily compared to continuous fluid dynamic equations.
It is known that curvature will shift the peak in the velocity profile towards the
outer curvature, and other effects of the beating heart will make the velocity field
non-trivial as well. Thus the assumption of a functional velocity profile may be
too simple to describe the true motion of blood in the heart, even with Womersley
theory. Yet the experimental measurements of flow and pressure in the heart are
all one-dimensional, nowhere in the in the experimental data is there support for
a model of higher dimensionality.

In the same way the elastic compliance of the tube wall is modeled with a
singular Young’s modulus assuming that the heart walls are isotropic pure elastic
materials. While isotropy may hold true for embryos at the younger HH-stages,
pure elasticity does not. Taber et al. [1992] postulate a pseudoelastic relation
applicable for all layers of the embryonic heart, which has become the accepted
description, and according to Miller et al. [1997b] the mechanic behavior of the
heart walls is even viscoelastic. It is not known in which way the inclusion of such
a pseudoelastic relation would change the model results.

The shear elastic effects of the walls are ad hoc additions to the model that
are included as a representation of the physical effects in the walls, while the
true effects are more complicated and require the possibility that the length of
a section is variable, and in the elliptic models shear elasticity is probably even
more complicated. Additionally a leak of energy is included to model friction
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in the walls, thus the shear elasticity is not modeled as a pure elastic effect. In
section 5.6.2 it is demonstrated how the exclusion of the shear effects will alter the
model and simulations considerably; the removal of the friction will un-dampen
the flow, while removal of the shear elasticity altogether will change the effects of
the pressure waves in addition.

In the embedded tube model the inclusion of the elastic effects of the cardiac
jelly is again modeled as a pure elastic effect, and that is probably much too sim-
ple. Firstly the elastic response will be given by a complicated interplay between
bulk and shear modulus given by the geometry of the tube and the elastic tensor
of the jelly. Secondly the stress-strain relationship is given by the pseudoelastic
equation by Taber et al. [1992]. Thirdly the elasticity is probably followed with
frictional effects just as for the shear elasticity, a fitting addition to the model
would be to introduce a resistance alongside the capacitance of the cardiac jelly.

Additionally it was seen in section 8.2.2 that the compliance of the cardiac
jelly dampen the contractions of the tube, such that the maximum contraction of
the outer layer is reduced for the contraction of the inner layer. This reflects an
entirely physical behavior as some of the energy from the contractions is stored as
potential energy in the cardiac jelly (and some of the energy may be lost to friction
as explained above). The potential energy of the cardiac jelly will subsequently
be released when the heart relaxes, thus the cardiac jelly will help the contracted
heart return to its uncontracted state (actually this is a function of the elasticity of
all the layers in the tubular heart).

The inertial effects of the flow is modified with Womersley theory to include
the velocity profile of pulsatile flow according to the assumption of a periodic
pressure gradient in the Navier-Stokes equations. The effect of Womersley the-
ory is investigated in section 5.6.1, and mostly consists of a shift of the frequency
spectrum. However, the velocity profile may be further changed by the composi-
tion of the blood.

Blood is a two component liquid consisting blood plasma and blood cells.
Blood cells can be modeled as ellipsoid deformable bodies in the liquid, and it
has been proven that under a Poiseuille parabolic flow profile they will migrate
towards the center of the tube and in doing that they will flatten the parabolic
flow profile [Meier, 1987]. This affects the apparent inertia of the blood and in
some models this is approximated with a velocity dependent viscosity coefficient,
though it is not known how it affects flow with a Womersley profile.

The Womersley theory states that a standard Poiseuille resistance to the flow is
used in addition to the inertial effects. It is surprising then that so many objections
to the Poiseuille equation is regularly given by researchers in the field (see the list
in section 3.4).
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The Poiseuille resistance is a function of the viscosity, which is included as a
constant in the modeling even though the high shear effect described in section 3.1
should be considered in respect to the diameter of the embryonic heart. Hu et al.
[1991] reports a viscosity of 3.8·10−3 Pa·s for embryonic blood though it is not
mentioned if this is in consideration of the high shear effect. This effect, which is
also known as the Fahraeus-Lindqvist effect, can alter the viscosity with a factor
1.5 to 2 depending on blood hematocrit number [Meier, 1987]. The effect is a
function of the shear rates in the liquid, which are proportional to the slope of the
velocity profile and under the given circumstances could probably be transformed
to a function of the frequency of pulsations, and thus this effect could be added to
the model as an viscosity correction factor, just as the Womersley theory gives the
inertia correction factor, ψ.

The resistance to flow due to the curvature of the tube is made from engineer-
ing principles of the class of effects known as minor losses. The inclusion of the
theory follows the procedure given by Crane Co. [1982] and Keller [1978], yet it
is surprising how much effect the curvature has on the flow in the investigation
in section 5.6.3. It may be that curvature has a very strong effect on the Liebau
effect, which relies on a mismatch of pulsations to produce a mean flow, thus pul-
sating momentum is important in both cases, yet this does not fit with the picture
that curvature is so often ignored in other models of the Liebau effect.

In addition the elliptic models and certainly the embryonic heart open up for
sources of minor losses. For the embryonic heart the branching of arteries is
important. For the elliptic model the twisting of the elliptic cross-section along
the length of the tube will be a source for minor losses, while with regards to
the curvature it makes a difference how the tube curves in relation to the elliptic
cross-section. These effects are not included in the model as they are believed to
be of minor influence to the character of the flow in the embryonic heart.

Finally the pumping mechanism is crudely made, both in the models of the
embryonic heart and in the models of Liebau’s ring. For the model of Liebau’s
ring equations are included in the simulation routine to overwrite the differential
equations of the dynamic radius in the affected sections of the model. This is
done to make an exact replication of the pumping mechanism applied by Ottesen
[2003], and yet it is clear from the comparison in section 5.5 that the division into
sections of the model partly ruins this emulation of sinusoidal functions used by
Ottesen.

For the embryonic heart the pumping mechanism is made as concentric con-
tractions of the outer layer of the embedded model used in the simulations. This
is done though the derivative of the contraction functions specified in section 7.4,
which is simply added to the rate of change of the major axis specified by equa-
tion 6.124. The concentric contractions are an approximation, it is specified by
Männer et al. [2009] that the outer layer does exhibit concentric contraction, and
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furthermore it is specified by Damon et al. [2009] that the contraction is not sym-
metric around the middle axis of the tube, instead the tube at the outer curvature
of the looping heart contracts more than at the inner curvature. These asymmetric
contraction effects are ignored for simplicity reasons.

9.1.2 The simulation routine

It is proven by the simulation of Liebau’s ring that the computation time of the
simulations is essentially short. Considering the feat done by the ‘ode45’ solver in
MatLab v. 7.5 (copyright The MathWorks Inc.) it is remarkably fast; the Runge-
Kutta iteration of more than hundred differential equations is impressive work.

This is however only when conditions for the ‘ode45’ solver are favorable. In
the event that the setup of the model state conditions that are too complicated for
the solver, for instance if it needs to check for divergence of equations, the solver
is suddenly transformed to a very slow process as it constantly seeks to take lesser
time steps and recheck its process. In that instance a routine that under favorable
conditions would be done in an hour suddenly takes days to complete.

This problem has especially dampened the procedures with the elliptic model
using the χ factor that includes shear effects of the tube wall, defined in equation
6.96, and the simulations of the embryonic heart. As a result simulation data from
these routines are not achieved.

During preliminary tests of the models different pumping mechanisms were
employed, for instance periodic increase in outside pressure, as well as the pump-
ing mechanisms presented in chapter 5. It is clear that different pumping mecha-
nisms work differently in the simulations, some are easy for the simulation routine
to work with while others require much more computation time.

9.1.3 The energy bond technique

The methods employed in the modeling in this thesis proves the strengths of the
energy bond technique. For many the formalism used in the technique may be
unfamiliar and appear unnecessary complicated, yet the rules of the energy bond
technique are given by simple linear relations that are easily comprehensible and
through the connections of the energy bonds create possibilities for very compli-
cated models. Furthermore the energy bond graphs gives a method to visualize the
equations of the model, and with some practice they can be interpreted directly in
place of equations.

Yet the greatest strength of the energy bond technique is the modular construc-
tion of models, which is something almost unique for the technique. It makes it
possible to concentrate on singular effects of the pulsatile flow in elastic tubes one
at the time during modeling, as long as it is remembered to follow the rules of the
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energy bond technique, which specify how elements are connected such that phys-
ical consistency in conserved. Therefore the modeling process in chapter 4 and 6
is designed as a stepwise procedure starting with a simple principal structure of
the model, which is continuously expanded with more effects and in section 9.1.1
above even more expansions are suggested.

The same modular construction plays a part when the model is tested in sec-
tion 5.6. Each of the elements in the model can be picked out and examined to
investigate what effect exactly this addition to the model has on the observed flow
and pressure. In this way the simulations of the model becomes and active step in
the model construction process, by testing model additions it is easily seen if they
are made correctly and correctly included in the model. If not, they can be easily
reformulated, reconnected or removed from the model.

The simulation step in the construction of the model can be a necessity as the
modular construction of models in the energy bond technique is also one of the
major weaknesses in the technique. Other modeling techniques are typically re-
lated to a set of assumptions for the specific model, which for instance would give
a set of differential equations that are solved to construct the model. Compared to
this the energy bonds are abstract and potentially out of touch with the underlying
assumptions in the model.

For instance the energy bond model in this case makes an implicit assumption
of the discretization of the fluid dynamical equations. The equations are discrete
in space through the division into sections of the tube, where flow and pressure in
the middle of a section and flow is measured between two neighboring sections.
Furthermore the equations are discrete in relation to the modular construction of
the model, such that one element models inertia and another resistance and so on.
To make sure that the equations of the model are correlated to the fluid dynamical
equations it is investigated in section 4.5 how the model equations look in the con-
tinuous limit when the length of a section becomes infinitesimal. It is seen that the
model equations converge to the continuity equation and the Euler equation thus
proving that the model is a true discretization of the fluid dynamical equations.

9.2 Simulations of the embryonic heart

The simulations of the embryonic heart were expected to state a proof of concept
that the embryonic heart could in fact be modeled with the models in this thesis.
This proof has changed form to a suggestion; it may be possible to model the
embryonic heart with the models, but it is not possible to simulate the effects in
the heart. At least not at present.
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During the setup many assumptions were made pertaining to the dimensions
and function of the embryonic heart, in fact the function of distribution of the car-
diac jelly inside the heart tube visible in figure 7.7 is made from one single mea-
surement of cardiac jelly thickness, the rest is guesswork. Therefore the simula-
tions can never be anything more than a proof of principle; compared to measured
data of flow and pressure in the embryonic heart from table 8.1 the simulations
could indicate that the models capture the phenomena of the embryonic heart.

If the models should ever be used to model actual flow and pressure of the
embryonic heart, measurement data is required. The lack of measurement data
for the embryonic heart is problematic, despite impressing imaging techniques
is employed in the study of embryonic hearts simple physical measurements of
lengths and diameters are hard to find.

The setup of the embryonic heart simulations does not require many or con-
siderably complicated material parameters; primarily the viscosity and density of
blood and an elastic Young’s modulus for each layer of the tube, which should
all be possible to measure. In addition a set of dimensional measurements are
required and an estimation of pumping function and boundary conditions. The
setup in chapter 7 is reconstructed from various reports but it would increase the
simulation value if all parameters could be obtained from one source.

The modeling and setup of simulations of the embryonic heart is a work that
has never been attempted with this level of detail before, it is very disappointing
that the simulations were not able to complete the task.

9.2.1 Problems in simulation of the embryonic heart

The explanation for the lack of simulation results is simple; the program routine
in MatLab is simply not able to produce any results with the present configuration
of the models. The reason for the lack of results is more complicated and may
come from several sources.

It is proved in section 8.2.2 that the embedded model works perfectly under
the configuration of Liebau’s ring, so it is clear that the fault does not lie with the
model itself. The only other option is that the problem lies with the setup of the
embryonic heart simulations.

In principle four things are differently from the setup of the embryonic heart
to the setup of Liebau’s ring, following the simulation setup procedure in chapter
5 and 7 the four things are: the parameter estimation, the boundary conditions, the
tracing of the tube, and the pumping mechanism.

The parameter estimation is naturally different. The embryonic heart is much
smaller and the elastic modules much less than for the case of Liebau’s ring, while
density and viscosity is about the same. Specifically the elastic modulus of the
cardiac jelly deserves attention. In the setup of the embryonic heart the measured
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values for the elastic modulus from table 7.7 are used, which are from one half
to one fifth of the corresponding elastic modules of the myocardial layer. In the
setup of the embedded Liebau’s ring the assumption by Zamir et al. [2003] is used,
stating that the cardiac jelly should have an elastic modulus about one tenth of the
myocardial layer. Despite this, it is not believed that this could be the cause of the
problems.

The boundary conditions are different but should not be the cause for any
computation difficulties, in fact it is probably the simulations of Liebau’s ring that
have the most complicated boundary in the form of the cyclic boundary condition.
For the embryonic heart the boundary condition at the arterial end includes two
additional differential equations to the computation, but they are both very simple
and should hardly be the cause for any problems.

The difference in the tracing of the tubes in the embryonic heart and the Liebau
model is in the radial dimensions of the tube; the rubber tubes in Liebau’s ring has
uniform radius or axial lengths, while the tubular heart tapers towards the arterial
end of the tube and for higher HH-stages it even has several bulges. The axial
lengths of the embryonic heart tubes are demonstrated by the staircase functions
in figure 7.7. In principle a tube with changing cross-sectional dimensions should
not be a problem for the model, not even for the shear elasticity that is designed
for changing axial dimensions. However when the flow and pressure generated by
contraction in a wide part of the tube reaches tube sections that are substantially
thinner, numerical problems may cause the Runge-Kutta algorithm to take smaller
time steps. This could be one reason for the problems. Yet when a simulation
with an untapering tube defined with mean values of the dimensions in figure 7.7
is attempted, the problem persists, the same is the case for an uncurving tube.

Finally the pumping mechanism is fundamentally different between the two
model setups; for Liebau’s ring the pumping mechanism is a typical Liebau pump
that only affects a short length of the tube, while the embryonic heart has a pump-
ing mechanism that contracts a large part of the tube and potentially acts as a
peristaltic pump. In the simulation of the Liebau model the pumping mechanism
is implemented by letting the equations of the pump overwrite the differential
equations of the outer radius in the affected tube sections, it was seen that this
causes mismatch problems in those sections so for the embryonic heart the pump-
ing function is implemented differently. Instead of overwriting the equations for
the outer radius of the tube, the derivative of the pumping equation, defined in by
the functions in figure 7.7, is added to the differential equation of the outer radius
and iterated in the Runge-Kutta algorithm.

This should create a more smooth working pumping mechanism compared to
the simulations of Liebau’s ring, though perhaps the part of the pumping function
in figure 7.7 where the heart actively dilates following the contraction should have
been omitted from the function. The elasticity of the layered tube should be able
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to produce a relaxation to back to the initial position through passive release of
potential energy, an active dilation function may cause artificial effects where the
heart dilates more than it should.

Furthermore the contraction of the outer layer of the tube may cause situations
in the tube where the inner lumen comes close to occlusion, especially in the
sections where the cardiac jelly takes up more space of the cross-sectional area.
Total occlusion is not possible in the model, except though numerical error in the
Runge-Kutta algorithm. Thus when the length of the minor elliptical axis comes
closer to zero the computational routine will reduce time steps and activate its
built-in algorithm to check for convergence of the solutions.

A combination of the tapering embedded tube and the application of the pump-
ing mechanism may be the cause of the problems for the ‘ode45’ solver in MatLab.
The effects will cause the program to reduce the time steps to very small numbers
while convergence is checked by special routines in the solver. In the end this will
create immense amounts of data that MatLab handles by creating swap disks on
the computer, storing and loading data from those is extremely time consuming.

It was assumed a priori in chapter 1 that the model could produce peristaltic
flow without problems, yet in the analysis of the problems of the simulations
it seems that this is exactly what causes the problems: A peristaltic contraction
function that nearly closes the lumen, traveling on a tapering tube.

9.3 Simulations of Liebau’s ring

Contrary to the simulations of the embryonic heart the simulations of Liebau’s
ring work without problems. A computation of Liebau’s ring withN = 60 section
and 100 periods takes about 30 minutes when loaded up to the server used for the
computations in this thesis. This proves that the models themselves are functional
and with the right setup MatLab has no problems with running the simulations.

In section 5.5 it was attempted to validate the simulations of the cylindric
Liebau’s ring in relation to reported data by Ottesen [2003] and Snitker et al.
[2000], this comparison was only partly successful. It was made clear that the
simulation results compared fairly to the reported data by Ottesen, at least for
small values of the compression ratio, but none of the simulations were able to
reproduce the experimental results by Snitker et al. [2000]. Interestingly when
Liebau’s ring was setup with the elliptic model the eccentric pumping mechanism
given by equation 8.2 and 8.3 easily reproduced the experimental data for an el-
liptic tube with eccentricity 0.1 (almost circular).

The difference is the pumping mechanism; none of the pumping functions
employed in the simulations in chapter 5 could produce flow to match the ex-
perimental results, apparently the eccentric deformation used in chapter 8 can.



210 Mathematical Modeling of Flow Characteristics in the Embryonic Heart

This illustrates the overall conclusion that the pumping mechanism is absolutely
important for the observed Liebau effect.

Many things have influence on the mean flow induced by the Liebau effect,
among those are: the differences in impedance in relation to the position of the
pumping site as seen on figure 5.6, the frequency of the compression as explained
in section 5.3 and visible in figure 5.5, but far the most influential factor is the
pumping mechanism. For instance while one pumping function produce flow
in a clockwise direction another pump may produce flow in a counter-clockwise
direction, which is visible in figure 8.2.

No way of determining the efficiency of a given pumping mechanism has been
found, but it will certainly be interesting to investigate what the defining factors
in the pumping mechanism could be. The volume of displaced liquid was used
as a method of comparison in section 5.5 but it was made clear that this was not
a defining number for the efficiency of the pump. Similarly the energy cost of
a compression was used in chapter 8, this is also not defining for the pumping
function as number was used to compare energy efficiency for different pumping
functions.

The simulations of Liebau’s ring were used to validate the model: in chapter
5 through a comparison with reported data from other experiments and through
an investigation of the different elements in the model, in chapter 8 it was used to
validate the elliptic models in the light that the embryonic simulations have failed.
From those three validation attempts it is clear that the model works and produces
results that are comparable to physical experiments, though only in the case that
the pumping mechanisms are comparable.

The investigation of model elements in chapter 5 produced a clear result that
especially the impedance in the model has a major influence in the observed mean
flow. As such the removal of impedance in the tube walls in section 5.6.2 produced
a clear non-damped flow, and the removal of impedance from the curvature of
the tube in section 5.6.3 produced extreme mean flows compared to the normal
simulations. It is perhaps a little surprising that curvature should have so much
influence on the mean flow.

On the other hand the investigation of the Womersley number in section 5.6.1
and the removal of shear elasticity in section 5.6.2 proved how elasticity in the
tube and inertial effects are responsible for the frequency spectrum of the Liebau
effect. Section 5.3 explains how the resonance frequencies are decided by the
Moens- Korteweg equation. The investigation of the Womersley number and the
shear elasticity proves that the Womersley number has its rightful place in the
Moens-Korteweg equation, and furthermore that the representation of wall elas-
ticity by Young’s modulus in the equation is in fact a simplification of the compli-
cated effects in the tube.
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Finally the investigations of the total number of sections in the model, N ,
revealed that there are some differences in the simulation results. This was es-
pecially seen in the calculation of the mean flow, which differed a great deal.
The explanation is given by the pumping mechanism used in the simulations, be-
cause of the different number of sections the pumping mechanism also had to be
implemented differently. Furthermore from preliminary investigations of model
stability it is found that the results are stable when N is high enough so that the
length of one section is comparable to the diameter of the tube.

The results from the simulations of Liebau’s ring proved that comparability
of the simulations is only possible when pumping mechanisms are comparable,
and that the pumping mechanism by far is the most important factor for the ob-
served Liebau effect. In turn the simulations validate the model both in respect to
different effects in the tube and in relation to results by other authors.

9.4 Elliptic vs. circular cross-section

The second of the three questions posed in chapter 1 is answered by use of the
simulations of the elliptic Liebau’s ring: In relation to the possible pumping mech-
anisms of the embryonic heart are elliptic contractions of the heart tube optimal
compared to concentric contractions?

According to Männer et al. [2010] it has already been suggested by results
from other researchers that peristaltic pumping has favorable conditions with an
elliptic cross-section of the tube, which has previously been used as an argument
for the peristaltic pumping of the embryonic heart. Though a similar investigation
has not been done for the Liebau effect.

Thus to answer this question a comparison between the Liebau generated flow
in elliptic and circular tubes is needed, as well as a comparison between the Liebau
generated flow induced by concentric and eccentric pumping mechanism. Such a
comparison is made with the simulations of Liebau’s ring.

Starting with the question if tubes with elliptic cross-section give better condi-
tions for the Liebau effect compared to circular cross-section. The Liebau effect
is defined by the pumping mechanism employed, for a cylindric tube with con-
centric deformation the mean flow was −1.78 cm3/s, while for a elliptic tube with
concentric deformation the flow was −1.59 cm3/s. Furthermore the mean flow
in the elliptic tube decreases with the increase of eccentricity of the ellipse as
demonstrated by figure 8.3. Thus in the simple situation the elliptic cross-section
does not appear to be an advantage for the Liebau effect.

When considering a layered tube with an inner elliptic lumen and outer circu-
lar mantle comparable to the cross-section of the embryonic heart, it is seen that
the mean flow is generally lower than what can be produced in a cylindric tube
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with cross-section comparable to the lumen of the layered tube and with concen-
tric contraction. However the mean flow produced in the layered tube depends
on the eccentricity of the elliptic inner lumen, an as figure 8.5 demonstrates an
eccentricity around 0.4 is optimal for the flow. Thus for the embryonic heart it
seems there is an advantage for the Liebau effect if the elliptic lumen of the heart
has a specific eccentricity.

The second question if eccentric contraction is optimal compared to concen-
tric contraction. Figure 8.2 shows a comparison between simulations for an el-
liptic tube with concentric contraction and a similar elliptic tube with eccentric
deformation. It is seen that the eccentric contraction is far superior to the con-
centric for all simulated frequencies. Furthermore figure 8.3 shows a comparison
between the concentric and eccentric contraction for different configuration of the
eccentricity of the elliptic cross-section of the tube. It is seen that even for eccen-
tricities going towards the circular limit the eccentric contraction is superior. For
high eccentricities an artificial effect of the eccentric deformation makes the re-
sults unreliable. Thus the eccentric deformation gives a clear advantage compared
to concentric contraction in this case.

As stated before the Liebau effect is highly dependent on the pumping func-
tion and as such another eccentric contraction of the tube may be less effective
compared to the one demonstrated in this thesis. For instance an obvious choice
of deformation could be that only one elliptical axis is contracted while the other
is kept constant. Thus a conclusive answer can not be given to this question.

9.5 Peristaltic pumping vs. the Liebau effect

The third of the three questions posed in chapter 1 is difficult to answer consid-
ering that the simulations of the embryonic heart models did not succeed: Given
the morphology and cross-sectional shape of the tubular heart will a peristaltic or
Liebau pumping principle be desirable for the propagation of blood?

It has been suggested by Liebau [1955] and several others that the Liebau
effect is the mechanism responsible for the flow of blood in the embryonic heart
instead of peristaltic pumping, or that the effect could contribute to the flow. In
fact researchers have discovered embryonic hearts in fish that apparently work
solely from a Liebau principle [Männer et al., 2010].

The two hypotheses of the pumping mechanism in the heart have different
observations speaking for and against them. For the peristaltic pumping the prob-
lems are typically that the flow produced by peristaltic waves is continuous, not
pulsatile, and that the flow in the embryonic heart supersedes the speed and fre-
quency of the peristaltic contraction waves. For the Liebau effect the problems
are typically that the Liebau effect is caused by periodic contractions at a single
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point and that the flow generated is dependent on a multitude of things, among
those the frequency, which makes the mechanism seem unstable.

The research community is divided on this question, different researchers fa-
vor different hypotheses as this question is still undecided. Instead of discussing
which of these is the correct pumping mechanism for the embryonic heart it is
perhaps more relevant to discus if they mutually exclude each other, is it possible
that both effects are present in the embryonic heart?

The Liebau effect is not a pumping mechanism, it is an effect of the pulsating
pressure waves in the tube. Pressure waves will be present in the tubular heart
even if they are deliberately induced or not, thus even for a peristaltic compression
there may be basis for a Liebau effect. The deciding factor in the Liebau effect
is not the induced pumping but the reflection of the waves by the changes of tube
impedance, to produce a clear Liebau effect there has to be a clear change in
impedance, such as change in elasticity, thickness or cross-sectional area of the
tube or such as a branching of the tube. In the embryonic heart the tube branches
in both the venous and the arterial end.

Furthermore for the effectiveness of the Liebau effect the pressure waves should
be able to propagate even if the lumen is occluded by contraction of the tube, as
such the cardiac jelly may have an additional function in the embryonic heart, as
a medium for the propagation of pressure waves.

In relation to the simulations of the embryonic heart it was the idea to setup
simulations with a variance of frequency, contraction rates and possibly the ec-
centricity of the inner lumen, just as for the simulations of Liebau’s ring, such
that the pumping mechanism could be investigated in more detail. Especially the
variance in frequency is interesting for the Liebau effect, as it is potentially one of
the defining characteristics of the Liebau effect in the heart tube that it will portray
a frequency spectrum just as in figure 5.5 for Liebau’s ring, whereas a peristaltic
pumping effect is linear with the frequency.

In this way it could potentially be proved that the Liebau effect is present in
the embryonic heart, though probably not that the effect governs the flow of the
heart. On the other hand, if the simulations of the embryonic heart had worked, the
whole point in discussing whether it is governed by Liebau or peristaltic pumping
becomes pointless. In that instance there was proof that the pumping mechanism
of the heart could be modeled and simulated, so who cares if it is peristaltic of
Liebau driven.
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9.6 Conclusion

In this thesis the energy bond technique is applied in the construction of models
of the liquid flow in elastic tubes. The purpose is to answer three questions posed
about the tubular embryonic chick heart.

The first of the three questions pertains to the modeling of the embryonic heart:
Will the complicated flow and pressure conditions exhibited by the embryonic
heart be adequately modeled by the energy bond models constructed in this thesis?

The aim is to construct a model that compares the tubular heart to a compli-
cated rubber tube, in the respect that the effects of the elasticity of the tube and the
pulsatile flow of the liquid can be equated to the complicated pulsatile flow and
pressure phenomena of the embryonic heart.

The model is constructed in several steps in a discretization of the fluid me-
chanical equations using the energy bond technique to continuously expand pre-
vious models with additional effects. The final model depicts the embryonic heart
as a multilayered elastic tube with an elliptic inner lumen embedded in a an outer
mantle with circular cross-section. The model includes complicated elastic ef-
fects of all the layers, a Womersley modified inertia, a Poiseuille resistance and a
resistance due to curvature of the tube.

It is the conclusion that this model includes all the major effects of the tubular
embryonic heart apart from the boundary conditions of the model and contrac-
tion of the beating heart. The model gives a set of differential equations for the
axial dimensions of the tube and the momentum of the flow, corresponding to a
discretization of the equation of continuity and the Euler equation of fluid motion.

Through the use of experimental reports of the chick embryonic heart the
model was setup with parameters corresponding to the stage 10, 12, 14 and 16
of the developmental stages by Hamburger and Hamilton [1951]. The setup in-
cludes the dimensions of the tubular heart, physical parameter values, boundaries
of the embryonic heart modeled through a Windkessel principle, and a contrac-
tion function of the beating heart. Model simulations are programmed in MatLab
v. 7.5 (copyright The MathWorks Inc.) and use MatLab’s inherent Runge-Kutta
solver to find solutions to the differential equations.

A model of this size and detail for the early stages of the embryonic heart
has not been attempted before. Unfortunately the simulations of the model are
inconclusive, and as such the first question is only answered from a modeling per-
spective.

The second question pertains to the elliptic cross-sectional lumen of the tubu-
lar embryonic heart: In relation to the possible pumping mechanisms of the em-
bryonic heart are elliptic contractions of the heart tube optimal compared to con-
centric contractions?
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With the constructed model the aim is to investigate the difference between
flow in tubes with circular and elliptic cross-sections as well as flow induced by
concentric and eccentric contractions of the tubes. This should be investigated for
the possible pumping mechanisms of the embryonic heart; peristaltic pumping and
the Liebau effect, though as reports have already been published suggesting that
elliptic tubes may be optimal for peristaltic pumping, focus is put on the Liebau
effect.

By use of a constructed case of two elastic tubes with different elastic modulus
joined together end-to-end to form a ring and filled with water the Liebau effect
is investigated for different configurations of pumping mechanisms and cross-
sectional shape.

It is concluded from the simulations of this case that a tube with elliptic cross-
section gives worse conditions for the Liebau effect than a tube with circular cross-
section, and the calculated mean flow of the Liebau effect decreases as eccentric-
ity of the ellipse increases. On the other hand when elastic tubes corresponding
to the multilayered model of the embryonic heart are setup in this configuration
the simulations demonstrate a peak in the mean flow for an elliptic lumen with
eccentricity 0.4. This suggests that for the layered tubular heart the elliptic lumen
may provide advantageous conditions for the Liebau effect.

Through comparison of concentric and eccentric pumping functions for a sys-
tem with elliptic tubes it is clear that eccentric contractions produce a mean flow
of far higher magnitude. This result persists even for tubes approaching a circular
cross-section. In general it is evident that the contraction function is very influ-
ential on the observed Liebau effect, in some respects even more influential than
pumping frequency and position of the pump. This suggests that eccentric con-
tractions may be optimal for the Liebau effect in the embryonic heart.

The third question pertains to the pumping principle of the tubular embryonic
heart: Given the morphology and cross-sectional shape of the tubular heart will a
peristaltic or Liebau pumping principle be desirable for the propagation of blood?

With the constructed model and the setup according to the embryonic heart
it is the aim to investigate the possible mechanics in the propagation of blood.
This would be done through simulations with varying frequency of the heart’s
pumping mechanism as the effect of peristaltic pumping is linear with frequency
while the Liebau effect is clearly non-linear and demonstrate resonance effects,
thus through investigation of the frequency spectrum it could be decided, which
pumping mechanism is dominant in the models.

As the simulations of the embryonic heart are unsuccessful this approach is
not viable and this question is given only minor attention. It is suggested that the
two pumping principles are in fact not mutually exclusive and thus both poten-
tially could contribute to the propulsion of blood. Nothing in the theory suggests



216 Mathematical Modeling of Flow Characteristics in the Embryonic Heart

that the pumping effects exclude each other, and potentially a function of the lay-
ers in the embryonic heart could be to allow for both effects.

The results of this thesis contribute an understanding of the multilayered tubu-
lar nature of the embryonic heart that has not been reported earlier. The results
indicate that the elliptic lumen and the elliptic contraction of the embryonic heart
could potentially optimize conditions for a Liebau pumping phenomena, while
at the same time suggesting that peristaltic pumping and the Liebau effect can
co-exist as blood propagation mechanisms in the tubular heart.

The modeling and simulation of the tubular heart of various stages in the early
embryonic development has never been attempted before in the size and detail as
in this thesis, it is concluded that the model includes all major effects pertaining to
the flow and elasticity of the heart tube. As such the modeling has value in itself.
Unfortunately the simulations are inconclusive, which is something that has to be
remedied in the future.



Bibliography

P. W. Alford and L. A. Taber. Regional epicardial strain in the embryonic chick
heart during the early looping stages. Journal of Biomechanics, 36:1135–1141,
2003.

Aristotle. Historia Animalum by D’Arcy Wentworth Thompson. Translated by
J.A. Smith and W.D. Ross. Clarendon Press, Oxford, 1910.

K. Azer and C. S. Peskin. A One-dimensional Model of Blood Flow in Arteries
with Friction and Convection Based on the Womersley Velocity Profile. Car-

diovascular Engineering, 7:51–73, 2007.

R. W. Barnard, K. Pearce, and L. Schovanec. Inequalities for the Perimeter of
an Ellipse. Journal of Mathematical Analysis and Applications, 260:295–306,
2001.

A. Barry. The Functional Significance of the Cardiac Jelly in the Tubular Heart of
the Chick Embryo. The Anatomical Record, 102(3):289–298, 1948.

S. Berger, L. Talbot, and L. Yao. Flow in Curved Pipes. Annual Review of Fluid

Mechanics, 15:461–512, 1983.

M. Butlin. Structural and functional effects on large artery stiffness: an in-vivo

experimental investigation. The university of New South Wales, Sydney, 2007.

K. A. Campbell, N. Hu, E. B. Clark, and B. B. Keller. Analysis of Dynamic
Atrial Dimension and Function during Early Cardiac Development in the Chick
Embryo. Pediatric Research, 32(3):333–337, 1992.

A. Castenholz and T. Flórez-Cossio. Mikrokymographische Untersuchungen zur
Herz- und Kreislaufdynamik in der frühen Embryonalentwicklung des Hüh-
nchens. In: Altern und Entwicklung, Bd 4. Stuttgart, New York: Akad Wiss
Literat Mainz, pages 41–61, 1972.

P. V. Christiansen. Imfufa tekst 22: Semiotik og Systemegenskaber (1) - 1-port

lineært response og støj i fysikken. Imfufa, Roskilde University, 1979.

217



218 Mathematical Modeling of Flow Characteristics in the Embryonic Heart

P. V. Christiansen. Imfufa tekst 238: Semiotik og Systemegenskaber (2) - vektor-

bånd og tensorer. Imfufa, Roskilde University, 1993.

P. V. Christiansen. Imfufa tekst 419: Energy bond graphs - a semiotic formaliza-

tion of modern physics. Imfufa, Roskilde University, 2003.

Crane Co. Technical Paper No. 410M: Flow of Fluids - through valves, fittings,

and pipe (Metric edition - SI units). Crane Company, 300 Park Avenue, New
York, 1982.

B. J. Damon, M. C. Rémond, M. R. Bigelow, T. C. Trusk, W. Xie, R. Perucchio,
D. Sedmera, S. Denslow, and R. P. Thompson. Patterns of Muscular Strain in
the Embryonic Heart Wall. Developmental Dynamics, 238:1535–1546, 2009.

A. Davis, J. Izatt, and F. Rothenberg. Quantitative Measurement of Blood Flow
Dynamics in Embryonic Vasculature Using Spectral Doppler Velocimetry. The

Anatomical Record, 292(3):311–319, 2009.

R. P. Feynman, R. B. Leighton, and M. Sands. The Feynman Lectures on Physics -

The Difinitive Edition, volume II. Addison-Wesley Publishing Company, Read-
ing, Massachusetts, 1964. ISBN 0-8053-9047-2.

W. C. Gibson. Celebrating the "compleat observer": William Harvey’s 400th
birthday. Canadian Medical Association Journal, 119(7):793–801, 1978.

R. A. Granger. Fluid Mechanics. Dover Publications, New York, 1995.

J. Hale, D. McDonald, and J. Womersley. Velocity Profiles of Oscillating Arte-
rial Flow with some Calculations of Viscous Drag and the Reynolds Number.
Journal of Physiology, 128:629–640, 1955.

V. Hamburger and H. L. Hamilton. A Series of Normal Stages in the Development
of the Chick Embryo. Journal of Morphology, 88(1):49–92, 1951.

R. Hoeben. Experimental investigations into the role of impedence defined flow

during CPR, (MSc thesis). Eindhoven University of Technology, Department
of Biomedical Engineering, 2009.

N. Hu and E. B. Clark. Hemodynamics of the stage 12 to stage 29 chick embryo.
Circulation Research, 65:1665–1670, 1989.

N. Hu, D. M. Connuck, B. B. Keller, and E. B. Clark. Diastolic Filling Charater-
istics in the Stage 12 to 27 Chick Embryo Ventricle. Pediatric Research, 29(4):
334–337, 1991.



Bibliography 219

B. Keller, N. Hu, P. Serrino, and E. Clark. Ventricular pressure-area loop charac-
teristics in the stage 16 to 24 chick embryo. Circulation Research, 68:226–231,
1991.

B. B. Keller, N. Hu, and E. B. Clark. Correlation of ventricular area, perime-
ter, and conotruncal diameter with ventricular mass and function in the chick
embryo from stages 12 to 24. Circulation Research, 66:109–114, 1990.

G. R. Keller. Hydraulic System Analysis. Editors of Hydraulics & Pneumatics
Magazine, Cleveland, 1978.

J. K. Larsen, V. Andreasen, H. Larsen, M. S. Olufsen, and J. T. Ottesen. Cardio-

vascular modelling at IMFUFA from The Way Through Science and Philoso-

phy: Essays in Honour of Stig Andur Pedersen. College Publications, London,
2006. ISBN 1-904987-33-8.

K. S. Latacha, M. C. Rémond, A. Ramasubramanian, A. Y. Chen, E. L. Elson, and
L. A. Taber. Role of Actin Polymerization in Bending of the Early Heart Tube.
Developmental Dynamics, 233:1272–1286, 2005.

B. Lautrup. Physics of Continuous Matter - Exotic and Everyday Phenomena in

the Macroscopic World. Institute of Physics Publishing, 2005. ISBN 0-7503-
0752-8.

G. Liebau. Über ein ventilloses Pumpprinzip. Naturwissenschaften, 41(14):327,
January 1954.

G. Liebau. Herzpulsation und Blutbewegung. Zeitschrift für die gesamte experi-

mentelle Medizin, 125:482–498, 1955.

I.-E. Lin and L. A. Taber. Mechanical Effects of Looping in the Embryonic Chick
Heart. Journal of Biomechanics, 27(3):311–321, 1994.

A. Liu, R. Wang, K. L. Thornburg, and S. Rugonyi. Efficient postacquisition syn-
chronization of 4-D nongated cardiac images obtained from optical coherence
tomography: application to 4-D reconstruction of the chick embryonic heart.
Journal of Biomedical Optics, 14(4):044020, 2009.

C. G. Manopoulos, D. S. Mathioulakis, and S. G. Tsangaris. One-dimensional
model of valveless pumping in a closed loop and a numerical solution. Physics

of Fluids, 18(1):017106–16, 2006.

B. J. Martinsen. Reference Guide to the Stages of Chick Heart Embryology.
Developmental Dynamics, 233:1217–1237, 2005.



220 Mathematical Modeling of Flow Characteristics in the Embryonic Heart

D. A. McDonald. The Occurence of Turbulent Flow in the Rabbit Aorta. Journal

of Physiology, 118:340–347, 1952.

D. A. McDonald. The Relation of Pulsatile Pressure to Flow in Arteries. Journal

of Physiology, 127:533–552, 1955.

D. A. McDonald. Hemodynamics. Annual Review of Physiology, 30:525–556,
1968.

G. Meier. Viscous Flow in the Embryonic Heart Geometry. Embryologische

Hefte, 1:1–19, 1987.

C. Miller, M. Vanni, L. Taber, and B. Keller. Passive Stress-Strain Measurements
in the Stage-16 and Stage-18 Embryonic Chick Heart. Journal of Biomechani-

cal Engineering, 119:445–451, 1997a.

C. E. Miller, M. A. Vanni, and B. B. Keller. Characterization of Passive Embryonic
Myocardium by Quasi-Linear Viscoelastic Theory. Journal of Biomechanics,
30(9):985–988, 1997b.

J. Männer. Cardiac Looping in the Chick Embryo: A Morphological Review
With Special Reference to Terminological and Biomechanical Aspects of the
Looping Process. The Anatomical Record, 259:248–262, 2000.

J. Männer. On Rotation, Torsion, Lateralization and Hnededness of the Embryonic
Heart Loop: New Insights From a Simulation Model for the Heart Loop of
Chick Embryos. The Anatomical Record Part A, 278A:481–´492, 2004.

J. Männer. Ontogenetic development of the helical heart: concepts and facts.
European Journal of Cardio-thoracic Surgery, 295:S69–S74, 2006.

J. Männer. The Anatomy of Cardiac Looping: A Step Towards the Understanding
of the Morphogenesis of Several Forms of Congenital Cardiac Malformations.
Clinical Anatomy, 21, 2008.

J. Männer, L. Thrane, K. Norozi, and T. M. Yelbuz. High-Resolution In Vivo
Imaging of the Cross-Sectional Deformations of Contracting Embryonic Heart
Loops Using Optical Coherence Tomography. Developmental Dynamics, 237:
953–961, 2008.

J. Männer, L. Thrane, K. Norozi, and T. M. Yelbuz. In Vivo Imaging of the Cyclic
Changes in Cross-sectional Shape of the Ventricular Segment of Pulsating Em-
bryonic Chick Hearts at Stages 14 to 17: A Contribution to the Understanding
of the Ontogenesis of Cardiac Pumping Function. Developmental Dynamics,
238:3273–3284, 2009.



Bibliography 221

J. Männer, A. Wessel, and T. M. Yelbuz. How Does the Tubular Embryonic Heart
Work? Looking for the Physical Mechanism Generating Unidirectional Blood
Flow in the Valveless Embryonic Heart Tube. Developmental Dynamics, 239:
1035–1046, 2010.

W. W. Nichols and M. F. O’Rourke. McDonald’s Blood Flow in Arteries - Theo-

retical, experimental and clinical principles. Arnold, a member of the Hodder
Headline Group, London, 4th edition, 1998. ISBN 0-340-64614-4.

W. W. Nichols and M. F. O’Rourke. The life and times of Donald A. McDonald.
Artery Research, 2:1–8, 2008.

G. J. Noordergraaf, J. T. Ottesen, W. J. Kortsmit, W. H. Schilders, G. J. Scheffer,
and A. Noordergraaf. The Donders Model of the Circulation in Normo- and
Pathophysiology. Cardiovascular Engineering, 6:53–72, 2006.

T. Nørgaard, J. Ellegaard, J. Jalving, J. B. Pedersen, P. Gregersen, S. I. Meyer,
and H. Wittus. Aorta-modellering. 4th semester, Naturvidenskabelig Basis,
Roskilde University, 1993.

M. S. Olufsen. Imfufa tekst 419: Modeling the Arterial System with Reference to

an Anestesia Simulator. Imfufa, Roskilde University, 1998.

J. T. Ottesen. Valveless pumping in a fluid-filled closed elastic tube-system: one-
dimensional theory with experimental validation. Journal of Mathematical Bi-

ology, 46:309–332, 2003.

B. M. Patten, T. C. Kramer, and A. Barry. Valvular Action in the Embryonic
Chick Heart by Localized Apposition of Endocardial Masses. The Anatomical

Record, 102(3):299–311, 1948.

A. Pressley. Elementary Differential Geometry. Springer-Verlag, London, 2001.
ISBN 1-85233-152-6.

V. C. Rideout. Mathematical and Computer Modeling of Physiological Systems.
Prentice Hall, 1991. ISBN 0-13-563354-0.

A. Snitker, A.-G. Knudsen, H. Skourup, J. Lauridsen, J. Hansen, and K. Olesen.
Bestemmelse af flowretning i et lukket elastisk kredsløb. 2nd semester, Naturv-
idenskabelig Basis, Roskilde University, 2000.

L. A. Taber. Mechanical aspects of cardiac development. Progress in Biophysics

and Molecular Biology, 69:237–255, 1998.



222 Mathematical Modeling of Flow Characteristics in the Embryonic Heart

L. A. Taber. Biophysical mechanisms of cardiac looping. International Journal

of Developmental Biology, 50:323–332, 2006a.

L. A. Taber. Computational Model for Early Cardiac Looping. Annals of Biomed-

ical Engineering, 34(8):1655–1669, 2006b.

L. A. Taber, B. B. Keller, and E. B. Clark. Cardiac Mechanics in the Stage-16
Chick Embryo. Journal of Biomechanical Engineering, 114:427–434, 1992.

L. A. Taber, I. E. Lin, and E. B. Clark. Mechanics of Cardiac Looping. Develop-

mental Dynamics, 203:42–50, 1995.

J. Womersley. Oscillatory Motion of a Viscous Liquid in a Thin-Walled Elastic
Tube - 1: The Linear Approximation for Long Waves. Philosophical Magazine,
46:199–221, 1955a.

J. Womersley. Method for the Calculation of Velocity, Rate of Flow and Viscous
Drag in Arteries when the Pressure Gradient is Known. Journal of Physiology,
127:553–563, 1955b.

T.-S. Yang and C.-C. Wang. Effects of Actuator Impact on the Nonlinear Dy-
namics of a Valveless Pumping System. Journal of Mechanics in Medicine and

Biology, 0(1):1–33, 2010.

T. M. Yelbuz, M. A. Choma, L. Thrane, M. L. Kirby, and J. A. Izatt. Optical Co-
herence Tomography: A New High-Resolution Imaging Technology to Study
Cardiac Development in Chick Embryos. Circulation, 106:2771–2774, 2002.

M. Yoshigi and B. B. Keller. Linearity of Pulsatile Pressure-Flow Relations in the
Embryonic Chick Vacular System. Circulation Research, 79:864–870, 1996.

M. Yoshigi and B. B. Keller. Characterization of embryonic aortic impedance
with lumped parameter models. American Journal of Physiology, 273(1 pt 2):
H19–27, 1997.

M. Yoshigi, G. D. Knott, and B. B. Keller. Lumped parameter estimation for
the embryonic chick vascular system: a time-domain approach using MLAB.
Computer Methods and Programs in Biomedicine, 63:29–41, 2000.

K. Zahka, N. Hu, K. Brin, F. Yin, and E. Clark. Aortic impedance and hydraulic
power in the chick embryo from stages 18 to 29. Circulation Research, 64:
1091–1095, 1989.



Bibliography 223

E. A. Zamir and L. A. Taber. Material Properties and Residual Stress in the Stage
12 Chick Heart During Cardiac Looping. Journal of Biomechanical Engineer-

ing, 126:823–830, 2004.

E. A. Zamir, V. Srinivasan, R. Perucchio, and L. A. Taber. Mechanical Asym-
metry in the Embryonic Chick Heart During Looping. Annals of Biomedical

Engineering, 31:1327–1336, 2003.





Appendix A

Simulation Code for Liebau’s Ring

For the simulations of Liebau’s ring the cylindric model presented in chapter 4 is
implemented into MatLab v. 7.5 (copyright The MathWorks Inc.).

The implementation into MatLab requires two separate programs that are re-
ferred to as the iterative program and the master program. The master program
defines the material parameters of the tubes and the desired conditions chosen for
the simulation. Specifically the master program initiates the vectors for the dy-
namic radius and momentum of the tube, r and p, each containing N elements
corresponding to the number of sections in the model. It then calculates the ele-
ments of the model such as capacitance, inductance and resistance and with those
values it calls the iterative routine.

MatLab contains an inherent fourth-order Runge-Kutta solver ‘ode45.m’ that
will handle the time-iteration of the differential equations specified by the model.
The ‘ode45’ solver is initiated by the master program and it then subsequently
calls the iterative program.

The iterative program works in the way that given the values of the vectors r
and p it will calculate their derivatives for each section, dr and dp, and return
them to the Runge-Kutta solver, which will then evaluate these derivatives and
give the iterative program a new set of vectors r and p. This continues for a time
duration set by the master program.

When the time-iteration in the Runge-Kutta solver is completed ‘ode45’ re-
turns the vector functions r and p to the master program. These functions are
now transformed to t by N matrices, where t is the number of time-steps done
by the iteration. From those two matrices the master program will calculate the
corresponding functions of pressure and flow, P and Q, with the same dimension
as the r and p.

The rutine is the same in all the programs used in this thesis, and therefore this
will not be explained again in B and C. The programs are presented below.
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The iterative program

% rkliebau.m

% Runge-Kutta iteration of the cylindric model.

% Modification of the model to fit Liebau’s Ring.

function output = rkliebau(t,z)

global N f x R eta f_B C L C_s Z_s;

global psection plength delay Comp;

% Defining radii and momentum from the input vector

r = z(1:N-plength)’;

p = z(N+1-plength:end)’;

% The piston pump

r(psection+plength:N) = r(psection:N-plength);

r_min = sqrt(R(psection:psection+plength-1).^2

- (R(psection:psection+plength-1).^2

- (R(psection:psection+plength-1).* sqrt(1-Comp)).^2)

.* (sin((pi/(plength+1)).*[1:plength])));

for j=1:plength

r(psection+j-1) = R(psection+j-1);

r(psection+j-1) = sqrt(R(psection+j-1)^2

- (R(psection+j-1)^2-r_min(j)^2)

* sin(pi*f/0.1 * (t-delay*(j-1)))

* (0<=mod(t-delay*(j-1),1/f))

* ((0.1/f)>=mod(t-delay*(j-1),1/f)));

end

% Equations for the rate of change of the radii

dr(1) = 1/(2*pi*x*r(1))

* ((p(N)/L(N))*sqrt(r(N)*r(1)/(R(N)*R(1)))

- (p(1)/L(1))*sqrt(r(1)*r(2)/(R(1)*R(2))));

dr(2:N-1) = 1./(2.*pi.*x.*r(2:N-1)).*((p(1:N-2)./L(1:N-2))

.* sqrt(r(1:N-2).*r(2:N-1)./(R(1:N-2).*R(2:N-1)))

- (p(2:N-1)./L(2:N-1))

.*sqrt(r(2:N-1).*r(3:N)./(R(2:N-1).*R(3:N))));

dr(N) = 1/(2*pi*x*r(N)) * ((p(N-1)/L(N-1))

* sqrt(r(N-1)*r(N)/(R(N-1)*R(N)))

- (p(N)/L(N))*sqrt(r(N)*r(1)/(R(N)*R(1))));
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% Equations for the pressure

P(1) = 1/(2*pi*x*r(1)) * ( (r(1)-R(1))/C(1)

+ ((r(1)-R(1))-(r(N)-R(N)))/C_s(N)+Z_s(N)*(dr(1)-dr(N))

- ((r(2)-R(2))-(r(1)-R(1)))/C_s(1)-Z_s(1)*(dr(2)-dr(1))

+ (p(N)^2)/(2*r(1)*L(N)) + (p(1)^2)/(2*r(1)*L(1)) );

P(2:N-1) = 1./(2.*pi.*x.*r(2:N-1))

.* ( (r(2:N-1)-R(2:N-1))./C(2:N-1)

+ ((r(2:N-1)-R(2:N-1))

- (r(1:N-2)-R(1:N-2)))./C_s(1:N-2)

+ Z_s(1:N-2).*(dr(2:N-1)-dr(1:N-2))

- ((r(3:N)-R(3:N))-(r(2:N-1)-R(2:N-1)))./C_s(2:N-1)

- Z_s(2:N-1).*(dr(3:N)-dr(2:N-1))

+ (p(1:N-2).^2)./(2.*r(2:N-1).*L(1:N-2))

+ (p(2:N-1).^2)./(2.*r(2:N-1).*L(2:N-1)) );

P(N) = 1/(2*pi*x*r(N)) * ( (r(N)-R(N))/C(N)

+ ((r(N)-R(N))-(r(N-1)-R(N-1)))/C_s(N-1)

+ Z_s(N-1)*(dr(N)-dr(N-1))

- ((r(1)-R(1))-(r(N)-R(N)))/C_s(N)

- Z_s(N)*(dr(1)-dr(N))

+ (p(N-1)^2)/(2*r(N)*L(N-1))

+ (p(N)^2)/(2*r(N)*L(N)) );

% Equations for the rate of change of the momentum

dp(1) = sqrt(r(1)*r(2)/(R(1)*R(2)))

* ( P(1) - P(2) - ( (8*eta*x)/(pi*r(1)^2*r(2)^2)

+ (f_B(1)*sqrt(R(1)*R(2))

* sign(p(1))*p(1))/(4*pi*r(1)^2*r(2)^2) )

* p(1)/L(1) * sqrt(r(1)*r(2)/(R(1)*R(2))) )

+ (p(1)/(2*r(1)))*dr(1) + (p(1)/(2*r(2)))*dr(2);

dp(2:N-1) = sqrt(r(2:N-1).*r(3:N)./(R(2:N-1).*R(3:N)))

.* ( P(2:N-1) - P(3:N)

- ( (8.*eta.*x)./(pi.*r(2:N-1).^2.*r(3:N).^2)

+ (f_B(2:N-1).*sqrt(R(2:N-1).*R(3:N))

.* sign(p(2:N-1)).*p(2:N-1))

./ (4.*pi.*r(2:N-1).^2.*r(3:N).^2) )

.* p(2:N-1)./L(2:N-1)

.* sqrt(r(2:N-1).*r(3:N)./(R(2:N-1).*R(3:N))) )

+ (p(2:N-1)./(2.*r(2:N-1))).*dr(2:N-1)

+ (p(2:N-1)./(2.*r(3:N))).*dr(3:N);
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dp(N) = sqrt(r(N)*r(1)/(R(N)*R(1)))

* ( P(N) - P(1) - ( (8*eta*x)/(pi*r(N)^2*r(1)^2)

+ (f_B(N)*sqrt(R(N)*R(1))

* sign(p(N))*p(N))/(4*pi*r(N)^2*r(1)^2) )

* p(N)/L(N) * sqrt(r(N)*r(1)/(R(N)*R(1))) )

+ (p(N)/(2*r(N)))*dr(N) + (p(N)/(2*r(1)))*dr(1);

dr = [dr(1:psection-1) dr(psection+plength:N)];

% The output to the main program

output = [dr’;dp’];

The master program

% liebau.m

% A model for pulsating flow in elastic tubes.

% The model is used to simulate Liebau’s Ring.

function liebau

% Initializing variables

global N f x R eta f_B C L C_s Z_s;

global psection plength delay Comp;

r = 0; p = 0; P = 0; Q = 0; R = 0;

% The numbers we can change

N = 60; % The number of sections in the model

psection = 5; % The first section of the pump

plength = 3; % The number of sections of the pump

delay = 0; % The delay time in sequential pumping

Comp = 0.25; % The cross-sectional compression ratio

f = 2.06; %Hz % The frequency of the pump

periods = 50; % The number of periods in the simulation

time = periods * 1/f; %s % The time of the simulation

% The parameters of the tube at rest

l = 1.0; %m % The length of the tube

x = l/N; %m % Length per section

R(1:N/2) = 0.01; %m The radius of the soft tube at rest

R(N/2+1:N) = 0.008; %m The radius of the rigid tube at rest

r(1:N) = R(:); %m % The dynamic radii of the tube

p(1:N) = 0; %kg*m/s % The initial momentum of the flow
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% The curvature of the tube

R_B(1:N) = l/(2*pi); % The bend radius for each section

theta(1:N) = (x.*360)./(2.*pi.*R_B); %deg. % The bend angle

% The physical properties of the tube and the liquid

rho = 1000; %kg/m3 % The density of the liquid (water)

eta = 0.001; %Pa.s % The viscosity of the liquid (water)

P_0 = 1e5; %Pa % The pressure outside the tube

E1 = 4.1e5; %Pa % Young’s modulus for the soft tube

E2 = 4.3e5; %Pa % Young’s modulus for the rigid tube

h1 = 0.001; %m % Wall thickness of the soft tube

h2 = 0.003; %m % Wall thickness of the rigid tube

% Womersley theory

alpha(1:N-1) = sqrt(R(1:N-1).*R(2:N))*sqrt(2*pi*f*rho/eta);

alpha(N) = sqrt(R(N).*R(1)).*sqrt(2*pi*f*rho/eta);

psi = real(1 ./ (1 - 2./(alpha.*sqrt(-i))

.* besselj(1,alpha.*sqrt(-i))

./ besselj(0,alpha.*sqrt(-i))) - 8./(i.*alpha.^2));

% Equations for the curvature of the tube

xi = 0.042 .* theta.^0.69;

K_B(1:N-1) = 9.0704.*(log(R_B(1:N-1)

./ (2.*sqrt(R(1:N-1).*R(2:N))))).^2

- 16.9345.*(log(R_B(1:N-1)

./ (2.*sqrt(R(1:N-1).*R(2:N))))) + 19.6437;

K_B(N) = 9.0704.*(log(R_B(N)./(2.*sqrt(R(N).*R(1))))).^2

- 16.9345.*(log(R_B(N)./(2.*sqrt(R(N).*R(1)))))

+ 19.6437;

f_T(1:N-1) = 0.0478.*(2.*sqrt(R(1:N-1).*R(2:N))).^(-0.2245);

f_T(N) = 0.0478.*(2.*sqrt(R(N).*R(1))).^(-0.2245);

% The calculation of the elements of the model

C(1:N/2) = 1/(2*pi*x*E1*h1) * R(1:N/2); %cm/dyn

C(N/2+1:N) = 1/(2*pi*x*E2*h2) * R(N/2+1:N); %cm/dyn

L(1:N-1) = psi(1:N-1).*rho.*x./(pi*(R(1:N-1).*R(2:N)));

L(N) = psi(N)*rho*x/(pi*R(N)*R(1)); %g/cm4

C_s(1:N/2) = x./(2*pi*(1/3)*E1*h1

* sqrt(R(1:N/2).*R(2:N/2+1))); %cm/dyn

C_s(N/2+1:N-1) = x./(2*pi*(1/3)*E2*h2

* sqrt(R(N/2+1:N-1).*R(N/2+2:N))); %cm/dyn

C_s(N/2) = x./(2*pi*(1/3)*sqrt(E1*h1*E2*h2)

* sqrt(R(N/2)*R(N/2+1))); %cm/dyn
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C_s(N) = x./(2*pi*(1/3)*sqrt(E1*h1*E2*h2)

* sqrt(R(N)*R(1))); %cm/dyn

Z_s(1:N) = 0.01./C_s; %dyn/cm

f_B = xi.*K_B.*f_T./psi; % The friction factor

% Call MatLab’s solver for ordinary differential equations

r = [r(1:psection-1) r(psection+plength:N)];

[t,z] = ode45(’rkliebau’,[0 time],[r p]);

r = z(:,1:N-plength); p = z(:,N+1-plength:end);

% The compression pump

r(1:length(t),psection+plength:N) =

r(1:length(t),psection:N-plength);

r_min = sqrt(R(psection:psection+plength-1).^2

- (R(psection:psection+plength-1).^2

- (R(psection:psection+plength-1).*sqrt(1-Comp)).^2)

.* (sin((pi/(plength+1)).*[1:plength])));

for j=1:plength

r(1:length(t),psection+j-1) = R(psection+j-1);

r(1:length(t),psection+j-1) = sqrt(R(psection+j-1).^2

- (R(psection+j-1).^2-r_min(j).^2)

.* sin(pi*f/0.1 .* (t-delay*(j-1)))

.* (0<=mod(t-delay*(j-1),1/f))

.* ((0.1/f)>=mod(t-delay*(j-1),1/f)));

end

% Calculation of driving pressure and volume flow

T = length(t);

P(1,1:N) = P_0; %Pa % The outside pressure

Q(1,1:N) = 0; %cm3/s % Initial volume flow is set to zero

P(2:T,1) = 1./(2.*pi.*x.*r(2:T,1)) .* ((r(2:T,1)-R(1))./C(1)

+ ((r(2:T,1)-R(1))-(r(2:T,N)-R(N)))./C_s(N)

+ Z_s(N).*((r(2:T,1)-r(1:T-1,1))./(t(2:T)-t(1:T-1))

- (r(2:T,N)-r(1:T-1,N))./(t(2:T)-t(1:T-1)))

- ((r(2:T,2)-R(2))-(r(2:T,1)-R(1)))./C_s(1)

- Z_s(1).*((r(2:T,2)-r(1:T-1,2))./(t(2:T)-t(1:T-1))

- (r(2:T,1)-r(1:T-1,1))./(t(2:T)-t(1:T-1)))

+ (p(2:T,N).^2)./(2.*r(2:T,1).*L(N))

+ (p(2:T,1).^2)./(2.*r(2:T,1).*L(1))) + P_0;
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P(2:T,2:N-1) = 1./(2.*pi.*x.*r(2:T,2:N-1)) .* ((r(2:T,2:N-1)

- ones(T-1,1)*R(2:N-1))./(ones(T-1,1)*C(2:N-1))

+ ((r(2:T,2:N-1)-ones(T-1,1)*R(2:N-1))

- (r(2:T,1:N-2)-ones(T-1,1)*R(1:N-2)))

./ (ones(T-1,1)*C_s(1:N-2))

+ (ones(T-1,1)*Z_s(1:N-2)).*((r(2:T,2:N-1)

- r(1:T-1,2:N-1))./((t(2:T)-t(1:T-1))

* ones(1,N-2))-(r(2:T,1:N-2)-r(1:T-1,1:N-2))

./ ((t(2:T)-t(1:T-1))*ones(1,N-2)))

- ((r(2:T,3:N)-ones(T-1,1)*R(3:N))

- (r(2:T,2:N-1)-ones(T-1,1)*R(2:N-1)))

./ (ones(T-1,1)*C_s(2:N-1))

- (ones(T-1,1)*Z_s(2:N-1)).*((r(2:T,3:N)

- r(1:T-1,3:N))./((t(2:T)-t(1:T-1))

* ones(1,N-2))-(r(2:T,2:N-1)-r(1:T-1,2:N-1))

./ ((t(2:T)-t(1:T-1))*ones(1,N-2)))

+ (p(2:T,1:N-2).^2)./(2.*r(2:T,2:N-1)

.* (ones(T-1,1)*L(1:N-2)))

+ (p(2:T,2:N-1).^2)./(2.*r(2:T,2:N-1)

.* (ones(T-1,1)*L(2:N-1)))) + P_0;

P(2:T,N) = 1./(2.*pi.*x.*r(2:T,N)) .* ((r(2:T,N)-R(N))./C(N)

+ ((r(2:T,N)-R(N))-(r(2:T,N-1)-R(N-1)))./C_s(N-1)

+ Z_s(N-1).*((r(2:T,N)-r(1:T-1,N))

./ (t(2:T)-t(1:T-1))-(r(2:T,N-1)-r(1:T-1,N-1))

./ (t(2:T)-t(1:T-1)))-((r(2:T,1)-R(1))

- (r(2:T,N)-R(N)))./C_s(N)- Z_s(N).*((r(2:T,1)

- r(1:T-1,1))./(t(2:T)-t(1:T-1))-(r(2:T,N)

- r(1:T-1,N))./(t(2:T)-t(1:T-1)))

+ (p(2:T,N-1).^2)./(2.*r(2:T,N).*L(N-1))

+ (p(2:T,N).^2)./(2.*r(2:T,N).*L(N))) + P_0;

Q(2:T,1:N-1) = p(2:T,1:N-1)./(ones(T-1,1)*L(1:N-1))

.* sqrt(r(2:T,1:N-1).*r(2:T,2:N)

./ (ones(T-1,1)*(R(1:N-1).*R(2:N))) );

Q(2:T,N) = p(2:T,N)./L(N) .* sqrt( r(2:T,N).*r(2:T,1)

./ (R(N).*R(1)) );

save ’liebau.mat’ r p P Q t f





Appendix B

Simulation Code for the Tubular

Heart

The simulations of embryonic heart is made similar to the simulations of Liebau’s
ring following the same procedure as described in appendix A. Each HH-stage of
the embryo modeled has its own master program detailing the specific conditions
at that stage, but the iterative program applied in the simulations is the same.

The iterative program

% rkembryo.m

% Runge-Kutta iteration of the embedded tubular flow

% model as used in the modeling of chick embryonic hearts.

function output = rkembryo(t,z)

%% Initialization of the cycle

global N x A B; % The dimensions of the tubular heart

global C_sn C_vn C_r C_j L C_sa Z_sa L_c R_c R_p C_p;

global P_0 eta f_B f IFT_con Vent_con OFT_con;

global Pumpsections Pumptimes delay;

% Defining the radii and momentum from the input vector

a = (z(1:N))’; b = (z(N+1:2*N))’; p = (z(2*N+1:end-2))’;

V = z(end-1); M = z(end);

233
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%% Defining variables for the cycle

% Calculation of the elliptic integrals

ecc = sqrt(1 - (min(a,b)./max(a,b)).^2); % eccentricity

first = (pi/2) .* ( 1 + (1/2)^2*ecc.^2 + (3/8)^2*ecc.^4

+ (15/48)^2*ecc.^6 + (105/384)^2*ecc.^8 );

second = (pi/2) .* (1-(1/2)^2*ecc.^2-(1/3)*(3/8)^2*ecc.^4

- (1/5)*(15/48)^2*ecc.^6+(1/7)*(105/384)^2*ecc.^8 );

% Calculation of the surface derivatives

dsda = (a>b).*(x.*(4./((a~=b).*a.^2-b.^2))

.* (a.^2.*second-b.^2.*first)) + (a==b).*x.*pi

+ (a<b).*((4.*b.*a./((a<b).*b.^2-a.^2))

.* (first-second));

dsdb = (a>b).*(x.*(4.*a.*b./((a~=b).*a.^2-b.^2))

.* (first-second)) + (a==b).*x.*pi

+ (a<b).*(x.*(4./((a<b).*b.^2-a.^2))

.* (b.^2.*second-a.^2.*first));

% Calculation of the chi factor

chi = ( ((b./a).*dsdb.^2-dsda.*dsdb)./C_sn

+ 2.*((2.*a.*b)./(a.^2+b.^2)).^2.*(1./(a.*b)).*(1./C_vn)

+ (pi*x)^2.*2.*a.^2./C_j )

./ ( (dsda.^2-(b./a).*dsda.*dsdb)./C_sn

+ 2.*((2.*a.*b)./(a.^2+b.^2)).^2.*(1./a.^2).*(1./C_vn)

+ (pi*x)^2.*2.*a.*(2.*a-b)./C_j + 1./C_r );

%% The pumping mechanism

% Pumping is made by contracting the outer radius

% by means of derivative of the contraction function

% dr = -pi abc R_0 exp(-ct) cos(pi b(1-exp(-ct))

time(1:N) = (t-delay*((1:N)-Pumpsections(1))); dr(1:N) = 0;

dr(Pumpsections(1):Pumpsections(2)) =

- pi*IFT_con(1)*IFT_con(2)*IFT_con(3)

.* A(Pumpsections(1):Pumpsections(2))

.* exp(-IFT_con(3).*time(Pumpsections(1):Pumpsections(2)))

.* cos(pi.*IFT_con(2).*(1-exp(-IFT_con(3)

.* time(Pumpsections(1):Pumpsections(2)))))

.* (0<=mod(time(Pumpsections(1):Pumpsections(2)),1/f))

.* (Pumptimes(1)>=mod(time(Pumpsections(1)

: Pumpsections(2)),1/f));
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dr(Pumpsections(2):Pumpsections(3)) =

- pi*Vent_con(1)*Vent_con(2)*Vent_con(3)

.* A(Pumpsections(2):Pumpsections(3)).*exp(-Vent_con(3)

.* time(Pumpsections(2):Pumpsections(3)))

.* cos(pi.*Vent_con(2).*(1-exp(-Vent_con(3)

.* time(Pumpsections(2):Pumpsections(3)))))

.* (0<=mod(time(Pumpsections(2):Pumpsections(3)),1/f))

.* (Pumptimes(2)>=mod(time(Pumpsections(2)

: Pumpsections(3)),1/f));

dr(Pumpsections(3):Pumpsections(4)) =

- pi*OFT_con(1)*OFT_con(2)*OFT_con(3)

.* A(Pumpsections(3):Pumpsections(4))

.* exp(-OFT_con(3).*time(Pumpsections(3):Pumpsections(4)))

.* cos(pi.*OFT_con(2).*(1-exp(-OFT_con(3)

.* time(Pumpsections(3):Pumpsections(4)))))

.* (0<=mod(time(Pumpsections(3):Pumpsections(4)),1/f))

.* (Pumptimes(3)>=mod(time(Pumpsections(3)

: Pumpsections(4)),1/f));

%% Calculation of model variables

% Calculation of the flow

Q(1) = (p(1)/L(1)) * sqrt( (sqrt(a(1)*A(1))*sqrt(b(1)*B(1)))

/ (A(1)*B(1)) );

Q(2:N) = (p(2:N)./L(2:N))

.* sqrt( (sqrt(a(1:N-1).*a(2:N))

.* sqrt(b(1:N-1).*b(2:N)))./(sqrt(A(1:N-1).*A(2:N))

.* sqrt(B(1:N-1).*B(2:N))) );

Q(N+1) = M/L_c;

% Equations for the rate of change of the axes

da = (Q(1:N)-Q(2:N+1))/(pi*x) .* (chi./(a+chi.*b)) + dr;

db = (Q(1:N)-Q(2:N+1))/(pi*x) .* (1./(a+chi.*b));

% Equations for the dynamic pressure

P(1) = (1/(pi*x*b(1))) * ( (a(1)-A(1))/C_r(1)

+ dsda(1)*(dsda(1)*(a(1)-A(1))/C_sn(1)

+ dsdb(1)*(b(1)-B(1))/C_sn(1))

+ ((2*a(1)*b(1))/(a(1)^2+b(1)^2))*(1/a(1))

* tan(((2*a(1)*b(1))/(a(1)^2+b(1)^2))

* ((1/a(1))*(a(1)-A(1))/C_vn(1)-(1/b(1))

* (b(1)-B(1))/C_vn(1)))-(x*pi)^2*(2*a(1)-b(1))

* ((2*a(1)-b(1))*(a(1)-A(1))/C_j(1)
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- a(1)*(b(1)-B(1))/C_j(1))

+ (a(1)-A(1))/C_sa(1) + Z_sa(1)*da(1)

- ((a(2)-A(2))-(a(1)-A(1)))/C_sa(2)

- Z_sa(2)*(da(2)-da(1))

+ (p(1)^2)/(4*a(1)*L(1)) + (p(2)^2)/(4*a(1)*L(2)) );

P(2:N-1) = (1./(pi.*x.*b(2:N-1)))

.* ( (a(2:N-1)-A(2:N-1))./C_r(2:N-1)

+ dsda(2:N-1).*(dsda(2:N-1).*(a(2:N-1)

- A(2:N-1))./C_sn(2:N-1) + dsdb(2:N-1).*(b(2:N-1)

- B(2:N-1))./C_sn(2:N-1))

+ ((2.*a(2:N-1).*b(2:N-1))./(a(2:N-1).^2

+ b(2:N-1).^2)).*(1./a(2:N-1))

.* tan(((2.*a(2:N-1).*b(2:N-1))./(a(2:N-1).^2

+ b(2:N-1).^2)).*((1./a(2:N-1))

.*(a(2:N-1)-A(2:N-1))./C_vn(2:N-1)

- (1./b(2:N-1)).*(b(2:N-1)-B(2:N-1))./C_vn(2:N-1)))

- (x*pi).^2.*(2.*a(2:N-1)-b(2:N-1))

.* ((2.*a(2:N-1)-b(2:N-1)).*(a(2:N-1)-A(2:N-1))

./ C_j(2:N-1)-a(2:N-1).*(b(2:N-1)-B(2:N-1))

./ C_j(2:N-1))+((a(2:N-1)-A(2:N-1))

- (a(1:N-2)-A(1:N-2)))./C_sa(2:N-1)

+ Z_sa(2:N-1).*(da(2:N-1)-da(1:N-2))

- ((a(3:N)-A(3:N))-(a(2:N-1)-A(2:N-1)))./C_sa(3:N)

- Z_sa(3:N).*(da(3:N)-da(2:N-1))

+ (p(2:N-1).^2)./(4.*a(2:N-1).*L(2:N-1))

+ (p(3:N).^2)./(4.*a(2:N-1).*L(3:N)) );

P(N) = (1/(pi*x*b(N))) * ( (a(N)-A(N))/C_r(N)

+ dsda(N)*(dsda(N)*(a(N)-A(N))/C_sn(N)

+ dsdb(N)*(b(N)-B(N))/C_sn(N))

+ ((2*a(N)*b(N))/(a(N)^2+b(N)^2))*(1/a(N))

* tan(((2*a(N)*b(N))/(a(N)^2+b(N)^2))

* ((1/a(N))*(a(N)-A(N))/C_vn(N)-(1/b(N))*(b(N)-B(N))

/ C_vn(N)))-(x*pi)^2*(2*a(N)-b(N))*((2*a(N)-b(N))

* (a(N)-A(N))/C_j(N) - a(N)*(b(N)-B(N))/C_j(N))

+ ((a(N)-A(N))-(a(N-1)-A(N-1)))/C_sa(N)

+ Z_sa(N)*(da(N)-da(N-1))

+ (a(N)-A(N))/C_sa(N+1)

+ Z_sa(N+1)*da(N) + (p(N)^2)/(4*a(N)*L(N)) );

P(N+1) = V/C_p - P_0;

% Equations for the rate of change of the momentum

dp(1) = sqrt(sqrt(A(1)*a(1))*sqrt(B(1)*b(1))/(A(1)*B(1)))

* ( P_0 - P(1) - ( (4*eta*x*(A(1)*a(1)+B(1)*b(1)))
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/ (sqrt(A(1)*a(1))^3*sqrt(B(1)*b(1))^3)

+ (f_B(1)*(1/(4*pi))*sqrt(A(1)*B(1)/(sqrt(A(1)*a(1))^5

* sqrt(B(1)*b(1))^5))*sqrt((A(1)*a(1)+B(1)*b(1))/2)

* sign(p(1))*p(1)) ) * Q(1) ) + (p(1)/(4*a(1)))*da(1)

+ (p(1)/(4*b(1)))*db(1);

dp(2:N) = sqrt(sqrt(a(1:N-1).*a(2:N)).*sqrt(b(1:N-1).*b(2:N))

./ (sqrt(A(1:N-1).*A(2:N)).*sqrt(B(1:N-1).*B(2:N))))

.* ( P(1:N-1) - P(2:N) - ( (4.*eta.*x.*(a(1:N-1)

.* a(2:N)+b(1:N-1).*b(2:N)))

./ (sqrt(a(1:N-1).*a(2:N)).^3

.* sqrt(b(1:N-1).*b(2:N)).^3)

+ (f_B(2:N).*(1./(4.*pi))

.* sqrt(sqrt(A(2:N).*A(1:N-1).*B(2:N).*B(1:N-1))

./ (sqrt(a(2:N).*a(1:N-1)).^5

.* sqrt(b(2:N).*b(1:N-1)).^5))

.* sqrt((a(2:N).*a(1:N-1)+b(2:N).*b(1:N-1))./2)

.* sign(p(2:N)).*p(2:N)) ) .* Q(2:N) )

+ (p(2:N)./(4.*a(1:N-1))).*da(1:N-1)

+ (p(2:N)./(4.*a(2:N))).*da(2:N)

+ (p(2:N)./(4.*b(1:N-1))).*db(1:N-1)

+ (p(2:N)./(4.*b(2:N))).*db(2:N);

% Equations for the windkessel termination

dV = Q(N+1) - P(N+1)/R_p; dM = P(N) - P(N+1) - Q(N+1)*R_c;

% The output to the main program

output = [da’;db’;dp’;dV;dM];
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The hh10 master program

% hh10.m

% A model of blood flow of a HH-stage 10 embryonic heart.

% The flow model is based on the embedded tube model.

function hh10

%% Initialization of the model

global N x A B; % The dimensions of the tubular heart

global C_sn C_vn C_r C_j L C_sa Z_sa L_c R_c R_p C_p;

global P_0 eta f_B f IFT_con Vent_con OFT_con;

global Pumpsections Pumptimes delay;

a = 0; b = 0; p = 0; P = 0; Q = 0;

N = 30; % The number of sections in the model

% Acceptable numbers = [1 2 3 5 6 8 10 11 15 22 30 33 55 66]

f = 1.0; %Hz % The frequency of the pump

% Frequencies measured = [0.8 1.0 1.2];

periods = 3; % The number of periods in the simulation

time = periods * 1/f; %seconds % The time of the simulation

%% Tracing of the heart loop

% Lengths

L_Sinus_venosis = 50e-6; %m

L_Left_ventricle = 130e-6; %m

L_Right_ventricle = 250e-6; %m

L_Proximal_outflow_tract = 230e-6; %m

% Diameters

D_Sinus_venosis = 330e-6; %m

D_Venous_pole = 300e-6; %m

D_Central_left_ventricle = 270e-6; %m

D_Left_lateral_furrow = 250e-6; %m

D_Central_right_ventricle = 250e-6; %m

D_Conoventricular_sulcus = 200e-6; %m

D_Proximal_outflow_tract = 170e-6; %m

D_Arterial_outlet = 120e-6; %m
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% Layers

h_my = 18e-6; %m % The thickness of the myocardial layer

h_cj = 52e-6; %m % The thickness of the cardiac jelly

h_en = h_my/2; %m % The thickness of the endocardial layer

% Dimension setup

tubelength = L_Sinus_venosis + L_Left_ventricle

+ L_Right_ventricle + L_Proximal_outflow_tract;

lengths = [0 L_Sinus_venosis

L_Sinus_venosis+L_Left_ventricle/2

L_Sinus_venosis+L_Left_ventricle

L_Sinus_venosis+L_Left_ventricle+L_Right_ventricle/2

L_Sinus_venosis+L_Left_ventricle+L_Right_ventricle

L_Sinus_venosis+L_Left_ventricle

+L_Right_ventricle+L_Proximal_outflow_tract/2

tubelength];

diameters = [D_Sinus_venosis D_Venous_pole

D_Central_left_ventricle D_Left_lateral_furrow

D_Central_right_ventricle D_Conoventricular_sulcus

D_Proximal_outflow_tract D_Arterial_outlet];

relative_cardiac_jelly = [0.8 0.9 0.9 1.1 1 1.4 1.3 1.1]

* (h_cj/(D_Central_right_ventricle/2));

x = tubelength/N; %m % The length of a section of the tube

% The major and minor axis of the model

l_array = 0:10^(-6):tubelength;

for d=1:length(diameters)-1

coef = polyfit(lengths(d:d+1),diameters(d:d+1)/2,1);

a_array((10^6*lengths(d)+1):(10^6*lengths(d+1)+1)) =

polyval(coef,l_array((10^6*lengths(d)+1)

:(10^6*lengths(d+1)+1)));

coef = polyfit(lengths(d:d+1),(diameters(d:d+1)/2)

.* (1-relative_cardiac_jelly(d:d+1)),1);

b_array((10^6*lengths(d)+1):(10^6*lengths(d+1)+1)) =

polyval(coef,l_array((10^6*lengths(d)+1)

:(10^6*lengths(d+1)+1)));

end

for n=1:N

index = uint16(((n-1)*x+x/2)*10^6);

A(n) = a_array(index); %m % The major axis of at rest

B(n) = b_array(index); %m % The minor axis of at rest

end
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a(1:N) = A(1:N); %m % The dynamic major axis of the tube

b(1:N) = B(1:N); %m % The dynamic minor axis of the tube

% Curvature

R_B(1:N) = 550e-6; %m % The radius of curvature

startindex = find(x*(1:N)>L_Sinus_venosis,1,’first’);

endindex = find(x*(1:N)>L_Sinus_venosis

+ L_Left_ventricle+L_Right_ventricle

+ (1/4)*L_Proximal_outflow_tract,1,’first’);

theta(1:N) = 0; %deg. % The bending angle for each section

theta(startindex:endindex) = (x./(2.*pi

.* R_B(startindex:endindex))).*360;

% Boundary conditions

P_0 = 26.7; %Pa % The mean pressure at the venous end

L_c = 14.87e8; %kg/m4 % Inertance of the vascular system

R_c = 5.41e11; %Pa.s/m3 % Characteristic resistance

R_p = 10.74e11; %Pa.s/m3 % Peripheral resistance

C_p = 0.31e-12; %m3/Pa % Capacitance of the vascular system

V_0 = P_0*C_p; %m3 % Equilibrium vascular system volume

V = V_0; %m3 % The dynamical volume of the vascular system

M = 0; %Pa.s % The momentum through the vascular system

%% Parameter estimation

% The physical parameters of the heart tube and the blood

rho = 1.0e3; %kg/m3 % The density of embryonic blood

eta = 3.8e-3; %Pa.s % The viscosity of embryonic blood

E_my = 60; %Pa % Young’s modulus for the myocardial layer

E_cj = 12; %Pa % Young’s modulus for the cardiac jelly

E_en = E_my; %Pa % Young’s modulus for the endocardial layer

%% The pumping mechanism

p(1:N) = 0; %kg*m/s % The initial momentum of the flow

T_prox_contraction = 170.0e-3; %s % Proximal contraction

T_dist_contraction = 228.0e-3; %s % Distal contraction

T_prox_relaxation = 275.6e-3; %s % Proximal relaxation

T_dist_relaxation = 286.0e-3; %s % Distal relaxation

Wave_velocity = 3.3e-3; %m/s % Contraction wave velocity

Diametric_contraction = 0.15; % Diametric contraction ratio
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% Tracing of the contraction functions

% Given by: X(t) = 1 - a*sin(pi*b*(1-exp(-c*time)))

IFT_con = [0.4287 1.3480 0.001015];

Vent_con = [0.3329 1.0635 0.001418];

OFT_con = [0.3072 6.6597 0.00006598];

IFT_con(1) = (Diametric_contraction/Vent_con(1))

* IFT_con(1);

OFT_con(1) = (Diametric_contraction/Vent_con(1))

* OFT_con(1);

Vent_con(1) = (Diametric_contraction/Vent_con(1))

* Vent_con(1);

IFT_con(3) = -log((Vent_con(2)-1)/Vent_con(2))

/ (T_prox_contraction+T_prox_relaxation)

* (IFT_con(3)/Vent_con(3));

Vent_con(3) = -log((Vent_con(2)-1)/Vent_con(2))

/ (T_prox_contraction+T_prox_relaxation);

OFT_con(3) = -log((OFT_con(2)-1)/OFT_con(2))

/ (T_dist_contraction+T_dist_relaxation);

% Defining the contraction durations

IFT_time = (-1/IFT_con(3))*log((IFT_con(2)-1)/IFT_con(2));

Vent_time = (-1/Vent_con(3))

* log((Vent_con(2)-1)/Vent_con(2));

OFT_time = (-1/OFT_con(3))*log((OFT_con(2)-1)/OFT_con(2));

Pumptimes = [IFT_time Vent_time OFT_time];

% Defining the contraction zones

IFT_section = find(x*(1:N)>L_Sinus_venosis,1,’first’);

Vent_section = find(x*(1:N)>L_Sinus_venosis,1,’first’);

OFT_section = find(x*(1:N)>L_Sinus_venosis+L_Left_ventricle

+ L_Right_ventricle,1,’first’);

End_section = find(x*(1:N)>L_Sinus_venosis+L_Left_ventricle

+ L_Right_ventricle+(1/2)

* L_Proximal_outflow_tract,1,’first’);

Pumpsections = [IFT_section Vent_section

OFT_section End_section];

% Defining the phase shift between sections

delay = x/Wave_velocity;
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%% The model engine

% Calculated characteristics of the elliptic tube

S(1:N) = x*pi*(A+B).*(1+3*((A-B)./(A+B)).^2.

/ (10+sqrt(4-3*((A-B)./(A+B)).^2))); %m2

Omega(1) = pi.*(A(1)+B(1)).*(1

+ 3*((A(1)-B(1))./(A(1)+B(1))).^2./(10

+ sqrt(4-3.*((A(1)-B(1))./(A(1)+B(1))).^2))); %m

Omega(2:N) = pi.*(sqrt(A(1:N-1).*A(2:N))+sqrt(B(1:N-1)

.* B(2:N))).*(1+3*((sqrt(A(1:N-1).*A(2:N))

- sqrt(B(1:N-1).*B(2:N)))./(sqrt(A(1:N-1)

.* A(2:N))+sqrt(B(1:N-1).*B(2:N)))).^2./(10

+ sqrt(4-3.*((sqrt(A(1:N-1).*A(2:N))

- sqrt(B(1:N-1).*B(2:N)))./(sqrt(A(1:N-1)

.* A(2:N))+sqrt(B(1:N-1).*B(2:N)))).^2)) ); %m

Omega(N+1) = pi.*(A(N)+B(N)).*(1

+ 3*((A(N)-B(N))./(A(N)+B(N))).^2./(10

+ sqrt(4-3.*((A(N)-B(N))./(A(N)+B(N))).^2))); %m

% Womersley theory

alpha(1) = sqrt((2*A(1)^2*B(1)^2)/(A(1)^2+B(1)^2))

* sqrt(2*pi*f*rho/eta);

alpha(2:N) = sqrt((2.*A(1:N-1).*A(2:N).*B(1:N-1).*B(2:N))

./ (A(1:N-1).*A(2:N)+B(1:N-1).*B(2:N)))

.* sqrt(2*pi*f*rho/eta);

psi = real(1 ./ (1 - 2./(alpha.*sqrt(-i))

.* besselj(1,alpha.*sqrt(-i))

./ besselj(0,alpha.*sqrt(-i))) - 8./(i.*alpha.^2));

% Equations for the curvature of the tube

xi = 0.042 .* theta.^0.69;

l_c(1) = sqrt(2*A(1)^2*B(1)^2 / (A(1)^2+B(1)^2)); %m

l_c(2:N) = sqrt(2.*A(1:N-1).*A(2:N).*B(1:N-1).*B(2:N)

./ (A(1:N-1).*A(2:N)+B(1:N-1).*B(2:N))); %m

K_B(1:N) = 9.0704.*(log(R_B(1:N)./(2.*l_c(1:N)))).^2

- 16.9345.*(log(R_B(1:N)./(2.*l_c(1:N))))+19.6437;

f_T(1:N) = 0.0478.*(2.*l_c(1:N)).^(-0.2245);

f_B = xi.*K_B.*f_T./psi;

% The calculation of the primary elements of the model

C_sn(1:N) = S./(E_en.*h_en); %m/Pa=m3/N

C_vn(1:N) = 1./(S.*(1/3).*E_en.*h_en); %(Pa.m3)^-1=(N.m)^-1

C_r(1:N) = 1./(pi*x*E_my*h_my) .* (A(1:N)); %(Pa.m)^-1=m/N
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C_j(1:N) = (pi.*x.*(A(1:N).^2-A(1:N).*B(1:N)))./E_cj; %m3/Pa

L(1) = psi(1)*rho*x./(pi*A(1).*B(1)); %kg/m4

L(2:N) = psi(2:N).*rho.*x./(pi.

* sqrt(A(1:N-1).*A(2:N).*B(1:N-1).*B(2:N))); %kg/m4

% The calculation of the shear elements of the network model

C_sa(1) = 2.*x ./ ( (1/3).*E_en.*h_en.*Omega(1)

+ 4.*pi.*(1/3).*E_my.*h_my.*A(1) ); %(Pa.m)^-1=m/N

C_sa(2:N) = 2.*x ./ ( (1/3).*E_en.*h_en.*Omega(2:N) + 4.*pi

.* (1/3).*E_my.*h_my.*sqrt(A(1:N-1).*A(2:N)) );

C_sa(N+1) = 2.*x ./ ( (1/3).*E_en.*h_en.*Omega(N+1)

+ 4.*pi.*(1/3).*E_my.*h_my.*A(N) ); %(Pa.m)^-1=m/N

C_sb(1:N+1) = 2.*x ./ ( (1/3).*E_en.*h_en.*Omega(1:N+1) );

Z_sa(1:N+1) = 0.01./C_sa; %Pa.m=N/m

Z_sb(1:N+1) = 0.01./C_sb; %Pa.m=N/m

%% The Runge-Kutta algorithm

% Call MatLab’s solver for ordinary differential equations

options = odeset(’RelTol’,1e-3,’AbsTol’,1e-6,’Stats’,’on’);

[t,z] = ode45(’rkembryo’,[0 time],[a b p V M],options);

a = z(:,1:N); b = z(:,N+1:2*N); p = z(:,2*N+1:end-2);

V = z(:,end-1); M = z(:,end);

%% Calculation of flow and pressure

T = length(t);

% Calculation of the elliptic integrals

ecc = sqrt(1-(min(a,b)./max(a,b)).^2); % Eccentricity

first = (pi/2).*(1+(1/2)^2*ecc.^2+(3/8)^2*ecc.^4

+ (15/48)^2*ecc.^6+(105/384)^2*ecc.^8);

second = (pi/2).*(1-(1/2)^2*ecc.^2-(1/3)*(3/8)^2*ecc.^4

- (1/5)*(15/48)^2*ecc.^6+(1/7)*(105/384)^2*ecc.^8);

% Calculation of the surface derivatives

dsda = (a>b).*(x.*(4./((a>b).*a.^2-b.^2))

.* (a.^2.*second-b.^2.*first))+(a==b).*x.*pi+(a<b)

.* ((4.*b.*a./((a<b).*b.^2-a.^2)).*(first-second));

dsdb = (a>b).*(x.*(4.*a.*b./((a<b).*a.^2-b.^2))

.* (first-second))+(a==b).*x.*pi+(a<b).*(x.*(4./((a<b)

.* b.^2-a.^2)).*(b.^2.*second-a.^2.*first));
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% Calculation of the dynamic pressure

P(1,1:N+1) = 0; %Pa % Initial pressure is set to zero

P(2:T,1) = 1./(pi.*x.*b(2:T,1)) .* ((a(2:T,1)-A(1))./C_r(1)

+ dsda(2:T,1).*(dsda(2:T,1).*(a(2:T,1)-A(1))

./ C_sn(1)+dsdb(2:T,1).*(b(2:T,1)-B(1))./C_sn(1))

+ ((2.*a(2:T,1).*b(2:T,1))./(a(2:T,1).^2

+ b(2:T,1).^2)).*(1./a(2:T,1)).*tan(((2.*a(2:T,1)

.* b(2:T,1))./(a(2:T,1).^2+b(2:T,1).^2))

.* ((1./a(2:T,1)).*(a(2:T,1)-A(1))./C_vn(1)

- (1./b(2:T,1)).*(b(2:T,1)-B(1))./C_vn(1)))

+ (x.*pi).^2.*(2.*a(2:T,1)-b(2:T,1))

.* ((2.*a(2:T,1)-b(2:T,1))

.* (a(2:T,1)-A(1))./C_j(1)-a(2:T,1).*(b(2:T,1)

- B(1))./C_j(1)) + (a(2:T,1)-A(1))./C_sa(1)

+ Z_sa(1).*(a(2:T,1)-a(1:T-1,1))./(t(2:T)

- t(1:T-1))-((a(2:T,2)-A(2))-(a(2:T,1)-A(1)))

./ C_sa(2)-Z_sa(2).*((a(2:T,2)-a(1:T-1,2))

./ (t(2:T)-t(1:T-1))-(a(2:T,1)-a(1:T-1,1))

./ (t(2:T)-t(1:T-1)))+(p(2:T,1).^2)./(4.*a(2:T,1)

.* L(1))+(p(2:T,2).^2)./(4.*a(2:T,1).*L(2)));

P(2:T,2:N-1) = 1./(pi.*x.*b(2:T,2:N-1)) .* ((a(2:T,2:N-1)

- ones(T-1,1)*A(2:N-1))./(ones(T-1,1)*C_r(2:N-1))

+ dsda(2:T,2:N-1).*(dsda(2:T,2:N-1).*(a(2:T,2:N-1)

- ones(T-1,1)*A(2:N-1))./(ones(T-1,1)*C_sn(2:N-1))

+ dsdb(2:T,2:N-1).*(b(2:T,2:N-1)-ones(T-1,1)

* B(2:N-1))./(ones(T-1,1)*C_sn(2:N-1)))+((2

.* a(2:T,2:N-1).*b(2:T,2:N-1))./(a(2:T,2:N-1).^2

+ b(2:T,2:N-1).^2)).*(1./a(2:T,2:N-1))

.* tan(((2.*a(2:T,2:N-1).*b(2:T,2:N-1))

./ (a(2:T,2:N-1).^2+b(2:T,2:N-1).^2))

.* ((1./a(2:T,2:N-1)).*(a(2:T,2:N-1)-ones(T-1,1)

* A(2:N-1))./(ones(T-1,1)*C_vn(2:N-1))

- (1./b(2:T,2:N-1)).*(b(2:T,2:N-1)-ones(T-1,1)

* B(2:N-1))./(ones(T-1,1)*C_vn(2:N-1))))

+ (x.*pi).^2.*(2.*a(2:T,2:N-1)-b(2:T,2:N-1))

.* ((2.*a(2:T,2:N-1)-b(2:T,2:N-1)).*(a(2:T,2:N-1)

- ones(T-1,1)*A(2:N-1))./(ones(T-1,1)*C_j(2:N-1))

- a(2:T,2:N-1).*(b(2:T,2:N-1)-ones(T-1,1)

* B(2:N-1))./(ones(T-1,1)*C_j(2:N-1)))

+ ((a(2:T,2:N-1)-ones(T-1,1)*A(2:N-1))

- (a(2:T,1:N-2)-ones(T-1,1)*A(1:N-2)))

./ (ones(T-1,1)*C_sa(2:N-1))+(ones(T-1,1)

* Z_sa(2:N-1)).*((a(2:T,2:N-1)-a(1:T-1,2:N-1))
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./ ((t(2:T)-t(1:T-1))*ones(1,N-2))-(a(2:T,1:N-2)

- a(1:T-1,1:N-2))./((t(2:T)-t(1:T-1))*ones(1,N-2)))

- ((a(2:T,3:N)-ones(T-1,1)*A(3:N))-(a(2:T,2:N-1)

-ones(T-1,1)*A(2:N-1)))./(ones(T-1,1)*C_sa(3:N))

+ (ones(T-1,1)*Z_sa(3:N)).*((a(2:T,3:N)

- a(1:T-1,3:N))./((t(2:T)-t(1:T-1))*ones(1,N-2))

- (a(2:T,2:N-1)-a(1:T-1,2:N-1))./((t(2:T)-t(1:T-1))

* ones(1,N-2)))+(p(2:T,2:N-1).^2)./(4*a(2:T,2:N-1)

.* (ones(T-1,1)*L(2:N-1))) + (p(2:T,3:N).^2)

./ (4*a(2:T,2:N-1).*(ones(T-1,1)*L(3:N))));

P(2:T,N) = 1./(pi.*x.*b(2:T,N)) .* ((a(2:T,N)-A(N))./C_r(N)

+ dsda(2:T,N).*(dsda(2:T,N).*(a(2:T,N)-A(N))

./ C_sn(N)+dsdb(2:T,N).*(b(2:T,N)-B(N))./C_sn(N))

+ ((2.*a(2:T,N).*b(2:T,N))./(a(2:T,N).^2

+ b(2:T,N).^2)).*(1./a(2:T,N)).*tan(((2.*a(2:T,N)

.* b(2:T,N))./(a(2:T,N).^2+b(2:T,N).^2))

.* ((1./a(2:T,N)).*(a(2:T,N)-A(N))./C_vn(N)

- (1./b(2:T,N)).*(b(2:T,N)-B(N))./C_vn(N)))

+ (x.*pi).^2.*(2.*a(2:T,N)-b(2:T,N))

.* ((2.*a(2:T,N)-b(2:T,N)).*(a(2:T,N)-A(N))

./ C_j(N)-a(2:T,N).*(b(2:T,N)-B(N))./C_j(N))

+ ((a(2:T,N)-A(N))-(a(2:T,N-1)-A(N-1)))./C_sa(N)

+ Z_sa(N).*((a(2:T,N)-a(1:T-1,N))./(t(2:T)

- t(1:T-1))-(a(2:T,N-1)-a(1:T-1,N-1))./(t(2:T)

- t(1:T-1)))+(a(2:T,N)-A(N))./C_sa(N+1)

+ Z_sa(N+1).*(a(2:T,N)-a(1:T-1,N))./(t(2:T)

- t(1:T-1)) + (p(2:T,N).^2)./(4.*a(2:T,N).*L(N)));

P(2:T,N+1) = V(2:T)./C_p-P_0;

% Calculation of the flow

Q(1,1:N+1) = 0; %m3/s % Initial volume flow is set to zero

Q(2:T,1) = p(2:T,1)./L(1) .* sqrt( (sqrt(a(2:T,1).*A(1))

.* sqrt(b(2:T,1).*B(1))) ./ (A(1)*B(1)) );

Q(2:T,2:N) = p(2:T,2:N)./(ones(T-1,1)*L(2:N))

.* sqrt( (sqrt(a(2:T,1:N-1).*a(2:T,2:N))

.* sqrt(b(2:T,1:N-1).*b(2:T,2:N)))

./ (ones(T-1,1)*(sqrt(A(1:N-1).*A(2:N))

.*sqrt(B(1:N-1).*B(2:N)))) );

Q(2:T,N+1) = M(2:T)./L_c;

% Model output

save ’hh10.mat’ t a b p P Q V M f
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The hh12 master program

% hh12.m

% A model for blood flow of a HH-stage 12 embryonic heart.

% The flow model is based on the embedded tube model.

function hh12

%% Initialization of the model

global N x A B; % The dimensions of the tubular heart

global C_sn C_vn C_r C_j L C_sa Z_sa L_c R_c R_p C_p;

global P_0 eta f_B f IFT_con Vent_con OFT_con;

global Pumpsections Pumptimes delay;

a = 0; b = 0; p = 0; P = 0; Q = 0;

N = 29; % The number of sections in the model

% Acceptable numbers = [1 2 4 5 10 20 29 58 97 116]

f = 1.5; %Hz % The frequency of the pump

% Frequencies measured = [1.25 1.32 1.72 1.90];

periods = 3; % The number of periods in the simulation

time = periods * 1/f; %seconds % The time of the simulation

%% Tracing of the heart loop

% Lengths

L_Sinus_venosis = 70e-6; %m

L_Primitive_atrium = 200e-6; %m

L_Left_ventricle = 270e-6; %m

L_Right_ventricle = 370e-6; %m

L_Proximal_outflow_tract = 250e-6; %m

% Diameters

D_Sinus_venosis = 350e-6; %m

D_Venous_pole = 330e-6; %m

D_Central_atrium = 320e-6; %m

D_Upper_atrium = 280e-6; %m

D_lower_left_ventricle = 250e-6; %m

D_Central_left_ventricle = 250e-6; %m

D_Left_lateral_furrow = 250e-6; %m

D_Central_right_ventricle = 230e-6; %m
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D_Upper_right_ventricle = 170e-6; %m

D_Conoventricular_sulcus = 150e-6; %m

D_Proximal_outflow_tract = 150e-6; %m

D_Distal_outflow_tract = 150e-6; %m

D_Arterial_outlet = 130e-6; %m

% Layers

h_my = 15e-6; %m % The thickness of the myocardial layer

h_cj = 70e-6; %m % The thickness of the cardiac jelly

h_en = h_my/2; %m % The thickness of the endocardial layer

% Dimension setup

tubelength = L_Sinus_venosis+L_Primitive_atrium

+ L_Left_ventricle+L_Right_ventricle

+ L_Proximal_outflow_tract;

lengths = [0 L_Sinus_venosis L_Sinus_venosis

+3*L_Primitive_atrium/8 L_Sinus_venosis

+6*L_Primitive_atrium/8 L_Sinus_venosis

+L_Primitive_atrium+L_Left_ventricle/3

L_Sinus_venosis+L_Primitive_atrium

+2*L_Left_ventricle/3 L_Sinus_venosis

+L_Primitive_atrium+L_Left_ventricle

L_Sinus_venosis+L_Primitive_atrium

+L_Left_ventricle+4*L_Right_ventricle/10

L_Sinus_venosis+L_Primitive_atrium

+L_Left_ventricle+7*L_Right_ventricle/10

L_Sinus_venosis+L_Primitive_atrium

+L_Left_ventricle+L_Right_ventricle

L_Sinus_venosis+L_Primitive_atrium

+L_Left_ventricle+L_Right_ventricle

+2*L_Proximal_outflow_tract/5

L_Sinus_venosis+L_Primitive_atrium

+L_Left_ventricle+L_Right_ventricle

+9*L_Proximal_outflow_tract/15 tubelength];

diameters = [D_Sinus_venosis D_Venous_pole D_Central_atrium

D_Upper_atrium D_lower_left_ventricle

D_Central_left_ventricle D_Left_lateral_furrow

D_Central_right_ventricle

D_Upper_right_ventricle

D_Conoventricular_sulcus

D_Proximal_outflow_tract

D_Distal_outflow_tract D_Arterial_outlet];



248 Mathematical Modeling of Flow Characteristics in the Embryonic Heart

relative_cardiac_jelly = [0.7 0.9 0.8 0.7 0.9 0.9 1 1 1

1.35 1.3 1.1 1.1] * (h_cj

/(D_Central_right_ventricle/2));

x = tubelength/N; %m % The length of a section of the tube

% The major and minor axis of the model

l_array = 0:10^(-6):tubelength;

for d=1:length(diameters)-1

coef = polyfit(lengths(d:d+1),diameters(d:d+1)/2,1);

a_array((10^6*lengths(d)+1):(10^6*lengths(d+1)+1)) =

polyval(coef,l_array((10^6*lengths(d)+1)

:(10^6*lengths(d+1)+1)));

coef = polyfit(lengths(d:d+1),(diameters(d:d+1)/2)

.*(1-relative_cardiac_jelly(d:d+1)),1);

b_array((10^6*lengths(d)+1):(10^6*lengths(d+1)+1)) =

polyval(coef,l_array((10^6*lengths(d)+1)

:(10^6*lengths(d+1)+1)));

end

for n=1:N

index = uint16(((n-1)*x+x/2)*10^6);

A(n) = a_array(index); %m % The major axis at rest

B(n) = b_array(index); %m % The minor axis at rest

end

a(1:N) = A(1:N); %m % The dynamic major axis of the tube

b(1:N) = B(1:N); %m % The dynamic minor axis of the tube

% Curvature

R_B(1:N) = 500e-6; %m % The radius of curvature

startindex = find(x*(1:N)>L_Sinus_venosis,1,’first’);

endindex = find(x*(1:N)>L_Sinus_venosis+L_Primitive_atrium

+ L_Left_ventricle+L_Right_ventricle+(1/4)

* L_Proximal_outflow_tract,1,’first’);

theta(1:N) = 0; %deg. % The bending angle for each section

theta(startindex:endindex) = (x./(2.*pi

.* R_B(startindex:endindex))).*360;

%% Boundary conditions

P_0 = 26.7; %Pa % The mean pressure at the venous end

L_c = 6.52e8; %kg/m4 % Inertance of the vascular system

R_c = 3.55e11; %Pa.s/m3 % Characteristic resistance

R_p = 9.62e11; %Pa.s/m3 % Peripheral resistance

C_p = 0.36e-12; %m3/Pa % Capacitance of the vascular system
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V_0 = P_0*C_p; %m3 % Equilibrium vascular system volume

V = V_0; %m3 % The dynamical volume of the vascular system

M = 0; %Pa.s % The momentum through the vascular system

%% Parameter estimation

% The physical parameters of the heart tube and the blood

rho = 1.0e3; %kg/m3 % The density of embryonic blood

eta = 3.8e-3; %Pa.s % The viscosity of embryonic blood

E_my = 66.6; %Pa % Young’s modulus for the myocardial layer

E_cj = 18; %Pa % Young’s modulus for the cardiac jelly

E_en = E_my; %Pa % Young’s modulus for the endocardial layer

%% The pumping mechanism

p(1:N) = 0; %kg*m/s % The initial momentum of the flow

T_prox_contraction = 123.7e-3; %s % Proximal contraction

T_dist_contraction = 168.6e-3; %s % Distal contraction

T_prox_relaxation = 193.0e-3; %s % Proximal relaxation

T_dist_relaxation = 245.5e-3; %s % Distal relaxation

Wave_velocity = 4.2e-3; %m/s % Contraction wave velocity

Diametric_contraction = 0.25; % Diametric contraction ratio

% Tracing of the contraction functions

% Given by: X(t) = 1 - a*sin(pi*b*(1-exp(-c*time)))

IFT_con = [0.4287 1.3480 0.001015];

Vent_con = [0.3329 1.0635 0.001418];

OFT_con = [0.3072 6.6597 0.00006598];

IFT_con(1) = (Diametric_contraction/Vent_con(1))

* IFT_con(1);

OFT_con(1) = (Diametric_contraction/Vent_con(1))

* OFT_con(1);

Vent_con(1) = (Diametric_contraction/Vent_con(1))

* Vent_con(1);

IFT_con(3) = -log((Vent_con(2)-1)/Vent_con(2))

/ (T_prox_contraction+T_prox_relaxation)

* (IFT_con(3)/Vent_con(3));

Vent_con(3) = -log((Vent_con(2)-1)/Vent_con(2))

/ (T_prox_contraction+T_prox_relaxation);

OFT_con(3) = -log((OFT_con(2)-1)/OFT_con(2))

/ (T_dist_contraction+T_dist_relaxation);
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% Defining the contraction durations

IFT_time = (-1/IFT_con(3))*log((IFT_con(2)-1)/IFT_con(2));

Vent_time = (-1/Vent_con(3))

* log((Vent_con(2)-1)/Vent_con(2));

OFT_time = (-1/OFT_con(3))*log((OFT_con(2)-1)/OFT_con(2));

Pumptimes = [IFT_time Vent_time OFT_time];

% Defining the contraction zones

IFT_section = find(x*(1:N)>L_Sinus_venosis,1,’first’);

Vent_section = find(x*(1:N)>L_Sinus_venosis

+ L_Primitive_atrium,1,’first’);

OFT_section = find(x*(1:N)>L_Sinus_venosis

+ L_Primitive_atrium+L_Left_ventricle

+ L_Right_ventricle,1,’first’);

End_section = find(x*(1:N)>L_Sinus_venosis

+ L_Primitive_atrium+L_Left_ventricle

+ L_Right_ventricle

+ (2/3)*L_Proximal_outflow_tract,1,’first’);

Pumpsections = [IFT_section Vent_section

OFT_section End_section];

% Defining the phase shift between sections

delay = x/Wave_velocity;

The rest of the hh12 master program is similar to the master program for the
stage 10 embryo and thus it will not be repeated here.
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The hh14 master program

% hh14.m

% A model for blood flow of a HH-stage 14 embryonic heart.

% The flow model is based on the embedded tube model.

function hh14

%% Initialization of the model

global N x A B; % The dimensions of the tubular heart

global C_sn C_vn C_r C_j L C_sa Z_sa L_c R_c R_p C_p;

global P_0 eta f_B f IFT_con Vent_con OFT_con;

global Pumpsections Pumptimes delay;

a = 0; b = 0; p = 0; P = 0; Q = 0;

N = 45; % The number of sections in the model

% Acceptable numbers = [1 3 5 9 15 19 45 57 95 171]

f = 1.8; %Hz % The frequency of the pump

% Frequencies measured = [1.70 1.90 1.93 1.97];

periods = 3; % The number of periods in the simulation

time = periods * 1/f; %seconds % The time of the simulation

%% Tracing of the heart loop

% Lengths

L_Sinus_venosis = 170e-6; %m

L_Primitive_atrium = 230e-6; %m

L_Left_ventricle = 480e-6; %m

L_Right_ventricle = 500e-6; %m

L_Proximal_outflow_tract = 230e-6; %m

L_Distal_outflow_tract = 100e-6; %m

% Diameters

D_Sinus_venosis = 450e-6; %m

D_Venous_pole = 250e-6; %m

D_Central_atrium = 270e-6; %m

D_Upper_atrium = 270e-6; %m

D_Atrioventricular_canal = 250e-6; %m

D_lower_left_ventricle = 280e-6; %m

D_Central_left_ventricle = 350e-6; %m

D_Upper_left_ventricle = 330e-6; %m

D_Left_lateral_furrow = 320e-6; %m
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D_Lower_right_ventricle = 330e-6; %m

D_Central_right_ventricle = 320e-6; %m

D_Upper_right_ventricle = 250e-6; %m

D_Conoventricular_sulcus = 200e-6; %m

D_Proximal_outflow_tract = 200e-6; %m

D_Distal_outflow_tract = 180e-6; %m

D_Arterial_outlet = 130e-6; %m

% Layers

h_my = 18e-6; %m % The thickness of the myocardial layer

h_cj = 85e-6; %m % The thickness of the cardiac jelly

h_en = h_my/2; %m % The thickness of the endocardial layer

% Dimension setup

tubelength = L_Sinus_venosis+L_Primitive_atrium

+ L_Left_ventricle+L_Right_ventricle

+ L_Proximal_outflow_tract

+ L_Distal_outflow_tract;

lengths = [0 L_Sinus_venosis/2 L_Sinus_venosis

L_Sinus_venosis+4*L_Primitive_atrium/10

L_Sinus_venosis+7*L_Primitive_atrium/10

L_Sinus_venosis+L_Primitive_atrium

L_Sinus_venosis+L_Primitive_atrium

+L_Left_ventricle/4 L_Sinus_venosis

+L_Primitive_atrium+L_Left_ventricle/2

L_Sinus_venosis+L_Primitive_atrium

+3*L_Left_ventricle/4 L_Sinus_venosis

+L_Primitive_atrium+L_Left_ventricle

L_Sinus_venosis+L_Primitive_atrium

+L_Left_ventricle+L_Right_ventricle/4

L_Sinus_venosis+L_Primitive_atrium

+L_Left_ventricle+L_Right_ventricle/2

L_Sinus_venosis+L_Primitive_atrium

+L_Left_ventricle+3*L_Right_ventricle/4

L_Sinus_venosis+L_Primitive_atrium

+L_Left_ventricle+L_Right_ventricle

L_Sinus_venosis+L_Primitive_atrium

+L_Left_ventricle+L_Right_ventricle

+L_Proximal_outflow_tract/2 L_Sinus_venosis

+L_Primitive_atrium+L_Left_ventricle

+L_Right_ventricle+L_Proximal_outflow_tract

+L_Distal_outflow_tract/2 tubelength];
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diameters = [D_Sinus_venosis D_Sinus_venosis D_Venous_pole

D_Central_atrium D_Upper_atrium

D_Atrioventricular_canal

D_lower_left_ventricle

D_Central_left_ventricle D_Upper_left_ventricle

D_Left_lateral_furrow D_Lower_right_ventricle

D_Central_right_ventricle

D_Upper_right_ventricle

D_Conoventricular_sulcus

D_Proximal_outflow_tract

D_Distal_outflow_tract D_Arterial_outlet];

relative_cardiac_jelly = [0.7 0.9 1 0.9 0.9 0.97 1 1 1

1 1 1 1.2 1.2 1.1 1 0.8] * (h_cj

/(D_Central_right_ventricle/2));

x = tubelength/N; %m % The length of a section of the tube

% The major and minor axis of the model

l_array = 0:10^(-6):tubelength;

for d=1:length(diameters)-1

coef = polyfit(lengths(d:d+1),diameters(d:d+1)/2,1);

a_array((10^6*lengths(d)+1):(10^6*lengths(d+1)+1)) =

polyval(coef,l_array((10^6*lengths(d)+1)

:(10^6*lengths(d+1)+1)));

coef = polyfit(lengths(d:d+1),(diameters(d:d+1)/2)

.*(1-relative_cardiac_jelly(d:d+1)),1);

b_array((10^6*lengths(d)+1):(10^6*lengths(d+1)+1)) =

polyval(coef,l_array((10^6*lengths(d)+1)

:(10^6*lengths(d+1)+1)));

end

for n=1:N

index = uint16(((n-1)*x+x/2)*10^6);

A(n) = a_array(index); %m % The major axis at rest

B(n) = b_array(index); %m % The minor axis at rest

end

a(1:N) = A(1:N); %m % The dynamic major axis of the tube

b(1:N) = B(1:N); %m % The dynamic minor axis of the tube

% Curvature

R_B(1:N) = 550e-6; %m % The radius of curvature

startindex = find(x*(1:N)>L_Sinus_venosis,1,’first’);

endindex = find(x*(1:N)>L_Sinus_venosis+L_Primitive_atrium

+ L_Left_ventricle+L_Right_ventricle

+ L_Proximal_outflow_tract,1,’first’);
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theta(1:N) = 0; %deg. % The bending angle for each section

theta(startindex:endindex) = (x./(2.*pi

.* R_B(startindex:endindex))).*360;

%% Boundary conditions

P_0 = 26.7; %Pa % The mean pressure at the venous end

L_c = 1.38e8; %kg/m4 % Inertance of the vascular system

R_c = 0.86e11; %Pa.s/m3 % Characteristic resistance

R_p = 3.51e11; %Pa.s/m3 % Peripheral resistance

C_p = 1.39e-12; %m3/Pa % Capacitance of the vascular system

V_0 = P_0*C_p; %m3 % Equilibrium vascular system volume

V = V_0; %m3 % The dynamical volume of the vascular system

M = 0; %Pa.s % The momentum through the vascular system

%% Parameter estimation

% The physical parameters of the heart tube and the blood

rho = 1.0e3; %kg/m3 % The density of embryonic blood

eta = 3.8e-3; %Pa.s % The viscosity of embryonic blood

E_my = 93.3; %Pa % Young’s modulus for the myocardial layer

E_cj = 39; %Pa % Young’s modulus for the cardiac jelly

E_en = E_my; %Pa % Young’s modulus for the endocardial layer

%% The pumping mechanism

p(1:N) = 0; %kg*m/s % The initial momentum of the flow

T_prox_contraction = 88.8e-3; %s % Proximal contraction

T_dist_contraction = 150.1e-3; %s % Distal contraction

T_prox_relaxation = 144.5e-3; %s % Proximal relaxation

T_dist_relaxation = 145.5e-3; %s % Distal relaxation

Wave_velocity = 9.4e-3; %m/s % Contraction wave velocity

Diametric_contraction = 0.263; % Diametric contraction ratio

% Tracing of the contraction functions

% Given by: X(t) = 1 - a*sin(pi*b*(1-exp(-c*time)))

IFT_con = [0.4287 1.3480 0.001015];

Vent_con = [0.3329 1.0635 0.001418];

OFT_con = [0.3072 6.6597 0.00006598];
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IFT_con(1) = (Diametric_contraction/Vent_con(1))

* IFT_con(1);

OFT_con(1) = (Diametric_contraction/Vent_con(1))

* OFT_con(1);

Vent_con(1) = (Diametric_contraction/Vent_con(1))

* Vent_con(1);

IFT_con(3) = -log((Vent_con(2)-1)/Vent_con(2))

/ (T_prox_contraction+T_prox_relaxation)

* (IFT_con(3)/Vent_con(3));

Vent_con(3) = -log((Vent_con(2)-1)/Vent_con(2))

/ (T_prox_contraction+T_prox_relaxation);

OFT_con(3) = -log((OFT_con(2)-1)/OFT_con(2))

/ (T_dist_contraction+T_dist_relaxation);

% Defining the contraction durations

IFT_time = (-1/IFT_con(3))*log((IFT_con(2)-1)/IFT_con(2));

Vent_time = (-1/Vent_con(3))

* log((Vent_con(2)-1)/Vent_con(2));

OFT_time = (-1/OFT_con(3))*log((OFT_con(2)-1)/OFT_con(2));

Pumptimes = [IFT_time Vent_time OFT_time];

% Defining the contraction zones

IFT_section = find(x*(1:N)>L_Sinus_venosis,1,’first’);

Vent_section = find(x*(1:N)>L_Sinus_venosis

+ L_Primitive_atrium,1,’first’);

OFT_section = find(x*(1:N)>L_Sinus_venosis

+ L_Primitive_atrium+L_Left_ventricle

+ L_Right_ventricle,1,’first’);

End_section = find(x*(1:N)>L_Sinus_venosis

+ L_Primitive_atrium+L_Left_ventricle

+ L_Right_ventricle+L_Proximal_outflow_tract

+(1/2)*L_Distal_outflow_tract,1,’first’);

Pumpsections = [IFT_section Vent_section

OFT_section End_section];

% Defining the phase shift between sections

delay = x/Wave_velocity;

The rest of the hh14 master program is similar to the master program for the
stage 10 embryo and thus it will not be repeated here.
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The hh16 master program

% hh16.m

% A model for blood flow of a HH-stage 16 embryonic heart.

% The flow model is based on the embedded tube model.

function hh16

%% Initialization of the model

global N x A B; % The dimensions of the tubular heart

global C_sn C_vn C_r C_j L C_sa Z_sa L_c R_c R_p C_p;

global P_0 eta f_B f IFT_con Vent_con OFT_con;

global Pumpsections Pumptimes delay;

a = 0; b = 0; p = 0; P = 0; Q = 0;

N = 30; % The number of sections in the model

% Acceptable numbers = [1 2 3 5 6 9 10 13 15 18 26 30 39

45 65 78 90 117 130]

f = 2.0; %Hz % The frequency of the pump

% Frequencies measured = [1.76 2.00 2.03];

periods = 3; % The number of periods in the simulation

time = periods * 1/f; %seconds % The time of the simulation

%% Tracing of the heart loop

% Lengths

L_Sinus_venosis = 230e-6; %m

L_Primitive_atrium = 470e-6; %m

L_Left_ventricle = 700e-6; %m

L_Right_ventricle = 500e-6; %m

L_Proximal_outflow_tract = 270e-6; %m

L_Distal_outflow_tract = 170e-6; %m

% Diameters

D_Sinus_venosis = 470e-6; %m

D_Venous_pole = 370e-6; %m

D_Central_atrium = 370e-6; %m

D_Upper_atrium = 350e-6; %m

D_Atrioventricular_canal = 330e-6; %m

D_lower_left_ventricle = 380e-6; %m

D_Central_left_ventricle = 470e-6; %m

D_Upper_left_ventricle = 400e-6; %m
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D_Left_lateral_furrow = 350e-6; %m

D_Lower_right_ventricle = 350e-6; %m

D_Central_right_ventricle = 350e-6; %m

D_Upper_right_ventricle = 300e-6; %m

D_Conoventricular_sulcus = 270e-6; %m

D_Proximal_outflow_tract = 250e-6; %m

D_Distal_outflow_tract = 200e-6; %m

D_Arterial_outlet = 170e-6; %m

% Layers

h_my = 20e-6; %m % The thickness of the myocardial layer

h_cj = 85e-6; %m % The thickness of the cardiac jelly

h_en = h_my/2; %m % The thickness of the endocardial layer

% Dimension setup

tubelength = L_Sinus_venosis+L_Primitive_atrium

+ L_Left_ventricle+L_Right_ventricle

+ L_Proximal_outflow_tract

+ L_Distal_outflow_tract;

lengths = [0 L_Sinus_venosis/2 L_Sinus_venosis

L_Sinus_venosis+4*L_Primitive_atrium/10

L_Sinus_venosis+7*L_Primitive_atrium/10

L_Sinus_venosis+L_Primitive_atrium

L_Sinus_venosis+L_Primitive_atrium

+L_Left_ventricle/4 L_Sinus_venosis

+L_Primitive_atrium+L_Left_ventricle/2

L_Sinus_venosis+L_Primitive_atrium

+3*L_Left_ventricle/4 L_Sinus_venosis

+L_Primitive_atrium+L_Left_ventricle

L_Sinus_venosis+L_Primitive_atrium

+L_Left_ventricle+L_Right_ventricle/4

L_Sinus_venosis+L_Primitive_atrium

+L_Left_ventricle+L_Right_ventricle/2

L_Sinus_venosis+L_Primitive_atrium

+L_Left_ventricle+3*L_Right_ventricle/4

L_Sinus_venosis+L_Primitive_atrium

+L_Left_ventricle+L_Right_ventricle

L_Sinus_venosis+L_Primitive_atrium

+L_Left_ventricle+L_Right_ventricle

+L_Proximal_outflow_tract/2 L_Sinus_venosis

+L_Primitive_atrium+L_Left_ventricle

+L_Right_ventricle+L_Proximal_outflow_tract

+L_Distal_outflow_tract/2 tubelength];
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diameters = [D_Sinus_venosis D_Sinus_venosis D_Venous_pole

D_Central_atrium D_Upper_atrium

D_Atrioventricular_canal

D_lower_left_ventricle

D_Central_left_ventricle

D_Upper_left_ventricle

D_Left_lateral_furrow D_Lower_right_ventricle

D_Central_right_ventricle

D_Upper_right_ventricle

D_Conoventricular_sulcus

D_Proximal_outflow_tract

D_Distal_outflow_tract D_Arterial_outlet];

relative_cardiac_jelly = [0.7 0.9 1 0.9 0.9 1 0.8 0.75 0.8

1 0.95 1 1.1 1.4 1.3 1.1 1]*(h_cj

/(D_Central_right_ventricle/2));

x = tubelength/N; %m % The length of a section of the tube

% The major and minor axis of the model

l_array = 0:10^(-6):tubelength;

for d=1:length(diameters)-1

coef = polyfit(lengths(d:d+1),diameters(d:d+1)/2,1);

a_array((10^6*lengths(d)+1):(10^6*lengths(d+1)+1)) =

polyval(coef,l_array((10^6*lengths(d)+1)

:(10^6*lengths(d+1)+1)));

coef = polyfit(lengths(d:d+1),(diameters(d:d+1)/2)

.*(1-relative_cardiac_jelly(d:d+1)),1);

b_array((10^6*lengths(d)+1):(10^6*lengths(d+1)+1)) =

polyval(coef,l_array((10^6*lengths(d)+1)

:(10^6*lengths(d+1)+1)));

end

for n=1:N

index = uint16(((n-1)*x+x/2)*10^6);

A(n) = a_array(index); %m % The major axis at rest

B(n) = b_array(index); %m % The minor axis at rest

end

a(1:N) = A(1:N); %m % The dynamic major axis of the tube

b(1:N) = B(1:N); %m % The dynamic minor axis of the tube

% Curvature

R_B(1:N) = 600e-6; %m % The radius of curvature

startindex = find(x*(1:N)>L_Sinus_venosis,1,’first’);

endindex = find(x*(1:N)>L_Sinus_venosis+L_Primitive_atrium

+ L_Left_ventricle+L_Right_ventricle
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+ L_Proximal_outflow_tract

+ (1/4)*L_Distal_outflow_tract,1,’first’);

theta(1:N) = 0; %deg. % The bending angle for each section

theta(startindex:endindex) = (x./(2.*pi

.* R_B(startindex:endindex))).*360;

%% Boundary conditions

P_0 = 26.7; %Pa % The mean pressure at the venous end

L_c = 0.75e8; %kg/m4 % Inertance of the vascular system

R_c = 0.51e11; %Pa.s/m3 % Characteristic resistance

R_p = 1.87e11; %Pa.s/m3 % Peripheral resistance

C_p = 2.21e-12; %m3/Pa % Capacitance of the vascular system

V_0 = P_0*C_p; %m3 % Equilibrium vascular system volume

V = V_0; %m3 % The dynamical volume of the vascular system

M = 0; %Pa.s % The momentum through the vascular system

%% Parameter estimation

% The physical parameters of the heart tube and the blood

rho = 1.0e3; %kg/m3 % The density of embryonic blood

eta = 3.8e-3; %Pa.s % The viscosity of embryonic blood

E_my = 120; %Pa % Young’s modulus for the myocardial layer

E_cj = 60; %Pa % Young’s modulus for the cardiac jelly

E_en = E_my; %Pa % Young’s modulus for the endocardial layer

%% The pumping mechanism

p(1:N) = 0; %kg*m/s % The initial momentum of the flow

T_prox_contraction = 109.6e-3; %s % Proximal contraction

T_dist_contraction = 154.1e-3; %s % Distal contraction

T_prox_relaxation = 169.2e-3; %s % Proximal relaxation

T_dist_relaxation = 156.0e-3; %s % Distal relaxation

T_atrium_contraction = 140.0e-3; %s %Atrial contraction

Wave_velocity = 9.4e-3; %m/s % Contraction wave velocity

Diametric_contraction = 0.244; % Diametric contraction ratio

Diametric_contraction_atrium = 0.338; % Atrial contraction

% Tracing of the contraction functions

% Given by: X(t) = 1 - a*sin(pi*b*(1-exp(-c*time)))

IFT_con = [0.4287 1.3480 0.001015];

Vent_con = [0.3329 1.0635 0.001418];

OFT_con = [0.3072 6.6597 0.00006598];
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IFT_con(1) = (Diametric_contraction/Vent_con(1))

* IFT_con(1);

OFT_con(1) = (Diametric_contraction/Vent_con(1))

* OFT_con(1);

Vent_con(1) = (Diametric_contraction/Vent_con(1))

* Vent_con(1);

IFT_con(3) = -log((Vent_con(2)-1)/Vent_con(2))

/ (T_prox_contraction+T_prox_relaxation)

* (IFT_con(3)/Vent_con(3));

Vent_con(3) = -log((Vent_con(2)-1)/Vent_con(2))

/ (T_prox_contraction+T_prox_relaxation);

OFT_con(3) = -log((OFT_con(2)-1)/OFT_con(2))

/ (T_dist_contraction+T_dist_relaxation);

% Defining the contraction durations

IFT_time = (-1/IFT_con(3))*log((IFT_con(2)-1)/IFT_con(2));

Vent_time = (-1/Vent_con(3))

* log((Vent_con(2)-1)/Vent_con(2));

OFT_time = (-1/OFT_con(3))*log((OFT_con(2)-1)/OFT_con(2));

Pumptimes = [IFT_time Vent_time OFT_time];

% Defining the contraction zones

IFT_section = find(x*(1:N)>L_Sinus_venosis,1,’first’);

Vent_section = find(x*(1:N)>L_Sinus_venosis

+ L_Primitive_atrium,1,’first’);

OFT_section = find(x*(1:N)>L_Sinus_venosis

+ L_Primitive_atrium+L_Left_ventricle

+ L_Right_ventricle,1,’first’);

End_section = find(x*(1:N)>L_Sinus_venosis

+ L_Primitive_atrium+L_Left_ventricle

+ L_Right_ventricle+L_Proximal_outflow_tract

+(2/3)*L_Distal_outflow_tract,1,’first’);

Pumpsections = [IFT_section Vent_section

OFT_section End_section];

% Defining the phase shift between sections

delay = x/Wave_velocity;

The rest of the hh16 master program is similar to the master program for the
stage 10 embryo and thus it will not be repeated here.



Appendix C

Simulation Code for the Elliptic

Liebau’s Ring

For the simulations of Liebau’s ring with the elliptic and the embedded models
two separate program rutines are used. Both follow the principles explained in
appendix A. The iterative and master program of the tube with elliptic cross-
section is presented first, followed by the iterative and master program of the
layered tube model.

The iterative elliptic program

% rkeliebau.m

% Runge-Kutta iteration of the elliptic flow model.

function output = rkeliebau(t,z)

global N f x A B S eta f_B C_sn C_vn L C_s Z_s;

global psection plength delay Comp;

% Defining radii and momentum from the input vector

a = (z(1:N-plength))’;

b = (z(N-plength+1:2*(N-plength)))’;

p = (z(2*(N-plength)+1:end))’;

% The piston pump

a(psection+plength:N) = a(psection:N-plength);

b(psection+plength:N) = b(psection:N-plength);

261
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a_max = A(psection:psection+plength-1) .* (1

+ sqrt(Comp.*(sin((pi/(plength+1)).*[1:plength]))));

b_min = B(psection:psection+plength-1) .* (1

- sqrt(Comp.*(sin((pi/(plength+1)).*[1:plength]))));

for pump=1:plength

a(psection+pump-1) = A(psection+pump-1);

b(psection+pump-1) = B(psection+pump-1);

a(psection+pump-1) = A(psection+pump-1)

+ (a_max(pump)-A(psection+pump-1))

.* sin(pi*f/0.1 .* (t-delay*(pump-1)))

.* (0<=mod(t-delay*(pump-1),1/f))

.* ((0.1/f)>=mod(t-delay*(pump-1),1/f))

.* sin((pi/(plength+1)).*pump);

b(psection+pump-1) = B(psection+pump-1)

- (B(psection+pump-1)-b_min(pump))

.* sin(pi*f/0.1 .* (t-delay*(pump-1)))

.* (0<=mod(t-delay*(pump-1),1/f))

.* ((0.1/f)>=mod(t-delay*(pump-1),1/f))

.* sin((pi/(plength+1)).*pump);

end

% Calculation of the elliptic integrals

ecc = sqrt(1 - (min(a,b)./max(a,b)).^2); % Eccentricity

first = (pi/2) .* ( 1 + (1/2)^2*ecc.^2 + (3/8)^2*ecc.^4

+ (15/48)^2*ecc.^6 + (105/384)^2*ecc.^8 );

second = (pi/2) .* ( 1 - (1/2)^2*ecc.^2

- (1/3)*(3/8)^2*ecc.^4 - (1/5)*(15/48)^2*ecc.^6

+ (1/7)*(105/384)^2*ecc.^8 );

% Calculation of the surface derivatives

dsda = (a>b).*(x.*(4./((a~=b).*a.^2-b.^2))

.* (a.^2.*second-b.^2.*first)) + (a==b).*x.*pi + (a<b)

.* ((4.*b.*a./((a<b).*b.^2-a.^2)).*(first-second));

dsdb = (a>b).*(x.*(4.*a.*b./((a~=b).*a.^2-b.^2))

.* (first-second)) + (a==b).*x.*pi

+ (a<b).*(x.* (4./((a<b).*b.^2-a.^2))

.* (b.^2.*second-a.^2.*first));

% Calculation of the chi factor

chi = ((1./b).*dsda.*dsdb-(1./a).*dsdb.^2-(2./3).*(S.^2)

.* (((2.*a.*b)./(a.^2+b.^2)).^2).*(1./(a.*b.^2)))

./ ((1./a).*dsda.*dsdb-(1./b).*dsda.^2-(2./3).*(S.^2)

.* (((2.*a.*b)./(a.^2+b.^2)).^2).*(1./(a.^2.*b)));
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% Calculation of the flow

Q(1:N-1) = (p(1:N-1)./L(1:N-1))

.* sqrt((sqrt(a(1:N-1).*a(2:N))

.* sqrt(b(1:N-1).*b(2:N)))

./ (sqrt(A(1:N-1).*A(2:N))

.* sqrt(B(1:N-1).*B(2:N))));

Q(N) = (p(N)/L(N)) * sqrt((sqrt(a(N)*a(1))*sqrt(b(N)*b(1)))

/ (sqrt(A(N)*A(1))*sqrt(B(N)*B(1))));

% Equations for the rate of change of the axes

da(1) = (Q(N)-Q(1))/(pi*x).*(chi(1)./(a(1)+chi(1).*b(1)));

db(1) = (Q(N)-Q(1))/(pi*x).*(1./(a(1)+chi(1).*b(1)));

da(2:N) = (Q(1:N-1)-Q(2:N))/(pi*x)

.* (chi(2:N)./(a(2:N)+chi(2:N).*b(2:N)));

db(2:N) = (Q(1:N-1)-Q(2:N))/(pi*x)

.* (1./(a(2:N)+chi(2:N).*b(2:N)));

% Equations for the dynamic pressure

P(1) = (1/(pi*x*b(1))) * ( dsda(1)*(dsda(1)*(a(1)-A(1))

/ C_sn(1) + dsdb(1)*(b(1)-B(1))/C_sn(1))

+ ((2*a(1)*b(1))/(a(1)^2+b(1)^2))*(1/a(1))

* tan(((2*a(1)*b(1))/(a(1)^2+b(1)^2))*((1/a(1))

* (a(1)-A(1))/C_vn(1)-(1/b(1))*(b(1)-B(1))/C_vn(1)))

+ ((a(1)-A(1))-(a(N)-A(N)))/C_s(N) + Z_s(N)

* (da(1)-da(N)) - ((a(2)-A(2))-(a(1)-A(1)))/C_s(1)

- Z_s(1)*(da(2)-da(1)) + (p(N)^2)/(4*a(1)*L(N))

+ (p(1)^2)/(4*a(1)*L(1)) );

P(2:N-1) = (1./(pi.*x.*b(2:N-1))) .* ( dsda(2:N-1)

.* (dsda(2:N-1).*(a(2:N-1)-A(2:N-1))./C_sn(2:N-1)

+ dsdb(2:N-1).*(b(2:N-1)-B(2:N-1))./C_sn(2:N-1))

+ ((2.*a(2:N-1).*b(2:N-1))./(a(2:N-1).^2

+ b(2:N-1).^2)).*(1./a(2:N-1)).*tan(((2.*a(2:N-1)

.* b(2:N-1))./(a(2:N-1).^2+b(2:N-1).^2))

.* ((1./a(2:N-1)).*(a(2:N-1)-A(2:N-1))

./ C_vn(2:N-1)-(1./b(2:N-1)).*(b(2:N-1)-B(2:N-1))

./ C_vn(2:N-1))) + ((a(2:N-1)-A(2:N-1))-(a(1:N-2)

- A(1:N-2)))./C_s(1:N-2) + Z_s(1:N-2).*(da(2:N-1)

- da(1:N-2)) - ((a(3:N)-A(3:N))-(a(2:N-1)

- A(2:N-1)))./C_s(2:N-1) - Z_s(2:N-1).*(da(3:N)

- da(2:N-1)) + (p(1:N-2).^2)./(4.*a(2:N-1)

.* L(1:N-2)) + (p(2:N-1).^2)./(4.*a(2:N-1)

.* L(2:N-1)) );
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P(N) = (1/(pi*x*b(N))) * ( dsda(N)*(dsda(N)*(a(N)-A(N))

/ C_sn(N) + dsdb(N)*(b(N)-B(N))/C_sn(N)) + ((2*a(N)

* b(N))/(a(N)^2+b(N)^2))*(1/a(N))*tan(((2*a(N)*b(N))

/ (a(N)^2+b(N)^2))*((1/a(N))*(a(N)-A(N))/C_vn(N)

- (1/b(N))*(b(N)-B(N))/C_vn(N))) + ((a(N)-A(N))

- (a(N-1)-A(N-1)))/C_s(N-1) + Z_s(N-1)*(da(N)-da(N-1))

- ((a(1)-A(1))-(a(N)-A(N)))/C_s(N) - Z_s(N)*(da(1)

- da(N)) + (p(N-1)^2)/(4*a(N)*L(N-1)) + (p(N)^2)

/ (4*a(N)*L(N)) );

% Equations for the rate of change of the momentum

dp(1) = sqrt(sqrt(a(1)*a(2))*sqrt(b(1)*b(2))/(sqrt(A(1)

* A(2))*sqrt(B(1)*B(2)))) * ( P(1) - P(2)

- ( (4*eta*x*(a(1)*a(2)+ b(1)*b(2)))/(sqrt(a(1)

* a(2))^3*sqrt(b(1)*b(2))^3) + (f_B(1)*(1/(4*pi))

* sqrt(sqrt(A(1)*A(2)*B(1)*B(2))/(sqrt(a(1)*a(2))^5

* sqrt(b(1)*b(2))^5))*sqrt((a(1)*a(2)+b(1)*b(2))/2)

* sign(p(1))*p(1)) ) * Q(1) ) + (p(1)/(4*a(1)))*da(1)

+ (p(1)/(4*a(2)))*da(2) + (p(1)/(4*b(1)))*db(1)

+ (p(1)/(4*b(2)))*db(2);

dp(2:N-1) = sqrt(sqrt(a(2:N-1).*a(3:N)).*sqrt(b(2:N-1)

.* b(3:N))./(sqrt(A(2:N-1).*A(3:N))

.* sqrt(B(2:N-1).*B(3:N)))).*( P(2:N-1) - P(3:N)

- ( (4.*eta.*x.*(a(2:N-1).*a(3:N)+b(2:N-1)

.* b(3:N)))./(sqrt(a(2:N-1).*a(3:N)).^3

.* sqrt(b(2:N-1).*b(3:N)).^3) + (f_B(2:N-1).*(1

./ (4.*pi)).*sqrt(sqrt(A(2:N-1).*A(3:N).*B(2:N-1)

.* B(3:N))./(sqrt(a(2:N-1).*a(3:N)).^5

.* sqrt(b(2:N-1).*b(3:N)).^5)).*sqrt((a(2:N-1)

.* a(3:N)+b(2:N-1).*b(3:N))./2).*sign(p(2:N-1))

.* p(2:N-1)) ) .* Q(2:N-1) ) + (p(2:N-1)./(4

.* a(2:N-1))).*da(2:N-1) + (p(2:N-1)./(4

.* a(3:N))).*da(3:N) + (p(2:N-1)./(4.*b(2:N-1)))

.* db(2:N-1) + (p(2:N-1)./(4.*b(3:N))).*db(3:N);

dp(N) = sqrt(sqrt(a(N)*a(1))*sqrt(b(N)*b(1))/(sqrt(A(N)

* A(1))*sqrt(B(N)*B(1)))) * ( P(N) - P(1) - ( (4*eta

* x*(a(N)*a(1)+b(N)*b(1)))/(sqrt(a(N)*a(1))^3

* sqrt(b(N)*b(1))^3) + (f_B(N)*(1/(4*pi))

* sqrt(sqrt(A(N)*A(1)*B(N)*B(1))/(sqrt(a(N)*a(1))^5

* sqrt(b(N)*b(1))^5))*sqrt((a(N)*a(1)+b(N)*b(1))/2)

* sign(p(N))*p(N)) ) * Q(N) ) + (p(N)/(4*a(N)))*da(N)

+ (p(N)/(4*a(1)))*da(1) + (p(N)/(4*b(N)))*db(N)

+ (p(N)/(4*b(1)))*db(1);
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da = [da(1:psection-1) da(psection+plength:N)];

db = [db(1:psection-1) db(psection+plength:N)];

% The output to the main program

output = [da’;db’;dp’];

The master elliptic program

% eliebau.m

% A model for flow in tubes with elliptic cross-section.

% The model is used to simulate an elliptic Liebau’s Ring.

function eliebau

% Initializing variables

global N f x A B S eta f_B C_sn C_vn L C_s Z_s;

global psection plength delay Comp;

a = 0; b = 0; p = 0; P = 0; Q = 0;

% The numbers we can change

N = 60; % The number of sections in the model

psection = 5; % The first section of the pump

plength = 3; % The number of sections of the pump

delay = 0; % The delay time for sequential pumping

Comp = 0.25; % The cross-sectional compression ratio

f = 2.06; %Hz % The frequency of the pump

periods = 50; % The number of periods in the simulation

time = periods * 1/f; %seconds % The time of the simulation

% The parameters of the tube at rest

l = 1.0; %m % The length of the tube

x = l/N; %m % Length per section

Eccentricity = 0.3; % Desired eccentricity of the ellipse

R1 = 0.01; %m The equivalent radius of the soft tube

R2 = 0.008; %m The equivalent radius of the rigid tube

A(1:N/2) = sqrt(R1^2 * (1/sqrt(1-Eccentricity^2))); %m

A(N/2+1:N) = sqrt(R2^2 * (1/sqrt(1-Eccentricity^2))); %m

B(1:N/2) = sqrt(R1^2 * sqrt(1-Eccentricity^2)); %m

B(N/2+1:N) = sqrt(R2^2 * sqrt(1-Eccentricity^2)); %m

a(1:N) = A(:); %m % The dynamic major axis of the tube

b(1:N) = B(:); %m % The dynamic minor axis of the tube
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p(1:N) = 0; %kg*m/s % The initial momentum of the flow

R_B(1:N) = l/(2*pi); % The bend radius for each section

theta(1:N) = (x.*360)./(2.*pi.*R_B); %deg. % The bend angle

S(1:N) = x*pi*(A+B).*(1+3*((A-B)./(A+B)).^2

./ (10+sqrt(4-3*((A-B)./(A+B)).^2))); %m2

% The physical properties of the tube and the liquid

rho = 1000; %kg/m3 % The density of the liquid (water)

eta = 0.001; %Pa.s % The viscosity of the liquid (water)

P_0 = 1e5; %Pa % The pressure outside the tube

E1 = 4.1e5; %Pa % Young’s modulus for the soft tube

E2 = 4.3e5; %Pa % Young’s modulus for the stiff tube

h1 = 0.001; %m % The wall thickness of the soft tube

h2 = 0.003; %m % The wall thickness of the rigid tube

% Womersley theory

alpha(1:N-1) = sqrt((2.*A(1:N-1).*A(2:N).*B(1:N-1).*B(2:N))

./ (A(1:N-1).*A(2:N)+B(1:N-1).*B(2:N)))

.* sqrt(2*pi*f*rho/eta);

alpha(N) = sqrt((2.*A(N).*A(1).*B(N).*B(1))./(A(N).*A(1)

+ B(N).*B(1))).*sqrt(2*pi*f*rho/eta);

psi = real(1 ./ (1 - 2./(alpha.*sqrt(-i))

.* besselj(1,alpha.*sqrt(-i))

./ besselj(0,alpha.*sqrt(-i))) - 8./(i.*alpha.^2));

% Equations for the curvature of the tube

xi = 0.042 .* theta.^0.69; % Angle correction factor

l_c(1:N-1) = sqrt(2.*A(1:N-1).*A(2:N).*B(1:N-1).*B(2:N)

./ (A(1:N-1).*A(2:N)+B(1:N-1).*B(2:N)));

l_c(N) = sqrt(2.*A(N).*A(1).*B(N).*B(1)

./ (A(N).*A(1)+B(N).*B(1)));

K_B(1:N) = 9.0704.*(log(R_B(1:N)./(2.*l_c(1:N)))).^2

- 16.9345.*(log(R_B(1:N)./(2.*l_c(1:N))))+19.6437;

f_T(1:N) = 0.0478.*(2.*l_c(1:N)).^(-0.2245);

% The calculation of the elements of the model

C_sn(1:N/2) = S(1:N/2)./(E1*h1); %m/Pa

C_sn(N/2+1:N) = S(N/2+1:N)./(E2*h2); %m/Pa

C_vn(1:N/2) = 1./(S(1:N/2).*(1/3).*(E1*h1)); %(Pa.m3)^-1

C_vn(N/2+1:N) = 1./(S(N/2+1:N).*(1/3).*(E2*h2));

L(1:N-1) = psi(1:N-1).*rho.*x./(pi.*sqrt(A(1:N-1)

.* A(2:N).*B(1:N-1).*B(2:N))); %kg/m4

L(N) = psi(N)*rho*x./(pi.*sqrt(A(N).*A(1).*B(N).*B(1)));
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C_s(1:N/2-1) = (x./((1/3)*(E1*h1))) .* 2./(pi

.* (sqrt(A(1:N/2-1).*A(2:N/2))+sqrt(B(1:N/2-1)

.* B(2:N/2))).*(1+3*((sqrt(A(1:N/2-1)

.* A(2:N/2))-sqrt(B(1:N/2-1).*B(2:N/2)))

./ (sqrt(A(1:N/2-1).*A(2:N/2))+sqrt(B(1:N/2-1)

.* B(2:N/2)))).^2./(10+sqrt(4

- 3.*((sqrt(A(1:N/2-1).*A(2:N/2))

- sqrt(B(1:N/2-1).*B(2:N/2)))

./ (sqrt(A(1:N/2-1).*A(2:N/2))+sqrt(B(1:N/2-1)

.* B(2:N/2)))).^2)))); %(Pa.m)^-1

C_s(N/2) = ((x./((1/3)*sqrt(E1*h1*E2*h2))).*2./( pi

.* (sqrt(A(N/2).*A(N/2+1))+sqrt(B(N/2).*B(N/2+1)))

.* (1+3*((sqrt(A(N/2).*A(N/2+1))-sqrt(B(N/2)

.* B(N/2+1)))./(sqrt(A(N/2).*A(N/2+1))+sqrt(B(N/2)

.* B(N/2+1)))).^2./(10+sqrt(4-3.*((sqrt(A(N/2)

.* A(N/2+1))-sqrt(B(N/2).*B(N/2+1)))./(sqrt(A(N/2)

.* A(N/2+1))+sqrt(B(N/2).*B(N/2+1)))).^2)) ))

+ (x./((1/3)*(E2*h2))).* 2./( pi.*(sqrt(A(N/2)

.* A(N/2+1))+sqrt(B(N/2).*B(N/2+1))).*(1

+ 3*((sqrt(A(N/2).*A(N/2+1))-sqrt(B(N/2)

.* B(N/2+1)))./(sqrt(A(N/2).*A(N/2+1))+sqrt(B(N/2)

.* B(N/2+1)))).^2./(10+sqrt(4-3.*((sqrt(A(N/2)

.* A(N/2+1))-sqrt(B(N/2).*B(N/2+1)))./(sqrt(A(N/2)

.* A(N/2+1))+sqrt(B(N/2).*B(N/2+1)))).^2)) )))/2;

C_s(N/2+1:N-1) = (x./((1/3)*(E2*h2))) .* 2./( pi

.* (sqrt(A(N/2+1:N-1).*A(N/2+2:N))

+ sqrt(B(N/2+1:N-1).*B(N/2+2:N))).*(1

+ 3*((sqrt(A(N/2+1:N-1).*A(N/2+2:N))

- sqrt(B(N/2+1:N-1).*B(N/2+2:N)))

./ (sqrt(A(N/2+1:N-1).*A(N/2+2:N))

+ sqrt(B(N/2+1:N-1).*B(N/2+2:N)))).^2./(10

+ sqrt(4-3.*((sqrt(A(N/2+1:N-1).*A(N/2+2:N))

- sqrt(B(N/2+1:N-1).*B(N/2+2:N)))

./ (sqrt(A(N/2+1:N-1).*A(N/2+2:N))

+ sqrt(B(N/2+1:N-1).*B(N/2+2:N)))).^2)) ));

C_s(N) = ((x./((1/3)*sqrt(E1*h1*E2*h2))) .* 2./( pi

.* (sqrt(A(N).*A(1))+sqrt(B(N).*B(1))).*(1

+ 3*((sqrt(A(N).*A(1))-sqrt(B(N).*B(1)))./(sqrt(A(N)

.* A(1))+sqrt(B(N).*B(1)))).^2./(10+sqrt(4

- 3.*((sqrt(A(N).*A(1))-sqrt(B(N).*B(1)))./(sqrt(A(N)

.*A(1))+sqrt(B(N).*B(1)))).^2))))+(x./((1/3)*(E2

* h2))) .* 2./( pi.*(sqrt(A(N).*A(1))

+ sqrt(B(N).*B(1))).*(1+3*((sqrt(A(N).*A(1))
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- sqrt(B(N).*B(1)))./(sqrt(A(N).*A(1))+sqrt(B(N)

.* B(1)))).^2./(10+sqrt(4-3.*((sqrt(A(N).*A(1))

- sqrt(B(N).*B(1)))./(sqrt(A(N).*A(1))

+ sqrt(B(N).*B(1)))).^2)) )))/2; %(Pa.m)^-1

Z_s(1:N) = 0.01./C_s; %Pa.m

f_B = xi.*K_B.*f_T./psi; % The friction factor

% Call MatLab’s solver for ordinary differential equations

a = [a(1:psection-1) a(psection+plength:N)];

b = [b(1:psection-1) b(psection+plength:N)];

[t,z] = ode45(’rkeliebau’,[0 time],[a b p]);

a = z(:,1:N-plength); b = z(:,N-plength+1:2*(N-plength));

p = z(:,2*(N-plength)+1:end);

% The pressure actuator

a(1:length(t),psection+plength:N) =

a(1:length(t),psection:N-plength);

b(1:length(t),psection+plength:N) =

b(1:length(t),psection:N-plength);

a_max = A(psection:psection+plength-1) .* (1 + sqrt(Comp

.* (sin((pi/(plength+1)).*[1:plength]))));

b_min = B(psection:psection+plength-1) .* (1 - sqrt(Comp

.* (sin((pi/(plength+1)).*[1:plength]))));

for pump=1:plength

a(1:length(t),psection+pump-1) = A(psection+pump-1);

b(1:length(t),psection+pump-1) = B(psection+pump-1);

a(1:length(t),psection+pump-1) = A(psection+pump-1)

+ (a_max(pump)-A(psection+pump-1))

.* sin(pi*f/0.1 .* (t-delay*(pump-1)))

.* (0<=mod(t-delay*(pump-1),1/f))

.* ((0.1/f)>=mod(t-delay*(pump-1),1/f))

.* sin((pi/(plength+1)).*pump);

b(1:length(t),psection+pump-1) = B(psection+pump-1)

- (B(psection+pump-1)-b_min(pump))

.* sin(pi*f/0.1 .* (t-delay*(pump-1)))

.* (0<=mod(t-delay*(pump-1),1/f))

.* ((0.1/f)>=mod(t-delay*(pump-1),1/f))

.* sin((pi/(plength+1)).*pump);

end
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% Calculation of the elliptic integrals

ecc = sqrt(1 - (min(a,b)./max(a,b)).^2);

first = (pi/2) .* ( 1 + (1/2)^2*ecc.^2 + (3/8)^2*ecc.^4

+ (15/48)^2*ecc.^6 + (105/384)^2*ecc.^8 );

second = (pi/2) .* ( 1 - (1/2)^2*ecc.^2

- (1/3)*(3/8)^2*ecc.^4 - (1/5)*(15/48)^2*ecc.^6

+ (1/7)*(105/384)^2*ecc.^8 );

% Calculation of the surface derivatives

dsda = (a>b).*(x.*(4./((a>b).*a.^2-b.^2)).*(a.^2.*second

- b.^2.*first)) + (a==b).*x.*pi + (a<b)

.* ((4.*b.*a./((a<b).*b.^2-a.^2)).*(first-second));

dsdb = (a>b).*(x.*(4.*a.*b./((a<b).*a.^2-b.^2))

.* (first-second)) + (a==b).*x.*pi + (a<b).*(x.*(4

./ ((a<b).*b.^2-a.^2)).*(b.^2.*second-a.^2.*first));

% Calculation of driving pressure and volume flow

T = length(t);

P(1,1:N) = P_0; %Pa % The outside pressure

Q(1,1:N) = 0; %cm3/s % Initial volume flow is set to zero

P(2:T,1) = 1./(pi.*x.*b(2:T,1)).*(dsda(2:T,1).*(dsda(2:T,1)

.* (a(2:T,1)-A(1))./C_sn(1)+dsdb(2:T,1)

.* (b(2:T,1)-B(1))./C_sn(1)) + ((2.*a(2:T,1)

.* b(2:T,1))./(a(2:T,1).^2+b(2:T,1).^2)).*(1

./ a(2:T,1)).*tan(((2.*a(2:T,1).*b(2:T,1))

./ (a(2:T,1).^2+b(2:T,1).^2)).*((1./a(2:T,1))

.* (a(2:T,1)-A(1))./C_vn(1)-(1./b(2:T,1))

.* (b(2:T,1)-B(1))./C_vn(1)))

+ ((a(2:T,1)-A(1))-(a(2:T,N)-A(N)))./C_s(N)

+ Z_s(N).*((a(2:T,1)-a(1:T-1,1))./(t(2:T)

- t(1:T-1))-(a(2:T,N)-a(1:T-1,N))./(t(2:T)

- t(1:T-1))) - ((a(2:T,2)-A(2))-(a(2:T,1)-A(1)))

./ C_s(1) - Z_s(1).*((a(2:T,2)-a(1:T-1,2))

./ (t(2:T)-t(1:T-1))-(a(2:T,1)-a(1:T-1,1))

./ (t(2:T)-t(1:T-1))) + (p(2:T,N).^2)./(4

.* a(2:T,1).*L(N)) + (p(2:T,1).^2)./(4.*a(2:T,1)

.* L(1))) + P_0;

P(2:T,2:N-1) = 1./(pi.*x.*b(2:T,2:N-1)) .* (dsda(2:T,2:N-1)

.* (dsda(2:T,2:N-1).*(a(2:T,2:N-1)-ones(T-1,1)

* A(2:N-1))./(ones(T-1,1)*C_sn(2:N-1))

+ dsdb(2:T,2:N-1).*(b(2:T,2:N-1)-ones(T-1,1)

* B(2:N-1))./(ones(T-1,1)*C_sn(2:N-1))) + ((2

.* a(2:T,2:N-1).*b(2:T,2:N-1))
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./ (a(2:T,2:N-1).^2+b(2:T,2:N-1).^2)).*(1

./ a(2:T,2:N-1)).*tan(((2.*a(2:T,2:N-1)

.* b(2:T,2:N-1))./(a(2:T,2:N-1).^2

+ b(2:T,2:N-1).^2)).*((1./a(2:T,2:N-1))

.* (a(2:T,2:N-1)-ones(T-1,1)*A(2:N-1))

./ (ones(T-1,1)*C_vn(2:N-1))-(1./b(2:T,2:N-1))

.* (b(2:T,2:N-1)-ones(T-1,1)*B(2:N-1))

./ (ones(T-1,1)*C_vn(2:N-1))))+((a(2:T,2:N-1)

- ones(T-1,1)*A(2:N-1))-(a(2:T,1:N-2)

- ones(T-1,1)*A(1:N-2)))./(ones(T-1,1)

* C_s(1:N-2))+(ones(T-1,1)*Z_s(1:N-2))

.* ((a(2:T,2:N-1)-a(1:T-1,2:N-1))./((t(2:T)

- t(1:T-1))*ones(1,N-2))-(a(2:T,1:N-2)

- a(1:T-1,1:N-2))./((t(2:T)-t(1:T-1))

* ones(1,N-2)))-((a(2:T,3:N)-ones(T-1,1)

* A(3:N))-(a(2:T,2:N-1)-ones(T-1,1)*A(2:N-1)))

./ (ones(T-1,1)*C_s(2:N-1))+(ones(T-1,1)

* Z_s(2:N-1)).*((a(2:T,3:N)-a(1:T-1,3:N))

./ ((t(2:T)-t(1:T-1))*ones(1,N-2))

- (a(2:T,2:N-1)-a(1:T-1,2:N-1))./((t(2:T)

- t(1:T-1))*ones(1,N-2)))+(p(2:T,1:N-2).^2)

./ (4.*a(2:T,2:N-1).*(ones(T-1,1)*L(1:N-2)))

+ (p(2:T,2:N-1).^2)./(4.*a(2:T,2:N-1)

.* (ones(T-1,1)*L(2:N-1))) ) + P_0;

P(2:T,N) = 1./(pi.*x.*b(2:T,N)) .* ( dsda(2:T,N)

.*(dsda(2:T,N).*(a(2:T,N)-A(N))./C_sn(N)

+ dsdb(2:T,N).*(b(2:T,N)-B(N))./C_sn(N))

+ ((2.*a(2:T,N).*b(2:T,N))./(a(2:T,N).^2

+ b(2:T,N).^2)).*(1./a(2:T,N)).*tan(((2.*a(2:T,N)

.* b(2:T,N))./(a(2:T,N).^2+b(2:T,N).^2)).*((1

./ a(2:T,N)).*(a(2:T,N)-A(N))./C_vn(N)-(1

./ b(2:T,N)).*(b(2:T,N)-B(N))./C_vn(N)))

+ ((a(2:T,N)-A(N))-(a(2:T,N-1)-A(N-1)))./C_s(N-1)

+ Z_s(N-1).*((a(2:T,N)-a(1:T-1,N))./(t(2:T)

- t(1:T-1))-(a(2:T,N-1)-a(1:T-1,N-1))./(t(2:T)

- t(1:T-1)))-((a(2:T,1)-A(1))-(a(2:T,N)-A(N)))

./ C_s(N)-Z_s(N).*((a(2:T,1)-a(1:T-1,1))./(t(2:T)

- t(1:T-1))-(a(2:T,N)-a(1:T-1,N))./(t(2:T)

- t(1:T-1))) + (p(2:T,N-1).^2)./(4.*a(2:T,N)

.* L(N-1)) + (p(2:T,N).^2)./(4.*a(2:T,N).*L(N)) )

+ P_0;
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Q(2:T,1:N-1) = p(2:T,1:N-1)./(ones(T-1,1)*L(1:N-1))

.* sqrt( (sqrt(a(2:T,1:N-1).*a(2:T,2:N))

.* sqrt(b(2:T,1:N-1).*b(2:T,2:N)))

./ (ones(T-1,1)*(sqrt(A(1:N-1).*A(2:N))

.* sqrt(B(1:N-1).*B(2:N)))) );

Q(2:T,N) = p(2:T,N)./L(N) .* sqrt((sqrt(a(2:T,N).*a(2:T,1))

.* sqrt(b(2:T,N).*b(2:T,1))) ./ (sqrt(A(N)*A(1))

* sqrt(B(N)*B(1))));

save ’eliebau.mat’ t a b p P Q f

The iterative embedded program

% rkembliebau.m

% Runge-Kutta iteration of the embedded Liebau’s ring

function output = rkembliebau(t,z)

global N f x A B S eta f_B C_rn C_sn C_vn C_jn L C_s Z_s;

global psection plength delay Comp;

% Defining the radii and momentum from the input vector

a = (z(1:N-plength))’; b = (z(N-plength+1:2*N-plength))’;

p = (z(2*N-plength+1:end))’;

% The piston pump

a(psection+plength:N) = a(psection:N-plength);

a_min = sqrt(A(psection:psection+plength-1).^2

- (A(psection:psection+plength-1).^2

- (A(psection:psection+plength-1).* sqrt(1-Comp)).^2)

.* (sin((pi/(plength+1)).*[1:plength])));

for pump=1:plength

a(psection+pump-1) = A(psection+pump-1);

a(psection+pump-1) = sqrt(A(psection+pump-1)^2

- (A(psection+pump-1)^2-a_min(pump)^2)

* sin(pi*f/0.1 * (t-delay*(pump-1)))

* (0<=mod(t-delay*(pump-1),1/f))

* ((0.1/f)>=mod(t-delay*(pump-1),1/f)));

end
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% Calculation of the elliptic integrals

ecc = sqrt(1 - (min(a,b)./max(a,b)).^2);

first = (pi/2) .* ( 1 + (1/2)^2*ecc.^2 + (3/8)^2*ecc.^4

+ (15/48)^2*ecc.^6 + (105/384)^2*ecc.^8 );

second = (pi/2) .* ( 1 - (1/2)^2*ecc.^2

- (1/3)*(3/8)^2*ecc.^4 - (1/5)*(15/48)^2*ecc.^6

+ (1/7)*(105/384)^2*ecc.^8 );

% Calculation of the surface derivatives

dsda = (a>b).*(x.*(4./((a~=b).*a.^2-b.^2)).*(a.^2.*second

- b.^2.*first)) + (a==b).*x.*pi + (a<b).*((4.*b.*a

./ ((a<b).*b.^2-a.^2)).*(first-second));

dsdb = (a>b).*(x.*(4.*a.*b./((a~=b).*a.^2-b.^2)).*(first

- second)) + (a==b).*x.*pi + (a<b).*(x.*(4./((a<b)

.* b.^2-a.^2)).*(b.^2.*second-a.^2.*first));

% Calculation of the chi factor

chi = ((1./b).*dsda.*dsdb - (1./a).*dsdb.^2-(2./3).*(S.^2)

.* (((2.*a.*b)./(a.^2+b.^2)).^2).*(1./(a.*b.^2)))

./ ((1./a).*dsda.*dsdb - (1./b).*dsda.^2-(2./3).*(S.^2)

.* (((2.*a.*b)./(a.^2+b.^2)).^2).*(1./(a.^2.*b)));

% Calculation of the flow

Q(1:N-1) = (p(1:N-1)./L(1:N-1)).*sqrt((sqrt(a(1:N-1)

.* a(2:N)).*sqrt(b(1:N-1).*b(2:N)))

./ (sqrt(A(1:N-1).*A(2:N))

.* sqrt(B(1:N-1).*B(2:N))));

Q(N) = (p(N)/L(N)) * sqrt((sqrt(a(N)*a(1))*sqrt(b(N)*b(1)))

/ (sqrt(A(N)*A(1))*sqrt(B(N)*B(1))));

% Equations for the rate of change of the axes

da(1) = (Q(N)-Q(1))/(pi*x).*(chi(1)./(a(1)+chi(1).*b(1)));

db(1) = (Q(N)-Q(1))/(pi*x).*(1./(a(1)+chi(1).*b(1)));

da(2:N) = (Q(1:N-1)-Q(2:N))/(pi*x)

.* (chi(2:N)./(a(2:N)+chi(2:N).*b(2:N)));

db(2:N) = (Q(1:N-1)-Q(2:N))/(pi*x)

.* (1./(a(2:N)+chi(2:N).*b(2:N)));
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% Equations for the dynamic pressure

P(1) = (1/(pi*x*b(1))) * ( (a(1)-A(1))/C_rn(1) + dsda(1)

* (dsda(1)*(a(1)-A(1))/C_sn(1)+dsdb(1)*(b(1)-B(1))

/ C_sn(1)) + ((2*a(1)*b(1))/(a(1)^2+b(1)^2))*(1/a(1))

* tan(((2*a(1)*b(1))/(a(1)^2+b(1)^2))*((1/a(1))*(a(1)

- A(1))/C_vn(1)-(1/b(1))*(b(1)-B(1))/C_vn(1)))

- (x*pi)^2*(2*a(1)-b(1))*((2*a(1)-b(1))*(a(1)-A(1))

/ C_jn(1)-a(1)*(b(1)-B(1))/C_jn(1)) + ((a(1)-A(1))

- (a(N)-A(N)))/C_s(N) + Z_s(N)*(da(1)-da(N)) - ((a(2)

- A(2))-(a(1)-A(1)))/C_s(1) - Z_s(1)*(da(2)-da(1))

+ (p(N)^2)/(4*a(1)*L(N)) + (p(1)^2)/(4*a(1)*L(1)) );

P(2:N-1) = (1./(pi.*x.*b(2:N-1))) .* ( (a(2:N-1)-A(2:N-1))

./ C_rn(2:N-1) + dsda(2:N-1).*(dsda(2:N-1)

.* (a(2:N-1)-A(2:N-1))./C_sn(2:N-1)+dsdb(2:N-1)

.* (b(2:N-1)-B(2:N-1))./C_sn(2:N-1))+((2.*a(2:N-1)

.* b(2:N-1))./(a(2:N-1).^2+b(2:N-1).^2)).*(1

./ a(2:N-1)).*tan(((2.*a(2:N-1).*b(2:N-1))

./ (a(2:N-1).^2+b(2:N-1).^2)).*((1./a(2:N-1))

.* (a(2:N-1)-A(2:N-1))./C_vn(2:N-1)-(1./b(2:N-1))

.* (b(2:N-1)-B(2:N-1))./C_vn(2:N-1))) - (x*pi).^2

.* (2.*a(2:N-1)-b(2:N-1)).*((2.*a(2:N-1)-b(2:N-1))

.* (a(2:N-1)-A(2:N-1))./C_jn(2:N-1)-a(2:N-1)

.* (b(2:N-1)-B(2:N-1))./C_jn(2:N-1)) + ((a(2:N-1)

- A(2:N-1))-(a(1:N-2)-A(1:N-2)))./C_s(1:N-2)

+ Z_s(1:N-2).*(da(2:N-1)-da(1:N-2)) - ((a(3:N)

- A(3:N))-(a(2:N-1)-A(2:N-1)))./C_s(2:N-1)

- Z_s(2:N-1).*(da(3:N)-da(2:N-1))

+ (p(1:N-2).^2)./(4.*a(2:N-1).*L(1:N-2))

+ (p(2:N-1).^2)./(4.*a(2:N-1).*L(2:N-1)) );

P(N) = (1/(pi*x*b(N))) * ( (a(N)-A(N))/C_rn(N) + dsda(N)

* (dsda(N)*(a(N)-A(N))/C_sn(N)+dsdb(N)*(b(N)-B(N))

/ C_sn(N)) + ((2*a(N)*b(N))/(a(N)^2+b(N)^2))*(1/a(N))

* tan(((2*a(N)*b(N))/(a(N)^2+b(N)^2))*((1/a(N))*(a(N)

- A(N))/C_vn(N)-(1/b(N))*(b(N)-B(N))/C_vn(N)))

- (x*pi)^2*(2*a(N)-b(N))*((2*a(N)-b(N))*(a(N)-A(N))

/ C_jn(N)-a(N)*(b(N)-B(N))/C_jn(N)) + ((a(N)-A(N))

- (a(N-1)-A(N-1)))/C_s(N-1) + Z_s(N-1)*(da(N)-da(N-1))

- ((a(1)-A(1))-(a(N)-A(N)))/C_s(N) - Z_s(N)*(da(1)

- da(N)) + (p(N-1)^2)/(4*a(N)*L(N-1))

+ (p(N)^2)/(4*a(N)*L(N)) );
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% Equations for the rate of change of the momentum

dp(1) = sqrt(sqrt(a(1)*a(2))*sqrt(b(1)*b(2))/(sqrt(A(1)

* A(2))*sqrt(B(1)*B(2)))) * ( P(1) - P(2) - ( (4*eta

* x*(a(1)*a(2)+b(1)*b(2)))/(sqrt(a(1)*a(2))^3

* sqrt(b(1)*b(2))^3) + (f_B(1)*(1/(4*pi))

* sqrt(sqrt(A(1)*A(2)*B(1)*B(2))/(sqrt(a(1)*a(2))^5

* sqrt(b(1)*b(2))^5))*sqrt((a(1)*a(2)+b(1)*b(2))/2)

* sign(p(1))*p(1)) ) * Q(1) ) + (p(1)/(4*a(1)))*da(1)

+ (p(1)/(4*a(2)))*da(2) + (p(1)/(4*b(1)))*db(1)

+ (p(1)/(4*b(2)))*db(2);

dp(2:N-1) = sqrt(sqrt(a(2:N-1).*a(3:N)).*sqrt(b(2:N-1)

.* b(3:N))./(sqrt(A(2:N-1).*A(3:N))

.* sqrt(B(2:N-1).*B(3:N)))).*( P(2:N-1) - P(3:N)

- ( (4.*eta.*x.*(a(2:N-1).*a(3:N)+b(2:N-1)

.* b(3:N)))./(sqrt(a(2:N-1).*a(3:N)).^3

.* sqrt(b(2:N-1).*b(3:N)).^3) + (f_B(2:N-1).*(1

./ (4.*pi)).*sqrt(sqrt(A(2:N-1).*A(3:N).*B(2:N-1)

.* B(3:N))./(sqrt(a(2:N-1).*a(3:N)).^5

.* sqrt(b(2:N-1).*b(3:N)).^5)).*sqrt((a(2:N-1)

.* a(3:N)+b(2:N-1).*b(3:N))./2).*sign(p(2:N-1))

.* p(2:N-1)) ) .* Q(2:N-1) ) + (p(2:N-1)./(4

.* a(2:N-1))).*da(2:N-1) + (p(2:N-1)./(4

.* a(3:N))).*da(3:N) + (p(2:N-1)./(4.*b(2:N-1)))

.* db(2:N-1) + (p(2:N-1)./(4.*b(3:N))).*db(3:N);

dp(N) = sqrt(sqrt(a(N)*a(1))*sqrt(b(N)*b(1))/(sqrt(A(N)

* A(1))*sqrt(B(N)*B(1)))) * ( P(N) - P(1) - ( (4*eta

* x*(a(N)*a(1)+b(N)*b(1)))/(sqrt(a(N)*a(1))^3

* sqrt(b(N)*b(1))^3) + (f_B(N)*(1/(4*pi))

* sqrt(sqrt(A(N)*A(1)*B(N)*B(1))/(sqrt(a(N)*a(1))^5

* sqrt(b(N)*b(1))^5))*sqrt((a(N)*a(1)+b(N)*b(1))/2)

* sign(p(N))*p(N)) ) * Q(N) ) + (p(N)/(4*a(N)))*da(N)

+ (p(N)/(4*a(1)))*da(1) + (p(N)/(4*b(N)))*db(N)

+ (p(N)/(4*b(1)))*db(1);

da = [da(1:psection-1) da(psection+plength:N)];

% The output to the main program

output = [da’;db’;dp’];
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The master embedded program

% embliebau.m

% A model for pulsating flow in a layered tube.

% The model is used to simulate Liebau’s Ring.

function embliebau

% Initializing variables

global N f x A B S eta f_B C_rn C_sn C_vn C_jn L C_s Z_s;

global psection plength delay Comp;

a = 0; b = 0; p = 0; P = 0; Q = 0;

% The numbers we can change

N = 60; % The number of sections in the model

psection = 5; % The first section of the pump

plength = 3; % The number of sections of the pump

delay = 0; % The delay time for sequential pumping

Comp = 0.1; % The cross-sectional compression ratio

f = 2.06; %Hz % The frequency of the pump

periods = 50; % The number of periods in the simulation

time = periods * 1/f; %seconds % The time of the simulation

% The parameters of the tube at rest

l = 1.0; %m % The length of the tube

x = l/N; %m % Length per section

Eccentricity = 0.3; % Desired eccentricity of the ellipse

R1 = 0.01; %m The equivalent radius of the soft tube

R2 = 0.008; %m The equivalent radius of the rigid tube

A(1:N/2) = sqrt((R1^2)*(1/sqrt(1-Eccentricity))); %m

A(N/2+1:N) = sqrt((R2^2)*(1/sqrt(1-Eccentricity))); %m

B(1:N/2) = sqrt((R1^2)*sqrt(1-Eccentricity)); %m

B(N/2+1:N) = sqrt((R2^2)*sqrt(1-Eccentricity)); %m

a(1:N) = A(:); %m % The dynamic major axis of the tube

b(1:N) = B(:); %m % The dynamic minor axis of the tube

p(1:N) = 0; %kg*m/s % The initial momentum of the flow

R_B(1:N) = l/(2*pi); % The bend radius for each section

theta(1:N) = (x.*360)./(2.*pi.*R_B); %deg. % The bend angle

S(1:N) = x*pi*(A+B).*(1+3*((A-B)./(A+B)).^2

./(10+sqrt(4-3*((A-B)./(A+B)).^2))); %m2
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% The physical properties of the tube and the liquid

rho = 1000; %kg/m3 % The density of the liquid (water)

eta = 0.001; %Pa.s % The viscosity of the liquid (water)

P_0 = 1e5; %Pa % The pressure outside the tube

E1 = 4.1e5; %Pa % Young’s modulus for the soft tube

E2 = 4.3e5; %Pa % Young’s modulus for the rigid tube

h1 = 0.001; %m % The wall thickness of the soft tube

h2 = 0.003; %m % The wall thickness of the rigid tube

K1 = E1/10; %Pa % Volume modulus of the soft tube

K2 = E2/10; %Pa % Volume modulus of the rigid tube

% Womersley theory

alpha(1:N-1) = sqrt((2.*A(1:N-1).*A(2:N).*B(1:N-1).*B(2:N))

./(A(1:N-1).*A(2:N)+B(1:N-1).*B(2:N)))

.* sqrt(2*pi*f*rho/eta);

alpha(N) = sqrt((2.*A(N).*A(1).*B(N).*B(1))

./ (A(N).*A(1)+B(N).*B(1))).*sqrt(2*pi*f*rho/eta);

psi = real(1 ./ (1 - 2./(alpha.*sqrt(-i))

.* besselj(1,alpha.*sqrt(-i))

./ besselj(0,alpha.*sqrt(-i))) - 8./(i.*alpha.^2));

% Equations for the curvature of the tube

xi = 0.042 .* theta.^0.69; l_c(1:N-1) =

sqrt(2.*A(1:N-1).*A(2:N).*B(1:N-1).*B(2:N)

./ (A(1:N-1).*A(2:N)+B(1:N-1).*B(2:N)));

l_c(N) = sqrt(2.*A(N).*A(1).*B(N).*B(1)

./ (A(N).*A(1)+B(N).*B(1)));

K_B(1:N) = 9.0704.*(log(R_B(1:N)./(2.*l_c(1:N)))).^2

- 16.9345.*(log(R_B(1:N)./(2.*l_c(1:N))))+19.6437;

f_T(1:N) = 0.0478.*(2.*l_c(1:N)).^(-0.2245);

% The calculation of the elements of the network model

C_rn(1:N/2) = 1./(2*pi*x*E1*h1).*(A(1:N/2)); %(Pa.m)^-1

C_rn(N/2+1:N) = 1./(2*pi*x*E2*h2).*(A(N/2+1:N)); %(Pa.m)^-1

C_sn(1:N/2) = S(1:N/2)./(E1*h1/2); %m/Pa

C_sn(N/2+1:N) = S(N/2+1:N)./(E2*h2/2); %m/Pa

C_vn(1:N/2) = 1./(S(1:N/2).*(1/3).*(E1*h1/2)); %(Pa.m3)^-1

C_vn(N/2+1:N) = 1./(S(N/2+1:N).*(1/3).*(E2*h2/2));

C_jn(1:N/2) = (pi.*x.*(A(1:N/2).^2

- A(1:N/2).*B(1:N/2))) ./ K1; %m^3/Pa

C_jn(N/2+1:N) = (pi.*x.*(A(N/2+1:N).^2

- A(N/2+1:N).*B(N/2+1:N))) ./ K2; %m^3/Pa
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L(1:N-1) = psi(1:N-1).*rho.*x./(pi.*sqrt(A(1:N-1).*A(2:N)

.* B(1:N-1).*B(2:N))); %kg/m4

L(N) = psi(N)*rho*x./(pi.*sqrt(A(N).*A(1).*B(N).*B(1)));

C_s(1:N/2-1) = (x./((1/3)*(E1*h1))) .* 2./( pi

.* (sqrt(A(1:N/2-1).*A(2:N/2))+sqrt(B(1:N/2-1)

.* B(2:N/2))).*(1+3*((sqrt(A(1:N/2-1)

.* A(2:N/2))-sqrt(B(1:N/2-1).*B(2:N/2)))

./ (sqrt(A(1:N/2-1).*A(2:N/2))+sqrt(B(1:N/2-1)

.* B(2:N/2)))).^2./(10+sqrt(4

- 3.*((sqrt(A(1:N/2-1).*A(2:N/2))

- sqrt(B(1:N/2-1).*B(2:N/2)))

./ (sqrt(A(1:N/2-1).*A(2:N/2))

+ sqrt(B(1:N/2-1).*B(2:N/2)))).^2)) ));

C_s(N/2) = ((x./((1/3)*sqrt(E1*h1*E2*h2))) .* 2./( pi

.* (sqrt(A(N/2).*A(N/2+1))+sqrt(B(N/2).*B(N/2+1)))

.* (1+3*((sqrt(A(N/2).*A(N/2+1))-sqrt(B(N/2)

.* B(N/2+1)))./(sqrt(A(N/2).*A(N/2+1))+sqrt(B(N/2)

.* B(N/2+1)))).^2./(10+sqrt(4-3.*((sqrt(A(N/2)

.* A(N/2+1))-sqrt(B(N/2).*B(N/2+1)))./(sqrt(A(N/2)

.* A(N/2+1))+sqrt(B(N/2).*B(N/2+1)))).^2)) )) + (x

./ ((1/3)*(E2*h2))).*2./( pi.*(sqrt(A(N/2)

.* A(N/2+1))+sqrt(B(N/2).*B(N/2+1))).*(1+3

* ((sqrt(A(N/2).*A(N/2+1))-sqrt(B(N/2).*B(N/2+1)))

./ (sqrt(A(N/2).*A(N/2+1))+sqrt(B(N/2)

.* B(N/2+1)))).^2./(10+sqrt(4-3.*((sqrt(A(N/2)

.* A(N/2+1))-sqrt(B(N/2).*B(N/2+1)))./(sqrt(A(N/2)

.* A(N/2+1))+sqrt(B(N/2).*B(N/2+1)))).^2)) )))/2;

C_s(N/2+1:N-1) = (x./((1/3)*(E2*h2))) .* 2./( pi

.* (sqrt(A(N/2+1:N-1).*A(N/2+2:N))

+ sqrt(B(N/2+1:N-1).*B(N/2+2:N))).*(1

+ 3*((sqrt(A(N/2+1:N-1).*A(N/2+2:N))

- sqrt(B(N/2+1:N-1).*B(N/2+2:N)))

./ (sqrt(A(N/2+1:N-1).*A(N/2+2:N))

+ sqrt(B(N/2+1:N-1).*B(N/2+2:N)))).^2./(10

+ sqrt(4-3.*((sqrt(A(N/2+1:N-1).*A(N/2+2:N))

- sqrt(B(N/2+1:N-1).*B(N/2+2:N)))

./ (sqrt(A(N/2+1:N-1).*A(N/2+2:N))

+ sqrt(B(N/2+1:N-1).*B(N/2+2:N)))).^2)) ));
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C_s(N) = ((x./((1/3)*sqrt(E1*h1*E2*h2))) .* 2./( pi

.* (sqrt(A(N).*A(1))+sqrt(B(N).*B(1))).*(1

+ 3*((sqrt(A(N).*A(1))-sqrt(B(N).*B(1)))./(sqrt(A(N)

.* A(1))+sqrt(B(N).*B(1)))).^2./(10+sqrt(4-3

.* ((sqrt(A(N).*A(1))-sqrt(B(N).*B(1)))./(sqrt(A(N)

.* A(1))+sqrt(B(N).*B(1)))).^2)) )) + (x./((1/3)*(E2

* h2))).*2./(pi.*(sqrt(A(N).*A(1))+sqrt(B(N).*B(1)))

.* (1+3*((sqrt(A(N).*A(1))-sqrt(B(N).*B(1)))

./ (sqrt(A(N).*A(1))+sqrt(B(N).*B(1)))).^2./(10

+ sqrt(4-3.*((sqrt(A(N).*A(1))-sqrt(B(N).*B(1)))

./ (sqrt(A(N).*A(1))+sqrt(B(N).*B(1)))).^2)) )))/2;

Z_s(1:N) = 0.01./C_s; %Pa.m

f_B = xi.*K_B.*f_T./psi; % The friction factor

% Call MatLab’s solver for ordinary differential equations

a = [a(1:psection-1) a(psection+plength:N)];

[t,z] = ode45(’rkembliebau’,[0 time],[a b p]);

a = z(:,1:N-plength);

b = z(:,N-plength+1:2*N-plength);

p = z(:,2*N-plength+1:end);

% The compression pump

a(1:length(t),psection+plength:N) =

a(1:length(t),psection:N-plength);

a_min = sqrt(A(psection:psection+plength-1).^2

- (A(psection:psection+plength-1).^2

- (A(psection:psection+plength-1).* sqrt(1-Comp)).^2)

.* (sin((pi/(plength+1)).*[1:plength])));

for pump=1:plength

a(1:length(t),psection+pump-1) = A(psection+pump-1);

a(1:length(t),psection+pump-1) = sqrt(A(psection+pump-1).^2

- (A(psection+pump-1).^2-a_min(pump).^2)

.* sin(pi*f/0.1 .* (t-delay*(pump-1)))

.* (0<=mod(t-delay*(pump-1),1/f))

.* ((0.1/f)>=mod(t-delay*(pump-1),1/f)));

end
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% Calculation of the elliptic integrals

ecc = sqrt(1 - (min(a,b)./max(a,b)).^2);

first = (pi/2) .* ( 1 + (1/2)^2*ecc.^2 + (3/8)^2*ecc.^4

+ (15/48)^2*ecc.^6 + (105/384)^2*ecc.^8 );

second = (pi/2) .* ( 1 - (1/2)^2*ecc.^2

- (1/3)*(3/8)^2*ecc.^4 - (1/5)*(15/48)^2*ecc.^6

+ (1/7)*(105/384)^2*ecc.^8 );

% Calculation of the surface derivatives

dsda = (a>b).*(x.*(4./((a>b).*a.^2-b.^2)).*(a.^2.*second

- b.^2.*first)) + (a==b).*x.*pi + (a<b).*((4.*b.*a

./ ((a<b).*b.^2-a.^2)).*(first-second));

dsdb = (a)>b).*(x.*(4.*a.*b./((a<b).*a.^2-b.^2)).*(first

- second)) + (a==b).*x.*pi + (a<b).*(x.*(4./((a<b)

.* b.^2-a.^2)).*(b.^2.*second-a.^2.*first));

% Calculation of driving pressure and volume flow

T = length(t);

P(1,1:N) = P_0; %Pa % The outside pressure

Q(1,1:N) = 0; %cm3/s % Initial volume flow is set to zero

P(2:T,1) = 1./(pi.*x.*b(2:T,1)).*((a(2:T,1)-A(1))./C_rn(1)

+ dsda(2:T,1).*(dsda(2:T,1).*(a(2:T,1)-A(1))

./ C_sn(1)+dsdb(2:T,1).*(b(2:T,1)-B(1))./C_sn(1))

+ ((2.*a(2:T,1).* b(2:T,1))./(a(2:T,1).^2

+ b(2:T,1).^2)).*(1./a(2:T,1)).*tan(((2.*a(2:T,1)

.* b(2:T,1))./(a(2:T,1).^2+b(2:T,1).^2)).*((1

./ a(2:T,1)).*(a(2:T,1)-A(1))./C_vn(1)-(1

./ b(2:T,1)).*(b(2:T,1)-B(1))./C_vn(1)))

- (x*pi).^2.*(2.*a(2:T,1)-b(2:T,1)).*((2.*a(2:T,1)

- b(2:T,1)).*(a(2:T,1)-A(1))./C_jn(1)-a(2:T,1)

.* (b(2:T,1)-B(1))./C_jn(1)) + ((a(2:T,1)-A(1))

- (a(2:T,N)-A(N)))./C_s(N) + Z_s(N).*((a(2:T,1)

- a(1:T-1,1))./(t(2:T)-t(1:T-1))-(a(2:T,N)

- a(1:T-1,N))./(t(2:T)-t(1:T-1)))-((a(2:T,2)-A(2))

- (a(2:T,1)-A(1)))./C_s(1) - Z_s(1).*((a(2:T,2)

- a(1:T-1,2))./(t(2:T)-t(1:T-1))-(a(2:T,1)

- a(1:T-1,1))./(t(2:T)-t(1:T-1))) + (p(2:T,N).^2)

./ (4.*a(2:T,1).*L(N)) + (p(2:T,1).^2)./(4

.* a(2:T,1).*L(1))) + P_0;
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P(2:T,2:N-1) = 1./(pi.*x.*b(2:T,2:N-1)) .* ( (a(2:T,2:N-1)

- ones(T-1,1)*A(2:N-1))./(ones(T-1,1)

* C_rn(2:N-1)) + dsda(2:T,2:N-1)

.* (dsda(2:T,2:N-1).*(a(2:T,2:N-1)-ones(T-1,1)

* A(2:N-1))./(ones(T-1,1)*C_sn(2:N-1))

+ dsdb(2:T,2:N-1).*(b(2:T,2:N-1)-ones(T-1,1)

* B(2:N-1))./(ones(T-1,1)*C_sn(2:N-1)))

+ ((2.*a(2:T,2:N-1).*b(2:T,2:N-1))

./ (a(2:T,2:N-1).^2+b(2:T,2:N-1).^2))

.* (1./a(2:T,2:N-1)).*tan(((2.*a(2:T,2:N-1)

.* b(2:T,2:N-1))./(a(2:T,2:N-1).^2

+ b(2:T,2:N-1).^2)).*((1./a(2:T,2:N-1))

.* (a(2:T,2:N-1)-ones(T-1,1)*A(2:N-1))

./ (ones(T-1,1)*C_vn(2:N-1))-(1./b(2:T,2:N-1))

.* (b(2:T,2:N-1)-ones(T-1,1)*B(2:N-1))

./(ones(T-1,1)*C_vn(2:N-1)))) - (x*pi).^2.*(2

.* a(2:T,2:N-1)-b(2:T,2:N-1))

.* ((2.*a(2:T,2:N-1)-b(2:T,2:N-1))

.* (a(2:T,2:N-1)-ones(T-1,1)*A(2:N-1))

./ (ones(T-1,1)*C_jn(2:N-1))-a(2:T,2:N-1)

.* (b(2:T,2:N-1)-ones(T-1,1)*B(2:N-1))

./ (ones(T-1,1)*C_jn(2:N-1)))+((a(2:T,2:N-1)

- ones(T-1,1)*A(2:N-1))-(a(2:T,1:N-2)

- ones(T-1,1)*A(1:N-2)))./(ones(T-1,1)

* C_s(1:N-2))+(ones(T-1,1)*Z_s(1:N-2))

.* ((a(2:T,2:N-1)-a(1:T-1,2:N-1))./((t(2:T)

- t(1:T-1))*ones(1,N-2))-(a(2:T,1:N-2)

- a(1:T-1,1:N-2))./((t(2:T)-t(1:T-1))

* ones(1,N-2))) - ((a(2:T,3:N)-ones(T-1,1)

* A(3:N))-(a(2:T,2:N-1)-ones(T-1,1)*A(2:N-1)))

./ (ones(T-1,1)*C_s(2:N-1)) + (ones(T-1,1)

* Z_s(2:N-1)).*((a(2:T,3:N)-a(1:T-1,3:N))

./ ((t(2:T)-t(1:T-1))*ones(1,N-2))

- (a(2:T,2:N-1)-a(1:T-1,2:N-1))./((t(2:T)

- t(1:T-1))*ones(1,N-2))) + (p(2:T,1:N-2).^2)

./ (4.*a(2:T,2:N-1).*(ones(T-1,1)*L(1:N-2)))

+ (p(2:T,2:N-1).^2)./(4.*a(2:T,2:N-1)

.*(ones(T-1,1)*L(2:N-1))) ) + P_0;
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P(2:T,N) = 1./(pi.*x.*b(2:T,N)).*((a(2:T,N)-A(N))./C_rn(N)

+ dsda(2:T,N).*(dsda(2:T,N).*(a(2:T,N)-A(N))

./ C_sn(N)+dsdb(2:T,N).*(b(2:T,N)-B(N))./C_sn(N))

+ ((2.*a(2:T,N).*b(2:T,N))./(a(2:T,N).^2

+ b(2:T,N).^2)).*(1./a(2:T,N)).*tan(((2.*a(2:T,N)

.* b(2:T,N))./(a(2:T,N).^2+b(2:T,N).^2))

.* ((1./a(2:T,N)).*(a(2:T,N)-A(N))./C_vn(N)

- (1./b(2:T,N)).*(b(2:T,N)-B(N))./C_vn(N)))

- (x*pi).^2.*(2.*a(2:T,N)-b(2:T,N)).*((2.*a(2:T,N)

- b(2:T,N)).*(a(2:T,N)-A(N))./C_jn(N)-a(2:T,N)

.* (b(2:T,N)-B(N))./C_jn(N)) + ((a(2:T,N)-A(N))

- (a(2:T,N-1)-A(N-1)))./C_s(N-1) + Z_s(N-1)

.* ((a(2:T,N)-a(1:T-1,N))./(t(2:T)-t(1:T-1))

- (a(2:T,N-1)-a(1:T-1,N-1))./(t(2:T)-t(1:T-1)))

- ((a(2:T,1)-A(1))-(a(2:T,N)-A(N)))./C_s(N)

- Z_s(N).*((a(2:T,1)-a(1:T-1,1))./(t(2:T)

- t(1:T-1))-(a(2:T,N)-a(1:T-1,N))./(t(2:T)

- t(1:T-1))) + (p(2:T,N-1).^2)./(4.*a(2:T,N)

.* L(N-1)) + (p(2:T,N).^2)./(4.*a(2:T,N).*L(N)) )

+ P_0;

Q(2:T,1:N-1) = p(2:T,1:N-1)./(ones(T-1,1)*L(1:N-1))

.* sqrt( (sqrt(a(2:T,1:N-1).*a(2:T,2:N))

.* sqrt(b(2:T,1:N-1).*b(2:T,2:N)))

./ (ones(T-1,1)*(sqrt(A(1:N-1).*A(2:N))

.* sqrt(B(1:N-1).*B(2:N)))) );

Q(2:T,N) = p(2:T,N)./L(N) .* sqrt((sqrt(a(2:T,N).*a(2:T,1))

.* sqrt(b(2:T,N).*b(2:T,1)))

./ (sqrt(A(N)*A(1))*sqrt(B(N)*B(1))));

save ’embliebau.mat’ t a b p P Q f
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