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Abstract: An increasing number of reported cases of drug resistant Staphylococcus aureus and Pseudomonas aeruginosa, 

demonstrate the urgent need for new therapeutics that are effective against such and other multi-drug resistant bacteria. 

Antimicrobial peptides have for two decades now been looked upon as interesting leads for development of new therapeu-

tics combating these drug resistant microbes.  

High-throughput screening of peptide libraries have generated large amounts of information on peptide activities. How-

ever, scientists still struggle with explaining the specific peptide motifs resulting in antimicrobial activity. Consequently, 

the majority of peptides put into clinical trials have failed at some point, underlining the importance of a thorough peptide 

optimization. 

An important tool in peptide design and optimization is quantitative structure-activity relationship (QSAR) analysis, cor-

relating chemical parameters with biological activities of the peptide, using statistical methods. In this review we will dis-

cuss two different in silico strategies of computer-aided antibacterial peptide design, a linear correlation model build as an 

extension of traditional principal component analysis (PCA) and a non-linear artificial neural network model. Studies on 

structurally diverse peptides, have concluded that the PCA derived model are able to guide the antibacterial peptide design 

in a meaningful way, however requiring rather a high homology between the peptides in the test-set and the in silico li-

brary, to ensure a successful prediction. In contrast, the neural network model, though significantly less explored in rela-

tion to antimicrobial peptide design, has proven extremely promising, demonstrating impressive prediction success and 

ranking of random peptide libraries correlating well with measured activities.  

Keywords: P. aeruginosa, Antimicrobial Peptides, Quantitative Structure-Activity Relationships, Prediction of activity, Partial 
Least Square Projections to Latent Structures, Artificial Neural Network. 

INTRODUCTION 

The spread of antibiotic-resistance amongst bacterial 
pathogens, has resulted in an dramatic increase in methicil-
lin-resistant Staphylococcus aureus (MRSA) [1,2] and Strep-
tococcus pneumonae resistance [3]. Despite these alarming 
trends and obvious need for new interventions, pharmaceuti-
cal companies have withdrawn from the field of anti-
infectives [4], introducing only two novel antibiotics to the 
market in the last 20 years [5]. 

Cationic antimicrobial peptides, also called cationic host 
defence peptides, are signature antimicrobials of nearly all 
species of life, and their broad spectrum activity and rapid 
action [6,7] render them as one of the most fascinating can-
didates for new antibiotics [8,9]. More than 1000 natural 
occurring peptides have been described so far, and the ma-
jority of these are described in databases for eukaryotic host 
defence peptides: Alessandro Tossi's site at the University of 
Trieste (http://www.bbcm.units.it/~tossi/pag1.htm) and the 
AMPer site (http://marray.cmdr.ubc.ca/cgi-bin/amp.pl). Fjell  
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et al., (2007) [10] demonstrated that it is possible to accu-

rately identify naturally-occurring host defence peptides and 

cluster similar peptides based solely on primary amino acid 

sequence using the statistical technique of hidden Markov 

models (HMMs). The AMPer resource has also been used to 

identify validated, novel host defence peptides from the ge-

nome sequence and expressed sequence (ESTs) of bovine 
[11]. However, these sequence analysis techniques classify 

naturally occurring peptides solely based on known host de-

fence peptides in the context of all other peptides; the result-

ing models, though highly accurate for gene classification 

and identification, do not indicate the mechanisms of action 

of peptides or identify structural similarities between pep-

tides. Generally, host defence peptide are typically short (12 

to 50 amino acids), positively charged (net +2 to +9), am-
phiphilic, and can be arranged into common structural 

classes e.g. -structured peptides, amphipathic -helices, or 

less common loop structures and extended structures [12,13] 

(Fig. 1). Despite sequence and structure variation several 

host defence peptides appears to demonstrate similar direct 

activity towards different microbes, thus making it hard to 

relate their structure and activity, and leaving optimization as 

a difficult task. Peptide design and optimization has tradi-
tionally been done based on rational sequence interpretation 

and screening of substitution libraries [14,15].  
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Despite its success, there is no doubt that this approach is 
extremely labor intensive and requires insight into the pep-
tides mode of action, which today still is highly debated. 
When optimizing antimicrobial peptides, new peptide candi-
dates are synthesized based on educated guesses as to which 
of the molecular features are important for its activity. 
Chemoinformatic techniques can be used to facilitate and 
enforce an un-biased design of such new peptide candidates. 
One of the most widely used of these techniques is quantita-
tive structure-activity relationship (QSAR) analysis. Com-
puter-aided QSAR analysis seeks to relate quantitative prop-
erties (descriptors) of the peptide with properties such as 
antimicrobial activity through numerical analysis. Though 
the concept of QSAR is widely used in pharmaceutical drug 
discovery [16] the technology has more recently been im-
plied in antimicrobial peptide design. The success of a 

QSAR model depends highly on the choice of QSAR de-
scriptors and the mathematical/statistical method used to 
relate the descriptors to the peptides antimicrobial activity.  

The descriptors can be separated in two groups: calcu-
lated descriptors such as peptide net charge and hydrophobic 
moment, or empirical descriptors such as HPLC retention 
time and measured solubility. The statistical tools used to 
model the peptides activity can also be divided in two 
groups: ‘simple’ regression models such as principal compo-
nent analysis (PCA) and partial least squares projection to 
latent structures (PLS), or more advanced machine learning 
techniques such as artificial neural networks (ANN). This 
review provides an overview of some of the most common 
computational approaches for peptide optimization and de-
sign, and some of the most recent advancements in this field, 
with the emphasis on peptide antibacterial activity.  

 

Fig. (1). Structural classes of antimicrobial peptides. (a) Primary amino acid sequence (one letter code) of selected host defence peptides 

representing the four structural classes and their PDB source code used for preparation of the crystal structure projections (b-e). Cysteines 

forming disulfide bonds are numbered with subscript numbers to indicate their pairing. Boldface indicates cationic (blue) and anionic (red) 

amino acid residues. (b) Mixed structure of human -defensin-2; (c) -sheeted polyphemusin; (d) -helical human cathelicidin LL-37; (e) 

extended indolicidin. The peptide secondary structures are prepared with use of the graphic program MolMol 2K.2 [74] and the disulfide 
bonds are indicated in yellow.  
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QSAR DESCRIPTORS  

Descriptors are used to describe quantitative properties of 
the peptides and may be calculated or measured. The QSAR 
approach was originated by Hansch et al. 1962 when trans-
lating the chemical structures into numerical values describ-
ing their hydrophobicity and electronic properties [17]. Since 
then numerous descriptor types has been introduced to de-
scribe peptides, some more useful and intuitive than others.  

There is no general rule for selecting descriptors for pep-
tide modeling. Different types of descriptors may work 
equally well on different peptide sets. However, there should 
not be a high degree of correlation between the values of the 
different descriptors used. Several different calculated de-
scriptors have been introduced. The simplest ones are proba-
bly net charge at pH 7, mean hydrophobic- or charged mo-
ment, hydrophobic fraction and Kyte-Doolittle hydrophobic-
ity. More complex estimations are -helical propensity cal-
culated with equations either from Garnier, Chou-Fasman or 
Eisenberg [18]. The chemoinformatics advances have to 
some extent revolutionized descriptor generation, enabling a 
much more robust calculation of descriptors describing the 
peptides three dimensional nature. One example is the NMR 
grid estimation and then conversion of peptide structure into 
two a dimensional descriptors set [19,20]. Another example 
is the ‘inductive’ descriptors for chemical hardness, softness 
and steric effects, calculated based on in silico calculation of 
the most probable three dimensional structure of each pep-
tide based on energy and flexibility constraints of the mole-
cule [21]. 

Empirically derived descriptors on the other hand, are 
generated based on measured properties of populations of 
compounds in biological assays. A central aspect of peptide 
QSAR has been development of quantitative descriptors for 
the amino acids. This work was pioneered by P.H.A Sneath 
[22] but the real breakthrough came after Hellberg et al. im-
plemented different HPLC measurements under various pH 
and elution conditions, and derived the z-scale [23,24]. The 
scale consisted of three descriptors z1, z2, and z3 for each of 
the 20 naturally coded amino acids, describing 29 different 
physico-chemical properties describing lipophilicity hydro-
phobicity, size and charge related features of the amino ac-
ids, in addition to NMR and HPLC data. These descriptors 
reflect lipophilicity (z1), steric properties (z2), and electronic 
properties (z3). The z-scale has later been refined to also de-
scribe 67 non-coded amino acids [25]. However, in modeling 
peptides only composed of naturally coded amino acids, the 
more complex and refined z-scale is not required [26]. 

MULTIVARIATE DATA ANALYSIS 

Computer-aided models of peptide antimicrobial activity 
using soft independent modeling of class analogy (SIMCA), 
and incorporated principal component analysis (PCA)/partial 
least squares projection to latent structures (PLS) algorithms, 
have demonstrated success in explaining and modeling an-
timicrobial peptide activity [27-29].  

In this technique an X matrix with (N) observations and 
(K) variables are created, using descriptor values represent-
ing the investigated peptides as well as possible. By using a 
multivariate projection, principal component analysis (PCA), 

the X matrix is converted into two matrices (T) and (P)  
(Fig. 2). The score (T) describes how the tested molecules 
(peptides) are related to each other, while the loading (P) 
reveals any correlation between the variables and their im-
portance for the PCA model [30]. PCA is performed without 
reference to the biological activity and linear regression is 
performed using a small number of dimensions (principal 
components) to fit the measured and predicted activity (prin-
cipal component regression - PCR). PCA is a popular 
method to reduce the number of variables used in fitting the 
data, thus allowing the use of more descriptors to be included 
in analysis than there are samples. 

Partial least squares projections to latent structures (PLS) 
is a method that is similar to PCR. However, in PLS the im-
portance of each variable (i.e. each column in X) is first re-
placed by the column weighted by the regression coefficient 
of the response (Y) to that variable by itself [31]. In this way, 
the importance of each variable is enhanced in predicting the 
response. The method can handle several responses at the 
same time, and regression is possible even with some miss-
ing data in the matrix [32]. The validity of the model de-
pends on how well it correlates variations in the response (Y) 
and in the (X) matrix (Fig. 3). PLS strategies and more de-
tailed descriptions of this technique have been reviewed 
elsewhere (see [30,33,34] for overviews).  

ANTIMICROBIAL PEPTIDE  

It is well understood that regardless of their actual origin 
and mode of action, all types of antibacterial cationic pep-
tides must interact with the bacterial cytoplasmic membrane 
[35]. The physical forces behind antibacterial activity have 

 

Fig. (2). Summary of PCA analysis. PCA analysis will model a 

table or matrix X, with N observations and K variables, as indicated 

in equation I. The first element (1• x´ ) represents the average of 

the variables and are derived in a pre-processing step. The second 

element ( T•P´ ) models the structure while (E) represents noise in 

the model. The T and P matrix composed of principal component 

score vectors (t1, t2, etc.) and loading vectors (p1, p2, etc.), 
respectively.  



Peptide Modeling Current Pharmaceutical Analysis, 2010, Vol. 6, No. 2    69 

been defined in detail (see [35-37] for overviews) and in-
clude: net positive charge which enhance the interaction with 
anionic lipids and other bacterial targets, hydrophobicity 
allows insertion of the peptide into the bacterial membrane, 
and flexibility permitting the peptide to transition from its 
solution conformation to its membrane interacting conforma-
tion.  

Each of these characteristics can vary substantially over a 
particular range, but are essential for the peptides function as 
antimicrobial agents and allows them to interact with bacte-
rial membranes, which is critical to them exerting antimicro-
bial effects. The way antimicrobial peptides interact with the 
prokaryotic cell membrane has been extensively investigated 
[38-41]. Due to the fact that most antimicrobial peptides are 
cationic at physiological pH, they are prone to interact quite 
unspecifically through electrostatic interactions, with nega-
tively charged molecules in the bacterial cell membrane. In 
Gram-negative bacteria these negatively charged molecules 

are lipopolysaccharide while in Gram-positive bacteria these 
molecules are lipoteichoic acid and/or teichoic acid. Experi-
ments have demonstrated that lactoferricin can bind both 
lipopolysaccharide and teichoic acid [42,43].  

Bovine lactoferricin (Fig. 4) have been studies exten-
sively over the past decades [44], and a lot of effort has been 
put into identify the active domain and optimizing the antim-
icrobial activity of this cyclic 25-residue gastric cleavage 
product of a milk derived protein, lactoferrin [45]. Several 
lactoferricin homologues from different species e.g. human, 
caprine, murine, procine and bovine have been investigated 
for their antibacterial activity, and despite rather conserved 
sequences, their antibacterial activity and specificity varies 
significantly. Bovine lactoferricin has superior bactericidal 
activity compared to the other lactoferricin peptides [46,47]. 
Gram-positive bacteria have also been shown more suscepti-
ble to lactoferricin than Gram-negative bacteria, probably 
due to the lack of an outer membrane [48]. 

 

Fig. (3). Modeling of the relationship between two matrices by using PLS analysis. Matrices in PLS can be understood as fitting two “PCA-

like” models, one of your X matrix and one of your Y matrix. This is illustrated for a library containing 12 peptides (color coded). The 

peptides have been described with three variables (descriptors) in the X matrix and three biological responses have been monitored in matrix 

Y. (a) As K and M both equal 3, the peptides in X and Y can be depicted in a three dimensional space. (b) The best fit line that approximates 

the point swarm are drawn on both graphs (t1 and u1), and these represents the first component in the PLS model or the “score” for X and Y, 

respectively. (c) The best fit line, drawn orthogonal on t1 and u1, represents the t2 and u2, or the second component in the PLS model. (d) The 

PLS score plot will identify the relationship between the two matrices, and plotting of t1 against u1 will normally correlate better than t2 

against u2, and so on.  



70    Current Pharmaceutical Analysis, 2010, Vol. 6, No. 2 Fjell et al. 

However the results also demonstrate that despite very 
different secondary peptide structure, both bovine and hu-
man lactoferricin are able to exert antibacterial activity, indi-
cating that antibacterial activity and spectrum of a peptide 
not can be extrapolated from the peptides secondary struc-
ture [7,49], but rather their amphipathic and amphiphilic 
patches in their folded structure and by regions with high 
concentration of positively charged residues [50]. However, 
modulation of the antibacterial activity of cationic peptide 
through alteration of their hyrdophobicity or net charge may 
also alter the selectivity between the desired bacterial target 
and the host cell [51,52]. Similarly, incorporation of charged 
residues above a certain maximum (varying from peptide to 
peptide) does not lead to an increase in activity [36]. Thus 
this balance of charge and hydrophobicity can be delicate 
and must be empirically determined for each series of pep-
tides. 

In an attempt to better understand the underlying mecha-

nisms of the antibacterial activity of lactoferricin, principal 

component analysis (PCA) was introduced. As mentioned 

earlier, the descriptors used in this multivariate data analysis 

approach determine the information gained from the model-

ing. Consequently a comparative study was conducted inves-

tigating the structural requirements for antibacterial activity 

of murine lactoferricin, using two separate sets of descrip-

tors, i.e. one model using empirically derived amino acid 

descriptors [24] and one model using calculated descriptors 

e.g. charge, helicity factors and propensity [18,28]. The 

study revealed no significant difference amongst the two 

datasets, and the respective models. For the sake of modeling 

peptide abilities as antimicrobials, it was judged that describ-

ing the peptide building blocks (amino acids) with the z-

scale descriptors introduced by Hellberg et al. [24], rather 

that calculating the physiochemical property of the entire 

 

Fig. (4). Peptide crystal structures peptides. (a-d) -sheet bovine lactoferricin (PDB code 1LFC) [75] and (e-h) -helical novispirin (PDB 

code 1HU6) [63] are shown. (a and b) illustrates the plain ribbon structure (blue -sheet) of lactoferricin in the absence and presence of the 

reactive amino acid side chains, respectively. (c) A charge distribution plot of lactoferricin in the same orientation as (a), colored blue 
and white corresponding to net positive and neutral charge, respectively. (d) Charge distribution plot of lactoferricin from diagram (c) 

rotated 180° around the Y-axis. (e and f) illustrates the plain ribbon structure (red -helix) of novispirin in the absence and presence of the 

reactive amino acid side chains, respectively. (g) A charge distribution plot of novispirin in the same orientation as (f), colored blue and 
white corresponding to net positive and neutral charge, respectively. (h) Charge distribution plot of novispirin from diagram (g) 
rotated 180° around the Y-axis. The figure was prepared with use of the graphic program MolMol 2K.2 [74]. 
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peptide molecule would be better for the purpose of model-

ing. QSAR analysis of peptides using the z-scale descriptors 

in PCA modeling has later been proven effective in explain-

ing and predicting a spectrum of different antimicrobial ac-

tivities e.g. antibacterial [53], anti-cancer [27], as well as 

antiviral activity [29].  

In all these experiments a limited set of lactoferricin de-
rived peptides were investigated for a limited set of biologi-
cal activities. A pressing concern where the structural re-
strains amongst the peptides modeled. To verify that the 
PCA model also would work on peptides with different 
structural motifs, a set of -helical peptides where examined. 
This study demonstrated that both peptide antiviral activity 
as well as peptide interactions with cell surface receptor 
molecules could be understood with the computational algo-
rithms [54]. The general conclusion was that peptide charge- 
and hydrophobicity-related properties demonstrated the 
highest importance in describing variation among the pep-
tides. These results introduced a glimmer of hope for peptide 
activity optimization in silico, and to test the potential of this 
partial least squares projections to latent structures (PLS) 
model a vast set of virtual peptide sequences were designed. 
The antiviral activity of a total of ~218.000 virtual peptide 
sequences were predicted with this model. The success of the 
prediction was evaluated by synthesizing a limited set of the 
peptides predicted to have the most potent antiviral activity. 
The results revealed half the peptides predicted to be highly 
active, were 2.7 to 4.6 fold more active than the most active 
peptide in the model; on the other hand, half the peptides 
predicted to be highly active were found to be inactive [55]. 
This demonstrates a fundamental problem with the PLS 
model. The model is based on a linear relationship, and 
though the model may have a close to perfect relation ship 
between the peptides incorporated, placement of virtual pep-
tide may be problematic if they differ too much from the 
model peptides. It can easily be interpreted that the peptide is 
significantly better or worse than the model peptides, how-
ever how much better or worse is harder to predict. Conse-
quently, the accuracy of the predictive model will drop as the 
peptides are significantly better or worse than the ones in the 
model. Though it is claimed that construction of antimicro-
bial peptides using multivariate design will solve the prob-
lem of introducing multiple amino acid changes during pep-
tide synthesis [56], there is no doubt that multiple substitu-
tions in a single peptide also to some extent will make it 
harder to precisely predict its activity [53]. 

On the other hand, single substitutions may also cause 
critical problems for PLS modeling of antimicrobial pep-
tides. Features recognized as essential with direct antimicro-
bial peptides have for a long time been their high content of 
charged and hydrophobic amino acids. When optimizing 
these peptides through single substitutions there is a likeli-
hood of generating several peptides with different primary 
sequences, but the same amino acid content. However, a 
persistent problem with modeling efforts has been that no 
primary structure information has been implemented in the 
models. Thus, modeling of such peptides, using only the 
specific amino acid descriptors (z-scale) will result in a 
model interpreting the peptides as identical, consequently 
making it close to impossible to make good predictions. In 
an attempt to circumvent this problem contact energy be-

tween neighboring amino acids [57] was introduce as a de-
scriptor, for modeling >200 peptides from a single substitu-
tion library of the 12mer peptide, Bac2A (RLARIVVIR-
VAR-NH2) [15]. Although this ignores all intramolecular 
interactions involved in determining three dimensional struc-
ture, except for those between neighboring amino acids in 
the primary structure, this implementation resulted in a rather 
powerful predictive model [26].  

It should be pointed out that the contact energy values be-
tween neighboring amino acids have been derived for a small 
set of proteins [57]. Thus using them as descriptors for de-
sign of PLS models for antimicrobial peptides may be over-
simplified, and in some cases it may yield poor predictive 
performance. Another aspect is that in this particular study it 
was demonstrated that the contact energy descriptors in 
combination with a subset of ‘inductive’ and conventional 
QSAR descriptors [21] gave a more robust model than by 
using the contact energy descriptors by itself [26]. It was also 
confirmed in a consecutive study that use of the contact en-
ergy descriptors also gave a relatively good predictive model 
for a different set of peptides [58].  

Although this is the first time two distinct subgroups of 
peptides successfully has been used to generate a predictive 
model, though with inconsistent accuracy, it is well known 
that models based on different descriptors will yield different 
results. A classical example is from one of the earliest com-
parative PCA studies on mouse lactoferricin that was men-
tioned earlier. In this study two different sets of descriptors 
were used and proven to give very similar models [18,28]. In 
this work a set of murine lactoferricin derivatives where 
tested together with bovine lactoferricin. The murine deriva-
tives and the bovine peptide are significantly different from a 
primary sequence point of view, when modeled with stan-
dard amino acid descriptors (z-scale). This is also indirectly 
confirmed by Lejon et al. when they with high accuracy are 
able to correlate predicted and observed antibacterial activity 
of the murine derivatives, while the bovine peptide is very 
poorly modeled [28]. On the other hand when examining 
secondary structure resemblance between lactoferricin pep-
tides from other origin [59], it can be assumed that there is a 
rather striking resemblance between the bovine and the mur-
ine peptides in terms their secondary structures. When using 
calculated descriptors more related to the secondary struc-
tural properties of the entire peptide instead of focusing on 
independent amino acids, the PCA model demonstrated a 
greater success in correlating predicted and observed anti-
bacterial peptide activity of all the peptides, including bovine 
lactoferricin [18].  

The ‘inductive’ and conventional QSAR descriptors are 
computer simulated parameters describing biophysical prop-
erties of the entire peptide [21] and some more commonly-
used QSAR-descriptors as implemented in MOE (Molecular 
Operating Environment software v. 2006.10, Chemical 
Computation Group Inc., Montreal, Canada, 2006). These 
inductive and conventional QSAR descriptors has prior to 
the demonstrated usefulness in PLS modeling of antibacterial 
peptides [26,58] also demonstrated tremendous success when 
used in combination with artificial intelligence approach for 
predicting antimicrobial activity of a limited set of organic 
molecules [60,61]. The great success of using these descrip-
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tors in PLS modeling of antimicrobial peptides is likely due 
to the descriptors' ability to capture three dimensional struc-
tural differences amongst the peptides. Use of the z-scale 
descriptors alone will focus the PLS model around specific 
changes at an amino acid level, and most probably miss out 
on steric and intermolecular changes in the peptide as a hole. 
While the computers simulation of the peptides three dimen-
sional structure, based on energy levels and folding potential 
will give a better understanding of all parts of the peptides. 
However, it should be kept in mind that peptides are intrinsi-
cally flexible, and may adopt several ‘stable’ conformations 
in different environments and upon interaction with different 
cellular components and membranes. Thus, one may argue 
for a potential in improving even the ‘inductive’ and conven-
tional QSAR descriptor set.  

Another very robust PLS model has been demonstrated 
for a totally different class of peptides. The -helical sheep 
myeloid antimicrobial peptide (SMAP-29) is a cathelicidin-
derived antimicrobial peptide from leukocytes [62] (Fig. 4). 
Preliminary sequence optimization and QSAR work on this 
peptide led to the generation of ovispirin-1 which has high 
resemblance to the N-terminal part of SAMP-29, and to the 
less cytotoxic analogue novispirin G10 (KNLRRI-
IRKG10IHIIKKYG) with a single glycine substitution in po-
sition ten [63], Novispirin G10 has later served as a template 
in a thorough QSAR study using PCA/PLS modeling [64].  
In this study a total of 58 novispirin analogues where  
synthesized, and a predictive model were generated using  
69 molecular descriptors i.e. Vol-Surf 
(http://www.moldiscovery.com) and charged partial surface 
area descriptors, being most important. The model was used 
to predict antibacterial activity of 400 virtual peptides, and 
the success of the model was evaluated by synthesizing and 
testing sixteen of the peptides predicted as highly active. The 
model demonstrated a 75% success rate in predicting highly 
active peptides, with three out of four peptides tested being 
more active than the parent novispirin G10. This model was 
generated without using standard amino acid descriptors  
(z-scale), and the robustness of it is probably due to introduc-
tion of descriptors dealing with three dimensional structural 
parameters of the entire peptide.  

MACHINE LEARNING AND NEURAL NETWORK 

MODELING 

A large literature has been developed on the complex 
modeling techniques grouped together as machine learning. 
Detailed description of this large field of study is outside the 
scope of this review; however we will highlight recent work 
that successfully applied artificial neural networks (ANNs) 
to the prediction of highly-active synthetic peptides. ANNs 
are one of the oldest machine learning methods and relies on 
a 'black-box' approach: peptide data in the form of both de-
scriptors and measured activity are provided and a complex 
algorithm attempts to extract a pattern from these 'training 
data'. In an ANN, the descriptor values are applied to the 
input layer of the network. The calculation propagates from 
the input layer to the first of possibly many hidden layers 
that are 'connected' to the input layer: the inputs to the hid-
den layers are weights sums of the input values. The output 
of each hidden node is a non-linear transformation of its in-
put which is then passed in a weighted sum to the next layer. 

Finally the values are passed to the output layers consisting 
of one or more nodes.  

ANN was introduced in antimicrobial peptide modeling 
more than a decade ago. This preliminary study was rather 
limited and did not result in overwhelming results for either 
antimicrobial activity nor predictive power [65], and most-
likely escaped the attention of most microbiologists. In re-
cent peptide prediction work using semi-random 9-mer pep-
tides [66,67], the ANN configuration used 44 input nodes 
(one per descriptor), one hidden layer of 10 nodes, and one 
output node that represented the prediction of the peptide 
being active or inactive (Fig. 5a). The output from a node are 
afunction of the weighted sum of the inputs plus a bias. Dur-
ing training, the weighting values, represented by lines con-
necting nodes, are systematically altered to minimize the 
disagreement between the given measured activity (1 for 
active, 0 for inactive) and the predicted activity (a value be-
tween 0 and 1) (Fig. 5b). Thus, for this study, over 450 
weighting parameters (there are several offset parameters not 
represented in the figure) were required to be fit for each 
network. Since some fraction of peptides must be held out of 
the training set for validation of the model, data from more 
than 450 peptides are required for this method to work. Once 
the networks are trained, sets of descriptor values are given 
as input and the output node indicates the prediction of activ-
ity. 

The requirement for a large number of samples for train-
ing is a general feature of complex models and cannot be 
avoided without loss of predictive power. This represents the 
greatest drawback of using complex models: for many stud-
ies the number of data required is simply not available. 

COMPUTATIONAL METHODS – ADVANTAGES 
AND LIMITATIONS 

The most commonly used computational QSAR ap-

proach is probably principal component analysis (PCA) and 
the closely related method, projections to latent structures 

(PLS). This is probably due to the nature of this mathemati-

cal approach. The technique handles missing values (in-
complete libraries/data sets) quite well. It is also possible to 

use this approach to generate meaningful models on rather 

restricted (small) data sets. The technique does neither re-
quire ‘super computers’ which made this technology possible 

for a wide audience, even back in the days when computers 

where looked upon as an expensive tool rather than a con-
sumable. The technique is also excellent in identifying out-

liers, or sub-groups with similar activity patterns. The rela-

tively ‘simple’ nature of this statistical approach makes it 
possible to evaluate the models predictive ability and an-

swering why some candidates are predicted to be better than 

others. However, there are limitations to the predictive abil-
ity of these models. Any peptide candidate predicted to be 

significantly better than the most active peptide in the model, 

will in theory be assigned a value far below the most active 
peptide (the lower the value the higher activity). This is 

however only theoretical, and peptides which are predicted 

to lie far outside the model will have to some extent an equal 
chance of being predicted as super-active or inactive. This 

phenomenon has been demonstrated for a set of -helical 

peptides designed to inhibit herpes simplex virus infection of 
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host cells. Where a PLS model was used to predict the activ-

ity of ~218.000 peptides, and when evaluating the results 
with synthesis of the most active candidates, half of them 

were evaluated as more active than the most active peptide in 

the model, and the other half was measured as inactive [55]. 
Though descriptor generation continuously is evolving there 

is currently no optimal descriptor set that will enable highly 

accurate modeling of peptides with large structural diversity 
using PLS modeling [58]. Thus the in silico screening of 

large libraries and optimization or design of truly novel pep-

tide candidates based on a single library of peptides is diffi-
cult using PLS.  

Non-linear techniques and artificial neural networks 
(ANNs) (Fig. 5) are much more complex than PLS models 
and are therefore more able to capture patterns indicating 
peptide activity. Consequently they may give superior re-
sults, with the important requirement that data from large 

numbers of peptides are available. However this improved 
performance is also gained at the cost of the rather cryptic 
nature of the models: their complexity makes it difficult to 
relate the contribution of each descriptor to the activity of the 
peptides [68]. 
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