
Roskilde
University

From Exotic to Mainstream
A 10-year Odyssey from Internet Speed to Boundary Spanning with Scrum

Baskerville, Richard; Pries-Heje, Jan; Madsen, Sabine

Published in:
Agile Software Development

Publication date:
2010

Document Version
Peer reviewed version

Citation for published version (APA):
Baskerville, R., Pries-Heje, J., & Madsen, S. (2010). From Exotic to Mainstream: A 10-year Odyssey from
Internet Speed to Boundary Spanning with Scrum. In T. Dingsøyr, T. Dybå, & N. B. Moe (Eds.), Agile Software
Development: Current Research and Future Directions (pp. 87-110). Springer Science+Business Media.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain.
 • You may freely distribute the URL identifying the publication in the public portal.
Take down policy
If you believe that this document breaches copyright please contact rucforsk@kb.dk providing details, and we will remove access to the work
immediately and investigate your claim.

Download date: 18. Jun. 2025

5 From Exotic to Mainstream: A 10-year Odyssey from
Internet Speed to Boundary Spanning with Scrum

Richard Baskerville, Jan Pries-Heje, Sabine Madsen

Abstract. Based on four empirical studies conducted over a 10-year time period
from 1999 to 2008 we investigate how local software processes interact with
global changes in the software development context. In 1999 companies were de-
veloping software at high speed in a desperate rush to be first-to-market. In 2001 a
new high speed/quick results development process had become established prac-
tice. In 2003 changes in the market created the need for a more balanced view on
speed and quality, and in 2008 companies were successfully combining agile and
plan driven approaches to achieve the benefits of both. The studies reveal a two-
stage pattern in which dramatic changes in the market causes disruption of estab-
lished practices, experimentation, and process adaptations followed by consolida-
tion of lessons learnt into a new (and once again mature) software development
process. Limitations, implications, and areas for future research are discussed.

5.1 Introduction

Over the course of the last ten years, agile software development has received
much attention from both the practitioner and research community, first as a no-
velty and later as a development approach that has become widely used in practice
(Dybå and Dingsøyr 2008). In this chapter we look at how software development
in practice has changed over this ten year time period. More specifically we com-
pare and contrast the practices of Internet speed and agile software development at
four different points in time: When the internet was booming in 1999; during the
peak of the “dot.com” boom in 2000-2001; just after this economy collapsed in
2002-2003; and most recently in 2008. For simplicity, the four studies and points
in time are here after referred to as study one from 1999, study two from 2001,
study three from 2003, and study four from 2008.

Right before the beginning of the millennium the Internet was being adopted
faster than nearly any other technology. It took 30 years (1920-1950) for the tele-
phone to reach a 60% penetration in USA. It took 15 years for computers to reach
a 60% penetration. But it only took 2 years for the Internet to reach 60% penetra-
tion (Atlanta_Constitution 2001). In 1999 we therefore compared the growth of
the Internet to an exploding bomb, and we called this phenomenon the “e-bomb”
(Baskerville and Pries-Heje 2001).

At this point in time, in 1999, we carried out an interview study in three Danish
companies. The study revealed that the then present notion of software develop-
ment methodology was changing. In fact we found that the lack of methodology in
its traditional form was characteristic. Instead of methodology, time pressure and
requirements ambiguity was found to be at the core.

2

Two years later, in 2001, we did a comprehensive study in US. Ten companies
that themselves claimed to be working at Internet speed were interviewed. Data
analysis identified three major factors that influenced Internet software develop-
ment processes: demand for rush to market, a different kind of market environ-
ment, and the lack of experience developing software for the Internet. Further we
identified a new software development process used within a unique and enthu-
siastic development culture.

In 2003, after the dot.com bubble had burst we interviewed in the same compa-
nies. Fundamental changes in the economic conditions now affected the resources
available for Internet software development and expectations had changed dramat-
ically, resulting in three outcomes. First, the IT economy underwent a major
upheaval as revenue fell, productivity rose, and budgets were slashed. Second,
business expectations changed. Rather than an unbridled obsession with fast soft-
ware delivery, customers demanded both speed and quality. Third, the economy
drove an emphasis on the business case for software projects, and the concerns of
the project managers changed to encompass the value to the enterprise, including
development of more complex, mission critical software systems.

After the publication of our internet studies agile methods, and especially
Scrum (Rising and Janoff 2000) and eXtreme Programming (XP) (Beck 2000;
Beck and Fowler 2001; Jeffries et al. 2001), became popular in practice. However,
the ideal settings for the use of agile methods versus more traditional methods
were much discussed. Boehm (2002) has for example speculated on what consti-
tutes the agile ‘home ground’, defined as the application area in which agile ISD
has its special strengths and performs best given the project characteristics. Boehm
and Turner (2004) have also suggested a radar diagram to characterize software
projects and thereby obtain a recommendation on whether to use agile or ‘discip-
lined’ methods. Cockburn (2002) suggested a framework where one axis was
number of people and the other was criticality (life at risk) of defects. He de-
scribed an ideal setting (with up to 20 people and no serious money or life at risk)
as the ‘sweet spot’ in which agile methods were preferable.

Some years later, in 2008, more and more companies were adopting Scrum in
both Denmark and US (the two places where we live and work and thus have the
closest contact to). It also looked as if Scrum was being used outside the ‘sweet
spot’. Therefore we identified and conducted interviews in three Danish compa-
nies that were using Scrum near the edge of its suggested application area. This
usage was occurring in larger, sometimes geographically distributed teams and
with essential money at risk. All three companies studied were successful in orga-
nizing the use of both Scrum and a plan-driven approach to achieve the benefits of
both, namely the ability to respond quickly to change and the alignment of long-
term plans and on-going activities.

In this chapter we provide a historical overview over the changes that the prac-
tical phenomenon of agile software development has gone through with regard to
the aspects of time, application area, scope, and organization from 1999 to 2008.
The research methodology and results address questions of how local software
processes interacts with global changes in the software development context.

We have organized the remainder of this chapter in the following way. First we
describe our research methodology, which is anchored in grounded theory tech-

3

niques. Then we summarize the individual story line that proceeds from each of
the four study periods. Lastly we conclude with a discussion of the overall story
line that covers the 10-year time span.

5.2 Research Methodology

We have undertaken four phases of research, using Grounded Theory (GT) as our
research methodology. GT is a qualitative research methodology that takes its
name from the practice of discovering theory that is grounded in data. This re-
search methodology does not begin with a theory, and then seek proof; rather it
starts with an area of study and allows the relevant theory to emerge from that area
(Strauss and Corbin 1998). The research outcome is grounded theories that are in-
ductively discovered by careful collection and analysis of qualitative, empirical
data. Use of GT in IT research is exemplified by a landmark paper by Orlikowski
(1993) on CASE tools and organizational change, as well as explorations on soft-
ware requirements (Urquhart 1997, 2000). GT is best used in research where one
has relatively “uncharted land”, which for example was the case with the notion of
‘Internet speed’.

Our research questions in the 1999 and 2001 studies revolved around the con-
cept of Internet speed: What does it mean? Is there something one could distin-
guish as “Internet speed development”? How is it different from or similar to tra-
ditional development? In 2003, we continued to ask about Internet speed, but were
more focused on what had changed from the boom to the bust. In 2008 agile de-
velopment had become widely diffused and successfully used, also beyond the ap-
plication area initially recommended by the agile method authors. Our research in-
terest therefore centered on the question of how agile development, and more
specifically the agile method, Scrum, was used in projects at or well beyond the
edge of its original sweet spot and why this seemed to work.

For all four phases of research, we have collected our data via semi-structured
interviews. The interview guide was structured around the following topics:

1. The firm, and its’ products and services
2. The interviewee
3. Projects in the organization – from start to end
4. Development model used?
5. Internet time / Agile development – What does it mean to you?
6. The development process itself
7. Talent, training, learning, and knowledge
8. Transfer of knowledge
9. The biggest problem / Greatest challenge?

Each interview lasted approx. 1-1½ hour, relevant documents were collected,
and observation notes were recorded (e.g., about the use of open- or closed space
offices; and the general impression of the pace, atmosphere, and ‘tone’ of the
work place).

4

For data analysis we have applied the three coding procedures of GT (Strauss
and Corbin 1998) called open, axial and selective coding.

The goal of open coding is to reveal the core ideas found in the data. Open cod-
ing involves two tasks. The first task is labeling phenomena. This task involves
decomposing observations into discrete incidents or ideas. Each discrete incident
or idea receives a name or label that represents the phenomenon. These names
represent a concept inherent in the observation. The second task is discovering
categories. Categorizing is the process of finding related phenomena or common
concepts and themes in the accumulated data in order to group them under joint
headings, thus identifying categories and sub-categories of data.

The purpose of axial coding is to develop a deeper understanding of how the
identified categories are related. Axial coding also involves two tasks. The first
task connects categories in terms of a sequence of relationships. For example, a
causal condition or a consequence can connect two categories, or a category and a
sub-category. The second task turns back to the data for validation of the relation-
ships. This return gives rise to the discovery and specification of the differences
and similarities among and within the categories.

Selective coding involves the integration of the categories that have been de-
veloped to form the initial theoretical framework. First, a story line is generated or
made explicit. A story is simply a descriptive narrative about the central pheno-
menon of study; the story line is the conceptualization of this story (abstracting).
The story line becomes the core category, which is related to all the categories
found during axial coding, thereby validating these relationships, and elaborating
the categories into a theoretical expression that explains the phenomena observed.

5.2.1 Study One: Interview Study in Denmark

The first phase of our research aimed at exploring the influence of working on In-
ternet time (Cusumano and Yoffie 2000). One could say that we were testing the
hypothesis that working on Internet time would have to cause some changes in the
way software development work was organized. But beyond this no hypotheses
were pre-formulated and tested.

We interviewed in three Danish companies. Two of the companies were new to
the authors and the third was a company we had visited over a period of time for a
longitudinal study. The main facts about the three companies are given in Table 1,
and further details can be found in Baskerville and Pries-Heje (2001).

Name

(Pseudonym)

What offered?, When founded?, Which
size?

Number of people interviewed and their
organizational roles

NewWays

Develops custom-tailored Internet products
for major customers internationally.

Founded in the mid 1990s.

50 employees when interviewed.

4 people interviewed: One project man-
ager, a development manager and two
developers.

ProfWeb Develops custom-tailored Internet and 2 people interviewed: A development

5

Intranet products interfacing with large ex-
isting databases.

Founded in the early 1990s.

40 employees when interviewed.

manager and a developer.

AlfaWeb

A general web-based product sold on the
market as a standard product for e-
commerce.

Founded in the late 1990s.

12 employees when interviewed.

2 people interviewed: The CEO and a
development manager.

Table 1. Facts about the three companies (study one).

5.2.2 Study Two: Interview Study in USA

The second phase of our research involved ten detailed case studies of Internet
software development companies in two major U.S. metropolitan areas. The firms
ranged in size from 10 employees to more than 300,000 employees and covered
different industries in the private and public sectors including: financial services,
insurance, business and consulting services, courier services, travel, media, utili-
ties, and government services. Some of the firms were Internet start-ups while
others were “brick and mortar” companies with newly established Internet devel-
opment units.

The objective was to understand whether software development for the Internet
differs from traditional software development. This phase identified the practices
used for Internet software development and explored the role of quality in fast-
cycle development environments (Baskerville and Pries-Heje 2002). Further de-
tails on this study are given in Baskerville et al. (2003)

5.2.3 Study Three: A Follow-up Study

Another round of interviews in the same companies as in phase 2 was conducted
two years later. Only five of the original ten companies (from 2001) remained in
business or were available to participate in the study. A brief description of each
firm is provided in Table 2, and further details are available in Pries-Heje et al
(2005).

Name

(Pseudonym)

What offered?, When founded?, Which
size?

Number of people interviewed in each
round and their organizational roles

Calliope

Offers forecasting tools for energy and
communications industry.

Founded in the mid 1990s.

 20 employees when interviewed.

2001: 3 people interviewed: VP Opera-
tions, Project Manager, Software Devel-
oper.

2003: Not interviewed.

Clio Low-price health care and utilities for 2001: Six people interviewed: President

6

groups of customers.

Founded in the late 1990s.

35 employees when interviewed.

& CEO, VP Technology Operations, Di-
rector of Marketing Research, Chief In-
formation Officer, two developers.

2003: Not interviewed.

Deca

Develops and markets a platform of E-
business software modules that allow users
more control when doing business online.

Founded in the late 1990s.

Approx. 10 employees when interviewed.

2001: Not interviewed.

2003: Four people interviewed: CEO,
developer, QA specialist and marketing
manager.

Erato

Offers to help Brick & Mortar companies
get online.

Founded in the late 1990s.

55 employees when interviewed.

2001: Four people interviewed: Direc-
tor, Chief Financial Officer, Chief Op-
erations Officer, and developer.

2003: Not interviewed

Euterpe

Film and Television Industry. Offers high-
tech tools online.

Founded in the mid 1990s.

80 employees when interviewed.

2001: Four people interviewed: Project
managers, marketing specialists, senior
web developers.

2003: Not interviewed

Melpomene

Carries out personnel administration for
other companies online.

Founded in the mid 1990s.

More than 100 employees when inter-
viewed.

2001: Seven people interviewed: Project
managers, process improvers, architects,
user interface designers, web develop-
ers.

2003: 6 of 7 people interviewed. Process
improvement person had left company.

Polyhymnia

Offers online services for transport and tour-
ist industry.

Founded in the early 1990s.

More than 1000 employees when inter-
viewed.

2001: Six people interviewed: Senior
managers, Project managers, QA man-
ager, lead developers, web developer.

2003: Seven people interviewed: Same
distribution of roles as in 2001.

Terpsichore

Offers industrial insurance online.

Founded in the 1930s.

More than 10000 employees when inter-
viewed.

2001: Three people interviewed: Human
Resources Manager, Internet site man-
ager and Internet site developer.

2003: Not interviewed.

Thalia

Online service for transport and logistics in-
dustry.

Founded in the 1930s.

More than 100000 employees when inter-
viewed.

2001: Six people interviewed: CIO, Se-
nior manager, project managers, archi-
tects, senior developers, web develop-
ers.

2003: Three of the six people inter-
viewed: CIO, senior and project manag-
er.

Urania

Business-to-business communication.

Founded in the 1980s.

More than 100,000 employees when inter-
viewed.

2001: Six people interviewed: Senior
manager, Project managers, quality as-
surance manager, QA specialist, Web
developers.

2003: Six people interviewed. Same
roles. But only three were the same
people.

7

Table 2. Facts about the ten companies (study two and three).

5.2.4 Study Four: Scrum Interview Study in Denmark

The fourth round of interviews was conducted for the purpose of exploring how
Scrum was used in projects characterized by larger and geographically distributed
teams concerned with the development of business and life critical software. Three
Danish companies were selected as relevant sites for data collection as their IT
projects exhibited these characteristics (See Table 3). The case companies had
from one year to two and a half years of experience with the use of Scrum, with
SuperSystem being the most experienced.

Name

(Pseudonym)

What offered?, When founded?, Which
size?

Number of people interviewed in each
round and their organizational roles

GlobeRiver

Develops engineering products with built-in
intelligence (software).

Founded in 1940s.

500 employees in R&D function world-
wide when interviewed; of this 25 in a com-
pany-owned development house in India
(Developers and Scrum masters).

3 people interviewed: a Danish Scrum
master, a Danish Facilitator, and an In-
dian Scrum master.

SuperSystem

Develops software for the military, the
banking industry, hospitals, etc.

Founded in 1980s.

Approx. 400 employees when interviewed.

4 people interviewed: a Lead Developer,
a Scrum master, the manager of the in-
ternal software process improvement
(SPI) department, and the person offi-
cially in charge of implementing Scrum
in the company.

DareYou

An off- and online gaming company; works
with several suppliers located in different
places and countries to develop the online
games.

Founded in 1940s.

Approx. 250 employees when interviewed.

2 people interviewed: The Project man-
ager and the Product owner.

Table 3. Facts about the three companies (study four).

The results of the four phases of research are presented below in the form of
four grounded theories. The theories cover several levels of analysis, namely the
market, the portfolio, the project, and the team level. However, many of our res-
pondents were operating at the project and team level (project managers and de-
velopers). We have therefore been able to collect more detailed data, conduct
more thorough analyses, and develop more robust theories about these two levels.

8

5.3 Study One Results: Racing the E-bomb

In the first study we noted ten properties of a new methodology for “e” develop-
ment (Baskerville and Pries-Heje 2001). Each of these properties is briefly de-
scribed below, along with examples of how these properties are manifested in the
cases. We also describe the chain of causal links that we discovered among these
properties, which helps explain why this particular set of properties has come to
characterize Internet time development (an early manifestation of agility). These
properties and the causal chain are depicted graphically in Figure 1.

1. Time
pressure

2. Vague
requirements

4. Release
orientation

8. Quality is
negotiable

3. Prototyping7. Coding your
way out

9. Dependence
on good people

5. Parallel
development

6. Fixed
architecture

10. Need for
Structure ?

Handled by

Making it
possible

Requires

Making it
possible

Making it
possible

Requires

Handled by

Have led to
Have led to

Have led to

May in the future
require

Have led to

Fig. 1. Results from the first study.

Time pressure. We found time pressure to be a condition permeating software
development in the three companies we studied. First-to-market is the central, de-
fining high-priority goal of Internet time development. Minimizing time-to-market
from concept to customer is an all-consuming activity and achievement of this
goal drives almost all other elements of the methodology. This goal is not new in
business (Smith and Reinertsen 1995) nor in software development (Cusumano
and Selby 1995; Iansiti and McCormack 1997). However, the degree to which it
influenced systems development had not yet been recognized when we conducted
this study.

Vague requirements. An inability to pre-define system requirements is the
central, defining constraint of Internet time development. The requirements speci-
fication has traditionally been the heart of systems development. However, Inter-
net time development accepts a starting point in which the requirements are per-

9

mitted to persist in near or full ambiguity. For example a project manager at
NewWays said, “Often a project starts without a requirements specification.
…companies come to us and say: We believe there is a treasure buried in the
World Wide Web. … we want something new.”

Prototyping. The idea of using prototypes seems to be widespread and per-
meating both early and late work in development projects. For example ProfWeb
describes their use of prototypes as being part of their core competence. The R&D
manager said: “We live from being technologically in front of our competitors,
and from being able to visualise more far-reaching and wide-ranging solutions for
our customers than our competitors are able to.”

Release orientation. The vague requirements are not just something we see in
the beginning of a project. In fact it continues throughout the development
process. One consequence is what we have named a “release orientation”. Soft-
ware systems are produced in a series of ever more refined and extensive versions
of the product; and each release contains bug-fixes and new features. These matur-
ing product cycles characterize Internet software development in which competi-
tion demands significant product and feature changes every few months (Cusuma-
no and Selby 1995). This release orientation helps relieve some of the time
pressure because if a feature does not make it for the contemporary release, it can
simply be postponed to the following release, which is never very far behind.

Parallel development. The release orientation demands a fast cycle time that is
impossible to meet in a serial process. Parallel development processes therefore
flourish, meaning that a number of activities take place at the same time. Products
and releases therefore have to be designed and coordinated for parallel develop-
ment, another aspect common to Internet software development (Cusumano and
Selby 1995). For example, NewWays projects typically have a duration of 2-3
months. A sequential, waterfall-like model is seen as much too slow. Instead
NewWays have several parallel development processes running at the same time.

Fixed architecture. To make parallel development possible, it is necessary to
have some means for dividing the work. In all three cases we found that this has
led to the use of a fixed three-tier architecture. At NewWays the development
manager describes it in the following way: “Architecture is important to New-
Ways. Typically an application has three layers: At the bottom you have a data-
base with content; in the middle you have the business logic; and at the top you
have the HTML generating logic, typically written in Visual Basic Scripts”. The
architecture is used as an important coordination mechanism to divide the work in
the project. It is explained that: “Typically the graphical person is drawing some-
thing in PhotoShop which the HTML person then can cut up and put into tags,”
says one developer and another continues, “Which means that we are released
from worrying about presentation and can concentrate on the heavy things” [i.e.
the business logic and the database].

Coding your way out. The short time frame allowed for developing applica-
tions also introduces a coding focus or even hacking: “You have to accept that
hacks are being made, that you don’t have time to think systematically, and that
you don’t reuse because of the time pressure” (NewWays).

Quality is negotiable. Three different ways of looking and talking about quali-
ty have appeared over the last 20 years (Crosby 1980). One school of thought fo-

10

cuses on fulfilment of customer expectations. Another way of thinking emphasizes
measurable product attributes and conformance to requirements. The third ap-
proach is process oriented and assumes that a good development process will lead
to quality. The three resulting kinds of quality can be named expectation-based,
product-based, and process-based quality.

As a consequence of both time pressure and vague requirements we found that
both product-based and process-based seemed to be ignored. Moreover, customers
and users seemed to expect low quality. We decided to call this phenomena nego-
tiable quality.

ProfWeb was for example struggling with quality. They knew it was not good
enough and they had started thinking about what to do: “We collect a Test Group
for every project. At least that is the plan for the future, but right now we are run-
ning the pumps, not financially, but we are very busy … I have a capacity plan-
ning system and the UNIX department is booked 4 months ahead” (ProfWeb).
Thus time pressure is a cause of the negotiable quality.

Dependence on good people. Time pressure is also the primary reason why
good people are in high demand. As one of the founders of ProfWeb phrased it: “I
believe the largest bottleneck we have is to get enough qualified employees”.
However, not all kinds of IT people were in high demand. Traditional analysts
were not in as high demand as the technical people who were close to the code: “I
also realised that the job market is such that I could find 25 new consultants to-
morrow but I wouldn’t be able to find two new programmers” (ProfWeb).

Need for new kinds of structure. An issue that is closely related to methodol-
ogy and to a number of issues we have addressed above is structure. We have not
been able to establish a solid causal relationship, but we have indications that
seem to reveal that the older and larger the organization and/or the customers the
larger the need for structure. For example, AlfaWeb, which only had existed for
half a year when we interviewed them, was not feeling any need for structure. The
CEO explained: “I believe it is the informality but also the lack of formal struc-
tures. If people have to close-knit a framework to work in they might cut down on
creativity” (AlfaWeb). In contrast, NewWays, which had existed for two years and
had 50 employees, had started creating some structures, and had started using a
number of object-oriented techniques.

5.4 Study Two Results: A New Software Development Process

In the second study we identified three major categories of observations that were
causing a change, and three major categories that were resulting from the chang-
ing causes (Baskerville et al. 2003). Key findings are that Internet software devel-
opment is different from traditional development and that the case companies are
getting good at developing software at Internet speed by using an increasingly es-
tablished set of practices that facilitate quick results, i.e. by using a new (agile)
software process.

11

Desperate rush
to market

Different kind of
market environment

Lack of
experience

Internet Software is different

A changed
Culture

Quality is
negotiable

New Software Process

Release
orientation

Parallel
development

Fixed
architecture

Prototyping

Tool
Dependence

Components

Customer
involvement

Maintenance
ignored

Tailored
methodology

causing
causingcausing

resul-
ting in

resul-
ting in

resul-
ting in

Fig. 2. Results from the second study.

A different kind of market environment. The Internet created a unique plat-
form and marketplace for software products - one that was flexible in terms of re-
quirements and quality. Requirements and quality were negotiable from release-
to-release in a market-oriented process where competition and pragmatics were al-
lowed to intervene to limit the scope of features in each release.

Lack of experience. The interviewees reported that there were too few know-
ledgeable and experienced developers who understood the new technology, chang-
ing market conditions, and who could meet the need for speed. A manager from
Melpomene told us that “lots of people [in our organisation] came from more cor-
porate environments where it took forever to get things out the door.” Much of
this prior experience was a hindrance rather than a benefit in the new environment.
The shortage of experienced professionals made the marketplace for developers
tight and expensive, and created development organisations that lacked sufficient
experience and expertise.

Desperate rush to market. In all the case companies they explained that Inter-
net software development was driven by a desperate rush to market. “Time-to-
market…Bigger, faster, better. Everything is very rush, rush, rush” (Polyhymnia).

Quality is negotiable. Many quality factors were not as critical in Internet
speed development as they were in traditional software development. Customers
and users appreciated quick results and were willing to defer a certain amount of
reliability and performance until later releases. And developers were willing to re-
build badly designed or coded features later when the deferment ran out. “It is dif-

12

ferent working at Internet speed. Compressed cycles mean that quality suffers.
With speed we are sending poorer quality out the door” (Polyhymnia).

A changed culture. We found that Internet software development organiza-
tions had a distinct culture that appreciated informal structure, smaller teams, and
diverse team compositions. Moreover, there seemed to be a tight bond among In-
ternet software developers, a sense of belonging with others who shared the same
values. “We are not 9 to 5 people down here. We are more dynamic … There is a
lot more excitement and enthusiasm here” (Thalia).

A new software process. At the project level, we identified nine distinct cha-
racteristics (see Table 4). Although no single characteristic was unique to the new
development process, the collection of characteristics was distinctive, aimed at
producing quick results, and remarkably common in the case companies.

Characteristic of the new
software process

Description and examples

Parallel development

To achieve high speed we found that companies compressed devel-
opment into a time frame where only overlapping, parallel develop-
ment could meet the demands.

Release orientation

“People have a perception of Internet speed. They expect it. So we've
had to scope our delivery or deliver a smaller set of features. Thereby
releasing more often”, said a manager from Euterpe. Clio said: “De-
velopment cycles last from 2 to 15 days… timing is important. Fea-
tures that cannot be completed in time can slip from one release to the
next. The fast cycle time softens the penalty from slipping a feature.”

Tool dependence

Urania estimated that “fifty percent of development is already taken
care of by tools we use such as iplanet or websphere. The APIs to
these tools gives a lot of functionality.” Many Internet software devel-
opment organizations made heavy use of development tools and envi-
ronments that could speed up the design and coding process. Further-
more new tools also helped to create well modularized and architected
systems.

Customer involvement

When requirements are fuzzy it helps having close access to custom-
ers. Thus intimately involving customers to cope with evolving and
unstable requirements was typical. We also found that customers were
often co-located with the development team, and participated closely
in all phases of development. Most projects relied on such involve-
ment rather than a formalized requirements management process.

Prototyping

Instead of using formal requirements documents, most projects used
prototyping as a way to communicate with their customers to validate
and refine requirements. Customers would describe the basic functio-
nality for new or changed features and these were quickly prototyped
for demonstration and experimentation. “We are supposed to have a
full [requirements and design document] but a lot of programmers use
the prototype and go back and forth to check, or go back and ask:
what was this supposed to do” (Melpomene).

Criticality of architecture

A well-planned architecture enable each release to be developed with
some similarity. A three-layer architecture was common: (1) Data-
base layer, (2) Business logic layer, the detailed processing code, and
(3) User interface layer.

13

Components based develop-
ment and reuse

Internet speed can be achieved by software assembled with as many
reusable components as possible, rather than crafted from scratch. “In-
ternet speed needs reuse. We need to take components and to know
how to put them together” (Thalia).

Maintenance ignored

The short life span of Internet software meant that maintenance often
was not given serious consideration. “Products are not documented.
No design document, no requirements specification. The person who
did it is gone. It takes much longer time. Often we can start from
scratch. It leads to a throw away mentality”(Polyhymnia).

Tailored methodology

The processes and methods used in Internet software development va-
ried considerably depending on the composition of the project team
and the nature of the product. "We have an overall methodology. But
we have to tailor processes for individual teams”(Urania). Just
"enough process to be effective", added Euterpe.

Table 4. Nine characteristics of the new software process (study two).

5.5 Study Three Results: Balancing Speed and Quality

Three major changes took place from our second to our third study, i.e. in just two
years (Pries-Heje et al. 2005). First, quality was no longer being treated as a dis-
advantaged stepchild. Speed and quality had to be balanced for companies to sur-
vive. Second, the unending supply of money that characterized the dot com boom
had dried up. Third, good people were no longer in such short supply.

14

Experience

.Have taught
them ...

Being
used in

Customer
needs

Requires more qua-
lity & have come to
expect speed ...

Decisions on functionality,
size & complexity & requi-
red proftability

Changing market
& IT Economy

Sufficient supply of
smart people to hire

Less capital than
before & more em-
phasis on business model

Set of
Business
solutions

Set of
Technical
Solutions

Solution set
1. Business

model
2. Different

projects
3. Cost focus

More
expectations

Speed Qualityand

Solution set
1. Architecture
2. Components/reuse
3. Estimation methods
4. QA & Testing
5. Parallel development
6. Prototyping
7. Frequent releases

Market
level

Portfolio
level

Project
level

Fig. 3. Results from the third study.

5.5.1 The Market Level

At the market level two things had changed. The changing market and IT econ-
omy were having visible impact on the firms that we visited. The companies were
still under pressure to develop and deliver software at Internet speed, but they
were operating with significantly lower capital than before, and were no longer
finding it difficult to hire or retain the talent they needed. Most of the companies
described their states as either holding back or cutting down on their employees.
Thus, changes in the IT economy were especially noticeable with respect to per-
sonnel and staffing. Moreover, disappearing venture capital as well as tight budg-
ets forced the companies to focus on business value and costs. What is new is the
employment of a set of business solutions at the portfolio level, carefully coordi-
nated with use of a set of technical solutions at the project level.

Also contributing to the state of Internet software development at this point in
time is the hard-won experience gained during both the dot com boom and bust.
Whereas development staff at the companies we visited in our second study ex-
pressed boundless energy, excitement, and some confusion about what they were
supposed to do and how, in our third study a more mature and reflective perspec-
tive was evident. One member at Melpomene suggests that caution contributed to

15

the company’s survival: “I am critical of the phrase ‘Internet speed’, of the dotcom
craze and demise. At that time, there was excitement. But all the successful prac-
tices were successful because they were good practices. We made conservative
decisions and are still here." Thus, significant learning has taken place in these
companies, across a wide range of business and technical topics. A member of
Thalia sums up the learning in the following way: “Products are getting better due
to more experienced developers.”

5.5.2 The Portfolio Level

Sets of business solutions. The changing market and IT economy resulted in in-
creased attention to the need for business models and a new, or increased focus on
costs. “What has changed? We don't waste time on things that don't generate reve-
nue” (Thalia).

As opposed to the days of abundant resources where risky projects even with
faint hopes of success were undertaken, organizations were now much less willing
to fund projects that did not have a clear business case. “We have to balance the
need to do things fast and [the] desire to do it right – you need to have a business
case.” (Urania). A manager at Thalia also explains that his “Product is expected to
generate revenue. That is different than before. Now we need to make a business
case for each project”. This situation encouraged project managers to clearly arti-
culate the rationale for their projects, position them appropriately in alignment
with organizational needs and requirements and in addition, market them to rele-
vant decision makers.

All of the companies were refining their identities and offerings, but the chal-
lenges were being tackled in different ways. Some companies harkened back to
more conventional business models, recognizing that “Success from now on de-
pends on being a software and service company rather than an Internet company”
(Melpomene), while others were forming partnerships with external (develop-
ment) organizations.

Customer needs. The voice of the customer was still very much present, ex-
pressed through product strategy concerns, relationships, and ongoing contact.
“The speed hasn’t changed. If anything it gets faster and faster as customer expec-
tations grow…[the biggest challenge] is meeting your customer’s expectations”
(Urania). Customer needs remained a challenge to discern and satisfy and at the
same time customer expectations - for speed and quality - were significantly high-
er than in the second study.

5.5.3 The Project Level

The project level categories manifested themselves as a set of technical solutions.
Of the seven categories in this solution set, five were somewhat similar to the
process elements in study two. These five similar elements are: a standard archi-
tecture, the (re)use of components, parallel development, prototyping, and fre-

16

quent releases. Two new elements appeared: estimation and the improvement and
involvement of quality assurance (QA) and testing. The two new elements are de-
scribed in Table 5.

Characteristics of the technical
solution set

Description and Examples

Estimation A major difference between our second and third study was the
recognition of the need for good estimation methods to track and
improve performance. The organizations that had been involved
in internet software development for a few years declared that
they were more mature in their estimation of effort and schedule -
“we know what it is like to develop in this environment" (Poly-
hymnia).

Improve and involve QA and
Testing

With markets and products maturing, quality was getting more
important. QA and testing was now seen as important aspects of
software development. Due to the time-constrained environment,
the need for more efficient QA was stressed. “If I look at a project
time line, a lot of it is in QA testing. We need to improve and au-
tomate and create scripts to drive that down” (Thalia).

Table 5. Two distinctive characteristics of the technical solution set (third study).

Speed and Quality. Individuals in all the case companies commented explicit-
ly on the struggle to balance speed and quality. “E-speed and e-haste are just nor-
mal now. Now you just know that you have to go that way and balance for quali-
ty” (Urania). The need for speed appeared to be as constant in our third study as it
was in the second study. The customers had gotten accustomed to high speed de-
velopment and were expecting it in every project. Quality, however, was viewed
as having greater importance than previously seen. Quality was associated with
number of defects, customer satisfaction, and overall success. Our interviewees
explained that “If you don’t follow your processes, or do your documentation, that
is not quality” (Urania) and that “They'll forget that you're late but they won't for-
get if it's bad” (Polyhymnia). Thus, at this point in time all three types of (product,
process, and expectation-based) quality had become important.

5.6 Study Four Results: Boundary Spanning with Scrum

In our two studies conducted before the Dotcom bust, software development for
the Internet was characterized by time pressure. In the third study changes at the
market level led to a more balanced view on speed and quality; business value and
costs.

In the forth study, we examined three companies that were using an agile me-
thod (Scrum) for some parts of their software development process and a more
traditional approach for other parts of their development efforts. The case compa-

17

nies were motivated to use Scrum by an internal drive to achieve the benefits of an
agile approach. The following benefits were highlighted as particularly important:

1. A closer contact with and immediate feedback from the customer.
2. Increased developer commitment and feelings of ownership.
3. The energy released from being able to focus on quick results.

At the same time, and due to the size and distributed nature of the team work as
well as the criticality of the software, the interviewees stressed the need for align-
ment. Alignment is described as necessary to ensure that the work carried out by
the Scrum teams is in line with the overall scope document, budget, and project
plan. The work should also align with the major milestones of the project and
broader company-prescribed methods and standards (e.g., CMMi). The wish for
energy and agility and the need for overview and alignment has led all three case
companies to employ ‘a mixed strategy’ (Abrahamsson et al. 2009) where they
combine the relatively recently adopted agile approach with more well-established
plan-driven ways of working (see Figure 4).

Scrum Team(s)
with a narrow

focus on today,
this sprint and

the next

Project
management
of the big, and

long-term
picture

Product owner
with needs,

expectations
and priorities

a Plan-
driven

approach

The wish
for Agility

Boundary Objects

Boundary Spanners

Leds to
The need

for
Alignment

Via continued
use of

Leds to

an Agile
approach

I.e. adoption of

Fig. 4. Results from the forth study.

The three companies are very clear about how they organize to achieve the
benefits of both the agile and the plan-driven approach. They explain that “We
carry out project planning and management at several levels.” (SuperSystem).
Thus, in all three cases, the Scrum team(s) and master(s) are allowed to have a
narrow focus on ‘today, tomorrow, this sprint, and the next’, while a project man-

18

ager has the responsibility for the project and the overall alignment of plans and
people, i.e. for the big, and long-term picture. This division of work is necessary
because “Scrum does not help with the overall, long-term planning of the
project…you need to have an additional layer of project management. Otherwise it
is not possible to coordinate and oversee a project with a deadline 1½ to 2 years
into the future” (SuperSystem).

As the companies have chosen to organize for both agility and alignment cer-
tain Scrum elements and key people come to play a boundary spanning role that
facilitates the sharing and negotiation of knowledge between several intersecting,
but distinct social worlds (Levina and Vaast 2005; Star and Griesemer 1989).

5.6.1 Agility

The companies explain that they are “…true to Scrum at the team level” (Super-
System) and that they “…use Scrum more or less ‘by the book’” (GlobeRiver).
Thus, Scrum helps the Scrum team conduct the work that is a part of their social
world, namely the coordination and performance of tasks (related to analysis, de-
sign, development, test, integration, and release) as well as the monitoring of
progress, risk, and quality for the current sprint. Moreover, Scrum plays an impor-
tant role in providing a number of boundary objects that mediate the interaction
that takes place between the Scrum team and the customer organization. For the
product owner the prioritized user stories constitute functionality that will be a
part of the next deliverable, and for the developers the user stories are (also) tasks
that have to be carried out during the particular sprint. At the same time, the sto-
ries and the software allow the team members and the product owner to communi-
cate, share knowledge, and create new meaning across the boundaries of their dif-
ferent worlds.

5.6.2 Alignment

In all three case companies software development was previously conducted in
accordance with a sequential, document-oriented development model, and a plan-
driven approach continues to be used after the introduction of Scrum. However,
the plan-driven approach is now separated from the development teams and activi-
ties, and used by an appointed project manager for overseeing the project as a
whole. It is explained that “…surrounding the team’s work and the burn-down
chart is the overall project plan, including milestones, broad-level estimates, a
mapping from milestones to sprints, and a plan over external releases, as well as a
risk analysis. The board-level estimates and the mapping from milestones to
sprints help validate if the project and its scope can be achieved within the time
frame and the budget, but the details of the sprints are not specified in these plans.
That is the responsibility of the team” (SuperSystem).

DareYou also reported that, even though they are the customer organization,
they consider themselves responsible for the project and its success. Consequently,

19

they also operate with an appointed ‘traditional’ project manager, as well as
project management tools and documents such as a written project vision, budget,
overall project plan and some up-front specification of requirements. In this case,
the customer’s project manager is the boundary spanner who keeps the project and
its plans and participants aligned, and together with the product owner she is heav-
ily involved in and well-informed about the actual quality and progress of the sup-
pliers’ development efforts.

In GlobeRiver the overall management and responsibility for the development
of new engineering products resides with the R&D department. Thus, the Indian
Scrum teams carry out the software development within the frame of large, busi-
ness critical projects that involve many internal departments and external suppliers
and which are managed in accordance with a traditional plan driven approach. It is
very important that the software meets the deadlines in the road map for the prod-
uct development project as a whole and that it is in line with the requirements and
quality in the specification. In this setting, the R&D project manager is also the
product owner and responsible for prioritizing the already specified functionality,
which the Scrum teams then develops during a number of sprints. Moreover, a
third role, a Facilitator, has been introduced. The Facilitator, located in Denmark,
“…is the main point-of-contact between the Danish product owner and the Indian
teams and follows-up on progress and impediments on a weekly basis, or more if
needed…” (GlobeRiver). The Facilitators serve as boundary spanners who use
certain information objects (such as, e.g., the road map, product backlog, burn-
down chart, and impediments list) to keep the Indian Scrum team informed about
requirements, priorities, and deadlines and the Danish R&D manager up to date
about progress, quality, and risks. In this way, the Facilitator plays an important
role for the translation of information between the agile and the plan driven
worlds. This in turn allows the Indian software developers and the Danish R&D
personnel to operate almost completely according to their own goals and work
practices.

In sum, in all three case companies, the combined use of Scrum and a plan-
driven approach has been organized so that the involved agile and plan-driven
communities-of-practice (Cox 2005) can work largely in keeping with their own
goals, information needs, and methods. Consequently, the translation of informa-
tion and negotiation of new meaning across the different intersecting worlds is ne-
cessary. To this end, certain information elements (i.e. the overall project plans
and burn-down charts) function as boundary objects, while the Scrum masters in
SuperSystem, the Project manager in DareYou, and the Facilitator in GlobeRiver
have boundary spanning roles, which they are fully aware of.

5.7 Discussion and Conclusion

Over the ten year time span, learning has been generated from each of the four
studies. Much of this learning might be characterized as detailed and “keen in-
sight” that is created within each of the studies and which does not bear well in

20

brief summaries. However, it is possible to consider the learning that arises from
the accumulation of insights across the four studies. A limitation of this approach
lies in its assumption that the four studies provide serial episodes. Because the
studies involve differing subject organizations and individuals, we cannot rule out
the alternative explanation that the consistencies in the data sets are accidental.

With this caveat in mind, we can summarize and interpret the collection of four
studies as follows. The central story line in the first study brought the changing
landscape of software development into sharp focus. In this study, it appeared that
the two main sources driving software development were incredible time pressures
coupled with unknown and changing requirements. These two primary causal fac-
tors arose as the context for software development changed due to the emergence
of the E-economy.

The central story line in the second study embraced a new software process that
was common across the respondents. This process included customer involve-
ment, parallel development, a release orientation, etc. The components of the new
process were present in the first study, but had become more or less established
practice in the second study (Baskerville and Pries-Heje 2004).

In the third study, the story shifted again, but this time away from software de-
velopment in a local sense. This story line focuses instead on changing economics
and the role of software in formulating business solutions and generating revenue.
A balancing game arises in which business and technical factors are brought to-
gether by high speed software projects.

Finally, in the fourth study, the central story line shifts once more, but the focus
falls back on software process. In this study, we find organizations which are not
exactly integrating agile and planned software processes; rather they are operating
these two different ways of working consistently within separate boundaries.
Work is flowing across the boundaries to enable the organizations to harvest the
benefits they require from each of the deployed software processes (agile and
planned).Thus, boundary objects and spanners play a key role in this story.

An interesting aspect of these study settings is the historically repeating two-
stage pattern where the story line first centers on a changing context and then on
the software process, almost as a maturation in response to early adaptation to
changes in the context (see Figure 5).

21

Change in Context

Time Pressure and Unknown/Evolving
Requirements

Change in Process

Reductionist Development:
Reduce Scope & Go!

Change in Context

Economic pressure and balancing
technical & business needs

Change in Process

Workflows crossing over agile
& planned software processes

(Learning in Study Two)

(Learning in Study One)

(Learning in Study Three)

(Learning in Study Four)

Fig. 5. Learning across the four studies.

From one perspective, this two-stage pattern is hardly surprising. A changing
context undoubtedly drives changes in software processes. However, the solid
evidence of an historical stage of fairly stable maturation of software process fol-
lowing a stage of more chaotic, context-driven process adaptation is surprising
from a different perspective. It suggests that maturation in software processes may
occur in historical cycles, rather than an endless progression of maturity-model
driven advance. In other words, our evidence indicates that reoccurring periods of
radically changing context will interrupt software process maturation.

Software process maturation does not necessarily restart from ground zero in
each episode. Our evidence clearly indicates that our settings have learned from
previous experience with new software processes. However, the evidence does
suggest that overall global progress in software process maturity is episodic, with
the possibility that each episode begins with a reversal, and then advances. It
seems likely that each episodic advance brings the software discipline to an over-
all position of advancement. Thus software process progress is not steady, but cha-
racterized by episodes of decline and advance.

Our findings have a number of implications for theory and practice. First, the
learning that we draw from across the four studies indicates that a broadening of
the primarily local way we research and view software process maturity and ma-

22

turity models might be useful. Second, our findings show that practitioners have
become so knowledgeable about agile development that they are able to use an
agile approach beyond the initially recommended home ground and to successful-
ly combine it with other development approaches and world views. Thus, it seems
that the software development process has once again reached a state of some sta-
bility and maturity. Third, our findings show that a boundary spanning perspective
is a useful theoretical lens for understanding the current success and stability of
agile development.

References

Abrahamsson, P., Conboy, K., & Xiaofeng, W. (2009). 'Lots done, more to do': The current state
of agile systems development research. European Journal of Information Systems, 18(4),
281-284.

Atlanta_Constitution. (2001, February 19). Internet growing by leaps and bytes: Study says
americans trek to Cyberspace Is now a stampede. The Atlanta Constitution, pp. A1, A9.

Baskerville, R., Levine, L., Pries-Heje, J., Ramesh, B., & Slaughter, S. (2003). Is Internet-speed
software development different? IEEE Software, 20(6), 70-77.

Baskerville, R., & Pries-Heje, J. (2001). Racing the e-bomb: How the Internet is redefining in-
formation systems development methodology. Proceedings of the IFIP TC8/WG8.2 Working
Conference on Realigning Research and Practice in Information Systems Development: The
Social and Organizational Perspective, 49-68.

 Baskerville, R., & Pries-Heje, J. (2002). Information systems development @ Internet speed: A
new paradigm in the making. In S. Wrycza (Ed.), Proceedings of the Tenth European Confe-
rence on Information Systems (pp. 282-291). Gdansk: University of Gdansk.

Baskerville, R., & Pries-Heje, J. (2004). Short cycle time systems development. Information Sys-
tems Journal, 14(2), 237-264.

Beck, K. (2000). Extreme programming explained: Embrace change. Addison-Wesley.
Beck, K., & Fowler, M. (2001). Planning extreme programming. Boston: Addison-Wesley.
Boehm, B. (2002). Get ready for agile methods, with care. IEEE Computer, 35(1), 64-69.
Boehm, B., & Turner, R. (2004). Balancing agility and discipline: A guide for the perplexed.

Boston: Addison-Wesley.
Cockburn, A. (2002). Learning from agile software development - Part one and two. Crosstalk -

The journal of Defence Software Engineering (September and October).
Cox, A. (2005). What are communities of practice? A comparative review of four seminal works.

Journal of Information Science, 31(6), 527-540.
Crosby, P. B. (1980). Quality is free: The art of making quality certain. New York: New Ameri-

can Library.
Cusumano, M., & Selby, R. (1995). Microsoft secrets: How the world's most powerful company

creates technology, shapes markets and manages people. New York: Free Press.
Cusumano, M., & Yoffie, D. (2000). Competing on Internet time: Lessons from Netscape and its

battle with Microsoft. New York: Touchstone.
Dybå, T., & Dingsøyr, T. (2008). Empirical studies of agile software development: A systematic

review. Information & Software Technology, 50(9-10), 833-859.
Iansiti, M., & McCormack, A. (1997). Developing products on Internet time. Harvard Business

Review, 75(5), 108-117.
Jeffries, R., Anderson, A., & Hendrickson, C. (2001). Extreme programming installed. Boston:

Addison-Wesley.

23

Levina, N., & Vaast, E. (2005). The Emergence of boundary spanning competence in practice:
Implications for implementation and use of information systems. MIS Quarterly, 29(2), 335-
363.

Orlikowski, W. (1993). CASE tools as organizational change: Investigating incremental and rad-
ical changes in systems development. MIS Quarterly, 17(3), 309-340.

Pries-Heje, J., Baskerville, R., Levine, L., & Ramesh, B. (2005). The High Speed balancing
game: How software companies cope with Internet speed. Scandinavian Journal of Informa-
tion Systems, 16, 11-54.

Rising, L., & Janoff, N. S. (2000). The Scrum software development process for small teams.
IEEE Software(July/Aug), 26-32.

Smith, P. G., & Reinertsen, D. G. (1995). Developing products in half the time (2nd Ed.). New
York: Van Nostrand Reinhold.

Star, S. L., & Griesemer, J. R. (1989). Institutional ecology, `translations' and boundary objects:
Amateurs and professionals in Berkeley's museum of Vertebrate Zoology, 1907-39. Social
Studies of Science, 19, 387-420.

Strauss, A., & Corbin, J. (1998). Basics of qualitative research: Techniques and procedures for
developing grounded theory (2nd ed.). Thousand Oaks, Ca.: Sage.

Urquhart, C. (1997). Exploring analyst-client communication: Using grounded theory techniques
to investigate interaction in informal requirements gathering. In A. S. Lee, J. Liebenau & J. I.
DeGross (Eds.), Information Systems and Qualitative Research (pp. 149-181). London:
Chapman and Hall.

Urquhart, C. (2000). Strategies for conversation and systems analysis in requirements gathering:
A qualitative view of analyst-client communication. The Qualitative Report (On-line serial),
4(1).

Author Biographies

Richard L. Baskerville is a Board of Advisors Professor of Information Systems
and past chairman in the Department of Computer Information Systems, Robinson
College of Business, Georgia State University. His research specializes in security
of information systems, methods of information systems design and development,
and the interaction of information systems and organizations. His interest in me-
thods extends to qualitative research methods. Baskerville is the author of Design-
ing Information Systems Security (J. Wiley) and more than 100 articles in scholar-
ly journals, professional magazines, and edited books. He is Editor-in-Chief for
The European Journal of Information Systems (EJIS) and serves on the editorial
boards of Business & Information Systems Engineering (Wirtschaftsinformatik),
and the Information Systems Journal (ISJ). A Chartered Engineer, Baskerville
holds degrees from the University of Maryland (B.S. summa cum laude, Manage-
ment), and the London School of Economics, University of London (M.Sc., Anal-
ysis, Design and Management of Information Systems, Ph.D., Systems Analysis).

Jan Pries Heje is Professor in Information Systems, Department of Communica-
tion, Business and IT, Roskilde University. Head of the User Driven IT-innovation
Research Group. His research focuses on designing and building innovative solu-
tions to managerial and organizational IT problems. Previous and current projects
explore quality software development @ Internet speed, innovative capability in
projects, the ability for an organization to improve, and how one can design a

24

process for making better sourcing decisions. Jan Pries-Heje is Past President of
the Association of Information Systems in Scandinavia (IRIS). Jan Pries-Heje
serves as the Danish National Representative to IFIP Technical Committee 8 on
Information Systems where he is also Chair. Jan Pries-Heje has been Associate
Editor for MIS Quarterly, ISJ, and EJIS. Jan Pries-Heje’s research interests in-
clude project management, information systems development, and process im-
provement. He focuses on organisational and managerial issues.

Sabine Madsen (PhD) is Associate professor at the Department of Communica-
tion, Business, and IT at Roskilde University, Denmark. She has been employed
as a project manager in the Danish IT-industry before pursuing an academic ca-
reer. She completed her Ph.D. about process and method emergence in informa-
tion system development practice in 2004. Her general research interests concern
IS development processes, methods, and the relationship between research and
practice and she has published on these topics in journals (such as EJIS, and ISJ),
book chapters, and conference proceedings. She is a regular reviewer for IS jour-
nals and conferences. Recent research and teaching are in the areas of project
management, outsourcing, and agile IS development. For these themes she is par-
ticularly interested in understanding and theorizing about the practices, challenges,
and changes that IS developers and managers experience as a part of their day-to-
day affairs.

