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Constraint-Based Abstract Semantics for
Temporal Logic: A Direct Approach to Design
and Implementation *

Gourinath Banda' and John P. Gallagher!-?

! Roskilde University, Denmark
2 IMDEA Software, Madrid
Email: {gnbanda, jpg}@ruc.dk

Abstract. Abstract interpretation provides a practical approach to ver-
ifying properties of infinite-state systems. We apply the framework of
abstract interpretation to derive an abstract semantic function for the
modal p-calculus, which is the basis for abstract model checking. The
abstract semantic function is constructed directly from the standard
concrete semantics together with a Galois connection between the con-
crete state-space and an abstract domain. There is no need for mixed
or modal transition systems to abstract arbitrary temporal properties,
as in previous work in the area of abstract model checking. Using the
modal p-calculus to implement CTL, the abstract semantics gives an
over-approximation of the set of states in which an arbitrary CTL for-
mula holds. Then we show that this leads directly to an effective im-
plementation of an abstract model checking algorithm for CTL using
abstract domains based on linear constraints. The implementation of
the abstract semantic function makes use of an SMT solver. We describe
an implemented system for proving properties of linear hybrid automata
and give some experimental results.

1 Introduction

In this paper we apply the framework of abstract interpretation [12] to design
and implement an abstraction of temporal logic, based on linear constraints.
We emphasise firstly that abstraction of the concrete semantics of a language
such as the modal p-calculus or CTL gives safe approximations for arbitrary
formulas. Some other previous approaches handle only universal formulas (e.g.
[11]). Secondly, we do not need to introduce extra conceptual apparatus in the
semantics such as mixed or modal transition systems (e.g. [16,25]) in order to
approximate the meaning of arbitrary formulas. Thirdly we show that the ab-
stract semantics can be directly implemented, for domains based on constraints,
using a constraint solver (a convex polyhedra library) and satisfiability checker

* Work partly supported by the Danish Natural Science Research Council project
SAFT: Static Analysis Using Finite Tree Automata.



(an SMT solver) and applied to prove properties of real-time systems modelled
as linear hybrid automata.

The present work is part of an attempt to develop a uniform constraint-based
formal modelling and verification framework for verifying infinite state reactive
systems. The modelling part of this framework was considered in [3] where it was
shown how to model linear hybrid automata (LHA) specifications as constraint
logic programs. However the techniques described in the present work are not
limited to constraint-based models and properties but applies to any abstraction
in the framework of abstract interpretation. This work is also orthogonal to other
highly interesting and relevant areas of abstract model checking such as abstract
domain construction and the refinement of abstractions. We believe that basing
our presentation based on completely standard semantics and abstract inter-
pretation techniques will facilitate cross-fertilisation of techniques from abstract
interpretation and model checking.

The structure of this paper is as follows. Section 2 reviews the syntax and
semantics of the modal p-calculus and recalls how this can be used to define the
semantics of typical temporal property languages such as CTL. The theory of
abstract interpretation is then outlined. Section 3 describes abstract interpre-
tation of the u-calculus semantic function, providing a basis for abstract model
checking. Section 4 shows how to define an abstraction based on linear con-
straints. Section 5 describes an implementation of the constraint-based abstract
semantics and Section 6 gives some experimental results. In Sections 7 and 8 we
discuss related work and conclusions.

2 Preliminaries

The (propositional modal) p-calculus “provides a single, simple and uniform
framework subsuming most other logics of interest for reasoning about reactive
systems” [20]. The set of u-calculus formulas is defined by the following grammar.

pu=p|lp|Z]o1NG2| 01V 2| AXQ | EX | pZ.¢ [ vZ.¢

where p ranges over a set of atomic formulas P and Z ranges over a set of propo-
sitional variables V. Note that negations can appear only before propositions p.
This form is called negation normal form; if we extend the grammar to allow
expressions of the form —¢ in which occurrences of Z in ¢ in formulas fall under
an even number of negations, an equivalent formula in negated normal form can
be obtained using rewrites (which are justified by the semantics below), namely
—uZ.p = vZ-p, wi.p= ul-p, "EXp=> AX-¢p, "AXd = EX~¢ together
with De Morgan’s laws and elimination of double negation.

2.1 Semantics of p-calculus

There are various presentations of the semantics of the p-calculus, e.g. [20, 30].
We restrict our attention here to state-based semantics, which means that given



a Kripke structure K, a p-calculus formula evaluates to the set of states in K
at which the formula holds. The semantics is presented in a functional style
similar to that given in [15] Section 9, suitable for applying abstraction. A u-
calculus formula is interpreted with respect to a Kripke structure, which is a
state transition system whose states are labelled with atomic propositions that
are true in that state.

Definition 1 (Kripke structure). A Kripke structure is a tuple (S, A, I, L, P)
where S is the set of states, A C S x S is a total transition relation (i.e. every
state has a successor), I C S is the set of initial states, P is the set of propositions
and L : S — 2% is the labelling function which returns the set of propositions that
are true in each state. The set of atomic propositions is closed under negation.

We first define some subsidiary functions that depend on K.

Definition 2. Given a Kripke structure K = (S, A, I, L, P) we define functions
pre: 25 — 25 pre: 25 — 25 and states : P — 25 as follows.

—pre(S") ={s|3s €8 :(s,s) € A} returns the set of states having at least
one of their successors in the set S’ C S;

— pre(S’) = compl(pre(compl(S”))) returns the set of states all of whose suc-
cessors are in the set S C S; the function compl(X) =5\ X.

— states(p) = {s € S | p € L(s)} returns the set of states where p € P holds.

The functions pre and pre are defined by several authors (e.g. [32,15]) and are
also used with other names by other authors (e.g. they are called pres and prey
by Huth and Ryan [30]).

Lemma 1. pre and pre are monotonic.

Let Mu be the set of y-calculus formulas, and V — 2% be the set of environments
for the free variables. The meaning of a formula is a mapping from an environ-
ment giving values to its free variables to a set of states. The semantics function
[ : Mu— (V — 2%) — 29 is defined as follows.

[Z]uo =0(2)
[p]lno = states(p) [-pluo = states(—p)
[EX]uo = zz“/e([[qﬁ]]ua) [¢1V ¢2]uo = [$1]uo U [¢2].0
[AX¢)uo = pre([¢].o) [P1 A d2]uo = [d1]uo N [¢2]u0
(2.8l — fp(F) [vZ.8luo  —gfolF)

where F(S') = [¢]uo[Z/S’] where F(S') = [¢]uo[Z/S’]

The expressions Ifp(F') and gfp(F’) return the least fixed point and greatest fixed
point respectively of the monotonic function F : 2% — 29 on the lattice (25, C
,U,N, S, ). The Knaster-Tarski fixed point theorem [41] guarantees the existence
of least and greatest fixed points for a monotonic function on a complete lattice,
and also their constructive forms (J;=, F*() and (;—, F"(S) respectively. The
environment o[Z/S’] above is such that o[Z/S']Y = S’ f Y = Z and o(Y)
otherwise.The functions F' above are monotonic due the restricted occurrence of
negation symbols in negated normal form.



When a formula contains no free variables we can evaluate it in a trivial
environment oy in which all variables are mapped (say) to the empty set. If ¢
contains no free variables we thus define its meaning [¢] = [¢],0¢.

2.2 CTL Syntax and Semantics

The set of CTL formulas ¢ in negation normal form is inductively defined by
the following grammar:

=p|plo1 N2 |1V | AX@| EX¢| AF¢ | EF¢| AGo | EGo
| AU(¢1, ¢2) | EU(¢1,02) | AR(¢1,92) | ER(¢1, ¢2)

where p ranges over a set of atomic formulas P. We assume familiarity with
the intended meanings of the various temporal operators. Note that we some-
times refer to arbitrary negations —¢ in what follows, but such formulas can be
transformed to equivalent negation normal form formulas.

CTL is interpreted by translating to u-calculus, using the following function

C.

C(p) =p C(-p) =-p

C(EX¢) = EX C(¢) Clp1Vp2)  =C(h1)VC(g2)

C(AX¢) = AX C(o) Clor Np2) = C(1) AC(g2)

C(EF$) = nZ.(C(¢p) V EX Z) C(ER(¢1,2)) = vZ.(C(¢2) A (Cld1) V EX Z)
C(AF¢) = pZ.(C(¢) V AX Z) C(AU (¢1,¢2)) = pZ.(C(¢2) V (C(¢1) N AX Z)
C(AG9) =vZ.(C(¢) NAX Z) C(EU (1, ¢2)) = pZ.(C(¢2) V (C(¢1) N EX Z)
C(EG¢) =vZ.(C(p) NEX Z) C(AR(¢1,¢2)) = vZ.(C(p2) A (C(¢1) V AX Z)

A semantic function for CTL is then obtained by composing the translation
with the semantics of the p-calculus. The translated formulas contain no free
variables (all variables Z are introduced in the scope of a p or v). Thus we
define the semantic function for a CTL formula ¢ as [¢]crr = [C(¢)]-

It is of course possible to partially evaluate the translation function. In this
way we obtain state semantics for CTL directly. For example, the meaning of
EF¢ and AG¢ are:

[EF¢)crr = fp(F) where F(S’) = [¢]crr Upre(S’))
[AG¢]crr = gfp(F) where F(S') = [¢lerr Npre(S’))

We present the semantics via p-calculus to emphasise the generality of the ap-
proach; we can now restrict our attention to considering p-calculus semantics.

2.3 Model Checking

Model checking consists of checking whether the Kripke structure K possesses
a property ¢, written K = ¢. This is defined to be true iff I C [¢], where I is
the set of initial states, or equivalently, that I N [-¢] = 0. (Note that —¢ should
be converted to negation normal form). Thus model-checking requires imple-
menting the p-calculus semantics function. Specifically, the implementation of



the expressions Ifp(F') and gfp(F') is performed by computing a Kleene sequence
Fi(() or F'(S) respectively, iterating until the values stabilise.

When the state-space powerset 2° has infinite C-chains, these iterations
might not terminate and hence the model checking of infinite state systems
becomes undecidable. In this case we try to approximate [.] using the theory of
abstract interpretation.

2.4 Abstract Interpretation

In abstract interpretation we develop an abstract semantic function systemati-
cally from the standard (“concrete”) semantics with respect to a Galois connec-
tion. We present the formal framework briefly.

Definition 3 (Galois Connection). (L,Cy) ‘% (M,Chr) is a Galois Con-
nection between the lattices (L,Cr) and (M,Cyr) if and only if « : L — M and
v: M — L are monotonic and ¥l € Lym € M,a(l) Cyy m < 1 Cp, v(m).

In abstract interpretation, (L,Cr) and (M,C,s) are the concrete and ab-
stract semantic domains respectively. Given a Galois connection (L,C) %
(M,C ) and a monotonic concrete semantics function f : L — L, then we
define an abstract semantic function f# : M — M such that for all m € M,
(o foy)(m) Car f#(m). Furthermore it can be shown that Ifp(f) T y(Ifp(f*))
and that gfp(f) Cr v(gfp(f*)) where Ifp(f), gfp(f) are the least and greatest
fixed points respectively of f.

Thus the abstract function f* can be used to compute over-approximations
of f, and it can be interpreted using the v function. The case where the ab-
stract semantic function is defined as f* = (a0 f o) gives the most precise
approximation with respect to the Galois connection. We next apply this gen-
eral framework to abstraction of the p-calculus semantics, and illustrate with a
specific abstraction in Section 4.

3 Abstract Interpretation of p-calculus semantics

We consider abstractions based on Galois connections (2%, C) %, (24, C),

where the abstract domain 24 consists of sets of abstract states. In fact the
abstract domain could be any lattice but for the purposes of this paper we
consider such state-based abstractions, which will be further discussed in Section
4.

Definition 4. Let pre : 25 — 25, pre : 25 — 29, and states : P — 25 be the
functions defined in Definition 2. Given a Galois connection (25, C) % (24, C

), we define apre : 24 — 24, apre : 24 — 24 and astates : P — 24 as

apre = qopreory apre = qopreo -y astates = « o states



The properties of Galois connections imply that for all S C S, a(pre(S’)) C
apre(a(S’)) and a(pre(S’)) C apre(a(S’)). We simply substitute apre, apre
and astates for their concrete counterparts in the p-calculus semantic function
to obtain abstract semantics for the p-calculus.

Given a Galois connection (29, C) ‘% (24, C), the abstract p-calculus se-

mantic function [-]% : Mu — (V — 24) — 24 is defined as follows.

[Z]po =0o(2)
[plsio = astates(p) [-plo = astates(—p)
[EX 60 = apre([6]50) [61V delio = []io U [oalio
[AX¢]jio = apre([¢]}io) [¢1 A polio = [daljio N [p2lio
[nZ.¢]%0 = Ifp(F.) [vZ.¢lho = gfp(Fa)
where F,(A") = [¢]to[Z/A] where F,(A") = [¢]to[Z/A’]

As before, for formulas containing no free variables we define the function
[9]* = [#]5,00. The abstract semantics for a CTL formula ¢ is [C(¢)]“.

The functions « and v are extended to apply to environments o : V — A.
a(o) is defined as a(0)(Z) = a(o(Z)) and (o) is defined as v(0)(Z) = (o (2)).

Theorem 1 (Safety of Abstract Semantics). Let K = (S,A,I,L,P) be
a Kripke structure, (2°,C) % (24,C) be a Galois connection and ¢ any
p-calculus formula in negation normal form. Then a([¢].0o) C [¢]5a(o) and

’Y([[¢]]z0) D [¢luv(0), for all environments o.

The proof is by structural induction on ¢. First we establish a subsidiary
result.
Lemma 2. Let F(S') = [¢],.0[Z/S'] and Fu(A") = [¢]fa(o)[Z/A'] and let
(25,C) % (24,C) be a Galois connection. Assume a([¢],.0) C [o]5a(o).
Then for all A" C A, (ao Foy)(A") C F,(4").

Proof.

(a0 Foy)(A) = a(F(y(A)))
a([o]o2/~(AN))
[o]5.a(o)[Z/a(y(A"))] by assumption that
o([4],0) € [9]2a(0)
C [¢]falo)[Z/A'] by properties of Galois connections
and monotonicity of [¢]f (o)

Nl

= F,(4")

The proof of Theorem 1 is just an exercise in applying the properties of Galois
connections and monotonic functions. We show a few representative cases.

Proof. (Theorem 1). We show that a([¢].o) C [#]f.a(c) by structural induction

on ¢. The proof for y([¢];0) 2 [¢],7(0) is similar.

Base Cases.



~-¢=2
a([Z]uo) = alo(
(o)

Il
Q

— ¢=9p wherep’=porp =-p

a([p']uo) = a(states(p’))
= astates(p’)

= [p']}a(o)
Inductive Cases

~ ¢=EX¢.

a([EX¢]uo) = a(pre([¢]u0))
C a(pre(y(a([¢],0)))) by Galois connection
and monotonicity of pre, «

= apre(a([¢],.0))
C apre([¢]ga(o)) by ind. hyp.

and monotonicity of apre
= [EX¢]ja(o)

— ¢ =pz.o.

In this case, and the case for ¢ = vZ.¢, we make use of the general property
of a Galois connection (27, C) % (24,C) that if f : 2% — 29 and f* :
24 — 24 are such that (e o f o) C ff then a(lfp(f)) C Ifp(f*) and
a(gfp(f)) C gfp(f*). The relevant condition (o fov) C f* is established in
Lemma 2.

o[12.6],0) = allfp(F))  where F(') = [6],0[2/
C Ifp(F,) where F,(A") = [¢]5a(0)[Z/A"]

by Lemma 2, ind. hyp., and
properties of Galois connections

= [pZ.¢]}a(0)

Corollary 1. Let K = (S, A,I,L,P) be a Kripke structure and ¢ be a p-
calculus formula with no free variables. Then if v([-¢]*) NI =0 then K | ¢.

Proof.

Y([=ols) NI =0 =~y([-oliog) N T =0

g

[=¢],v(op) NI =0 by Theorem 1
=[-¢]NnI=0 since v(og) = o
=12[¢]

KEo¢

This result provides us with a sound abstract model checking procedure for any
p~calculus formula ¢. Of course, if y([-¢]*) N I D () nothing can be concluded.



4 An Abstract Constraint-based Domain

The abstract semantics given in Section 3 is not always implementable in practice
for a given Galois connection (2°,C) % (24, C). In particular, the function
v yields a value in the concrete domain, which is typically an infinite object
such as an infinite set. Thus evaluating the functions a(states(p)), (« o pre o+y)
and (a o pre o y) might not be feasible. In general in abstract interpretation
one designs functions that safely approximate these constructions. For example
one would design computable functions apre’ and apre’ such that for all A,
apre’ (A’) D apre(A’) and apre’ (A') D apre(A’). In this section we show that the
abstract semantics is implementable directly, without any further approximation,
for transition systems and abstract domains expressed using linear constraints.

4.1 Abstract Domains Based on a State-Space Partitions

Consider transition systems whose states are n-tuples of real numbers; we take
as the concrete domain the complete lattice (2¢, C) where C C 28" is some
nonempty, possibly infinite set of n-tuples including all the reachable states of
the system.

We build an abstraction of the state space based on a finite partition of C
say A ={dy,...,dy} such that | JA = C. Such a partition could be obtained in
various ways, including predicate abstraction or Moore closures (see [23] for a
discussion). Define a representation function 8 : C' — 24, such that 3(z) = {d €
A | T € d}. We extend the representation function [36] to sets of points, obtaining
the abstraction function a : 2¢ — 24 given by a(S) = (J{3(z) | Z € S}. Define
the concretisation function 7 : 24 — 2% as y(V) = {z € C | B(z) C V}. As
shown in [36,13], (2¢,C) % (24,C) is a Galois connection. Because A is a
partition the value of 3(Z) is a singleton for all Z, and the ~ function can be
written as v(V) = U{v({d}) | d € V'}.

4.2 Constraint Representation of Transition Systems

We consider the set of linear arithmetic constraints (hereafter simply called
constraints) over the real numbers.

C:::t1§t2|t1<t2|01/\62|61\/62|—\c

where t1,to are linear arithmetic terms built from real constants, variables and
the operators +, * and —. The constraint ¢; = ¢y is an abbreviation for ¢t; <
tg /\tg S tl. Note that _|(t1 S tg) = tg < t2 and _\(tl < tg) = t2 S tQ,
and so the negation symbol = can be eliminated from constraints if desired by
moving negations inwards by Boolean transformations and then applying this
equivalence.

A constraint c is satisfied by an assignment of real numbers to its variables if
the constraint evaluates to true under this assignment, and is satisfiable (written
SAT(c)) if there exists some assignment that satisfies it. A constraint can be



identified with the set of assignments that satisfy it. Thus a constraint over n
real variables represents a set of points in R™.

A constraint can be projected onto a subset of its variables. Denote by
projy, (¢) the projection of ¢ onto the set of variables V.

Let us consider a transition system defined over the state-space R™. Let
T,T1,To etc. represent n-tuples of distinct variables, and 7, 7,7 etc. represent
tuples of real numbers. Let Z/T represent the assignment of values 7 to the
respective variables . We consider transition systems in which the transitions

. . _ c(Z1,T2) _
can be represented as a finite set of transition rules of the form z; — &
This represents the set of all transitions from state 7y to state 75 in which the
constraint ¢(Z1,Zo) is satisfied by the assignment z; /71, Z2/F2. Such transition
systems can be used to model real-time control systems [27, 3].

4.3 Constraint representation of the semantic functions

We consider abstract semantics based on linear partitions, so that each element
d; of the partition A = {dy,...,d,} is representable as a linear constraint cg, .
We first provide definitions of the functions pre, pre, «, v and states in terms of
constraint operations. In the next section the optimisation and effective imple-
mentation of these operations is considered. Let T be a finite set of transition
rules. Let ¢/() be a constraint over variables . We express the functions pre,
pre and states using constraint operations as follows.

pre(c (@) = V{proj, (¢ (§) A o, 7)) | 7 “Z¥ e T}
pre(c (7)) = ~(pre(=¢'(5)))
states(p) = p

In the definition of states we use p both as the proposition (the argument of
states) and as a set of points (the result).

The @ function introduced in Section 4.1 can be rewritten as 5(z) = {d €
A | T satisfies ¢q}. Assuming that we only need to apply « to sets of points
represented by a linear constraint ¢, we can rewrite the a and - functions as
follows.

alc) ={d € A|SAT(cq A )} (A =\{ca|de A’} for A/ C A

5 Implementation

The abstract p-calculus semantic function [.]* can be implemented directly as
a recursive function following the definition in Section 3. The structure of the
algorithm is independent of any particular abstraction. With standard iterative
techniques for computing greatest and least fixpoints [7] the algorithm has the
same complexity as a concrete model checker for p-calculus. In practice the effec-
tiveness of the algorithm as an abstract model checker depends on the effective
implementation of the functions accessing the transition system and performing
abstraction and concretisation, namely pre, pre, « and 7.



5.1 Computation of a and ~ functions using constraint solvers

The constraint formulations of the a and - functions allows them to be effectively
computed. The expression SAT (¢4 Ac) occurring in the o function means “(cqgAc)
is satisfiable” and can be checked by an SMT solver. In our experiments we use
the SMT solver Yices [19]. The v function simply collects a disjunction of the
constraints associated with the given set of partitions; no solver is required.

5.2 Optimisation of constraint-based evaluation

Combining the constraint-based evaluation of the functions pre and pre with
the constraint-based evaluation of the o and « functions gives us (in principle) a
method of computing the abstract semantic counterparts of pre and pre, namely
(aopreo~) and (« o pre o). The question we now address is the feasibility of
this approach. Taken naively, the evaluation of these constraint-based functions
(in particular pre) does not scale up. We now show how we can transform these
definitions to a form which can be computed much more efficiently, with the help
of an SMT solver.

Consider the evaluation of (avopreov)(A’) where A’ € 24 is a set of disjoint
partitions represented by constraints.

(avopreoy)(4') = (aopre)(V{ca | d € A'))
= a(=(pre(=(V{cq | d € A’})))
= a(~(pre(V{ca e A\ A'}))

In the last step, we use the equivalence —(\/{cq | d € A’'}) < \{ca € A\
A’}, which is justified since the abstract domain A is a disjoint partition of the
concrete domain; thus A\ A’ represents the negation of A’ restricted to the state
space of the system. The computation of pre(\/{cq € A\ A’}) is much easier to
compute (with available tools) than pre(—(\/{cq | d € A'})). The latter requires
the projection operations proj to be applied to complex expressions of the form
projz (—=(c1(g) V -+ V ek (7)) A ¢(Z,7)), which involves expanding the expression
(to d.n.f. for example); by contrast the former requires evaluation of simpler
expressions of the form proj;(cq(7) A ¢(Z,7)).

We can improve the computation of the abstract function (a o pre o). Let
{c;i} be a set of constraints, each of which represents a set of points. It can easily
seen that pre(\/{c;}) = \/{pre(c;)}. Consider the evaluation of (« o preo~y)(A")
where A’ € 24 is a set of disjoint partitions represented by constraints.

(aopreon)(A’) = (aopre)(V{ca|d e A'})
= a(V{pre(cs) | d € A'})

Give a finite partition A, we pre-compute the constraint pre(cq) for all d € A.
Let Pre(d) be the predecessor constraint for partition element d. The results can
be stored as a table, and whenever it is required to compute (a o pre o y)(A")
where A’ € 24, we simply evaluate a(\/{Pre(d) | d € A’}). The abstraction
function « is evaluated efficiently using the SMT solver, as already discussed.
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Fig. 1. A Water-level Monitor [27]

rState1(A,B,C,D) :- rState4(E,F,G,H),
D=1,H=4,G<I,1*J=1%E+1*(I-G),1*K=1*F+ -2%(I-G),
J=2,L=J,M=K,0<C, 1*xA=1xL+1*(C-0) , 1*B=1*M+1* (C-0) ,B<10.
rStatel(A,B,C,D):- D=1,0<C,1*A=1*0+1%(C-0) ,1*%B=1*1+1%(C-0) ,B<10.
rState2(A,B,C,D):- rStatel (E,F,G,H),
D=2,H=1,G<I,1*J=1%E+1%(I-G),1*¥K=1xF+1x(I-G),
K=10,L=0,M=K,0<C,1*A=1*L+1*x(C-0) ,1*B=1*M+1%(C-0) ,A<2.
rState3(A,B,C,D):- rState2(E,F,G,H),
D=3,H=2,G<I,1*J=1*E+1*(I-G),1*K=1xF+1*x(I-G),J=2,
L=J,M=K,0<C,1*%A=1*L+1*%(C-0),1*B=1xM+ -2%(C-0) ,B>=5.
rState4(A,B,C,D):- rState3(E,F,G,H),
D=4,H=3,G<I,1*J=1*E+1*(I-G),1*K=1xF+ -2%(I-G),K=5,
L=0,M=K,0<C,1*%A=1*L+1*(C-0),1*B=1*M+ -2%(C-0) ,A<2.

Fig. 2. The Water-Level Controller transition rules, automatically generated from Fig-
ure 1 [4]

Note that expressions of the form a(pre(\/{---})) occur in the transformed
expression for (a o pre o v)(A’) above. The same optimisation can be applied
here too. Our experiments show that this usually yields a considerable speedup
(2-3 times faster) compared to dynamically computing the pre function during
model checking.

Our implementation of the abstract p-calculus semantic function [.]&,, was
in Prolog, with interfaces to external libraries to perform constraint-solving func-
tions. In implementing the pre operation we make use of a Ciao-Prolog interface
to the PPL library [2]. In particular, this is used to compute the proj function.
The « function is implemented using the SMT solver Yices [19]. We implemented
an interface predicate yices_sat (C,Xs), where C is a constraint and Xs is the set
of variables in C. This predicate simply translates C to the syntax of Yices, and
succeeds if and only if Yices finds that the constraint is satisfiable. Using this
predicate the definition of «, that is a(c) = {d | SAT (cqAc)} can be implemented
directly as defined.

6 Experiments Using an SMT Constraint Solver

A small example is shown with all details to illustrate the process of proving
a property. In Figure 1 is shown a linear hybrid automaton (LHA) for a water



region(1l,rStatel(A,B,C,D), [D=1,-1*%A> -9,1%A>0,1xA-1%B= -1,1%A-1*C=0]).
region(2 ,rState2(A,B,C,D), [D=2,-1%C> -2,1*%C>0,1*A-1%C=0,1*B-1xC=10]) .
region(B,rState3(A,B,C ,D), [D=3,-2*C> -7,1*C>0,1*%A-1*C=2,1*xB+2*xC=12]) .
region(4,rState4(A,B,C,D), [D=4,-1%C> -2,1*%C>0,1xA-1*%C=0,1*xB+2*C=5]) .
region(5,rStatel(A,B,C,D) ,[D=1,-1%C> -9,1%C>0,1*A-1%C=2,1*B-1*xC=1]) .

Fig. 3. Disjoint Regions of the Water-Level Controller States

level controller taken from [27]. Figure 2 shows transition rules represented as
constraint logic program (CLP) clauses generated automatically from the LHA
in Figure 1, as explained in detail in [3]. The state variables in an atomic formula
of form rState(X,W,T,L) represent the rate of flow (X), the water-level (W), the
elapsed time (T) and the location identifier (L). The meaning of a clause of form
rState(X,W,T,L) :- rState(X1,w1,T1,L1), c¢(X,W,T,L,X1,W1,T1,L1)

X,W,T,L,X1,W1,T1,L1 e
ol RAN ) (X,W,T,L). The initial state

is a transition rule (X1,W1,T1,L1)
is given by the clause rState(0,0,_,1).

Figure 3 shows the result of an analysis of the reachable states of the system,
based on computing an approximation of the minimal model of the constraint
program in Figure 2. This approximation is obtained by a tool for approximating
the minimal model of an arbitrary CLP program [6,28]. There are 5 regions,
which cover the reachable states of the controller starting in the initial state
(which is region 1). The term region(N, rState(A,B,C,D), [...]) means that
the region labelled N is defined by the constraint in the third argument, with
constraint variables A,B,C,D corresponding to the given state variables. The 5
regions are disjoint. We use this partition to construct the abstract domain as
described in Section 4.1.

Our implementation of the abstract semantics function is in Ciao-Prolog with
external interfaces to the Parma Polyhedra Library [2] and the Yices SMT solver
[19] Using this prototype implementation we successfully checked many CTL
formulas including those with CTL operators nested in various ways, which in
general is not allowed in UpPAAL [5], HYTECH [29] or PHAVER [22] (though
special-purpose constructs such as a “leads-to” operator can be used to handle
some cases).

Table 1 gives the results of proving properties using abstract model checking
two systems, namely, a water level monitor and a task scheduler. Both of these
systems are taken from [27]. In the table: (i) the columns System and Property
indicate the system and the formula being checked; (ii) the columns A and A,
respectively, indicate the number of abstract regions and original transitions in
a system and (iii) the column time indicates the computation time to prove a
formula on the computer with an Intel XEON CPU running at 2.66GHz and
with 4GB RAM.

Water level controller. The water level system has 4 state variables and 4 tran-
sition rules. A variety of different properties that were proved is shown in Table

3 Prolog code available at http://akira.ruc.dk/~jpg/Software/amc_all.pl.



1. In some cases we derived a more precise partition than the one originally re-
turned for the transition system, using the technique described below in Section
6.1.

The formula AF'(W > 10) means “on all paths the water level (W) reaches at
least 10”7, while AG(W =10 — AF(W <10V W > 10)) means “on every path
the water level cannot get stuck at 10”. The formula AG(0 < W AW < 12) is a
global safety property stating that the water level remains within the bounds 0
and 12. A more precise invariant is reached some time after the initial state and
this is proved by the property AF(AG(1 < W AW < 12)), in other words “on
all paths, eventually the water level remains between 1 and 12”. Since for all
¢, AG(¢) = AG(AG(¢)) we are able to prove AG®(0 < W AW < 12) which is
only shown in order to indicate the capability of the prover to handle arbitrarily
deeply nested formulas. The formula EF (W = 10) shows that the water level can
reach exactly 10. Finally, the formula EU(W < 12, AU(W < 12, W > 12)) shows
another example of a verified progress property (which could be formulated more
simply but is shown just to exercise the prover’s capabilities).

Scheduler. The scheduler system for two processes has 8 state variables, 18
abstract regions and 12 transition rules. We proved a number of safety and
liveness properties, again successfully checking properties of a form beyond the
capability of other model checkers. For example the nested formula AG(K2 >
0 — AF(K2 = 0)) is a critical correctness property meaning that tasks of high
priority (whose presence is indicated by a strictly positive value of K2) do not
get starved (that is, the value of K2 eventually returns to zero on all paths).

6.1 Property-specific refinements

The topic of refinement is a very relevant and much-studied area in proof by
abstraction. Refinement is applied when a given abstraction is too coarse to
prove some property. In this case we seek to derive a more precise refinement,
that is somehow more relevant to the property being proved. Refinement is not
the main focus in this paper, but we discuss briefly the use of a property-specific
refinement that we can apply to increase the number of provable properties.
Consider the property EF (W = 10) in the water level controller, which holds on
the system. But this formula cannot be verified when the state space is abstracted
with regions that cannot distinguish states where W = 10. The negation of the
formula, namely AG(W > 10V W < 10), holds in the abstract initial state since
there are infinite paths from the initial region which always stay in regions that
are consistent with W # 10.

One approach to solving such cases is to make a property-specific refinement
to the abstraction. For a given constraint property p each region is split into
further regions by adding the constraints p and —p respectively to each region.
Only the satisfiable regions need to be retained. With this refined abstraction
using (W = 10) for p, the property EF(W = 10) can then successfully be
checked.



System Property A|A|Time (secs.)
Waterlevel AF(W > 10) 5|4 0.02
Monitor AGO<W AW <12) 5|4 0.01
AF(AG(l <WAW < 12)) 504 0.02
AG(W =10 > AF(W < 10V W > 10))  [10{4|  0.05
AG(AG(AG(AG(AG(O <SWAW<12) 54|  0.02
EF(W = 10) 1004 001
EUW < 12, AUW < 12,W > 12)) 714  0.04
Task Scheduler| FEF(K2=1) 18|12 0.53
AG(K2 > 0 — AF(K2 =0)) 1812 0.30
AG(K2 < 1) 1812 0.04

Table 1. Experimental Results

The CEGAR approach to refinement [9] is quite compatible with our ap-
proach, but we are also interested in investigating more general forms of refine-
ment investigated in the theory of abstract interpretation [23].

7 Related Work

The topic of model-checking infinite state systems * and using some form of ab-
straction has been already widely studied. Abstract model checking is described
by Clarke et al. [10,11]. In this approach a state-based abstraction is defined
where an abstract state is a set of concrete states. A state abstraction together
with a concrete transition relation A induces an abstract transition relation Agps.
Specifically, if X, Xo are abstract states, (X1, X2) € Agps iff Fz1 € X, 20 € X5
such that (1, x2) € A. From this basis an abstract Kripke structure can be built;
the initial states of the abstract Kripke structure are the abstract states that
contain a concrete initial state, and the property labelling function of the ab-
stract Kripke structure is induced straightforwardly as well. Model checking CTL
properties over the abstract Kripke structure is correct for universal temporal
formulas (ACTL), that is, formulas that do not contain operators EX, EF, EG
or EU. Intuitively, the set of paths in the abstract Kripke structure represents
a superset of the paths of the concrete Kripke structure. Hence, any property
that holds for all paths of the abstract Kripke structure also holds in the con-
crete structure. If there is a finite number of abstract states, then the abstract
transition relation is also finite and thus a standard (finite-state) model checker
can be used to perform model-checking of ACTL properties. Checking properties
containing existential path quantifiers is not sound in such an approach.

4 When we say model checking of (continuous) infinite state systems, it means model-
checking the discrete abstractions of infinite state systems. In [1], it is established
that hybrid systems can be safely abstracted with discrete systems preserving all the
temporal properties expressed in branching-time temporal logics as well as linear-
time temporal logics.



This technique for abstract model checking can be reproduced in our ap-
proach, although we do not explicitly use an abstract Kripke structure. Check-
ing an ACTL formula is done by negating the formula and transforming it to
negation normal form, yielding an existential temporal formula (ECTL formula).
Checking such a formula using our semantic function makes use of the pre func-
tion but not the pre function. For this kind of abstraction the relation on ab-
stract states s — s’ defined as s € (o preo~y)({s'}) is identical to the abstract
transition relation defined by Clarke et al. Note that whereas abstract model
checking the ACTL formula with an abstract Kripke structure yields an under-
approximation of the set of states where the formula holds, our approach yields
the complement, namely an over-approximation of the set of states where the
negation of the formula holds.

There have been different techniques proposed in order to overcome the re-
striction to universal formulas. Dams et al. [16] present a framework for con-
structing abstract interpretations for p-calculus properties in transition systems.
This involves constructing a mized transition system containing two kinds of
transition relations, the so-called free and constrained transitions. Godefroid
et al. [25] proposed the use of modal transition systems [33] which consist of
two components, namely must-transitions and may-transitions. In both [16] and
[25], given an abstraction together with a concrete transition system, a mixed
transition system, or an (abstract) modal transition system respectively, is au-
tomatically generated. Following this, a modified model-checking algorithm is
defined in which any formula can be checked with respect to the dual transi-
tion relations. Our approach by contrast is based on the standard semantics of
the p-calculus. The may-transitions and the must-transitions of [25] could be
obtained from the functions (« o pre o y) and (a o pre o ) respectively. For the
case of an abstraction given by a partition A = {d;,...,d,} it seems that an
abstract modal transition system could be constructed with set of states A such
that there is a may-transition d; — d; iff d; € (a o preov)({d;} and a must-
transition d; — d; iff d; € (a o pre ov)({d;}. However the two approaches are
not interchangeable; in [25] a concrete modal transition system has the same set
of must-transitions and may-transitions, but applying the above constructions
to the concrete state-space (with o and 7 as the identity function) does not
yield the same sets of must- and may-transitions (unless the transition system is
deterministic). We have shown that the construction of abstract transition sys-
tems as in [10,11], and abstract modal transition systems in particular [16, 25]
is an avoidable complication in abstraction. Probably the main motivation for
the definition of abstract transition systems is to re-use existing model checkers,
as remarked by Cousot and Cousot [15] (though this argument does not apply
to modal or mixed transition systems in any case).

Property-preserving abstraction using Galois connections was applied in a
p-calculus setting by Loiseaux et al. [35]. Our aim and approach are similar,
but are both more general and more direct. The cited work develops sounds ab-
stractions for universal properties only whereas we handle arbitrary properties.
On the other hand it uses Galois connections to develop a simulation relation



between concrete and abstract systems, which goes beyond the scope of the cur-
rent work. The application of the theory of abstract interpretation to temporal
logic, including abstract model checking, is thoroughly discussed by Cousot and
Cousot [14,15]. Our abstract semantics is inspired by their approach, in that
we also proceed by direct abstraction of a concrete semantic function using a
Galois connection, without constructing any abstract transition relations. The
technique of constructing abstract functions based on the pattern (« o f o 7),
while completely standard in abstract interpretation [13], is not discussed ex-
plicitly in the temporal logic context. We focus only on state-based abstractions
(Section 9 of [15]) and we ignore abstraction of traces. Our contribution com-
pared to these works is to work out the abstract semantics for a specific class
of constraint-based abstractions, and point the way to effective abstract model
checking implementations using SMT solvers. Kelb [32] develops a related ab-
stract model checking algorithm based on abstraction of universal and existential
predecessor functions.

Giacobazzi and Quintarelli [24] discuss abstraction of temporal logic and their
refinement, but deal only with checking universal properties. Saidi and Shankar
[40] also develop an abstract model checking algorithm integrated with a theorem
proving system for handling property-based abstractions. Their approach also
uses abstract interpretation but develops a framework that uses both over- and
under-approximations for handling different kinds of formula.

Our technique for modelling and verifying real time and concurrent systems
using constraint logic programs [3] builds on the work of a number of other
authors, including Gupta and Pontelli [26], Jaffar et al. [31] and Delzanno and
Podelski [17]. However we take a different direction from them in our approach
to abstraction and checking of temporal properties, in that we use abstract CLP
program semantics when abstracting the state space (only briefly mentioned in
the present work), but then apply this abstraction in a temporal logic framework,
which is the topic of this work. Other authors have encoded both the transition
systems and CTL semantics as constraint logic programs [8, 34, 37,18, 21, 38, 39].
However none of these develops a comprehensive approach to abstract semantics
when dealing with infinite-state systems. Perhaps a unified CLP-based approach
to abstract CTL semantics could be constructed based on these works, but sound
abstraction of negation in logic programming remains a significant complication
in such an approach.

8 Conclusion

We have demonstrated a practical approach to abstract model checking, by con-
structing an abstract semantic function for the p-calculus based on a Galois
connection. Much previous work on abstract model checking is restricted to ver-
ifying universal properties and requires the construction of an abstract transition
system. In other approaches in which arbitrary properties can be checked [25,
16], a dual abstract transition system is constructed. Like Cousot and Cousot
[15] we do not find it necessary to construct any abstract transition system, but



rather abstract the concrete semantic function systematically. Using abstract
domains based on constraints we are able to implement the semantics directly.
The use of an SMT solver adds greatly to the effectiveness of the approach.

Acknowledgements. We gratefully acknowledge discussions with Dennis Dams,
César Sanchez, Kim Guldstrand Larsen and suggestions by the LPAR-16 refer-
ees.
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