
Roskilde
University

Non-leftmost Unfolding in Partial Evaluation of Logic Programs with Impure Predicates

Albert, Elvira; Puebla, German; Gallagher, John Patrick

Published in:
Logic Based Program Synthesis and Transformation, 15th International Symposium, LOPSTR 2005

Publication date:
2006

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Albert, E., Puebla, G., & Gallagher, J. P. (2006). Non-leftmost Unfolding in Partial Evaluation of Logic Programs
with Impure Predicates. In P. M. Hill (Ed.), Logic Based Program Synthesis and Transformation, 15th
International Symposium, LOPSTR 2005 (pp. 115-132). Springer.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain.
 • You may freely distribute the URL identifying the publication in the public portal.
Take down policy
If you believe that this document breaches copyright please contact rucforsk@kb.dk providing details, and we will remove access to the work
immediately and investigate your claim.

Download date: 18. Jun. 2025

Non-Leftmost Unfolding in Partial Evaluation of
Logic Programs with Impure Predicates

Elvira Albert1, Germán Puebla2, and John Gallagher3

1 School of Computer Science, Complutense U. of Madrid, elvira@sip.ucm.es
2 School of Computer Science, Technical U. of Madrid, german@fi.upm.es

3 Department of Computer Science, University of Roskilde, jpg@ruc.dk

Abstract. Partial evaluation of logic programs which contain impure
predicates poses non-trivial challenges. Impure predicates include those
which produce side-effects, raise errors (or exceptions), and those whose
truth value varies according to the degree of instantiation of arguments4.
In particular, non-leftmost unfolding steps can produce incorrect results
since the independence of the computation rule no longer holds in the
presence of impure predicates. Existing proposals allow non-leftmost un-
folding steps, but at the cost of accuracy: bindings and failure are not
propagated backwards to predicates which are potentially impure. In
this work we propose a partial evaluation scheme which substantially
reduces the situations in which such backpropagation has to be avoided.
With this aim, our partial evaluator takes into account the information
about purity of predicates expressed in terms of assertions. This allows
achieving some optimizations which are not feasible using existing partial
evaluation techniques. We argue that our proposal goes beyond existing
ones in that it is a) accurate, since the classification of pure vs impure
is done at the level of atoms instead of predicates, b) extensible, as the
information about purity can be added to programs using assertions
without having to modify the partial evaluator itself, and c) automatic,
since (backwards) analysis can be used to automatically infer the re-
quired assertions. Our approach has been implemented in the context of
CiaoPP, the abstract interpretation-based preprocessor of the Ciao logic
programming system.

1 Introduction and Motivation

For logic programs without impure predicates, non-leftmost unfolding is sound
thanks to the independence of the computation rule (see for example [13]).5

Unfortunately, non-leftmost unfolding poses several problems in the context of
full Prolog programs with impure predicates, where such independence does not
hold anymore. For instance, ground/1 is an impure predicate since, under LD
resolution, the goal ground(X),X=a fails whereas X=a,ground(X) succeeds with
computed answer X/a. Those executions are not equivalent and, thus, the inde-
pendence of the computation rule does no longer hold. As a result, given the goal
4 The term “partial deduction” is often used when referring to partial evaluation of

pure logic programs [7]; hence we do not use it in this context.
5 However, non-deterministic unfolding of nonleftmost atoms can degrade efficiency.

:- module(main_prog,[main/2],[]).

:- use_module(comp,[long_comp/2],[]).

:- entry main(X,a).

main(X,Y) :- problem(X,Y), q(X).

problem(a,Y):- ground(Y),long_comp(c,Y).

problem(b,Y):- ground(Y),long_comp(d,Y).

q(a).

Fig. 1. Motivating Example

← ground(X),X=a, if we allow the non-leftmost unfolding step which binds the
variable X in the call to ground(X), the goal will succeed at specialization time,
whereas the initial goal fails in LD resolution at run-time. The above problem
was early detected [16] and it is known as the problem of backpropagation of
bindings. Also backpropagation of failure is problematic in the presence of im-
pure predicates. For instance, ← write(hello),fail behaves differently from
← fail.

However, it is well-known that non-leftmost unfolding is essential in partial
evaluation in some cases for the satisfactory propagation of static information
(see, e.g., [8]). Informally, given a program P and a goal ← A1, . . . , An, it can
happen that the leftmost atom A1 cannot be selected for unfolding due to several
circumstances. Among others, if A1 is an atom for a predicate defined in P (thus
the code is available to the partial evaluator) it can happen that i) unfolding
A1 endangers termination (for example, A1 may homeomorphically embed [11]
some selected atom in its sequence of covering ancestors), or ii) the atom A1

unifies with several clause heads (deterministic unfolding rules do not unfold
non-deterministically for atoms other than the initial query). If A1 is an atom
for an external predicate whose code is not present nor available to the partial
evaluator, it can happen that A1 is not sufficiently instantiated so as to be
executed at this moment.

Example 1. Our motivating example is the Ciao program in Fig. 1, which uses
the impure (predefined) predicate ground/1. Predicate long comp/2 is exter-
nal from the user module comp. Consider a deterministic unfolding rule and
the entry declaration in Fig 1. The unfolding rule performs an initial step and
derives the goal problem(X,a),q(X). Then, it cannot select the leftmost atom
problem(X,a) because its execution performs a non deterministic step.

In this situation, different decisions can be taken. a) We can stop unfolding
at this point. However, in general, it may be profitable to unfold atoms other
than the leftmost. Interesting computation rules are able to detect the above cir-
cumstances and “jump over” the problematic atom in order to proceed with the
specialization of another atom (in this case q(X)). We can then decide to b) un-
fold q(X) but avoiding backpropagating bindings nor failure onto problem(X,a).
And the final possibility c) is to unfold q(X) while allowing backpropagation onto
problem(X,a). However, this will require that some additional requirements hold
on the atom(s) to the left of the selected one. Our main aim in this work is to

identify and characterize the conditions under which the possibility c) above is
applicable and build a partial evaluation system which can effectively prove such
conditions in order to perform backpropagation of bindings and failure as much
as possible.

There are several solutions in the literature (see, e.g.,[10, 2, 1, 8, 9]) which
allow unfolding non-leftmost atoms by avoiding the backpropagation of bindings
and failure, i.e., in the spirit of possibility b). Basically, the common idea is
to represent explicitly the bindings by using unification [10] or residual case
expressions [1] rather than backpropagating them (and thus applying them onto
leftmost atoms). For our example, by using unification, we can unfold q(X)
and obtain the resultant main(X,a):-problem(X,a),X=a. This guarantees that
the resulting program is correct, but it definitely introduces some inaccuracy,
since bindings (and failure) generated during unfolding of non-leftmost atoms
are hidden from atoms to the left of the selected one. The relevant point to note
is that preventing backpropagation, by using one of the existing methods, can
be a bad idea for at least the following reasons:

1. Backpropagation of bindings and failure can lead to an early detection of
failure, which may result in important speedups. For instance, if we allow
backpropagating the binding X=a to the left atom, we get rid of the whole
(failing) computation for problem(b,a) in the residual program.

2. Backpropagation of bindings can make the profitability criterion for the left-
most atom to hold, which may result in more aggressive unfolding. In the
example, by backpropagating, we obtain the atom problem(a,a) which al-
lows a deterministic computation rule to proceed to its unfolding.

3. Backpropagation of bindings may allow improved indexing by further instan-
tiating arguments in clause heads. This is often good from a performance
point of view (see, e.g., [17]). In our example, we will obtain the clause head
main(a,a) with more indexing than main(X,a).

The bottom-line is that backpropagation should be avoided only when it is really
necessary since interesting specializations can no longer be achieved when it is
disabled.

The remaining of the paper is organized as follows. The next section provides
an overview of our partial evaluation scheme. Section 3 recalls some preliminary
notions. In Sect. 4 we formalize the notion of purity at the level of atoms. Sec-
tion 5 presents the soundness conditions which allow safe backpropagation of
bindings and failure. In Sect. 6, we propose a partial evaluation scheme based
on purity assertions which are automatically inferred by backwards analysis. We
conclude in Sect. 7.

2 An Overview of our Partial Evaluation Scheme

Automatically figuring out when bindings and/or failure can be safely backprop-
agated onto an atom whose execution potentially reaches an impure predicate
has been considered a difficult challenge and, to our knowledge, there is no accu-
rate, satisfactory solution. Existing methods [8] are based on simple reachability
analysis. As soon as an impure predicate p/n can be reached from a predicate

Program

���

�
	Backwards

Analyzer
// Program w/

Assertions
//
�

�
	Partial

Evaluator
// Partial
Evaluation

Predefined
Assertions

OO

Entry Decl.

OO

Fig. 2. Partial Evaluation based on Assertions and Backwards Analysis

q/m, also q/m is considered impure and backpropagation onto any atom A for
q/m is not allowed. Unfortunately, this notion of impurity quickly expands from
a predicate to all predicates which use it. For example, the fact that there is
a call to an impure predicate within problem/2 will avoid backpropagating the
binding for X and thus achieving the above three enumerated effects.

Figure 2 illustrates our partial evaluation scheme which is made up of three
main components. First, we propose to use assertions which establish the con-
ditions under which atoms (i.e., calls) for potentially impure predicates become
pure. The classification of pure vs impure is thus done at the level of atoms
instead of predicates, which will give us more precise results. We start from a
set of Predefined Assertions provided by the underlying system for prede-
fined predicates. Second, the role of Backwards Analyzer is to automatically
infer, from the predefined assertions, sufficient conditions under which atoms are
pure. The result is specified by extending the program, resulting in Program w/
Assertions. Notice that this is a goal-independent process which can be started
in our system regardless of PE being performed or not. Third, and independently
from the backwards analysis process, the user can decide to partially evaluate
the program. To do so, an initial call has to be provided by means of an Entry
Declaration. A Partial Evaluator is executed from such program and entry with
the only consideration that, whenever a non-leftmost unfolding step needs to be
performed, it will take into account the information available in the generated
assertions. In our example, we will show that it is able to detect that, in the
context described by our entry, all calls to problem/2 are pure since the second
argument is always ground. This allows us to backpropagate the binding for X
and obtain the fact “main(a,a).” as partially evaluated program which achieves
the three benefits enumerated above.

3 Background

We assume some basic knowledge on the terminology of logic programming. See
for example [13] for details. Very briefly, an atom A is a syntactic construction
of the form p(t1, . . . , tn), where p/n, with n ≥ 0, is a predicate symbol and
t1, . . . , tn are terms. The function pred applied to atom A, i.e., pred(A), returns
the predicate symbol p/n for A. Most real-life Prolog programs use predicates
which are not defined in the program (module) being developed. Thus, predi-

cates are classified into internal and external. Internal procedures are defined in
the current program (module) and we assume that its code is available to the
partial evaluator, whereas external predicates are not present. Examples of ex-
ternal predicates include the traditional “built-in” (predefined) predicates, such
as constraints, basic input/output facilities (e.g., open). We will also consider
as external predicates those defined in a different module, procedures written in
another language, etc.

A clause is of the form H ← B where its head H is an atom and its body
B is a conjunction of atoms. A program is a finite set of clauses. A goal (or
query) is a conjunction of atoms. The concept of computation rule is used to
select an atom within a goal for its evaluation. The operational semantics of
programs is based on derivations. Consider a program P and a goal G of the
form← A1, . . . , AR, . . . , Ak. Let R be a computation rule such that R(G) =AR.
Let C = H ← B1, . . . , Bm be a renamed apart clause in program P . Then
θ(A1, . . . , AR−1, B1, . . . , Bm, AR+1, . . . , Ak) is derived from G and C viaR where
θ = mgu(AR,H). An SLD derivation for P ∪ {G} consists of a possibly infinite
sequence G = G0, G1, G2, . . . of goals, a sequence C1, C2, . . . of properly renamed
apart clauses of P , and a sequence θ1, θ2, . . . of mgus such that each Gi+1 is
derived from Gi and Ci+1 using θi+1. A derivation step can be non-deterministic
when AR unifies with several clauses in P , giving rise to several possible SLD
derivations for a given goal. Such SLD derivations can be organized in SLD
trees. A finite derivation G = G0, G1, G2, . . . , Gn is called successful if Gn is
empty. In that case θ = θ1θ2 . . . θn is called the computed answer for goal G.
Such a derivation is called failed if it is not possible to perform a derivation step
with Gn. We will also allow incomplete derivations in which, though possible,
no further resolution step is performed. We refer to SLD resolution restricted to
the case of leftmost computation rule as LD resolution.

Partial Evaluation (PE) [12, 4] is a program transformation technique which
specializes a program w.r.t. part of its known input data. Hence it is sometimes
also known as program specialization. Informally, given an input program and
a set of atoms, the PE algorithm applies an unfolding rule in order to compute
finite (possibly incomplete) SLD trees for these atoms. This process returns a
set of resultants (or residual rules), i.e., a residual program, associated to the
root-to-leaf derivations of these trees. Formally, an unfolding rule computes a
set of finite SLD derivations D1, . . . , Dn (i.e., a possibly incomplete SLD tree) of
the form Di = A, . . . , Gi with computed answer substitution θi for i = 1, . . . , n
whose associated resultants (or residual rules) are θi(A) ← Gi. Note that in
contrast to PE of pure programs, in the presence of impure predicates, failing
derivations cannot be blindly eliminated from the set of resultants, since this
may not preserve the behaviour of the program w.r.t. side-effects. Each unfold-
ing step during partial evaluation can be conceptually divided into two steps.
First, given a goal ← A1, . . . , AR, . . . , Ak the computation rule determines the
selected atom AR. Second, it must be decided whether unfolding (or evaluation)
of AR is profitable. It must be noted that the unfolding process requires the
introduction of this profitability test in order to guarantee that unfolding termi-
nates. Also, unfolding usually continues as long as some evidence is found that
further unfolding will improve the quality of the resultant program.

3.1 Leftmost Unfolding with Impure and External Predicates
The trivial computation rule which always returns the leftmost atom in a goal is
interesting in that it avoids several correctness and efficiency issues in the con-
text of PE of full Prolog programs. Such issues are discussed in depth throughout
this paper. When a (leftmost) atom AR is selected during PE, with pred(AR)
= p/n being an external predicate, it may not be possible to unfold AR for sev-
eral reasons. First, we may not have the code defining p/n and, even if we have
it, unfolding AR may introduce in the residual program calls to predicates which
are private to the module where p/n is defined. Also, it can be the case that
the execution of atoms for (external) predicates produces other outcomes such
as side-effects, errors, and exceptions. Note that this precludes the evaluation of
such atoms to be performed at PE time, since those effects need to be performed
at run-time. In spite of this, if the executable code for the external predicate p/n
is available, and under certain conditions, it can be possible to fully evaluate AR

at specialization time. The notion of evaluable atom [14] captures the require-
ments which allow the leftmost execution of external predicates at PE time.
Informally, an atom is evaluable if its execution satisfies four conditions: 1) it
universally terminates, 2) it does not produce side-effects, 3) it does not issue
errors and 4) it is sufficiently instantiated. We use eval(E) to denote that the
expression E is evaluable.

4 From Impure Predicates to Impure Atoms

Existing techniques for PE allow the unfolding of non-leftmost atoms by com-
bining a classification of predicates into pure and impure with techniques for
avoiding backpropagation of binding and failure in the case of impure predi-
cates. In order to classify predicates as pure or impure, existing methods [8] are
based on simple reachability analysis.

Our work improves on existing techniques by 1) providing a finer-grained
notion of impurity, which rather than being defined at the level of predicates, is
defined at the level of individual atoms, and 2) splitting the notion of purity into
its constituent properties: binding-sensitiveness, errors and side effects. Defining
purity at the level of atoms is of interest since it is often the case that some
atoms for a predicate are pure whereas others are impure. As an example, the
atom var(X) is impure (binding sensitive), whereas the atom var(f(X)) is not
(it is no longer binding sensitive). As will be seen later, this allows reducing
substantially the situations in which backpropagation has to be avoided.

4.1 Binding-sensitiveness
A binding-sensitive predicate is characterized by having a different success or fail-
ure behaviour under leftmost execution if bindings are backpropagated onto it.
Examples of binding-sensitive predicates are var/1, nonvar/1, atom/1, number/1,
ground/1, etc.

Definition 1 (binding insensitive atom). An atom A is binding insensitive,
denoted bind ins(A), if ∀ sequence of distinct variables 〈X1, . . . , Xk〉 s.t. Xi ∈
vars(A), i = 1, . . . , k and ∀ sequence of terms 〈t1, . . . , tk〉, the goal ← (X1 =
t1, . . . , Xk = tk, A) succeeds in LD resolution with computed answer σ iff the

goal ← (A,X1 = t1, . . . , Xk = tk) also succeeds in LD resolution with computed
answer σ.

Let us note that in the definition above we are only concerned with success-
ful derivations, which we aim at preserving. However, we are not in principle
concerned about preserving infinite failure. For example, ← (A,X = t) and
← (X = t, A) might have the same set of answers but a different termination
behaviour. In particular, the former might have an infinite derivation under LD
resolution while the second may finitely fail.

If an atom contains no variables, binding insensitiveness trivially holds. This
is quite useful in practice, since it may allow considering a good number of atoms
as binding insensitive without the need of sophisticated analyses.

4.2 Side-effects
Predicates p/n for which ← A, fail and ← fail, with pred(A) = p/n, are not
equivalent in LD resolution are termed as “side-effects” in [16]. Typical examples
of predicates with side-effects are write/1 and assert/1.

Definition 2 (side-effect-free atom). An atom A is side-effect free, denoted
sideff free(A), if the run-time behaviour of ← A, fail is equivalent to that of
← fail.

Since side-effects have to be preserved in the residual program, we have to avoid
any kind of backpropagation which can anticipate failure and, therefore, hide an
existing side-effect.

4.3 Run-Time Errors

There are some predicates whose call patterns are expected to be of certain type
and/or instantiation state. If an atom A does not correspond to the intended call
pattern, the execution of A will issue some run-time errors. Since we consider
such run-time errors as part of the behaviour of a program, we will require that
the partial evaluation process produces a residual program whose behaviour
w.r.t. run-time errors is identical to that of the original program, i.e., run-time
errors must not be introduced to, nor removed from, the program.

For instance, the predefined predicate is/2 requires its second argument to
be an arithmetic expression. If that is detected not to be the case at run-time,
an error is issued. Clearly, backpropagation is dangerous in the context of atoms
which may issue run-time errors, since it can anticipate the failure of a call to
the left of is/2 (thus omitting the error), or it can make the call to is/2 not to
issue an error (if there is some free variable in the second argument which gets
instantiated to an arithmetic expression after backpropagation).

Definition 3 (error-free atom). An atom A is error-free, denoted error free(A),
if the execution of A does not issue any error.

Somewhat surprisingly this condition for PE corresponds to that used in [6] for
computing safe call patterns. Unfortunately, the way in which errors are issued
can be implementation dependent. Some systems may write error messages and
continue execution, others may write error messages and make the execution of

the atom fail, others may halt the execution, others may raise exceptions, etc.
Though errors are often handled using side-effects, we will make a distinction
between side-effects and errors for two reasons. First, side-effects can be an ex-
pected outcome of the execution, whereas run-time errors should not occur in
successful executions. Second, it is often the case that predicates which contain
side-effects produce them unconditionally for all (or most of) atoms for such
predicate. However, predicates which can generate run-time errors can be guar-
anteed not to issue errors when certain preconditions about the call are satisfied,
i.e., when the atom is well-moded and well-typed. A practical implication of the
above distinction is that simple, reachability analysis will be used for propagating
side-effect freeness at the level of predicates, whereas a more refined, atom-based
classification will be used in the case of error-freeness.

5 Soundness Conditions for Backpropagation

Given the definitions of binding insensitive, side-effect free, and error free atoms,
we proceed to define aggregate properties which summarize the effect of such
individual properties. These properties will allow us to define the soundness
conditions under which backpropagation of bindings and failure is correct.

5.1 Backpropagation of failure
The next definition formalizes the concept of observable-free atom which is re-
quired in order to determine whether backpropagation of failure is permitted.

Definition 4 (observable-free atom). An atom A is observable-free, denoted
observable free(A), if error free(A) ∧ sideff free(A)
Intuitively, if an atom A is not observable-free, then ← A, fail may behave
differently from ← fail and thus backpropagation onto A has to be avoided.
The notion of observable-safe step characterizes the derivation steps for which
backpropagation of failure is not problematic.

Definition 5 (observable-safe derivation step). Let P be a program, let
G =← A1, . . . , An be a goal and let R be a computation rule s.t. R(G) = AR. Let
C be a renamed apart clause in P s.t. the head of C unifies with AR. We say that
the derivation step for G and C via R is observable-safe if observable free(A1)∧
. . . ∧ observable free(AR−1).

The notion of observable-safe derivation step can be incorporated in a PE system
in a straightforward way. More concretely, the computation rule used within
the unfolding rule can be defined in such a way that tries to select first those
atoms whose evaluation gives rise to observable-safe steps. Clearly, sometimes
there will be no such possibility and it will be forced to either select an atom
whose evaluation performs a non observable-safe step or stop unfolding. In each
case, the partial evaluator will treat failing derivations as follows. 1) If all steps
are observable-safe, then the failing derivation does not need to be taken into
account for code generation, as it is done in traditional PE. 2) In contrast, if it
contains one or more steps which are not observable-safe, then if the final goal
in the derivation is of the form ← A1, . . . , AR, . . . , An, the partial evaluator has
to produce a resultant associated to it of the form θ(A) ← A1, . . . , AR−1, fail,
where fail/0 is a predefined predicate which finitely fails. Note that all atoms to
the right of AR, i.e., AR+1, . . . , An can be safely be removed from the resultant.

5.2 Backpropagation of bindings
The notion of pure atom is necessary in order to ensure that backpropagation
of bindings does not change the runtime behaviour of the original program.

Definition 6 (pure atom). An atom A is pure, denoted pure(A), if
observable free(A) ∧ bind ins(A)
The notion of backpropagation-safe derivation step characterizes the derivation
steps in which backpropagation of bindings (and failure) can be safely performed.

Definition 7 (backpropagation-safe derivation step). In the same condi-
tions as Definition 5, we say that the derivation step for G and C via R is
backpropagation-safe if pure(A1) ∧ . . . ∧ pure(AR−1).

We say that a computation rule R is backpropagation-safe if it always selects
atoms in such a way that the derivation step is backpropagation-safe. It is easy
to incorporate the idea of backpropagation-safe in a PE system. Note that by
definition, leftmost unfolding is always backpropagation-safe. Thus, one simple
but very inaccurate policy is to restrict ourselves to leftmost unfolding in the
presence of impure predicates. If we would like to use a computation rule which
is not always backpropagation-safe, then backpropagation has to be avoided in
those steps which are possibly unsafe by using one of the existing proposals
(e.g.,[10, 2, 1, 8, 9]).

5.3 Sound Derivations
Finally, we introduce the concept of sound step which requires that the selected
atom is either user-defined or can be executed (or both), as well as the step
be backpropagation-safe. We first present the notion of evaluable atom which
provides the conditions under which an atom can be executed at specialization
time. In order to provide a precise definition in the context of external predicates,
we need to introduce first the notion of terminating atom.

Definition 8 (terminating atom). An atom A is called terminating, denoted
termin(A), if the LD tree for ← A is finite.

The definition above is equivalent to universal termination, i.e., the search for all
solutions to the atom can be performed in finite time. Note that this condition
is not necessary for internal predicates since the unfolding rule incorporates
mechanisms for ensuring their termination. If the code of the external predicate
was available, we could simply unfold the predicate using the same mechanisms
as for internal ones.

Definition 9 (evaluable atom). An atom A is evaluable, denoted eval(A), if
pure(A) ∧ termin(A).

The notion of evaluable atoms can be extended in a natural way to boolean
expressions composed of conjunction and disjunctions of atoms.

Definition 10 (sound derivation step). In the same conditions as Defini-
tion 5, we say that the derivation step for G and C via R is sound if

pure(A1) ∧ . . . ∧ pure(AR−1)
pred(AR) is defined in P ∨ eval(AR)

It is important to note that if AR is an atom for a predicate defined in program
P , then no further condition is required on the selected atom itself. As a result,
leftmost unfolding of user-defined predicates is always sound, even if the pro-
gram contains impure predicates. Also, even if the predicate is user-defined, our
implementation will fully execute the atom, rather than unfold it, if eval(AR) can
be guaranteed to hold. This produces important speedups in the PE process.

Our next theorem states that even in the presence of impure predicates, the
independence of the computation rule still holds as long as we restrict ourselves
to computation rules which are backpropagation-safe.

Theorem 1 (independence of the computation rule). Let P be program
and G a goal. Let R be a backpropagation-safe computation rule. There is a
successful LD derivation for G with c.a. σ iff there is a successful SLD derivation
for G via R with c.a. σ′ s.t. σ(G) is a variant of σ′(G)

The above theorem extends the classical result in logic programming theory for
pure programs to impure programs but only for those cases where the compu-
tation rule, though it can potentially choose a non-leftmost atom, it will never
“jump over” a possibly impure atom.

Also, in the context of impure predicates we are interested in preserving the
observables which are generated during the execution of the program.

Definition 11 (observables). Let P be a program and a G be a goal. Let D
be a LD derivation for P ∪ {G}. We define the sequence of observables of the
derivation D, denoted O(D), as the sequence of side-effects and errors which
occur in D.

Our unfolding process has to preserve observables both for successful and failing
derivations, since otherwise observables would be eliminated from the program.

Theorem 2 (preservation of observables). Let P be program and G a goal.
Let R be a backpropagation-safe computation rule. There is an LD derivation
D for G with O(D) 6= ∅ iff there is a SLD derivation D′ for G via R s.t.
O(D′) = O(D).

Our safety conditions for non-leftmost unfolding preserve computed answers, but
has the well-known implication that an infinite failure can be transformed into
a finite failure. However, in our framework this will only happen for predicates
which do not have side-effects, since non-leftmost unfolding is only allowed in the
presence of pure atoms. Nevertheless, our framework can be easily extended to
preserve also infinite failure by including termination as an additional property
that non-leftmost unfolding has to take into account, i.e. this implies requiring
that all atoms to the left of the selected atom should be evaluable and not only
pure.

6 Partial Evaluation with Purity Assertions

Though Definition 10 provides conditions under which backpropagation does not
need to be hidden, it cannot be used as the basis for an effective PE mechanism,
since in general it is not possible to determine at specialization time whether

observable-free
pure

eval
predicate sideff free error free bind ins termin

var(X) true true nonvar(X) true
nonvar(X) true true nonvar(X) true
write(X) false true ground(X) true
assert(X) false false ground(X) true
A <= B true arithexp(A)∧arithexp(B) true true
A >= B true arithexp(A)∧arithexp(B) true true

ground(X) true true ground(X) true
A = B true true true true

append(A,B,C) true true true list(A)∨list(C)
functor(A,B,C) true nonvar(A)∨(atom(B)∧nnegint(C)) true true

arg(A,B,C) true nnegint(A)∧struct(B)) true true
open(A,B,C) false false ground(C) true

Fig. 3. Purity conditions for some predefined predicates.

a derivation step is backpropagation-safe or not. In this section, we propose
a PE scheme which takes into account purity conditions stated by means of
assertions. We use the assertion language of CiaoPP [15] to provide the concrete
syntax of several kinds of assertions. The assertions include sufficient conditions
(SC) which are decidable and under which atoms for a predicate are pure. Thus,
they can be used as an effective method to guarantee that certain non-leftmost
derivation steps are backpropagation-safe.

Example 2. In Figure 3, we present sufficient conditions for a few predefined
predicates (builtins) in Ciao which guarantee that the atoms for the correspond-
ing predicates satisfy the purity properties discussed in the previous section,
where arithexp(X) stands for X being an arithmetic expression which should be
ground at the time of its evaluation, struct(X) succeeds iff X is bound to a func-
tor with arity strictly greater than zero, and nnegint(X) succeeds iff X is bound
to a non-negative integer. For example, unification is pure and evaluable in all
circumstances. The library predicate append/3 is pure but only evaluable if ei-
ther the first or third argument is bound to a list skeleton. The library predicate
open/3 requires its third argument to be a variable. Thus, backpropagation in
this case can introduce errors which would not appear in LD resolution.

We say that the execution of an atom A with Pred(A) = p/n on a logic pro-
gramming system Sys (by Sys we mean a Prolog implementation, e.g., Ciao or
Sicstus) in which the module M (where the predicate p/n is defined), together
with all modules transitively used by M , have been loaded trivially succeeds, de-
noted by triv suc(Sys,M,A), when the execution of A terminates and succeeds
only once with the empty computed answer, that is, it performs no bindings.

Definition 12 (binding insensitive assertion). Let p/n be a predicate de-
fined in module M . The assertion “:- trust comp p(X1,...,Xn):SC +bind ins.”
is a correct binding insensitive assertion for predicate p/n in a logic programming
system Sys if, ∀ A s.t. A = θ(p(X1, . . . , Xn)),

1. eval(θ(SC)), and
2. triv suc(Sys,M, θ(SC)) ⇒ bind ins(A).

The fourth column in Fig. 3 shows the sufficient conditions (SC in Def. 12) stated
in several binding insensitive assertions for the predicates in the first column
(p(X1, ..., Xn) in Def. 12). For instance, ground(X) is a sufficient condition for
bind ins(write(X)) to hold.

Given a set of assertions AS and an atom A, we use bind ins(A,AS) to denote
that there exists an assertion :- trust comp p(X1,...,Xn) : SC + bind ins
in AS s.t. A = θ(p(X1, . . . , Xn)) and triv suc(Sys,M, θ(SC)).

Definition 13 (error-free assertion). Let p/n be a predicate defined in mod-
ule M . The assertion “:- trust comp p(X1,...,Xn) : SC + error free.” is
a correct error-free assertion for predicate p/n if, ∀ A s.t. A = θ(p(X1, . . . , Xn)),

1. eval(θ(SC)), and
2. triv suc(Sys,M, θ(SC)) ⇒ error free(A).

The third column in Fig. 3 illustrates some sufficient conditions for error-freeness
for a few predefined predicates. For instance, the SC for predicate A>=B states
that both arguments should be arithmetic expressions. This guarantees error
free calls to predicate >=/2.

Given a set of assertions AS and an atom A, we use error free(A,AS) to
denote that there exists an assertion :- trust comp p(X1,...,Xn) : SC +
error free in AS s.t. A = θ(p(X1, . . . , Xn)) and triv suc(Sys,M, θ(SC)).

Definition 14 (side-effect free assertion). Let p/n be an external predicate
defined in module M . The assertion :- trust comp p(X1,...,Xn) + sideff free.
is a correct side-effect free assertion for predicate p/n if, ∀θ, the execution of
θ(p(X1, ..., Xn)) does not produce any side effect, i.e., sideff free(A).

The second column in Fig. 3 shows which predicates are side-effect free. In
contrast to the two previous assertions, side-effect assertions are unconditional,
i.e., their SC always takes the value true. For brevity, both in the text and in
the implementation we omit the SC from them. Let us note that the set of
side-effect free atoms is included in the set of error-free atoms, i.e., if A is not a
side-effect free atom, then the execution of← A, fail is not equivalent to← fail
and, thus, A is also not side-effect free. Nevertheless, we differentiate side-effects
and errors both for conceptual clarity and also because a simple reachability
analyses can be used to infer side-effects while errors are more accurately dealt
by context-sensitive analyzers.

Given a set of assertions AS and an atom A, we use sideff free(A,AS) to de-
note that there exists an assertion :- trust comp p(X1,...,Xn) + sideff free
in AS s.t. A = θ(p(X1, . . . , Xn)).

Example 3. The following assertions are predefined in Ciao for predicate >=/2:

:- trust comp A >= B : (arithexp(A),arithexp(B)) + error_free.
:- trust comp A >= B + sideff_free.
:- trust comp A >= B + bind_ins.

An important thing to note is that rather than using the overall eval asser-
tions (see [14]), we prefer to have separate assertions for each of the different
properties required for an atom to be evaluable. However, users can write eval
assertions directly if they prefer so. There are several reasons for this. On one
hand, it will allow weakening the conditions required for different purposes. For
example, binding insensitiveness is not required for avoiding backpropagation of
failure. Also, eval assertions include termination which is not required for ensur-
ing correctness w.r.t. computed answers (see Sect. 4) nor termination of internal
predicates. Second, it will allow us the use of different analyses for inferring each
of these properties (e.g., a simple reachability analysis is sufficient for uncon-
ditional side-effects while more elaborated analysis tools are needed for error
and binding sensitiveness). Finally, having separate properties will allow reusing
such assertions for other purposes different from partial evaluation. For instance,
side-effect and error free assertions are also interesting for other purposes (like,
e.g., for program verification, for automatic parallelization) and are frequently
required by programmers separately.

6.1 Automatic Inference of Purity Assertions

In the case of leftmost unfolding, eval assertions [14] can be used in order to
determine whether evaluation of atoms for external predicates can be fully done
at specialization time or not. Such eval assertions (or assertions for their con-
stituent properties) should be present whenever possible for all library (including
builtin) predicates. Though the presence of such assertions is not required, as the
lack of assertions is interpreted as the predicate not being evaluable under any
circumstances, the more eval assertions are present for external predicates, the
more profitable partial evaluation will be. Ideally, eval assertions can be provided
by the system developers and the user does not need to add any eval assertion.

If non-leftmost unfolding is allowed, an important distinction is that pure
assertions are of interest not only for external predicates but also for internal,
i.e., user-defined predicates. As already mentioned, the lack of pure assertions
must be interpreted as the predicate not being pure, since impure atoms can be
reached from them. Thus, for non-leftmost unfolding to be able to “jump over”
internal predicates, it is required that such pure assertions are available not
only for external predicates, but also for predicates internal to the module. Such
assertions can be manually added by the user or, much more interestingly, as
our system does, by backwards analysis [5, 3, 6]. Indeed, we believe that manual
introduction of assertions about purity of goals is too much of a burden for the
user. Therefore, accurate non-leftmost unfolding becomes a realistic possibility
only thanks to the availability of analysis.

Using a simple reachability analysis for error-free and binding-insensitivity
assertions would result in very imprecise results, as in other existing approaches.
Thus, we would like to perform a context-sensitive analysis which would allow
us to determine that some particular contexts guarantee the purity of atoms.
The main difficulty with this context-sensitive approach to purity analysis is
that it is rather difficult to find out which are the contexts of interest which may
appear during a particular PE process. One possibility would be to use a set

of representative initial contexts, but this is rather difficult to do, especially for
domains with an infinite number of abstract values.

A much more promising approach is based on backwards analysis [5, 3, 6] of
logic programs. This kind of analysis has been successfully applied in termina-
tion analysis and inference of call patterns which are guaranteed not to produce
any runtime error. We propose a novel application of backwards analysis for
automatically inferring binding-insensitive, error-free and side-effect free asser-
tions which are useful for improving the accuracy of partial evaluation, as it
has been discussed throughout the paper. In our implementation, we rely on the
backwards analysis technique of [3]. In this approach, the user first identifies a
number of properties that are required to hold at body atoms at specific pro-
gram points. A meta-program is then automatically constructed, which captures
the dependencies between initial goals and the specified program points. For our
specific application, we need to observe the occurrences of all predicates since
the lack of purity assertions must be interpreted as the atom not being pure.
Therefore, all program points are subject of analysis. Standard abstract inter-
pretation techniques are applied to the meta-program; from the results of the
analysis, conditions on initial goals can be derived which guarantee that all the
given properties hold whenever the specified program points are reached. In our
particular application, we infer the conditions under which calls to all predicates
are pure. The details on how the meta-program is constructed are outside the
scope of this paper (see [3]). We simply show by means of an example the kind
of information it infers.

Example 4. Consider the purity conditions for predicate ground/1 in Fig 3 and
the program in Fig. 1. Predicate long comp/2 is externally defined in module
comp along with these predefined assertions:

:- trust comp long_comp(X,Y) : true + error_free.
:- trust comp long_comp(X,Y) + sideff_free.
:- trust comp long_comp(X,Y) : ground(Y) + bind_ins.

For simplicity we consider in this example a simple domain with elements ground
and nonground. Note that our framework can be extended to reason about many
other properties like arithexp, list, etc. by using an abstract domain which
captures such information. In particular, we need to include the definitions for
the properties we want to capture.

Backwards analysis of the running example and the available assertions (for
long comp/2 and ground/1), infers the following assertions for problem/2:

:- trust comp problem(X,Y) : true + error_free.
:- trust comp problem(X,Y) + sideff_free.
:- trust comp problem(X,Y) : ground(Y) + bind_ins.

The last assertion indicates that calls performed to problem(X,Y) with the sec-
ond argument being ground are binding insensitive. This allows our specializer
to “jump over” the call to problem and backpropagate bindings, which will in
turn trigger further unfolding.

6.2 Combining Assertions with Partial Evaluation
We now provide an extension of the definition of safe derivation which takes into
account the purity conditions in our assertions. We use pure(A,AS) to denote
bind ins(A,AS) ∧ error free(A,AS) ∧ sideff free(A,AS).

Definition 15 (backpropagation-safe derivation step w.r.t. assertions).
Let AS be a correct set of assertions. Let P be a program, let G =← A1, . . . , An be
a goal and let R be a computation rule s.t R(G) = AR. Let C be a renamed apart
clause in P s.t. C unifies with AR. We say that the derivation step for G and C
via R is backpropagation-safe w.r.t. AS if pure(A1, AS)∧ . . .∧pure(AR−1, AS).

In order to integrate the above notion in an unfolding rule, the same ideas
sketched in Sect. 5.3 apply here. We also give the corresponding definition for
sound derivation based on purity assertions.

Definition 16 (sound derivation step w.r.t. assertions). In the same con-
ditions as Definition 7, we say that the derivation step for G and C via R is
sound w.r.t. AS if

pure(A1, AS) ∧ . . . ∧ pure(AR−1, AS)
pred(AR) is defined in P ∨ eval(AR, AS)

An important difference of the above definition w.r.t Definition 10 is that the
former is effective since the sufficient conditions provided by assertions can effec-
tively be used at specialization time in order to determine that certain atoms are
pure. This in turn will allow performing backpropagation of bindings and failure
for non-leftmost unfolding steps under circumstances where existing techniques
would need to resort to not backpropagating.

Similar theorems to Theorem 1 and Theorem 2 can be enunciated which
guarantee the correctness of derivation steps performed using a computation rule
which is backpropagation-safe with respect to a set of correct purity assertions.

Example 5. Consider a deterministic unfolding rule which only performs sound
derivation steps. In our running example, it performs an initial step and derives
the goal problem(X,a),q(X). Now, it cannot select the atom problem(X,a)
because its execution performs a non-deterministic step. Fortunately, the as-
sertions inferred for problem(X,Y) in Ex. 4 allow us to jump over this atom
and specialize first q(X). In particular, the first two assertions, since their SC is
true, guarantee that there is no problem related to errors or side-effects. From
the last assertion, we know that the above call is binding insensitive, since the
condition “ground(a)” trivially succeeds. If atom q(X) is evaluated first, then
variable X gets instantiated to a. Now, the unfolding rule already can select the
deterministic atom problem(a,a) and obtain the fact “ main(a,a).” as par-
tially evaluated program. The interesting point to note is that, without the help
of assertions, the derivation is stopped when the atom problem(X,a) is selected
because any call to problem is considered potentially dangerous since its execu-
tion reaches a binding sensitive predicate. The equivalent specialized rule in this
case is: “main(X,a):-problem(X,a),q(X).” A detailed explanation on the im-
provements achieved by our specialized program is provided in the three points
enumerated in Sect. 1.

7 Conclusions

We have presented a practical partial evaluation scheme for full Prolog programs
with impure predicates. As it is well known, impure features pose non-trivial
challenges in the context of non-leftmost unfolding in partial evaluation. Exist-
ing (more conservative) approaches avoid backpropagating bindings and failure
in the presence of such problematic predicates at the cost of accuracy. However,
under certain conditions, calls to apparently impure predicates in reality are
pure and thus backpropagation can be safely performed onto them. Our pro-
posal is more accurate in that the partial evaluator takes into account purity
conditions (stated by means of assertions) in order to decide whether backprop-
agation during non-leftmost unfolding is safe. Thanks to the use of backwards
analysis, correct and precise sufficient conditions can be automatically inferred
for all predicates from a set of predefined assertions available in the system. Our
approach has been successfully integrated in the context of CiaoPP, the analy-
sis/specialization preprocessor of the Ciao logic programming system, in which
we have available a full assertion language and a number of analyzers. As for
future work, we plan to exploit our automatically inferred assertions for purity
in an abstract partial evaluation framework, where we can prove that certain
backpropagations are safe using a combination of sharing analysis with refined
notions of independence.

Acknowledgments

This work was funded in part by the Information Society Technologies pro-
gramme of the European Commission, Future and Emerging Technologies under
the IST-2001-38059 ASAP project and by the Spanish Ministry of Science and
Education under the MCYT TIC 2002-0055 CUBICO project. Part of this work
was performed during a research stay of Elvira Albert and Germán Puebla at
University of Roskilde supported by respective grants from the Secretaŕıa de Es-
tado de Educación y Universidades, Spanish Ministry of Science and Education.
J. Gallagher’s research is supported in part by the IT-University of Copenhagen.

References

1. E. Albert, M. Hanus, and G. Vidal. A practical partial evaluation scheme for multi-
paradigm declarative languages. Journal of Functional and Logic Programming,
2002(1), 2002.

2. S. Etalle, M. Gabbrielli, and E. Marchiori. A Transformation System for CLP
with Dynamic Scheduling and CCP. In Proc. of the ACM Sigplan PEPM’97,
pages 137–150. ACM Press, New York, 1997.

3. J. Gallagher. A Program Transformation for Backwards Analysis of Logic Pro-
grams. In Logic Based Program Synthesis and Transformation: 13th International
Symposium, LOPSTR 2003, number 3018 in LNCS, pages 92–105. Springer-Verlag,
2004.

4. J.P. Gallagher. Tutorial on specialisation of logic programs. In Proceedings of
PEPM’93, the ACM Sigplan Symposium on Partial Evaluation and Semantics-
Based Program Manipulation, pages 88–98. ACM Press, 1993.

5. Jacob M. Howe, Andy King, and Lunjin Lu. Analysing Logic Programs by Rea-
soning Backwards. In Maurice Bruynooghe and Kung-Kiu Lau, editors, Program
Development in Computational Logic, LNCS, pages 380–393. Springer-Verlag, May
2004.

6. A. King and L. Lu. A Backward Analysis for Constraint Logic Programs. Theory
and Practice of Logic Programming, 2(4–5):32, July 2002.

7. J. Komorovski. An Introduction to Partial Deduction. In A. Pettorossi, editor,
Meta Programming in Logic, Proceedings of META’92, volume 649 of LNCS, pages
49–69. Springer-Verlag, 1992.

8. M. Leuschel and M. Bruynooghe. Logic program specialisation through partial de-
duction: Control issues. Theory and Practice of Logic Programming, 2(4 & 5):461–
515, July & September 2002.

9. M. Leuschel, J. Jørgensen, W. Vanhoof, and M. Bruynooghe. Offline specialisation
in prolog using a hand-written compiler generator. TPLP, 4(1–2):139 – 191, 2004.

10. Michael Leuschel. Partial evaluation of the “real thing”. In Proc. of LOPSTR’94
and META’94, LNCS 883, pages 122–137. Springer-Verlag, 1994.

11. Michael Leuschel. On the power of homeomorphic embedding for online termina-
tion. In Giorgio Levi, editor, Static Analysis. Proceedings of SAS’98, LNCS 1503,
pages 230–245, Pisa, Italy, September 1998. Springer-Verlag.

12. J. W. Lloyd and J. C. Shepherdson. Partial evaluation in logic programming. The
Journal of Logic Programming, 11:217–242, 1991.

13. J.W. Lloyd. Foundations of Logic Programming. Springer, second, extended edi-
tion, 1987.

14. G. Puebla, E. Albert, and M. Hermenegildo. Efficient Local Unfold-
ing with Ancestor Stacks for Full Prolog. In 14th International Sympo-
sium on Logic-based Program Synthesis and Transformation, number 3573
in LNCS, pages 149–165. Springer-Verlag, June 2005. Available at:
http://www.clip.dia.fi.upm.es/papers/lopstr04-unfolding.pdf.

15. G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for Constraint
Logic Programs. In Analysis and Visualization Tools for Constraint Programming,
pages 23–61. Springer LNCS 1870, 2000.

16. D. Sahlin. Mixtus: An automatic partial evaluator for full Prolog. New Generation
Computing, 12(1):7–51, 1993.

17. R. Venken and B. Demoen. A partial evaluation system for prolog: some practical
considerations. New Generation Computing, 6:279–290, 1988.

