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Abstract

We propose an abductive model based on Constraint
Handling Rule Grammars (CHRGs) for detecting and cor-
recting errors in problem domains that can be described
in terms of strings of words accepted by a logic grammar.
We provide a proof of concept for the specific problem of
detecting and repairing natural language errors, in par-
ticular, those concerning feature agreement. Our method-
ology relies on grammar and string transformation in ac-
cordance with a user-defined dictionary of possible repairs.
This transformation also serves as top-down guidance for
our essentially bottom-up parser. With respect to previous
approaches to error detection and repair, including those
that also use constraints and/or abduction, our methodol-
ogy is surprisingly simple while far-reaching and efficient.

1. Introduction

Speech input for computer based applications is becom-
ing a realistic goal with the popularization of reasonably
priced and reasonably efficient speech recognition software,
such as Naturally Speaking or Microsoft Speech Agent.
Even for processing written NL input, the need for more
robust language analyzers is increasing, due to the growing
masses of internet documents requiring intelligent search
and processing. Many of these documents are written in in-
formal or more colloquial language than those prepared for
traditional publications, which are screened by referees and
editors. In consequence, modern natural language process-
ing systems must include intelligent and efficient ways of
parsing and correcting ill-formed input.

The inherent ambiguity of natural language, and the fre-
quency of errors that appear particularly in spoken or col-
loquial input, suggests bottom-up parsing techniques as the
most promising, as we should be able to gather, from an
attempt to produce a correct parse, information which does

not necessarily conform to strict grammar rules. If possible,
we should also be able to interpret that information in ways
which allow us to somehow make sense of this “incorrect”
input, just as humans do.

Inspired by successes in blending constraints with ab-
duction for diagnosis and repair problems (cf. the next
section), we set out to investigate the possibilities of using
abduction with a particularly interesting kind of constraint
reasoning (that embedded in Constraint Handling Rules or
CHRs [18]) with abduction. Our approach uses CHRs in
their grammatical incarnation CHR Grammars (CHRGs),
which has proved valuable for natural language processing
problems as demonstrated in [13]. In [14] it is shown that
CHRGs provide a direct realization of abductive language
interpretation as bottom-up deductive derivations without
any meta-level overhead as is usually associated with ab-
duction. The application to error detection and correction
developed in the present paper yields a much simpler mech-
anism than those proposed earlier.

We find it important not only to produce a parse that rep-
resents a feasible interpretation of an input string, but also
to be able to return an explanation to the user saying that
when certain substrings were changed into certain others,
the system was able to interpret the string. Given a gram-
marG and stringS, the problem is to find a modificationM
to S (i.e., a set of word changes) so that a successful parse
of the entire string becomes possible. This is basically an
abductive problem as qualified guesses forM , which is a
premise for the successful parse, need to be made. Further-
more, the proposed candidates forM should be minimal
which can be defined in two ways, by set inclusion or by
cardinality; we shall make no preference of the two as our
methods can easily be tuned for one or the other. We can
demonstrate sound and complete procedures, but our main
purpose is to provide a framework for strategies that make
qualified guesses (rather than try all possibilities) by means
of additional rules that identify errors at higher level syntac-
tic nodes and generate modification requests to the string so
that parsing can continue using the normal grammar rules.



The computational process can be characterized as a
bottom-up computation with occasional top-down sweeps
when errors are detected, and the parse as well as the mod-
ification are read out of the final state. No backtracking is
involved, all relevant parses due to ambiguity or alternative
modifier sets are produced in parallel with no syntactic node
produced more than once. Moreover, our approach can also
be applied dynamically, as the input string is being typed.
In this respect, our approach rely on the flexibility of CHR
to combine top-down and bottom-up computations in a uni-
form way as pointed out by [1, 2].

It is to be noted that, while in this paper we develop one
specific application in detail as proof of concept — namely,
the automatic correction of feature agreement errors, as in
“the referees was impressed”:-), our main contribution is a
general methodology suitable for correcting errors in prob-
lem domains that can be described in terms of strings of
words accepted by a logic grammar (i.e., not only natural
but also formal languages, molecular biology sequences,
etc.).

2. Background

Traditional approaches to syntactic error correction typi-
cally resorted to ad-hoc techniques such as constraint relax-
ation, until it became clear that encompassing and accurate
coverage of errors could only be achieved by taking natural
language processing techniques into account.

Relaxation techniques work by relaxing one by one dif-
ferent kinds of constraints from the rules (such as number
agreement) in order to enable the recognition of the in-
put string as a sentence and infer its possible correction.
Some such systems, e.g. EPISTLE/CRITIQUE [19, 22] or
[24] use augmentations of phrase structure grammars, oth-
ers use chart parsers [6, 20], others [17] use extensions of
the PATR-II formalism [23]. These systems are character-
ized by a great degree of procedurality, and heavily draw
on heuristics to decide what the possible and the preferred
corrections are. While [17] does allow a declarative speci-
fication of possible relaxation of the rules, it shows no clear
declarative procedure for generating corrections for hypoth-
esized input errors.

A declarative method that restates the problem in abduc-
tive terms, solvable through contradiction removal in a logic
program [4, 5] was proposed in [7]. This solution involves a
first phase which attempts to fully parse the input string, and
a second phase which is triggered if the first one fails, and
which sets up the framework for abducing minimal (in the
sense of subset ordering) sets of explanations. One problem
with this approach is that work needs to be redone because
during the second phase, given that the partial parses ob-
tained in the first phase are lost. In [8] this memory loss
problem was addressed by using Datalog grammars [15] to

obtain a database with all the possible partial parses for the
input string. In the second phase, using this database as con-
textual information, an abductive approach similar to the
one proposed in [7] was set up in order to detect if the input
string is a correct or a faulty sentence, and propose appro-
priate changes if the latter. Datalog grammars were further
exploited in view of efficiency: by making word boundary
information about the input string explicit, they allowed the
authors to prune the search space, thus avoiding an explo-
sion in the abductive procedure which resulted in a 15 per-
cent improvement of the response time relative to [7].

The advantages of bottom-up approaches have been
demonstrated within other recent declarative paradigms
for parsing and sometimes also repairing incorrect input.
Blache, for instance, uses constraint graphs, built from con-
straints over categories such as linear precedence (e.g. “det

must preceden”), exclusion (which restricts co-occurrence
between sets of categories), uniqueness (for categories
which cannot be repeated in a phrase) [9]. Kakas et al. pro-
pose a technique for database repair which could perhaps
be adapted to syntactic error repair as well, and which in-
volves interleaving abduction and the resolution steps of a
CLP framework [21]. They use abductive criteria to prune
the search space as well as to solve the problem at hand.

Relaxation based methods typically might need to trans-
form grammars to less closely related ones, so they must
identify, for instance through constraint ordering, which
constraints (e.g. gender and number agreement) are more
important to relax, which not to try when others have failed,
etc. In contrast, the declarative approaches of [7, 8] are sim-
pler in that they do not require the ordering of constraints.

However, they do involve a substantial apparatus: Data-
log Grammars, abductive reasoning and model-based fault
diagnosis, as well as a two-phase processing scheme.

In this paper we shall argue that we can get similar and
maybe even better results than those obtained in the recent
declarative work surveyed, through CHR grammars’ [13]
inherent treatment of ambiguity and abduction with consid-
erably less work from both the implementors and the users:

a) as in [9] or [8], we can build non-connected structures
showing all partial successful analyzes (but without having
to replace trees by graphs as in the former, or needing extra
machinery as in the latter). Moreover, we can repair ill-
formed input as well, whereas [9] merely detects it, even
though it is capable of parsing sentences containing associ-
ated elements such as hesitations, repetitions, etc. (these are
largely ignored after being detected).

b) As in [21] and [8], we use abduction in conjunction
with bottom-up analysis, but we neither require a special
interleaving proof procedure as in [21] (although the effects
we obtain from the use of CHRGs are similar to those of in-
terleaving), nor extra machinery for datalog grammars, ab-
duction and model-based diagnosis as in [8].



3. CHR as grammar formalism with facilities
for error correction

CHR Grammars, or CHRGs for short, were introduced
in [11, 13] as a bottom-up counterpart to Definite Clause
Grammars (DCGs) (DCGs; [?]) CHR in exactly the same
ways as DCGs take their semantics from and are imple-
mented by a direct translation into Prolog. CHRGs are ex-
ecuted as CHR programs that provide robust parsing with
an inherent treatment of ambiguity that makes the present
approach to error diagnosis and correction feasible. In case
no parse is given for the entire string, specialized rules can
examine the subphrases generated and activate suitable re-
pair actions. As demonstrated by [13, 14], CHRG is a very
powerful system which provides straightforward implemen-
tation of assumption grammars [16], abductive language in-
terpretation and a flexible way to handle a variety of lin-
guistic phenomena [12]. For ease of understanding, and to
focus on the logical semantics, we write grammar rules in
CHR syntax. CHR works on constraint stores with its rules
interpreted as rewrite rules over such stores. A string to be
analyzed such as“a boy laughs” is entered as a sequence
of constraints

token(0,1,a), token(1,2,boy),
token(2,3,laughs)

(1)

that comprise an initial constraint store. The integer argu-
ments represent word boundaries, and a grammar for this
intended language can be expressed in CHR as follows.

token(X0,X1,a) ==> det(X0,X1,sing).
token(X0,X1,boy) ==> n(X0,X1,sing).
token(X0,X1,laughs) ==> v(X0,X1,sing).
token(X0,X1,laugh) ==> v(X0,X1,plu).
n(X0,X1,Number), v(X1,X2,Number) ==>

s(X0,X1,Number).

(2)

We can do here basically with the subset of CHR consist-
ing of propagation rules only for which it is easy to specify
declarative and procedural semantics.

Definition 1 A CHRprogramis a finite set ofrulesof the
form

Head ==> Guard | Body (3)

where Head and Body are conjunctions of atoms and Guard
a test constructed from built-in predicates; the variables in
Guard and Body occurs also in Head; in case the Guard
is the local constant “true”, it is omitted together with the
vertical bar. Its logical meaning is the formula∀(Guard→
(Head→ Body)) and the meaning of a program is given by
conjunction.

A derivationstarting from an initial state called aquery
of ground constraints is defined by applying rules as long as
it adds new constraints to the store. A rule as aboveapplies
if it has an instanceH==>G| B with G satisfied andH in
current store, and it does so by addingB to the store.

In the few cases we go beyond this subset, we give informal
explanations; for full introduction to CHR, see [18]. We
notice the following properties:

• Any state in a derivation is ground.
• For a derivation for programP and queryQ with final

stateF , we haveA ∈ F iff P ∪Q |= A.
• If the application of a rule adds a constraintc to the

store which already is there, no additional rules are
triggered, e.g.,p==>p does not loop as it is not applied
in a state includingp.

Running the program (2) on the initial store given by (1)
produces instances of grammar symbols corresponding to
subtreenodes, including one covering the whole string,
namelys(0,3,sing) .

Now suppose that we are given an erroneous string such
“a boy laugh”. With program (2), the final constraint store
contains nos-node, but only nodes corresponding to rec-
ognized subtrees. If the token“laugh” were changed into
“laughs” , however, a full parse could be produced. To im-
plement such changes, consider adding the following rule
to the program:

token(X0,X1,Old), modify(X0,X1,Old,New)
==> token(X0,X1,New)

(4)

If the atom M = modify(2,3,laugh,laughs) indi-
cating a change of a word is added to the storedeus ex
machina, a node corresponding to a full sentence will be
produced andM can then be viewed as an explanation of
how it was reached. Thus the problem of error correction
amounts to the abductive problem of finding out which such
correction facts should be added to the constraint store in
order to provide a full parse.

The methodology of [14] for abductive language inter-
pretation in CHR suggest simply to move the hypothesis to
be abduced from the head to the body of the rule and in
this way have all necessary abducibles generated as part of
the final state. It is not feasible to do it exactly like this in
the present setting as any atom would be made subject of a
modification.1 That is why we propose rules for top-down
guidance in the following, but it is worth noticing that the
only way to produce a new constraint, whether referred to
as abducible or not, is to have it appear in the body of a rule.

4. An abductive CHR model for Error Correct-
ing Grammars

We now develop a larger framework for grammars that
can correct errors as a side effect of parsing. We first con-
sider only modifications on tokens (i.e., changing one to-
ken into another one). Throughout this paper, we shall use
agreement features which can be expresses through unifi-
cation (such as gender, case, number, semantic type) as the
main example.

1Although not covered by definition 1, [14] can also handle the non-
ground abducibles that arise.



Definition 2 A grammaris a set of rules of the form
g1( X0, X1, a1), . . ., gn( Xn−1, Xn, an) ==>
g( X0, Xn, a)

(5)

where the predicatesg, gi are calledgrammar symbols; a,
ai stand for sequences of terms;arguments referred to by the
variablesX0, . . . , Xn are called boundaries. The special
grammar symboltoken of arity 3 occurs only in singletons
on the left hand side; such rules are calledlexical, any other
nonlexical. For simplicity of the following, we assume a
grammaticalstart symbol, typically calleds, of some given
arity, which does not occur in any lefthand side. No assump-
tion is made on whether a grammar is unambiguous. By a
(n input) string, we refer to a conjunctiontoken(0,1, w1) ,
. . ., token( n − 1, n, wn) wherew1, . . . , wn are constant
symbols also referred to aswords.

In case of a chain of rulesg1(X1, Y1, A1) ==>

g2(X ′
2, Y

′
2 , B2), g2(X2, Y2, A2) ==> g3(X ′

3, Y
′
3 , B3), . . .

gn−1(Xn−1, Yn−1, An−1) ==> gn(X ′
n, Y ′

n, BN ) with g1 =
gn, there is noBi of the formf(Ai).
The restriction on chains of rules ensures that a derivation
for a grammar always terminates even if there is a loop
among its nonterminals. No assumption is made on whether
a grammar is unambiguous; a final state has nodes corre-
sponding all possible phrases recognized inside the string.
The possible ways in which a given token can be modified
may be derived from a definition of edit distance or expec-
tations of typical grammatical errors, e.g., wrong number.
In a realistic system, we would expect this be implemented
as a program module referring to an external dictionary that
also defines the lexical rules. However, we shall not go into
such details here and abstract this aspect away as follows.
Definition 3 A dictionary of token modificationsis a set
of atoms of the formchange( From, To) where From and
To are words. AmodificationM with respect to dictio-
nary D is a set of atomschange( i − 1, i, From, To) with
change( From, To) ∈ D so that no two atoms inM have
the same boundaries. Themodification of stringS by M ,
denotedSM , is the string obtained fromS by replacing
eachtoken( i − 1, i, w) by token( i − 1, i, w′) whenever
change( i − 1, i, w, w′) ∈ M .
For the moment, we shall ignore exactly how these modifi-
cations are created, and focus on how given modifications
interact with the grammar rules.2

Definition 4 A modifying grammarG′ for a grammarG is
the CHR program resulting from replacing each lexical rule

token( A, B, w) ==> cat( A, B, a) (6)
by the following:

token( A, B, w), ¬∃w′change( A, B, w, w′)
==> cat( A, B, a)

(7)

and adding the following general rule:
token(A,B,Word), change(A,B,Word,NewWord)
==> token(A,B,NewWord).

(8)

2The negated goal in def. 4 can be understood by means of so-called ex-
plicit negation, i.e., with6 ∃w′change viewed as one predicate symbols
and a suitable “integrity constraint” that excludes inconsistent states.

The following is obvious from the definitions:

Proposition 5 Given grammarG and its modifying gram-
mar G′, a stringS, modificationM and instance of gram-
mar symbolA, we have

G ∪ SM |= A iff G′ ∪ S ∪M |= A. (9)

The problem of error correction is then an abductive prob-
lem: If, with grammarG, it is required from stringS to
derive instances of the start symbols(X) but G ∪ S 6|=
∃X: s(X), find a modificationM so that

G′ ∪ S ∪M |= s(A) for someA. (10)

Not any modification is desirable, nor is it computationally
feasible to test any possible modification. As already men-
tioned, it is desirable for a modification to be minimal — in
terms of set inclusion or cardinality.

5. Top-down guidance

As we have seen, our CHR based parsing proceeds
bottom-up, which is most convenient for the purposes of
detecting errors as early as possible. However, a com-
pletely bottom-up approach would be caught up in combi-
natorial explosion. A top-down guidance to complement the
bottom-up parsing can be implemented quite naturally by
specialized error handling rules that comparing the subtrees
already produced. These rules may be compiled directly
from the grammar but may also be supplied by a competent
grammar writer who can take into account typical errors and
expectations of what users a likely to wish to express, and
perhaps also develop more sophisticated strategies for de-
tection and correction than the one produced automatically.
Here we sketch briefly the idea before going on and adapt-
ing the model of section 4 to include this.

For instance, a rule requiring number agreement between
the noun phrase and the verb phrase of a sentence:

np(X0,X1,N), vp(X1,X2,N) ==> s(X0,X2,N). (11)

can compile into an additional rule such as:
np(X0,X1,N1), vp(X1,X2,N2) ==> N1\== N2 |

modify np(X0,X1,N1,N2) ∨
modify vp(X1,X2,N2,N1).

(12)

The disjunction is treated by CHR by means of
backtracking. The intended meaning of a constraint
modify cat( A, B, X , Y ) is a request to modify the string
so that thecat phrase with boundariesA,B changes its at-
tribute value from existingX to new Y ; this rule, then,
needs to be complemented by straightforward rules to prop-
agate the modification request down to the token level. In
the example above,modify np is applied to enforce the
broken agreement to hold in one way or another.

However, we shall propose below a better approach than
using backtracking, which would involve undoing and redo-
ing different choices and also require extra bookkeeping in



order to record the different solutions. Instead, we propose
a model that investigates all intended modifications in par-
allel, integrates dynamically with the normal parsing mode
and produces minimal modifications. We shall return to the
above example after introducing the necessary machinery.

6. Multiple modifications through local con-
straint stores

Definition 6 A multimodification M with respect to a
dictionary of token modificationsD is a set of atoms
change( i − 1, i, From, To) with change( From, To) ∈ D
(but not necessarily funct. determ. by boundaries).

A given multimodificationM is taken as a combined rep-
resentation of all possible modificationsM ∈ M, i.e., each
subsetM with at most one modifier per boundary pair.

In order to integrate multimodification in our framework
so that the consequences of the embedded modifications are
evaluated in parallel bottom-up, we extend each grammar
symbol with an extra attribute that serves as a local modifi-
cation store in the following way.
Definition 7 A multimodifying grammarG′ for a grammar
G is the CHR program resulting from adding one to the arity
of each grammar symbol, however also keeping the original
token /3 symbol, and changing the set of rules as follows.
Add the following two rules:

token(A,B,W) ==> token(A,B,W, ∅)
token(A,B,W), change(A,B,W,NewW) ==>
token(A,B,NewW, {change(A,B,W,NewW) }).

(13)

Replace each grammar rule ofG, lexical as well as nonlex-
ical, of form

g1( X0, X1, A1), . . ., gn( Xn−1, Xn, An)
==> g( X0, Xn, A)

(14)

by the following:
g1( X0, X1, A1, C1), . . ., gn( Xn−1, Xn, An, C1)
==> g( X0, Xn, A, C1 ∪ · · · ∪ Cn)

(15)

Intuitively, gi(i,j,A,C) means that nodegi(A) is recognized
as spanning the substring given byi, j, provided the mod-
ifications given byC. Conceptually, we prefer to think of
“∪” as an interpreted function symbol with its traditional
meaning, but CHR will take it as term-builder and anyhow
execute the program correctly according to our intentions;
it is straightforward to extend the CHR rules so that “∪” in
fact is evaluated. It is easy to prove by induction that a set
attached to some grammar symbol in a derivation always
classify as a modification, i.e., there are no twochange

atoms for the same boundaries. We have obviously:
Proposition 8 Given grammarG and its multimodifying
grammarG′, a stringS, multimodificationM, modification
M ∈ M and grammar symbol instanceA, we have
G ∪ SM |= A iff G′ ∪ S ∪M |= AM (16)

whereAM is A with M added as extra argument.
Furthermore, if for someM ∈ M with G∪ SM |= s(A)

there exists anM0 ⊂ M with G ∪ SM0 |= s(A0) for some
A0, we have thatG′ ∪ S ∪M |= s(A0)M .

In other words, if a given multimodificationM is added by
means of some strategy, the final constraint store will pro-
vide a collections of (among others) set-minimal modifica-
tions that lead to a correct parse of the entire input string —
provided, of course, that such exists as subset ofM. So if
the strategy applied for generating token modifications sug-
gests to modify more tokens that necessary, the bottom-up
evaluation will anyhow also produce minimal ones.

Set-minimality
In most cases, the generated modifications will be minimal
or almost minimal in the set inclusion sense, but referring
to the second part of proposition 8 there is a straightforward
way to obtain the minimal ones. The following so-called
simpagation rule (see [18]) sketched as follows will remove
all buts-nodes with set minimal modification.

s(0,N,A0,M0)\s(0,N,A,M)<=>M0 (M | true. (17)
The operational semantics states that constraints in the head
following the backslash are removed from the constraint
store while the others remain.

Minimality in number of word changes
Among the successful modifications in some multimodifi-
cationM, we can remove all but these with the smallest
number of elements by a rules sketched as follows.

s(0,N,A0,M0) \ s(0,N,A,M) <=> card(M0)
< card(M) | true. (18)

This may not result in the absolutely smallest modification
in case the strategy that createdM has overlooked a modi-
fication that is (partly) outsideM.

A brute-force method
We have already the bits and pieces to put together a pro-
cedure which is sound and complete with respect to either
of the two minimality notions: For given grammarG, string
S, and dictionary of possible changesD, generate the mul-
timodifying grammarG′, and for anytoken( i − 1, i, wi

∈ S andchange( wi, w′
i) ∈ D let change( i−1, i, wi, w′

i)

∈ M. Then start a derivation from initial stateS ∪ M us-
ing programG′ ∪ {µ} whereµ is the preferred one of (17)
and (18). From an existential point of view, we can be satis-
fied with this procedure but it involves a combinatorial ex-
plosion of the constraint store and thus impractical for any
but small demonstrative examples.

7. A transformation into autocorrrecting
grammars – intuitive description

Here we describe a particular strategy for guiding error
correction by means of rules that compare attributes of adja-
cent phrases in case a grammar rule did not apply although
its left-hand side presents the same sequence of grammar
symbols. These rule, called local autocorrect rule, are pro-
duced automatically by a compilation of the original gram-
mar rules together distribution rules that pass change re-
quests down to the token level. In the present section we



introduce the concept in an intuitive way by means of an
example, and in the following section 8 we give a gen-
eral description. Changes that seem to correct errors may
at a later point prove to be wrong, as we advance through
the string and have more parsing information. For instance
in French we do not have two but three relevant attribute
values for “number”, namely feminine-singular, masculine-
singular, and plural. Consider the text fragment “la garçon”
which looks like annp with an agreement problem. To fix
this, we may modify the determiner or the noun leading to
two options, say “le garçon” and “la fille”. Either of these
two makes it possible to recognize annp which is either
masculine-singular or feminine-singular. But assume now
that it is followed by the pluralvp “sont fatigues”. This
indicates a mismatch that triggers a number of possible cor-
rections, one of which is to force thenp into singular. As
actual modifications take place at the level of theoriginal
tokens, a change into “les garçons” is most likely to be sug-
gested. The local autocorrect rule for the sentence level
triggers also changes of thevp so it can match either of the
proposed singularnps. Thus we end up with three sentence
nodes whose local modification stores each corresponds to
one of the sentences “les garçons sont fatigues”, “le garçon
est fatigue”, and “la fille est fatigúee” each with respectively
2, 3, and all 4 tokens changed.

We now expand a multimodifying grammar in the for-
mat of definition 7, so that it can figure out how to correct
mistakes. Consider again grammar rule (11). Whenever it
cannot apply to annp and an adjacentvp node, i.e., if we
have a mismatch of attribute values as in

np(16,18,sing), vp(19,20,plu) (19)
we will need what we call alocal autocorrect rule(gener-
ated from (11) at compile time):

np(X0,X1,N1, ),vp(X1,X2,N2, )==>N1\==N2 |
modify np(X0,X1,N1,N2),
modify vp(X1,X2,N2,N1).

(20)

Notice that with respect to the initial formulation (12) that
• we have an extra argument at the end: the local modi-

fication store,
• we now use “and” rather than “or”, because we have

lifted the unicity requirement, so now we have multi-
modifying rules, i.e., both ways of modifying the input
string will be explored in parallel.

Grammar rules where mismatch is not possible (e.g.,
iv(X1,X2,N) ==> vp(X1,X2,N) ) do not generate auto-
correct rules. They do, however, generate another kind of
rule (top-down distribution rules), as we shall see next.

The compiler also generates, for each grammar rule, a
top-down distribution rule, in charge of percolating modi-
fication requests all the way down to the token level where
actual changes can take place. The sample rule

det(X0,X1,N),n(X1,X2,N)==>np(X0,X2,N) (21)

generates the top-down distribution rule:

det(X0,X1,N, ), n(X1,X2,N, ), np(X0,X2,N, ),
modify np(X0,X2,N,NewN) ==> N \== NewN |

modify det(X0,X1,N,NewN),
modify n(X1,X2,N,NewN).

(22)

which will apply to all possibledet -n sequences that span
the same boundary interval as thenp3, whenever a con-
straint modify np has been issued and provided that the
np at hand has been constructed from adet -n sequence.

For instance, if a request to modify a singular np into
plural has been issued, rule (22) locates the relevantdet -n
sequences and modifies their number accordingly.

Top-down distribution rules are generated for all gram-
mar rules, including lexical ones, with the exception that
there is nomodify token constraint but we refer to the
change constraint used in earlier sections.

It is easy to understand the result of this process as the
consequence of a set of implication formulas. When exe-
cuted as CHR rules, they will perform as overlapping waves
shifting between bottom-up and top-down execution. Nodes
start to grow up from the bottom, and when a mismatch is
found, a wave is sent downwards and reflected by from the
bottom in terms of new bottom-up reductions. Maybe this
gives rise to a parsing of the entire string or another mis-
match is identified at a higher level and the story continues.
However, termination is guaranteed if the set of possible
modifications is finite.

8. A general characterization of autocorrecting
grammars

We describe the two transformations referring to the fol-
lowing general pattern for grammar rules.

g1( X0, X1, A1,1, . . ., A1,k1 ), . . .,
gn( Xn−1, Xn, An,1, . . ., An,kn ) ==>

g( X0, Xn, A1, . . ., Ak).
(23)

The Xi variables stand for word boundaries and each at-
tribute expressionsAi,j is either a constant or a variable.
For each grammar symbolg of arity n + 2 in the orig-
inal grammar a new constraint symbolmodify g of arity
2n + 2 (for g = token coincident with the previously de-
finedchange constraint). The intuitive meaning of

modify g( A, B, From1, To1, . . ., Fromn, Ton) (24)

is a request for modification of some tokens so
that g( A, B, From1, . . ., Fromn) can transform into
g( A, B, To1, . . ., Ton) . If the dictionary of possible
changes is capable of suggesting sufficient token changes,
thisg node (with suitable local modification store attached)
will eventually be produced by the grammar rules.

In the general case, it is a dynamic property which mod-
ification requests should be generated, so we need to have

3In the case of a highly ambiguous grammar, this may trigger a few
redundant modification sequences. However, this is not a problem since
nonminimal modifications sets are anyhow removed, as explained above.



control expressions in the body of a local autocorrect rule.
The autocorrect rule compiled for a grammar rule (23)
makes a comparison of the actual attributes values with
those expected by the grammar rule. Based on that, a set
of perhaps new possible attribute valuesVi,j is suggested
for each positioni, j. The general shape of the autocorrect
is as follows; theVi,j sets are characterized below and each
Zi,j is a new variable.

g1( X0, X1, Z1,i, . . ., Z1,k1 , ), . . .,
gn( Xn−1, Xn, Zn,1, . . ., Zn,kn , ) ==>

〈Z1,1, . . . , Z1,k1 , . . . , Zn,1, . . . , Zn,kn〉 not an instance
of 〈A1,1, . . . , A1,k1 , . . . , An,1,... , An,kn〉 |
for eachi and eachvi,j ∈ Vi,j , call constraint

modify gi( Xi−1, Xi, Zi,1, vi,1, . . ., Zi,in , vi,in )

(25)

As we have said earlier, autocorrect rules are only generated
from rules where there is opportunity for mismatch. This is
the case when either:

• A variableAi,j = A in (23) stands in a number> 1 of
positions at the left-hand where the current constraints
display a collection of different values that we callVA;
for any such(i, j) occupied byA let Vi,j = VA.

• An attribute positionAi,j in (23) is occupied by con-
stantc and the current constraint displays a different
constantc′; in that case, letVi,j = {c}.

For any attribute position not already assigned aVi,j set, let
Vi,j be a the set consisting of the constant observed in the
current constraint. By attribute values in current constraints,
we referred to the actual values of theZi,j variables in an
application of the rule.

The general shape of a rule for distribution of change
requests eventually to hit the token level is given as follows
for each rule of the grammar. Notice that the guard stops
requests for modifying a node into itself; this seems to be
a simpler approach than actually avoiding the creation of
such trivial requests.

modify g( X0, X1, F1, T1, . . ., Fk, Tk),
g( X0, X1, F1, . . ., Fk, ),

g1( X0, X1, F1,i, . . ., F1,k1 , ), . . .,
gn( Xn−1, Xn, Fn,1, . . ., Fn,kn , )

==> ( F1, . . ., Fk) \== ( T1, . . ., Tk) |
unify ( A1, . . ., Ak) and ( T1, . . ., Tk) and for any

variableAi,j that received a value, letNi,j be this value,
for any otheri, j, let Ni,j beFi,j ,
modify g1( X0, X1, N1,1, . . ., N1,k1 ), . . .,
modify gn( Xn−1, Xn, Nn,1, . . ., Nn,kn ).

(26)

In most cases, this very general format can be reduced to
simpler formulations, such as (22). The distribution rule
can be made more precise by a more complicated matching
so that it applies to only those particular instances ofg1,
. . ., gn to which rule (23) were applied at an earlier stage
in order to produce this instance ofg. However, this will
probably slow down the overall performance in a way that
will outbalance what is gained in all but very rare examples.

And, as noted already, it does not make any damage to the
overall process to explore a few redundant modification.

For lack of space, we shall refrain from a formal char-
acterization and proof of correctness of an autocorrecting
grammarG′ compiled from some grammarG. However,
the overall properties are as follows.
• G′ is sound in the sense that if it produces a given node,

G can produce the same node from a modified version
of the input string.

• G′ is complete within a set of parse tree structures
that preserve the topology of those produced byG for
the original string (andG′ adds new nodes on top of
those). In factG′ may, so to speak by accident, pro-
duce other parses corresponding to a completely to-
tally phrase structure in case of an ambiguous gram-
mar.

9. Discussion

We have presented a general framework which makes it
possible to mechanically transform a grammarG into an
auto-correcting extensionG′ given a dictionary of possible
modifications defined by the user, and given a CHRG pro-
cessor such as the one defined on top of CHRs in a standard
way. With respect to previous work on both abductive and
non-abductive error detection and correction schemes, our
approach is the most economical in terms of the machinery
needed, while also providing a great degree of efficiency
and flexibility. We are not aware of benchmark tests to
which we can compare, but our expectations of efficiency is
grounded on the absence of meta-level overhead in our ap-
proach (which is quite heavy in other abduction-based and
transformation-based approaches) and the effective pruning
of the search space provided by top-down guidance. It is
also farther reaching in many aspects: for instance, Blache’s
approach requires the input to contain disambiguated POS
tags, whereas we can let ambiguous tags coexist, since dis-
ambiguation largely follows from which constraints in our
constraint store will be satisfied. We can also correct rather
than just detect errors, as we have seen. Finally, the orig-
inal grammar is expressed just like any DCG, except that
we reverse the order of body and head to facilitate bottom-
up parsing. This is a much simpler and standard way than
the constraint graph approach, which necessitates recasting
the grammar in terms of six fairly unknown constraints (re-
lationships) between linguistic objects, as well as the repre-
sentation and manipulation of the resulting constraint graph.
However, the benefits we obtain are similar although re-
quiring much less apparatus: we also can avoid the need to
build a complete structure before we can verify its proper-
ties. Associated elements (such as hesitations, interjections,
etc.) which are part of the input without having exact re-
lation to the rest of the sentence, can be “skipped over” by



repairing their input and output word boundaries into the
same. Our abductive reasoning requires no special mech-
anisms either, because it follows from the interactions be-
tween our grammar and string transformations and the stan-
dard CHR store workings. Finally, let us point out that the
auto-correct rules we introduce also serve as top-down guid-
ance without any extra layers of theorem proving, thus im-
proving efficiency in and by themselves. In this sense we
might view our approach as comparable to what magic sets
achieved for data base theory. Mixing bottom-up and top-
down directions does of course have antecedents in parsing
theory itself: left-corner parsing, for instance, also uses as-
tute rule transformation which can result from compiling
in order to achieve top-down guidance of essentially bot-
tom up-parsing. However our local autocorrect rules serve
a double purpose: while designed for correcting errors, they
double up as top down guides, — an agreeable side effect.
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