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Single-order-parameter description of glass-forming liquids:
A one-frequency test

Niels L. Ellegaard, Tage Christensen, Peder Voetmann Christiansen, Niels Boye Olsen,
Ulf R. Pedersen, Thomas B. Schrøder, and Jeppe C. Dyre
DNRF Centre “Glass and Time,” IMFUFA (27), Department of Sciences, Roskilde University, Postbox 260,
DK-4000 Roskilde, Denmark

�Received 1 November 2006; accepted 28 December 2006; published online 15 February 2007�

Thermoviscoelastic linear-response functions are calculated from the master equation describing
viscous liquid inherent dynamics. From the imaginary parts of the frequency-dependent isobaric
specific heat, isothermal compressibility, and isobaric thermal expansion coefficient, we define a
“linear dynamic Prigogine-Defay ratio” �Tp��� with the property that if �Tp���=1 at one frequency,
then �Tp��� is unity at all frequencies. This happens if and only if there is a single-order-parameter
description of the thermoviscoelastic linear responses via an order parameter �which may be
nonexponential in time�. Generalizations to other cases of thermodynamic control parameters than
temperature and pressure are also presented. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2434963�

I. INTRODUCTION

A famous result of classical glass science is that if a
glass-forming liquid is described by a single-order param-
eter, the Prigogine-Defay ratio is unity. Recall that if �cp is
the difference between liquid and glass isobaric specific heat
per unit volume at the glass transition temperature Tg, ��T

the similar liquid-glass difference of isothermal compress-
ibilities, and ��p the difference of isobaric thermal expan-
sion coefficients, the Prigogine-Defay ratio � is defined1–3

by

� =
�cp��T

Tg���p�2 . �1�

Both experimentally and theoretically the following inequal-
ity was established early on: ��1.1–9 The vast majority of
reported �’s are significantly larger than unity,10 and for de-
cades the consensus has been that—possibly with a few
exceptions11,12—a single-order parameter is not sufficient for
describing glass-forming liquids.

The above picture came about as follows. The glass tran-
sition is a freezing of configurational degrees of freedom. If
kinetic aspects are ignored, the glass transition has the ap-
pearance of a second-order phase transition in the Ehrenfest
sense with continuity of volume and entropy, but discontinu-
ity of their thermodynamic derivatives. If the “order param-
eters” �numbers characterizing the structure� are denoted by
z1 , . . . ,zk, these are frozen in the glass phase. In the equilib-
rium liquid phase the order parameters depend on pressure
and temperature, a dependence that is determined by mini-
mizing Gibbs free energy G�T , p ,z1 , . . .zk�: �G /�zi=0.3 In
the classical papers by Davies and Jones from the 1950s1,2 it
was shown that within this framework one always has �
�1 and that �=1 if there is just a single-order parameter.
The simplest dynamics for the approach to equilibrium for
the order parameters żi=−�i�G /�zi imply exponential de-
cays for each order parameter for small perturbations from

equilibrium. Under this assumption, in the case of just one
order parameter any quantity relaxes exponentially to equi-
librium after a small disturbance. Exponential relaxations of
the macroscopic variables are seldom observed, although
there is evidence that relaxation is often intrinsically expo-
nential so that the nonexponential behavior comes from a
distribution of exponential relaxations.13–15 This reflects dy-
namic heterogeneity. Historically the fact that macroscopic
relaxations are nonexponential was often taken as confirming
the conventional wisdom that one order parameter is rarely
not enough.—Besides the reported Prigogine-Defay ratios
being almost always significantly larger than unity, a further
classical argument for the necessity of more than one order
parameter is the following:16 If structure were characterized
by a single-order parameter, glasses with the same index of
diffraction would also have all other physical properties
identical, which is not the case. This does not rule out the
possibility that a single-order parameter is sufficient to de-
scribe the linear thermoviscoelastic response of the viscous
liquid phase, however, and it is this possibility we shall in-
quire into in the present paper.

Because kinetic aspects cannot be ignored, the glass
transition is not a phase transition. Thus, there is no exact Tg

and strictly speaking the � of Eq. �1� is not well defined.
This is because the properties of a glass depend to some
extent on the cooling history; moreover, extrapolations from
the glass phase are somewhat ambiguous because glass prop-
erties change slightly with time. Thus the changes in specific
heat, etc., found by extrapolating glass and liquid specific
heats from below and above, respectively, to Tg �Ref. 17� are
not rigorously well defined. This weakens the generally ac-
cepted conclusion that in the vast majority of cases there
must be more than one order parameter.

The problem of making the Prigogine-Defay ratio rigor-
ously well defined is solved by referring exclusively to
linear-response experiments on the equilibrium viscous liq-
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uid phase.16,18,19 In viscous liquids, thermodynamic coeffi-
cients are generally frequency dependent, cp=cp���, etc. The
high-frequency limits reflect glassy behavior where relax-
ations do not have enough time to take place, corresponding
to “frozen” structure. Thus for the equilibrium viscous liquid
phase at any given temperature T one redefines Eq. �1� to be
the “linear Prigogine-Defay ratio” given16,18,19 by

� =
�cp�� → 0� − cp�� → �����T�� → 0� − �T�� → ���

T��p�� → 0� − �p�� → ���2 .

�2�

Descriptions of viscous liquids and the glass transition
by means of one or more order parameter were actively dis-
cussed in the 1970s.16,18–22 Since the � of Eq. �1� is not well
defined and since there are no measurements of the linear
Prigogine-Defay ratio of Eq. �2�, the question of one or more
order parameters remains open.23,24 In our view, there are a
number of reasons to take seriously the possibility that some
glass-forming liquids may be described by a single order
parameter: �1� In early computer simulations Clarke reported
Prigogine-Defay ratios close to one for a 216 particle
Lennard-Jones model of Argon.25 This is not a highly vis-
cous liquid, but recent extensive simulations by Sciortino
and coworkers of viscous liquids confirmed this scenario by
showing that structural relaxations for small temperature
changes are basically controlled by a single parameter �e.g.,
the volume�.26–29 �2� Experiments monitoring loss peak fre-
quency and loss maximum of the Johari-Goldstein dielectric
beta relaxation process upon temperature jumps revealed a
striking correlation between these two quantities, a correla-
tion which is difficult to explain unless structure is param-
etrized by a single-order parameter.30 In these experiments
the relaxation of beta process properties is controlled by the
alpha relaxation time. This is to be expected because the
alpha time is the structural relaxation time, but it is highly
nontrivial that alpha and beta relaxations correlate in equilib-
rium viscous liquids, as shown recently by Böhmer and
coworkers;31 this may be taken as a further indication that a
single order parameter controls the behavior. �3� Experi-
ments studying dielectric relaxation under varying tempera-
ture and pressure conditions showed that the shape of the
alpha loss peak as quantified by the stretching exponent 	
depends only on the loss peak frequency.32 This could be a
consequence of there being just one order parameter, deter-
mining both alpha relaxation time and stretching. �4� Finally,
we would like to mention theoretical works suggesting that
the Prigogine-Defay ratio may be unity in some cases.23,33,34

More speculatively, in our opinion it would not be too sur-
prising if there is just one order parameter for liquids where
time-temperature superposition applies accurately, because in
these liquids linear relaxations appear to be particularly
simple with a generic �−1/2 high-frequency decay of, e.g., the
dielectric and mechanical alpha loss peaks.35,36

The wide-frequency measurements required to deter-
mine � of Eq. �2� will probably be difficult to perform in the
foreseeable future. There are, in fact, no measurements of all
three required frequency-dependent thermoviscoelastic
linear-response functions. Work at our laboratory indicates

that such measurements are possible,37 but only over a lim-
ited frequency range. This motivates a search for an alterna-
tive to the linear Prigogine-Defay ratio. In this article, we
introduce a “linear dynamic Prigogine-Defay ratio” �where
the double prime indicates the imaginary part of the corre-
sponding frequency-dependent linear-response function�:

�Tp��� =
cp�����T����
T0��p�����2 . �3�

Based on the description of viscous liquid dynamics in terms
of Markovian inherent dynamics, in Secs. II and III we prove
that �Tp���=1 if and only if the linear Prigogine-Defay ratio
�Eq. �2�� is unity. This happens if and only if there is a single,
generally nonexponential order parameter. Moreover, it is
proved that if �Tp���=1 at one frequency, this is true at all
frequencies. In Sec. IV we investigate the matter in a ther-
modynamic approach and prove that in this framework the
existence of a single-order parameter implies that �Tp���
=1 at all frequencies. In the Appendix it is shown that
�Tp��� is just one out of a family of four linear dynamic
Prigogine-Defay ratios larger than or equal to one, which
equal unity if and only if there is a single order parameter.

II. RESPONSE MATRIX FOR MARKOVIAN INHERENT
DYNAMICS

Adopting the energy landscape approach to viscous liq-
uid dynamics38 we model the liquid �henceforth: “system”�
by the inherent dynamics consisting of jumps between the
potential energy minima.29,39–41 This description is believed
to be realistic in the highly viscous phase where there is a
clear separation between the vibrational time scales �in the
picosecond range� and the �alpha� relaxation time scale—the
time scale of interest here. If the system has N potential
energy minima, an ensemble of similar systems is described
by a vector of probabilities P = �P1 , P2 , . . . , PN�, where Pn

denotes the fraction of systems vibrating around energy
minimum n. If Gn�T , p� denotes the vibrational Gibbs free
energy of minimum n, the P-dependent Gibbs free energy is
defined39 by

G�T, p, P� = �
n

Pn�Gn�T,p� + kBT ln Pn� . �4�

Via the standard thermodynamic identities the P-dependent
entropy S and volume V are given by

S�T, p, P� = − �
n

Pn� �Gn

�T
+ kB ln Pn� ,

�5�

V�T, p, P� = �
n

Pn
�Gn

�p
.

It is convenient to introduce the notation X = �T , − p� for the
controlled �“input”� variables and Q = �S , V� for the induced
responses �“output”�. Thus
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Q� = −
�G

�X�

, � = 1, 2. �6�

The equilibrium probability distribution is found by mini-
mizing G�T , p , P� under the constraint �n Pn=1; this
leads42 to the well-known canonical probabilities �where
G�T , p� is the Gibbs free energy of Eq. �4� evaluated at the
equilibrium probabilities�

Pn
eq�T, p� = exp�−

Gn�T, p� − G�T, p�
kBT

� . �7�

Inherent dynamics consist of transitions between
minima.41 The inherent dynamics are modeled as a Markov
process; thus the probabilities obey a standard master
equation43

Ṗn = �
m

WnmPm. �8�

The rate matrix W and the equilibrium probability distribu-
tion Pn

eq both depend on T and p, and for all n one has

�
m

Wnm�T, p�Pm
eq�T, p� = 0. �9�

In the following the variables T and p are assumed to vary
slightly from their average values T0 and p0 as arbitrary
externally-controlled functions of time, resulting in small
changes of S and V. Examining perturbations around the ref-
erence state X0= �T0 , − p0� it is convenient to introduce the
notation Wnm

0 �Wnm�T0 , p0� and Pn
0� Pn

eq�T0 , p0�. If 
 de-
notes perturbations from the reference state, Pn�t�= Pn

0

+
Pn�t�, etc., Eq. �8� implies to first order


Ṗn = �
m

�Wnm
0 
Pm + 
WnmPm

0 � . �10�

Since 
��m WnmPm
eq�=0 �Eq. �9��, one has �m
WnmPm

0

=−�mWnm
0 
Pm

eq. When this is substituted into Eq. �10� we get


Ṗn = �
m

Wnm
0 �
Pm − 
Pm

eq� . �11�

Next, we expand 
Pm
eq in terms of 
X�. Equations �5� and �7�

imply44 �where 	=1, 2 and 
	1 is the Kronecker delta sym-
bol�

� ln Pm
eq

�X	

=
1

kBT
� �Q	

�Pm
− Q	 + 
	1kB� . �12�

Thus to lowest order


Pm
eq =

Pm
0

kBT0
	� �Q1

�Pm
− Q1 + kB�
X1 + � �Q2

�Pm
− Q2�
X2
 .

�13�

Inserting this into Eq. �11� and utilizing Eq. �9� we arrive at
the following “equation of motion” for the probabilities
when temperature and pressure vary slightly as arbitrary
functions of time �
X	�
X	�t��:


Ṗn = �
m

Wnm
0 �
Pm −

1

kBT0
�
	

Pm
0 �Q	

�Pm

X	� . �14�

Consider now a harmonic linear perturbation of the sys-
tem. In relaxing systems like glass-forming liquids the ordi-
nary thermodynamic response functions are frequency de-
pendent and complex. Writing T�t�=T0+Re�
T ei�t� and
p�t�= p0+Re�
p ei�t�, the oscillations of S and V are simi-
larly described by S�t�=S0+Re�
S ei�t� and V�t�=V0

+Re�
V ei�t�. If 
Pn and 
X	 denote the �complex�
frequency-dependent amplitudes, in steady state Eq. �14� im-
plies that

�
n

�Wln
0 − i�
ln�
Pn =

1

kBT0
�
m,	

Wlm
0 Pm

0 �Q	

�Pm

X	. �15�

For ��0 we solve Eq. �15� by defining �where I is the
identity matrix�

Anm��� =
1

kBT0
�

l

�W0 − i�I�nl
−1Wlm

0 Pm
0 , �16�

leading to the following equation for the frequency-
dependent complex probability amplitudes:


Pn = �
m,	

Anm���
�Q	

�Pm

X	. �17�

In order to calculate the thermoviscoelastic linear-response
functions we first define J�	

� = ��Q� /�X	�. This symmetric 2
�2 matrix gives the instantaneous �glassy� linear response
because it determines the variations of S and V when the
probabilities Pn are frozen.39 Next, we expand the frequency-
dependent complex amplitudes 
Q� to get


Q� = �
n

�Q�

�Pn
�T0, p0�
Pn + �

	

J�	
� 
X	. �18�

Here and henceforth, for any function f the notation
f�T0 , p0� for a variable that also depends on the probabilities
P signifies that f is evaluated at the equilibrium probabilities
�Eq. �7��. When Eq. �17� is inserted into Eq. �18�, we get


Q� = �
	

J�	���
X	, �19�

where

J�	��� = J�	
� + �

m,n

�Q�

�Pn
�T0,p0�Anm���

�Q	

�Pm
�T0,p0� . �20�

Since Anm��→��=0 it follows that J�	��→��=J�	
� , justi-

fying the notation.
We proceed to show that the 2�2-matrix J�	��� is sym-

metric. Introducing the matrix Ynm defined by

Ynm = �Pn
0�−1/2Wnm

0 �Pm
0 �1/2, �21�

the detailed-balance requirement implies that Y is
symmetric.43,45 For later use we note that Y is negative
semidefinite:43 For all vectors x one has �x�Y�x0. More-
over, equality applies if and only if x� �P0�1/2; the latter
property of Y expresses “ergodicity,” i.e., the assumption
about the master equation that all states are connected by
some sequence of transitions. We define a diagonal matrix R
by
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Rnm = �Pn
0�1/2
nm �22�

and note that W0=RYR−1. This implies that

A��� =
1

kBT0
�W0 − i�I�−1W0R2

=
1

kBT0
�R�Y − i�I�R−1�−1RYR

=
1

kBT0
R�Y − i�I�−1YR . �23�

Since Y and R are both symmetric, it follows that A��� is
symmetric. Thus by Eq. �20� the 2�2 matrix J�	��� is sym-
metric.

The J�	��� matrix determines the frequency-dependent
thermoviscoelastic linear response defined as follows: If
cp��� denotes the isobaric heat capacity per unit volume,
�p��� the isobaric thermal-expansion coefficient, and �T���
the isothermal bulk compressibility, the complex frequency-

dependent coefficients 
T, 
p, 
S, and 
V are related by the
following matrix �the symmetry of which reflects the sym-
metry of J�	����:

�
S


V
� = V0�cp���/T0 �p���

�p��� �T���
�� 
T

− 
p
� . �24�

Whenever there is time-reversal invariance, the �dc, i.e.,
zero-frequency� symmetry implied by a Maxwell relation
translates into �ac� Onsager reciprocity, a well-known
result.43,45

III. LINEAR DYNAMIC PRIGOGINE-DEFAY RATIO

We proceed to calculate the linear Prigogine-Defay ratio
of Eq. �2� from the expression for the frequency-dependent
linear response functions. Since Anm���=0, we find by in-
serting Eq. �20� into Eq. �2� �with T=T0 and where �S /�Pn

��S /�Pn�T0 , p0� and �V /�Pn��V /�Pn�T0 , p0� but
“�T0 , p0�” is left out for brevity�

� =
��m,n

�S

�Pn
Anm�0�

�S

�Pm
���m,n

�V

�Pn
Anm�0�

�V

�Pm
�

��m,n

�S

�Pn
Anm�0�

�V

�Pm
�2 . �25�

Next we reason in a way analogous to that of Davies and Jones2 based on the Cauchy-Schwartz inequality. This inequality is
the well-known mathematical theorem that if a real symmetric matrix B is positive or negative semidefinite, the following
applies: For any vectors x and y one has �x�B�y2 �x�B�x�y�B�y, and for nonzero x and y equality applies if and only if a
number � exists such that x−�y�N�B� where N�B� is the kernel �null space� of B. The matrix A�0� is positive semidefinite
and the kernel of A�0� is the one-dimensional linear subspace spanned by the vector �1, . . . ,1�.46 This implies that ��1 and
that �=1 if and only if there are constants � and c such that the following equations apply for all n �compare Refs. 2, 5, and
47�:

�V

�Pn
�T0, p0� = �

�S

�Pn
�T0, p0� + c . �26�

For reasons given in the next section this situation is referred to as the single-order-parameter case.
As mentioned in the Introduction, the linear Prigogine-Defay ratio of Eq. �2� is difficult to measure. Instead we propose to

consider the “linear dynamic Prigogine-Defay ratio” defined in Eq. �3�. When Eq. �20� is inserted into this we find

�Tp��� =
��m,n

�S

�Pn
Anm� ���

�S

�Pm
���m,n

�V

�Pn
Anm� ���

�V

�Pm
�

��m,n

�S

�Pn
Anm� ���

�V

�Pm
�2 . �27�

Because the matrix A���� is negative semidefinite for all �

�0,46 the Cauchy-Schwartz inequality implies that �Tp���
�1. Again, equality applies if and only if a number � exists
such that the vector with nth component �V /�Pn−��S /�Pn

is in the kernel of the matrix A����, which is the one-
dimensional space spanned by the vector �1, . . . ,1�.46 Thus
for all ��0 the equation �Tp���=1 is mathematically
equivalent to Eq. �26�, and �Tp���=1 is equivalent to �=1.

In particular, if �Tp��� is unity at one frequency, �Tp��� is
unity for all frequencies—and this happens precisely when
�=1.

IV. WHY �=1 CORRESPONDS TO A SINGLE ORDER
PARAMETER

We define the order parameter � by
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��t� = �
n

�S

�Pn
�T0, p0�
Pn�t� . �28�

Combining Eq. �28� with Eqs. �18� and �26� we find that in
any linear experiment �thus calculating to lowest order� S
and V are functions of T, p, and 
� �where J12

� =J21
� �


S�t� = 
��t� + J11
� 
T�t� − J12

� 
p�t� ,

�29�

V�t� = �
��t� + J21

� 
T�t� − J22
� 
p�t� .

The situation described by these equations is more general
than the single-order parameter model of Prigogine and
Meixner,3,48 because Eq. �29� allows for an order parameter
with nonexponential dynamics. The common physics, how-
ever, are that besides T and p one single number determines
both entropy and volume fluctuations. In the present ap-
proach � might well have a memory of the thermal prehis-
tory.

By the definition we shall adopt here, the single-order-
parameter situation applies whenever Eq. �29� is obeyed for
some variable 
�. In the last section we proved that if
�Tp���=1 applies at one frequency, then Eq. �29� follows.
We proceed to show that conversely, if Eq. �29� applies for
some order parameter �, then �Tp���=1 for all �. To prove
this, consider a situation with periodically varying tempera-
ture and pressure fields. In steady state 
S, 
V, and 
� vary
periodically with complex amplitudes 
S���, 
V���, and

����. According to Eq. �29� these amplitudes are given by
�for any ��


S��� = 
���� + J11
� 
T��� − J12

� 
p��� ,

�30�

V��� = �
���� + J21

� 
T��� − J22
� 
p��� .

In the case where only temperature varies, comparing to Eq.
�24� shows that the following two equations apply:

V0

T0
cp��� = � 
S���


T���
�

p
= � 
����


T���
�

p
+ J11

� ,

�31�

V0�p��� = �
V���

T���

�
p

= �� 
����

T���

�
p

+ J21
� .

Since the J�’s are real numbers, we have

�
cp����

T0
= �p���� . �32�

Similarly, if only pressure varies Eqs. �30� and �24� imply

V0�p��� = − �
S���

p���

�
T

= − �
����

p���

�
T

+ J12
� ,

�33�

V0�T��� = − �
V���

p���

�
T

= − ��
����

p���

�
T

+ J22
� ;

thus

��p���� = �T���� . �34�

Eliminating � by combining Eqs. �32� and �34� yields
�Tp���=1 for any �. Note that in the case of one order

parameter the imaginary �“loss”� parts of all three response
functions are proportional.

The above line of reasoning can be repeated for different
choices of input and output variables. Altogether there are
four different natural �linear� dynamic Prigogine-Defay ra-
tios as demonstrated in the Appendix; here it is also shown
that the requirement of positive dissipation implies that no
dynamic Prigogine-Defay ratio can be smaller than unity.

V. CONCLUDING REMARKS

The original Prigogine-Defay ratio of Eq. �1� is not rig-
orously well defined. The “linear” Prigogine-Defay ratio of
Eq. �2� is well defined, but requires measurements of ther-
moviscoelastic response functions over many decades of fre-
quency. There are still no methods for measuring a complete
set of these response functions. Hopefully such measure-
ments are possible in the near future, but realistically they
will initially only cover a few decades.37 This motivates the
one-frequency criterion proposed and developed mathemati-
cally in this article: If the linear dynamic Prigogine-Defay
ratio is unity at one frequency, this quantity is unity at all
frequencies and a single-order parameter description applies.
Conversely, if a single-order parameter description applies,
the dynamic Prigogine-Defay ratio is unity at all frequencies.
If this happens, the imaginary parts of the three linear re-
sponse functions of Eq. �24� are proportional. As shown in
the Appendix, these results all generalize to the three other
natural choices of input and output variables. These are strict
mathematical statements; in practice one cannot determine
whether or not the dynamic Prigogine-Defay ratio is pre-
cisely one. What one can do is test how close to unity is this
quantity. We expect that a single-parameter description is a
good approximation whenever the dynamic Prigogine-Defay
ratio is close to unity. Note that if there are several relaxation
processes with well-separated time scales, it is possible that
some of these are well described by a single-order parameter,
though not perfectly, whereas others are not. In this case the
frequency-dependent one-parameter test developed here in
principle would be useful although, as mentioned already, it
will probably not be possible in the foreseeable future to
determine all three required response functions over wide
frequency ranges.

In the present paper we referred to the �Tp=1 situation
as that of a single, generally nonexponential order parameter.
As emphasized by Goldstein,5 however, due to a mathemati-
cal equivalence it is really a matter of taste whether one
prefers instead to refer to a situation of several order param-
eters obeying a mathematical constraint �in our case Eq.
�26��. It is not possible a priori to estimate how restrictive or
unlikely it is that Eq. �26� applies; only experiment can settle
this question. It should be noted, though, that there is a
simple physical interpretation of the single-order parameter
case: In the approximation where each inherent state is re-
garded as a potential energy minimum with a harmonic po-
tential, via Eqs. �5� and �7�, Eq. �26� is equivalent to Vn

=�1En+�2 where Vn is the inherent state volume and En the
inherent state energy �potential energy minimum�. Thus there
is a single-order parameter if and only if inherent state vol-
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ume correlates perfectly and linearly with inherent state en-
ergy �in practice: for the dominant fluctuations at a given
temperature�. It is expected that this condition is obeyed to a
good approximation if and only if the dynamic Prigogine-
Defay ratio is close to unity.
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APPENDIX: GENERALIZATIONS TO OTHER
CONTROL VARIABLES

Standard thermodynamics give rise to a number of �dc�
linear-response coefficients. If the thermodynamic variables
of interest are T , p , S , V, there are 24 coefficients of the
form ��a /�b�c with a , b, and c chosen among T , p , S , V.49

These coefficients form 12 pairs that are trivially related by
inversion �e.g., ��a /�b�c=1/ ��b /�a�c�. As is well known, the
12 coefficients are not all independent, but related by various
Maxwell relations �given below�. There are the following
eight basic linear-response coefficients �where the specific
heats are per unit volume and the last three coefficients have
no generally accepted names�:

isochoric specific heat: cV �
T

V
� �S

�T
�

V

;

isobaric specific heat: cp �
T

V
� �S

�T
�

p

;

isothermal compressibility: �T � −
1

V
� �V

�p
�

T

;

adiabatic compressibility: �S � −
1

V
� �V

�p
�

S

;

�A1�
isobaric expansion coefficient:

�p �
1

V
� �V

�T
�

p

= −
1

V
� �S

�p
�

T

;

“adiabatic contraction coefficient: ”

�S � −
1

V
� �V

�T
�

S

=
1

V
� �S

�p
�

V

;

“isochoric pressure coefficient: ”

	V � � �p

�T
�

V

= � �S

�V
�

T

;

“adiabatic pressure coefficient: ”

	S � � �p

�T
�

S

= � �S

�V
�

p

.

Consider harmonically varying scalar thermal and me-
chanical perturbations of equilibrium for a small volume el-
ement. “Small” here means that its linear dimensions are
much smaller than both the heat diffusion length and the
sound wavelength corresponding to the frequency under con-
sideration, implying that the perturbations may be regarded
as homogeneous over the small volume element. Let

T��� , 
p��� , 
s��� , 
v��� denote the complex amplitudes
of perturbations varying with time as � exp�i�t� and define
the intensive variables v�V /V0 and s�S /V0 where V0 is the
equilibrium volume. If small perturbations around tempera-
ture T0 are considered, following Eq. �A1� one defines the
following complex frequency-dependent linear-response
quantities �where according to the so-called correspondence
principle50 all thermodynamic relations survive and the Max-
well relations become Onsager reciprocity relations48�:

isochoric specific heat: cV��� � T0� 
s���

T���

�
V
;

isobaric specific heat: cp��� � T0� 
s���

T���

�
p
;

isothermal compressibility: �T��� � − �
v���

p���

�
T
;

adiabatic compressibility: �S��� � − �
v���

p���

�
S
;

�A2�
isobaric expansion coefficient:

�p��� � � 
v���

T���

�
p

= − � 
s���

p���

�
T
;

“adiabatic contraction coefficient: ”

�S��� � − � 
v���

T���

�
S

= � 
s���

p���

�
V
;

“isochoric pressure coefficient: ”

	V��� � � 
p���

T���

�
V

= � 
s���

v���

�
T
;

“adiabatic pressure coefficient: ”

	S��� � � 
p���

T���

�
S

= � 
s���

v���

�
p
.

The general procedure now works as follows. Let
�
X��� ,
Y���� denote the amplitudes of two periodically
varying thermodynamic variables considered as control vari-
ables and �
Z��� ,
W���� the remaining two periodically
varying variables. The relationship between the two sets of
variables generally takes the form
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� 
Z���

W���

� = �a11��� a12���
a21��� a22���

��
X���

Y���

� . �A3�

In the case of a single order parameter �—compare to Eq.
�30�—we can write �where the 2�3-matrix is real and fre-
quency independent�

� 
Z���

W���

� = �a11
� a12

� b1

a21
� a22

� b2
��
X���


Y���

����

� . �A4�

Comparing to Eq. �A3�, when Y does not vary we get

�a11��� = a11
� + b1� 
����


X���
�

Y

a21��� = a21
� + b2� 
����


X���
�

Y

� ⇒
a21� ���
a11� ���

=
b2

b1
� �XY ,

�A5�

and when X does not vary

�a12��� = a12
� + b1� 
����


Y���
�

X

a22��� = a22
� + b2� 
����


Y���
�

X

� ⇒
a22� ���
a12� ���

=
b2

b1
= �XY .

�A6�

In principle there are six different choices of control vari-
ables. Below we treat the four natural cases where the input
variables consist of one from the �S ,T� “energy bond”51,52

and one from the �−p ,V� energy bond, and similarly for the
output variables. In each case the signs are chosen to make
the response matrix symmetric. Via Eqs. �A5� and �A6� in
each of the four cases the three imaginary �loss� parts of the
relevant linear-response functions are proportional. The four
cases are detailed below, where the explicit amplitude fre-
quency dependence is left out for simplicity of notation.

1. Control variables �T and −�p

This case was considered in the main paper, but is in-
cluded here for completeness

�
s


v
� = �cp���/T0 �p���

�p��� �T���
�� 
T

− 
p
� . �A7�

Applying Eqs. �A5� and �A6� to this we get

T0�p����
cp����

= �Tp =
�T����
�p����

, �A8�

and thus

�Tp��� �
cp�����T����
T0��p�����2 = 1. �A9�

2. Control variables �s and �v

� 
T

− 
p
� = � T0/cV��� − 1/�S���

− 1/�S��� 1/�S���
��
s


v
� . �A10�

Applying Eqs. �A5� and �A6� to this we get

−
�1/�S�����
�T0/cV�����

= �SV = −
�1/�S�����
�1/�S�����

�A11�

and thus

�SV��� �
�T0/cV������1/�S�����

��1/�S������2 = 1. �A12�

3. Control variables �s and −�p

� 
T

− 
v
� = � T0/cp��� − 1/	S���

− 1/	S��� − �S���
�� 
s

− 
p
� . �A13�

Applying Eqs. �A5� and �A6� to this we get

−
�1/	S�����
�T0/cp�����

= �Sp =
�S����

�1/	S�����
�A14�

and thus

�Sp��� � −
�T0/cp������S����

��1/	S������2 = 1. �A15�

4. Control variables �T and �v

� 
s

− 
p
� = �cV���/T0 − 	V���

− 	V��� − 1/�T���
�� 
T

− 
v
� . �A16�

Applying Eqs. �A5� and �A6� to this we get

−
T0	V����

cV����
= �TV =

�1/�T�����
	V����

�A17�

and thus

�TV��� � −
cV�����1/�T�����

T0�	V�����2 = 1. �A18�

For each case we showed above that, if there is a single-
order parameter, the dynamic Prigogine-Defay ratio is unity.
Below we proceed to prove that, conversely, if one of the
dynamic Prigogine-Defay ratios is unity at some frequency,
then this dynamic Prigogine-Defay ratio is unity at all fre-
quencies and there is a single-order parameter. In particular,
if one dynamic Prigogine-Defay ratio is unity at one fre-
quency, all dynamic Prigogine-Defay ratios are unity at all
frequencies.

In the periodic situation the dissipation is proportional to
Im�
T���
s����−
p���
v�����.48,53 The requirement of
positive dissipation implies that all four dynamic Prigogine-
Defay ratios are larger than or equal to unity; this follows by
considering the special case of in-phase input variables in
which case it is easy to show that the determinant of the
imaginary response matrix must be non-negative to have
positive dissipation. If one of the dynamic Prigogine-Defay
ratios is unity at some frequency �, the determinant of the
imaginary part of the corresponding response matrix is zero.
This implies that there is an eigenvector of the imaginary
response matrix with zero eigenvalue. Thus the dynamic
Prigogine-Defay ratio is unity if and only if a thermody-
namic cycle exists with zero dissipation. It follows that, if in
one of cases 2–4 the dynamic Prigogine-Defay ratio is unity
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at frequency �, then �Tp���=1. This implies that �Tp���
=1 at all frequencies �Sec. III�, and that there is a single
order parameter � such that S and V are given by Eq. �29�.
These equations are easily rewritten to give the required out-
put variables in terms of the input variables and �. This im-
plies that the relevant dynamic Prigogine-Defay ratio is unity
at all frequencies, and that all other dynamic Prigogine-
Defay ratios are also unity at all frequencies.
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