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{. INTRODUCTION

Though not generally appreciated, everyday “insulat-
ing” materials like glass or plastic have electrical proper-
ties remarkably in common. For one thing, the DC con-
ductivity is always Arrhenius temperature-dependent.
Our focus here, however, is on the strikingly universal AC
properties: It is almost always possible to scale AC con-
ductivity data at different temperatures into one single
“master” curve. Different solids have so similar master
curves that, for instance, electronic and ionic conduction
cannot be distinguished. The only common feature of the
numerous different solids exhibiting this AC universality

- is their disorder.

Not only disordered solids exhibit universal AC con-
ductivity, so do extremely viscous liquids like ionic melts
just above the glass transition. What causes AC uni-
versality? This question has been focus of interest ever
since the full scope of AC universality was recognized
in the 1970’s (Isard, 1970; Namikawa, 1975; Jonscher,
1977; Owen, 1977; Mansingh, 1980). Recent results on
ionic conductive glasses by Roling et al. (1997), Sidebot-
tom (1999), and Ghosh and Sural (1999) have renewed
interest in AC universality.

Below we review two simple models for AC conduc-
tion in disordered solids, a macroscopic model and a mi-
croscopic model. These models embody Occam’s razor!
by having essentially just one ingredient, disorder. Both
models exhibit AC universality, i.e., in scaled units the
AC conductivity becomes independent of the details of
the disorder in the eztreme disorder limit (when the local
mobilities cover many orders of magnitude). The univer-
sal AC conductivities of the two models are rather similar
and close to experiment. We show that for both models
AC universality is caused by an underlying percolation
dominating conduction in the extreme disorder limit. In
this way universality, which for AC conduction has con-
notations different from its use in critical phenomeéna, is
traced to percolation that is a critical phenomenon.

Why should nonspecialists care about the apparently
esoteric subject of this Colloquium? One reason is the
ubiquity of disordered materials - most likely there are
several solids with universal AC conductivity in the very
room you sit in. A second reason has to do with mod-
eling. In modern condensed matter physics the extreme
disorder limit is rarely considered. As we shall see, for
AC conduction this limit leads to unusual non-power-law
universalities. Similar universalities may very well occur
elsewhere in “disordered” physics.

1l. PRELIMINARIES

In this Section we recall the definitions of AC electrical
conductivity and dielectric constant (see, e.g., Bottcher
and Bordewijk (1978) or Reitz, Milford, and Christy
(1993)). If J;0; is “total” current density (with contribu-

14Tt is vain to do with more what can be done with fewer”
(Russell, 1946).



tions from bound as well as free charges) and E electric
field the conductivity oot is defined by Jyot = oot E. In
general the conductivity is frequency-dependent: If w is
the angular frequency oot (w) is the complex quantity de-
fined by Jtot,o = Utot(w)ED where Jgog (t) = Re(Jtog,oe"“")
and similarly for the electric field.

In a periodic field the complex frequency-dependent
[relative] dielectric constant e(w) is defined by Dy =
e(w)eoEy where € is the vacuum permittivity and Dy
the complex amplitude of the displacement vector D =
€oE+P (P being the dipole density). Since Jyo1 = P con-
ductivity and dielectric constant are related by oot (w) =
iw [e(w) — 1] . It follows that any solid with non-zero
DC conductivity has the imaginary part of ¢(w) diverging
as frequency goes to zero. To avoid this ¢(0) is usually
subtracted on the left hand side, leading to the following
definition of e(w) for a conducting solid,

Otot(w) — 0(0) = iw [e(w) — 1] . (1)

The negative imaginary part of e(w) is referred to as the
dielectric loss because, being given by the real part of
the conductivity, it determines the dissipation.? The di-
electric loss in disordered solids usually exhibits a peak,
much like that characterizing dielectric relaxation in po-
lar liquids (B6ttcher and Bordewijk, 1978).

The AC conductivity includes contributions from both
bound and free charges. It is generally believed that
much below phonon frequencies (w < 10!2 Hz) - the fre-
quencies of interest here - the bound charge polarization
may be regarded as instantaneous.® This implies that
the bound charge dielectric constant e is frequency-
independent. If o(w) denotes only the free charge carrier
AC conductivity, we have oot (w) = o(w) + tw(€w — 1)€o.
The quantity o(w) is henceforth what we mean by “AC
conductivity;” in terms of it Eq. (1) becomes

o(w) = 0(0) = iw [e(w) — €] €0- 2

Writing o(w) = o'(w) + 0" (w), 0" (w) # O reflects a
phase difference between field and free charge current.
Below phonon frequencies, whenever the conductivity is
frequency-dependent the charge carrier displacement al-
ways lags behind the electric field. This time-lag is at
most one quarter of a period. The current consequently
reaches its maximum earlier than the field, implying
o' (w) > 0. This reflects a capacitive response rather
than an inductive. Of course, o'(w) is also positive be-
cause thermodynamics require positive dissipation.

2Recall that the average power absorbed per unit volume is
Re(0tet (w)) [Eol?/2.

3This is true only when one ignores secondary relaxations
like those due to two-level tunneling systems important at
very low temperatures.

ill. AC CONDUCTION IN DISORDERED SOLIDS

Solids are classified into metals and non-metals. A
metal has large weakly temperature-dependent DC con-
ductivity, a non-metal has small DC conductivity which
increases strongly with increasing temperature (Kittel,
1996). Only for non-metals is non-trivial AC conduction
observed below phonon frequencies and only if the solid
is somehow disordered. Examples of disordered non-
metals with universal AC properties are ionic conduc-
tive glasses and melts (Owen, 1963; Angell, 1990; Kahnt,
1991; Roling, 1998), amorphous semiconductors (Owen,
1977; Mott and Davis, 1979; Long, 1982), polycrystalline
semiconductors (Kuanr and Srivastava, 1994), electronic
conductive polymers (Epstein, 1986; Jastrzebska, Jussila,
and Isotalo, 1998), ionic conductive polymers (Rozanski
et al., 1995), transition metal oxides (Namikawa, 1975;
Mansingh, 1980; Suzuki, 1980), metal cluster compounds
(van Staveren, Brom, and de Jongh, 1991), organic-
inorganic composites {Bianchi et al., 1999), doped single
crystal semiconductors at helium temperatures (where
the disorder due to the random positions of the doping
atoms becomes important) (Pollak and Geballe, 1961).

Figure 1 shows examples of AC data for six different
disordered solids, three ionically conducting and three
electronically conducting (the data in Fig. 1(b) are ac-
tually from an extremely viscous ionic melt just above
the glass transition). Clearly, the AC conductivities are
quite similar. There are hundreds, probably thousands,
other examples like these. While ionic conduction is a
classical barrier crossing process, electronic conduction in
disordered solids usually proceeds via quantum mechan-
ical tunneling between localized electron states. What
do these conduction mechanisms have in common in dis-
ordered solids? The most likely answer is: very broad
distributions of jump rates/tunneling rates/mobilities
(Dyre, 1988; Elliott, 1990). Below we study two models
with such broad distributions and find that they largely -
reproduce experiment.

AC universality was first discovered for ionic conduc-
tive classical oxide glasses. Taylor (1956, 1957, 1959)
showed that the dielectric loss for different glasses falls
on a single plot against scaled frequency. He also noted
that the activation energy of the DC conductivity is al-
ways the same as that of the frequency marking onset
of AC conduction. Subsequently,* Isard (1961) relabeled
Taylor’s axis by plotting dielectric loss against log of the
product of frequency and resistivity, thus essentially ar-
riving at AC scaling in the form

4Owen (1963) gave an excellent review of early works on DC
and AC properties of ionic conductive glasses.




= ow)/o0) = F(C2%5) . @
Since then Eq. (3), which we shall refer to as “Taylor-
Isard scaling,” has been used in several different contexts
by authors often unaware of the pioneering works of Tay-
lor and Isard. For instance, Taylor-Isard scaling was used
by Scher and Lax (1973) in their famous papers introduc-
ing the continuous time random walk approximation, by
Summerfield (1985) and Balkan et al. (1985) for amor-

phous semiconductors, and by van Staveren, Brom, and .

de Jongh (1991) for metal-cluster compounds. For ionic
conductive glasses Taylor-Isard scaling was used more re-
cently, e.g., by Kahnt (1991), Kulkarni, Lunkenheimer,
and Loidl (1998), and Roling (1998).

Three examples of Taylor-Isard scaling are shown in
Fig. 2. The figures 2(a) and 2(b) give the master curves
for the data shown in Figs. 1(a) and 1(d) respectively.
Figure 2(c) shows the common master curve for eight dif-
ferent ionic conductive glasses. The three master curves
of Fig. 2 are similar, but not identical (the Fig. 2(b)
curve is slightly steeper than the two others). In all three
examples the authors chose to fix the Taylor-Isard scaling
constant C to be proportional to 1/T. As shown below
(Eq. (7)), in general C oc Ae where Ae = €(0) — €co; thus
choosing C o< 1/T corresponds to assuming a Curie-law
for Ae. The Curie-law, however, is not always obeyed
(Namikawa, 1975; Sidebottom, 1999) so possibly even
“better” master curves would have been arrived at if no
Curie-law was assumed.

We now proceed to list the AC characteristics of dis-
ordered solids (Dyre, 1988). When reading the first 11
points below it may be helpful to compare to Figs. 1 and
2.

1. The real part of the AC conductivity increases with
frequency, the imaginary part is non-negative.

2. At high frequencies ¢’(w) apparently follows a
power-law,

o' (w) x w”. 4
3. Deviations from a power-law always correspond to
n increasing weakly with frequency.
4. n is between® 0.6 and 1.0.

5. In a fixed frequency range n increases as tempera-
ture decreases and n — 1.0 for T — 0.

6. When there is no measurable DC conductivity n is
close to 1.0.

In practice the determination of n depends somewhat on
the width of the frequency-range studied.

7. At low frequencies there is a gradual transition to
frequency-independent conductivity.

8. In a log-log plot ¢'(w) is much less temperature-
dependent than o(0).

9. At temperatures so low that n is close to 1.0 o' (w)
is almost temperature-independent.

10. The shape of ¢’ (w) in a log-log plot is temperature-
independent, i.e., AC conductivity obeys the time-
temperature superposition principle making it pos-
sible to construct a master curve.

11. The shape of the master curve is roughly the same
for all disordered solids.

12. Whenever o(0) is measurable there is a dielectric
loss peak.

13. The onset of AC conduction takes place around the
dielectric loss peak frequency wy,.

14. w,, satisfies the Barton-Nakajima-Namikawa rela-
tion (Barton, 1966; Nakajima, 1972; Namikawa,
1975)

o(0) = p Ae ey wn , (5)

where p is a numerical constant of order one. Ex-
perimental evidence for Eq. (5) is reproduced in
Fig. 3.

15. The dielectric loss strength Ae is much less
temperature-dependent than w,, or o(0), so Eq (5)
implies the rough proportionality s

[

0'(0) ~ Wn. (6)

16. ¢(0) and wy, are Arrhenius temperature-dependent
with same activation energy.

Is not the time-temperature superposition principle in-
consistent with the finding that n depends on tempera-
ture? In principle yes, but in practice no because the
power-law description is only approximate: I tempera-
ture is lowered the master curve is displaced to lower fre-
quencies (Fig. 1). At the same time one observesn — 1.0
for measurements performed in a fixed frequency range.
‘We conclude that the slope of the master-curve - instead
of being constant as for an exact power-law - goes to one
as scaled frequency goes to infinity.®

8This applies far below phonon frequencies. Around phonon
frequencies there are various resonance phenomena and at
even higher frequencies ¢'(w) goes to zero fast enough that
o 0'(w)dw is finite (Kubo, 1957).




The time-temperature superposition principle makes it
possible to determine the Taylor-Isard scaling constant
C of Eq. (3) and derive the Barton-Nakajima-Namikawa
relation. We first show (Sidebottom, 1999; Schrgder and
Dyre, 1999) that

o= F(S5e). ™

Assuming the existence of a temperature-independent
function (@) where @ is the scaled frequency, we ex-
pand & to first order: & = 1 + @A, where A is real
because 0*(w) = o(—w). Since ¢ = 5o(0) we have
o(w) = o(0) + iwAc(0). -On the other hand, Ae obeys
o(w) = o(0) + iwAecep for w = 0 (Eq. (2)), and conse-
quently @ = A~[Aeeo/0(0)]w. This finishes the proof
(Schrgder and Dyre, 1999). Once Eq. (7) has been estab-
lished, the Barton-Nakajima-Namikawa relation Eq. (5)
is derived as follows: Equation (2) implies e(w) — €00 o
(6 —1)/&. This is a function of & and thus the dielectric
loss has its maximum at some particular temperature-
independent value of @. Denoting this by @, we have
(from the above reasoning) @, = A~! [Aeey/a(0)] wm,
so if p = 1/ALy, we get 1/p = [Aeey/0(0)] wm which is
the required Eq. (5). The only thing we cannot prove,
of course, is the experimental finding that p is never far
from one (Namikawa, 1975). - In practice the scaling ex-
pressed by Eq. (7) simply means that frequency is scaled
such that the imaginary part of & is equal to scaled fre-
quency as w - 0.

We finally note that there are exceptions to the above
15 points. There are solids where n is slightly larger
than 1.0 (Lakatos and Abkowitz, 1971; Lim, Vaysleyb,
and Nowick, 1993; Durand et al., 1994). There are solids
where the DC conductivity is not Arrhenius, notably
group-IV amorphous semiconductors (Mott and Davis,
1979). Finally, in some cases the conductivity is weakly
frequency-dependent much below w,, (Jonscher, 1996).
In our view these are rare and insignificant exceptions
to the overall experimental picture, but this viewpoint is
not universally accepted. Thus Elliott (1994), Macdon-
ald (1997), and Ngai and Moynihan (1998) all emphasize
the differences between various disordered solids. On the
other hand, an experienced experimentalist in this field
recently discontinued AC measurements because “we al-
ways see more or less the same” (Kremer, 1999). Why
is that? Is there any simple way of understanding AC
universality? These are the main questions we address
below, ignoring the minor variations between different
disordered solids.

IV. MACROSCOPIC MODEL

The first model we consider assumes the disorder is
present only on a macroscopic scale. In that case the con-

cept of a local conductivity makes sense and Maxwell’s
equations may be applied to find the AC conductivity.

A. Definition

Any solid consisting of phases with different conductiv-
ity has an overall conductivity which increases with fre-
quency (Maxwell, 1891; Wagner, 1913). This is because
at high frequencies localized charge carrier motions make
it possible to take maximum advantage of well conducting
regions, while at lower frequencies charge transport must
extend over longer distances and is limited by bottlenecks
of less well conducting regions. The proper way to study
this phenomenon is to apply Maxwell’s equations to the
inhomogeneous solid. In a solid with spatially varying
frequency-independent free charge conductivity g(r) but
constant bound charge dielectric constant we have, if J
is the free charge current density, J(r,t) = g(r)E(r,?)
and D(r,t) = exeoE(r,t). Combining these equations
with a) the definition of the electrostatic potential ¢, b)
Gauss’ law, and ¢) the continuity equation, one arrives at
the following equation for ¢ in a periodic field (Fishchuk,
1986; Dyre, 1993)

v. ( [tw exc€o + g(r)] V4 ) = 0. (8)

When Eq. (8) is discretized one arrives at the circuit
shown in Fig. 4 (Dyre, 1993). All capacitors are equal,
proportional to €., while the resistors are proportional
to the local resistivity 1/g(r). The interpretation of the
circuit seems straightforward at first: Resistor currents
are free charge currents and capacitor currents are bound
charge currents. If that were correct, however, according
to Kirchhoff’s current law there could be no charge accu-
mulation anywhere in the solid. In reality the capacitor
currents are Mazwell’s displacement currents - the capac-
itors would be there even in absence of bound charges
(Dyre, 1993).

How does one extract the overall AC conductivity from
the circuit? Imagine each of two opposing faces short-
circuited to act as electrodes and a periodic potential
applied. The average resistor current determines the free
charge AC conductivity o(w). If the admittance between
the electrodes is Y (w), L is the linear circuit dimension,
and d is the dimension, o(w) is found by subtracting the
capacitor contribution (Fishchuk, 1986; Dyre, 1993):

Y(w)
a2

Note that the frequency-dependence of ¢ is not due to the
(subtracted) direct capacitor contribution to the overall
admittance. Instead, o(w) 3 0(0) because the capacitors
influence the node potentials which determine the resistor
currents.

olw) = — W €qntp- (9)




To realistically model a disordered non-metal the lo-
cal free charge conductivity is taken to be Arrhenius
temperature-dependent, g = goexp(—SE) where 8 =
1/kpT and E is the so-called activation energy. Conduc-
tion may be classical or quantum mechanical, it does not
matter. The solid disorder is reflected in g = g(r) being
somehow random.” Any random function has a correla-
tion length beyond which values are essentially uncorre-
lated. If the discretization length is equal to this corre-
lation length it makes good sense to assume the resistors
are uncorrelated from link to link (Kirkpatrick, 1973).
After this simplification the model is uniquely defined by
the activation energy probability distribution p(E).

In one dimension the circuit is a series of RC-elements
and the calculation of Y (w) is straightforward. In par-
ticular, the circuit impedance at zero frequency is the
sum of the individual resistors, implying (Dyre, 1993)
a(0) = (g7!)~!. In more than one dimension the calcu-
lation of o(w) involves solving Kirchhoff’s circuit equa-
tions which cannot be done analytically, even in the DC
limit. In the high frequency limit, however, the capacitor
admittances are so large that they completely dominate,
resulting in a spatially homogeneous electric field. Conse-
quently, the average resistor current is determined by the
spatially averaged free charge conductivity. This leads to
o(o0) = {g) (Dyre, 1993). Summarizing the exact results,

I
(9) - (10)

d=1: (0)
d>1: o(o0)

B. AC universality in extreme disorder limit

If temperature is lowered 3 increases and the local
conductivities cover more and more decades - eventu-
ally what we term the “extreme disorder limit” is ap-
proached (Shklovskii and Efros, 1984; Ty¢ and Halperin,
1989). Although it is not obvious e priori that anything
interesting happens in this limit, we shall see that the
AC conductivity in scaled units becomes independent of
both 3 and p(E). This is AC universality as the term is
used here for models. No rigorous mathematical proof of
AC universality exists, but there is convincing evidence
from three sources: 1) AC universality is predicted by
the effective medium approximation; 2) AC universality
is found in computer simulations; and 3) it is possible
to physically understand the origin of AC universality.

7A disordered solid is rarely random in the mathematical
sense (Ziman, 1979). We here follow what has become the
standard approach, namely to replace complexity by random-
ness. The rationale for doing this has been beautifully sum-
marized by Wolynes (1992).

Points 1) and 2) are considered below for the macroscopic
model and in Section V for the symmetric hopping model,
point 3) is discussed in Section VI for both models.

. To find o(w) we need to calculate the overall admit-
tance of a circuit of randomly varying admittances y (Fig.
4). This problem cannot be solved analytically so we use
the effective medium approximation (EMA), a standard
technique for calculating average physical properties of
random mixtures. The idea is to focus on one small part
of the mixture and regard it as embedded in an effective
medium with the average property. Then selfconsistency
is required such that, on the average, the embedding in
the effective medium has the same overall property as
the effective medium itself. This approximation was first
used by Bruggeman (1935) for calculating the dielectric
constant of mixtures of dielectrics and for calculating the
thermal and DC electrical conductivity of mixtures. The
effective medium approximation may also be used, e.g.,
for calculating the bulk or shear modulus of a mixture of
solids with different elastic properties (Berryman, 1980)
or, as in the next Section, the AC conductivity of a hop-
ping model. The idea has also been used in quantum me-
chanics for calculating the average one-particle Green’s
function for a disordered system, here termed the “co-
herent potential approximation” (Economou, 1983).

According to the effective medium approximation for a
random admittance network in d dimensions the overall
circuit admittance is the same as that of a circuit of equal
admittances y,,, where y,, is the solution (Kirkpatrick,
1973) of :

() -
y+ (d - 1) Ym )
The brackets indicate averaging over the admittance
probability distribution. Just sketching how Eq. (11) is
applied to the macroscopic model, one substitutes the ad-
mittance of each RC-element of Fig. 4, y « g(r)+iweeo,
into Eq. (11) (where y,, depends on frequency). Equation
(9) translates into yp, o o(w) + twes€o and the follow-
ing equation for ¢ = o(w) is arrived at (Fishchuk, 1986;
Dyre, 1993):

(11)

g+ ({d-1)o+diveocen/

For w — oo Eq. (12) correctly implies o{o0) = (g} (Eq.
(10)) because at very large frequencies the denominator
varies little and may be regarded as constant. In one
dimension the DC conductivity is also correctly predicted
by Eq. (12).

It is possible to solve Eq. (12) in the extreme disorder
limit. In terms of a suitably defined dimensionless fre-
quency @, independent of p(E) the normalized AC con-
ductivity 6 (Eq. (3)) is the solution (Dyre, 1993) of

(12)

& Inég = i@. (13)




The universality of this equation was only recognized
several years after it first appeared in the literature.
The equation was originally derived as the solution of
a hopping model describing a dilute system of electrons
tunneling between states randomly localized in space
(Bryksin, 1980; Bottger and Bryksin, 1985). Subse-
quently, Fishchuk (1986) derived Eq. (13) for the macro-
scopic model with “Box” activation energy distribution
(p(E) flat with sharp cut-off’s), and Eq. (13) was de-
rived for symmetric hopping also with the Box distribu-
tion (Dyre, 1988).

The effective medium approximation universality
equation Eq. (13) is easy to solve numerically. Accurate
analytical approximations are available (Dyre, 1993); it
is even possible to give an explicit integral representation
of §(©) (Dyre and Jacobsen, 1995). The solution is con-
stant at low frequencies (@ <« 1), while at high frequen-
cies (@ > 1) the real part of the conductivity follows an
approximate power-law with exponent n < 1 which goes
slowly to one as @ — oo (Bottger and Bryksin, 1985;
Dyre, 1988).

Do the effective medium predictions hold? Figure 5
reproduces two examples of the simulations carried out
in two dimensions by Dyre (1993). For simplicity, only
imaginary frequencies (denoted by s) were used in these
simulations. This is a technical trick - at imaginary fre-
quencies all numbers become real because the capacitor
admittances are real, simplifying calculations consider-
ably. In Fig. 5(a) results for one activation energy dis-
tribution at different 3’s are given, clearly converging to
universality as 8 — oco. The full curves show the pre-
dictions of the effective medium approximation. Similar
figures exist for other distributions. Figure 5(b) shows
the AC conductivity of different distributions at high
B’s. All distributions lead to the same AC conductiv-
ity which is well represented by Eq. (13) (full curve).
A few three-dimensional simulations were also presented
in Dyre (1993), but only going to 8=60. The best
three-dimensional simulations available today are prob-
ably those of Dyre and Riedel (1994) using an iterative
technique, finding again very good agreement with Eq.
(13) in the extreme disorder limit. In conclusion, the ef-
fective medium approximation universality equation (13)
quite well describes the universal AC conductivity of the
macroscopic model.

V. SYMMETRIC HOPPING MODEL

The macroscopic model does not apply for solids
strongly disordered on the atomic scale. Below we review
results for a highly idealized hopping model with micro-
scopic disorder. This model is physically quite different
from the macroscopic model. It does not take Coulomb
interactions into account - instead the electric field is

assumed to be spatially homogeneous. Despite these dif-
ferences the AC predictions of the two models are rather
similar,

A. Definition

The term “hopping” refers to sudden displacement of
a charge carrier from one position to another, usually
just Angstroms away. The simplest hopping model has
non-interacting charge carriers placed on a cubic lattice
with only nearest-neighbor jumps allowed. It is assumed
that the jump rates (jump probabilities per unit time)
are symmetric, i.e., the same for jumps up and down.
According to the principle of detailed balance - a conse-
quence of microscopic time-reversibility - jump rates are
symmetric whenever all lattice sites are equally probable
(van Kampen, 1981).

Each jump rate is given (Lidiard, 1957) by ' =
7o exp(—BE) where 7, is the so-called attempt frequency
and B = 1/kgT.? The activation energy E (the barrier
to be overcome) is assumed to vary randomly. Figure
6 illustrates a one-dimensional example of the kind of
potential leading to the symmetric hopping model. The
more general asymmetric hopping model has been stud-
ied in other contexts like protein dynamics or viscous
liquid flow (see, e.g., Stein and Newman (1995) or Dyre
and Jacobsen (1995) and their references).

Our main motivation for studying the symmetric hop-
ping model is that it is the simplest model with micro-
scopic disorder and realistic AC predictions. The model
however may seem completely unrealistic. It ignores the
fact that charge carriers repel each other. Also, it allows
an arbitrary number of charge carriers at each site, but
in reality - whether these are ions or localized electrons
- there is room for just one charge carrier at each site.
Finally, one expects energies to vary from site to site. A
more realistic model has randomly varying site energies
and allows only jumps to vacant sites. If this “Fermi
model” is linearized with respect to an external electric
field, however, the result is mathematically equivalent
to the symmetric hopping model (Bottger and Bryksin,
1985). Although the linearization replaces the 0-1 occu-
pation number by a continuous variable - a non-trivial
approximation (Shklovskii and Efros, 1984) - this result
shows that the symmetric hopping model is not totally
unrealistic® although, of course, it still ignores Coulomb

8For simplicity only hopping over a barrier is considered, but
the model applies also for quantum mechanical tunneling of
localized electrons, in which case 3 is not inverse temperature
but inverse wavefunction size.

%In particular, the symmetric hopping model also describes
tunneling of non-iso-energetic electrons (Elliott, 1990).




repulsions.

Because the charge carriers are assumed non-
interacting it is enough to consider the motion of one
single charge carrier. All information about this motion
is contained in the so-called master equation for the prob-
ability to find the charge carrier at lattice site s, P; (van
Kampen, 1981). If I'(s, s’) is the rate of jumps between s
and s’ (non-zero only for nearest neighbors) the hopping
master equation (Kimball and Adams, 1978; Béttger and
Bryksin, 1985; Haus and Kehr, 1987; Stein and Newman,
1995; Hughes, 1996) is

d

p (14)

P, = ) T(s,8)(Pv - P).

Anyone who feels uncomfortable thinking about a time-
dependent probability for one single charge carrier may
instead imagine numerous (non-interacting) charge car-
riers hopping all over the lattice and define FP; as the
number of charge carriers at site s relative to the total
number. With this interpretation Eq. (14) describes the
rate of change of average site occupations.

Equation (14) applies when there is no external elec-
tric field. In a non-zero field jumps in the field di-
rection are favored. The result is a net current. The

fluctuation-dissipation theorem expresses the frequency-

dependent conductivity in terms of the equilibrium (zero-
field) current auto-correlation function (Kubo, 1957;
Becker, 1967). If q is charge and n charge carrier concen-
tration, the fluctuation-dissipation theorem for a system
of non-interacting charge carriers (Scher and Lax, 1973)
is

o(w) = ﬁg‘% D(w),

A (15)

where the frequency-dependent diffusion constant D(w)
is defined as the Laplace transform of the velocity auto-
correlation function (v being the velocity in any fixed
direction):

(o o]
DW) = [ Oy e e, (o)
0

How is velocity defined for a charge carrier that sits
still most of the time and jumps in principle infinitely
fast when it moves? The answer is that the velocity
is a sum of delta-functions. This causes no problems -
in fact the velocity auto-correlation function has a d(t)-
term, but is otherwise continuous. A simple example
is when all jump rates are equal. Then jumps are un-
correlated and the velocity auto-correlation function is
zero for ¢ > 0, thus proportional to 4(¢). In this case,
D(w) is constant and Eq. (15) implies the conductivity
is frequency-independent.

Kimball and Adams (1978) proved that for any hop-
ping model

An
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o(w) = o{o0) — Z

n

(17)

where A, > 0 and v, > 0. From this a number of im-
portant conclusions may be drawn (the first two may be
proved also for the macroscopic model): 1) ¢'(w) is an in-
creasing function of frequency; 2) ¢ (w) is non-negative;
3) by inverse Laplace transform Egs. (15), (16), and (17)
imply that for ¢t > 0

(v(0)v(2)) <-0. (18)
In terms of the mean-square displacement (Az?(t)) Eq.
(18) implies'® that for ¢ > 0

2
;% (Az?(t)) < 0. (19)
Figure 7 illustrates these results. Why is the velocity
auto-correlation function negative? First, note that from
any site the most likely jump is along the link with largest
jump rate. The next jump is more likely to go back
again than to any other site, simply because the link just
jumped along generally has large jump rate (compare
Fig. 6). This “bounce-back effect” (Kimball and Adams,
1978; Funke, 1993) results in the velocity auto-correlation
function being negative and consequently in Eq. (19).
We shall adopt the “rationalized” unit system in which
conductivity and diffusion constant are both normalized
such that on a homogeneous lattice with link jump rate
I’ one has ¢ = D = I'. In analogy to Eq. (10) for the
macroscopic model there are two exact results for.the
symmetric hopping model (Alexander et al., 1981), -
d=1: 0(0) = (I'"H™1,
d>1: o{c0) =(T). (20)
Calculating the AC conductivity analytically is not pos-
sible s0, just as for the macroscopic model, one resorts to
approximations and computer simulations.

B. AC universality in extreme disorder limit

As already mentioned, there is also an effective
medium approximation for the symmetric hopping
model. If sG is the following integral

G = / dk tw
i —mckicn 2m)iw+20 [d— ), coski]’

(21)

10Gquaring and averaging Az(t) = fot v(t')dt’ one ar-
rives at (Az2(t)) = [;dt' [) dt” (v(t')v(t")), which implies
d?(dt* (Az%(t)) = 2 (v(0)u(t)) for t > 0.




the effective medium approximation self-consistency
equation for ¢ = o(w) (Haus and Kehr, 1987) is

I'-o
<r+(d—1)a+sc":(a—r)>= 0. (22)

The brackets denote an averaging over the jump rate
probability distribution. It is easy to show that Eq. (22)
implies the two exact results Eq. (20).

Equation (22) may be solved in the extreme disorder
limit (8 — o0). The calculations are more involved than
for the macroscopic model, but the result is the same
(Dyre, 1994): In terms of dimensionless frequency @,
&(@) obeys the effective medium approximation univer-
sality equation (13). The case d = 2 is marginal and
requires special treatment, eventually leading again to
Eq. (13). Below two dimensions the effective medium
approximation does not lead to Eq. (13), a fact which
becomes important in the next section.

Figure 8 shows results of computer simulations of the
symmetric hopping model. Figure 8(a) gives the AC con-
ductivity as function of frequency in non-scaled units for
the Box distribution of activation energies at different
temperatures. Figure 8(b) shows the convergence to uni-
versality as 8 — oo for the data of Fig. 8(a) scaled
according to Eq. (7). Finally, Fig. 8(c) shows the large-3
AC conductivities for 5 different p(E)’s, clearly showing
universality. In Fig. 8(c) the full line shows the effective
medium approximation universality prediction Eq. (13)
which is not accurate. In two dimensions this approxi-
mation is even less accurate (Dyre, 1994).

Vi. CAUSE OF UNIVERSALITY

We have seen that two physically quite different mod-
els both have AC universality in the extreme disorder
limit. The obvious question now is: What causes AC
universality? Below we give our answer to this ques-
tion, presenting a physical picture of conduction in the
extreme disorder limit. The scenario outlined builds on
well-known insights gained during the last 30 years, but
some of it is new and more speculative. From this phys-
ical picture two approximations for calculating the uni-
versal AC conductivity (in either model) are arrived at.

A. Role of percolation

We shall argue that in both models AC universal-
ity arises because percolation controls the conductivity
in the extreme disorder limit. First, let’s briefly recall
what percolation is (Broadbent and Hammersley, 1957;
Isichenko, 1992; Stauffer and Aharony, 1992). Consider
a cubic lattice in any dimension and suppose each link
is randomly marked with probability p (Fig. 9). When

p is low few links are marked and clusters of connected
marked links are small. Increasing p the average clus-
ter size increases. At the so-called percolation threshold
Pc an infinite cluster appears, the “percolation cluster.”
In two dimensions p. = 0.5 exactly, in three dimensions
Pc = 0.2488 (Isichenko, 1992). -

We first show how the DC conductivity activation en-
ergy E. for both models is determined from percolation
arguments. In the DC limit the macroscopic model is
described by a simple resistor network (compare Fig. 4
where the capacitors carry no DC currents). The current
prefers the path of least resistance. When f is large the
random resistors cover many decades. Imagine now the
resistors marked in order of increasing resistance. A DC
current is possible through marked resistors only when
the fraction of marked resistors exceeds p.. When this
happens, due to large spread of resistors, marking more
resistors does not significantly change the admittance of
the set of marked resistors. This admittance is domi-
nated by the largest resistors among the marked right
at percolation. Consequently, the DC conductivity ac-
tivation energy E. is equal to that of the “bottleneck”
resistors, given by

E.
/o p(E)dE = p.. (23)

Equation (23) was first derived by the above physical
arguments (Ambegaokar, Halperin, and Langer, 1971;
Shklovskii and Efros, 1971; Kirkpatrick, 1973), but later
proved rigorously (Ty¢ and Halperin, 1989).

The DC conductivity activation energy for symmetric
hopping is also given by Eq. (23): The main contribution
to the mean-square displacement comes from charge car-
riers utilizing the links with largest jump rates. To do
this at long times and extend the motion to infinity, op-
timal charge carriers move preferably on the percolation
cluster. Here, they must every now and then overcome
the barrier E, given by Eq. (23), the largest barrier on
the percolation cluster. At large 8 these barriers act
as bottlenecks and consequently E, determines the rate
of mean-square displacement. Via Einstein’s equation
(Az?(t)) = 2Dt and the fluctuation-dissipation theorem
(Eq. (15), here used at zero frequency) we conclude that
the activation energy of ¢(0) is given by Eq. (23).11

11 Another way to prove this is to utilize that hopping in the
DC limit is described by a resistor circuit. Asshown by Miller
and Abrahams (1960) in steady state the master equation
Eq. (14) may be identified with Kirchhoff’s current law if
probability is identified with potential and jump rate with
inverse resistance. The large spread of jump rates as 8 —
is translated into a large spread of resistors. In this way the
above derivation of Eq. (23) for the macroscopic model applies
to the symmetric hopping model as well.



Before proceeding to discuss the origin of AC univer-
sality we must look a bit more closely on where the DC
current flows. The problem is that the percolation clus-
ter is a mathematical fractal (Staffer and Aharony, 1992)
and as such has zero bulk DC conductivity (Bouchaud
and Georges, 1990). Thus besides the percolation cluster
a tiny extra fraction of resistors must also be involved
in carrying the DC current. Enlarging the percolation
cluster to include these extra resistors gives us a set we
term the “fat” percolation cluster. How large is the fat
percolation cluster? In addition to the exact percolation
cluster one only expects that it involves extra links with
activation energies a few kpT above E, - adding more
links cannot change the conductivity significantly since
these links conduct poorly anyway. Note that in the ex-
treme disorder limit the fat percolation cluster converges
to the exact percolation cluster and the proof that E, is
given by Eq. (23) still holds. The arguments given be-
low for AC universality in the extreme disorder limit rest
on the assumption that not only DC, but also AC con-
duction (at frequencies where AC universality applies)
mainly takes place on the fat percolation cluster. We
thus assume that AC contributions from finite isolated
“islands” are unimportant. At this point we differ from
previous attempts to relate AC conductivity to the un-
derlying percolation (Béttger and Bryksin, 1985; Hunt,
1995).

Turning now to the origin of AC universality we first
ask, starting by the macroscopic model: Why is con-
ductivity frequency-independent at low frequencies and
what determines the onset of AC conduction? To an-
swer these questions, recall that all capacitors in Fig. 4
are equal. At very low frequencies each capacitor has
smaller admittance than its partner-resistor. The cir-
cuit current flows in the resistors and, viewed from the
electrodes, the circuit looks like a simple resistor circuit.
If frequency is increased an increasing number of capac-
itor admittances become numerically larger than their
resistor-partner. Whenever this happens for a link we
term it “affected.” Although an increasing number of
links are affected, the average resistor current changes
only insignificantly as long as none of the affected links
are on the fat percolation cluster. Increasing frequency
further, however, at some point links on the fat perco-
lation cluster become affected. The first of these are
the bottlenecks. Increasing frequency even further af-
fects more and more links on the fat percolation clus-
ter: The node potentials on this set (carrying the main
resistor currents) change, therefore do the resistor cur-
rents. Clearly, the frequency marking onset of AC con-
duction is proportional to the DC conductivity, because
both are determined by the bottleneck admittance. We
thus arrive at Eq. (6), the Barton-Nakajima-Namikawa
relation’s rough proportionality between DC conductiv-
ity and dielectric loss peak frequency (the latter marking
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onset of AC conduction).

For a fixed range of frequencies around w,, the resis-
tors of the affected links on the fat percolation cluster
cover a corresponding range. As f# — oo these involve
only a very narrow range of activation energies around
E.. Consequently, the AC behavior in the fixed frequency
range is determined by just the number p(E.). The scaled
conductivity & depends on this number, but how? The
simplest way to answer this is to use dimensional anal-
ysis: &, being itself dimensionless, may depend only on
dimensionless variables. Therefore, it may depend on
p(E.) only via the following dimensionless activation en-
ergy density: p = p(E.)/B. As 8 diverges p — 0 and we
have universality: & becomes independent of both 8 and
p(E). The only assumptions needed for this argument
to work are that p(E) is smooth around E, and that
p(E.) > 0. Note that, for finite 8 AC universality ap-
plies only in a finite range of frequencies which, however,
broadens as 8 — oo. This is precisely what is observed
in computer simulations (Fig. 5).

To understand AC universality for hopping we again
refer to the equilibrium mean-square displacement. In
terms of this quantity the frequency-dependent diffusion
constant is given (Scher and Lax, 1973) by!?

D(w) = -“’72 /0 ~ (AZ2()) e™™* dt. (24)

We leave it to the reader to show that if the mean-square
displacement is linear in time the diffusion constant is
frequency-independent. At sufficiently long times the
mean-square displacement indeed s linear in time, and
consequently diffusion constant and conductivity are con-
stant at sufficiently low frequencies.!3 s
As shown already, when f is large the dominant contri-
bution to the mean-square displacement comes from ran-
dom walks on the fat percolation cluster. The links with
smallest jump rate I'; on this cluster, the bottlenecks,
determine the rate of mean-square displacement at long
times which in turn determines the DC conductivity. The
bottlenecks also determine the frequency marking onset
of AC conduction, wy,: Whenever I'.t >> 1 many bottle-
necks are passed in time ¢ for a random walker on the fat
percolation cluster; at these long times the mean-square
displacement is linear in time. Consequently, conductiv-
ity is frequency-independent whenever w < T, (compare
footnote 13). The mean-square displacement becomes

12Equation (24) is derived by two partial integrations of Eq.
(16) utilizing the identity derived in footnote 10. An im-
plicit convergence-factor e~ (lime — 0) is understood in
the integral.

13For given w the integral Eq. (24) is dominated by contri-
butions to (Az*(t)) at times t given by wt ~ 1 (Tauberian
theorem).




non-linear in time when I';t ~ 1, corresponding to fre-
quencies w ~ I',, because then random walks on the clus-
ter are limited to take place between bottlenecks. Thus,
since both ¢(0) and wy, are determined by I, we also for
hopping arrive at the Barton-Nakajima-Namikawa rough
proportionality Eq. (6). )

From here on we argue much as for the ma,croscoplc
model. In a fixed range of times around the time above
which the mean-square displacement is linear in time,
corresponding to a fixed range of frequencies around wy,,
whenever § is large only links on the fat percolation clus-
ter with activation energies close to E, come into play as
effective bottlenecks. & can depend only on 5 = p(E,)/S
which goes to zero in the extreme disorder limit, thus
establishing AC universality for the symmetric hopping
model. Again, the only conditions for this to work are
that p(E) is smooth around E, and that p(E.) > 0.

The term “universality” became part of the physics
vocabulary in the 1970’s with the renormalization group
theory of critical phenomena, one of the major advances
in theoretical physics after World War IT (Wilson, 1983;
Goldenfeld, 1992). A second order phase transition is
characterized by a number of critical exponents; univer-
sality refers to the fact that these depend only on di-
mension and order parameter symmetry, not on any mi-
croscopic details. In contrast, AC universality is not as-
sociated with exact power-laws. Despite this there is a
connection to critical phenomena, because percolation s
a critical phenomenon (see, e.g., Isichenko (1992)).

Approaching any second order phase transition there
is a diverging correlation length. Is AC universality also
associated with a diverging length? In our opinion the
answer is yes. Consider first hopping and define I such
that [2 is the mean-square displacement at ¢ = 1 Jwm. It
may be shown that in the effective medium approxima-
tion [ diverges as # — oo. This is confirmed by our com-
puter simulations. Presumably, ! is the correlation length
of the fat percolation cluster (Bouchaud and Georges,
1990). This identification makes it possible to define I
for the macroscopic model as well and associate AC uni-
versality even for this model with a diverging correlation
length.

The likely existence of a diverging characteristic length
as # — co implies that AC universality is robust to rather
extensive modifications of the two models, for instance by
allowing resistors/jump rates which are not uncorrelated
from link to link. As long as the resistors/jump rates have
finite correlation length we expect that AC universality
applies in the extreme disorder limit.

B. Percolation based approximations

To calculate the universal AC conductivity in either
model the effective medium approximation introduces a
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homogeneous “effective medium.” Although the effective
medium approximation works well for the macroscopic
model it is less successful for hopping. It may be possi-
ble to construct better approximations by making use of
our knowledge that the current runs only on the fat per-
colation cluster. We shall do-this in two tempi, each time
developing an approximation applicable to both models.

The current running on the fat percolation cluster is
not homogeneous. Computer simulations have shown
that at extreme disorder the DC current follows almost
one-dimensional paths (Brown and Esser, 1995). We now
take a naive approach by regarding “conducting paths”
as strictly one-dimensional. In the last section we saw
that for both models most activation energies larger than
E, define links outside the fat percolation cluster, links
which contribute little to the conductivity in the extreme
disorder limit. Combining this fact with the assumption
of strictly one-dimensional conducting paths, we arrive
at the percolation path approzimation (PPA): “The uni-
versal AC conductivity is the same as that of the extreme
disorder limit of a one-dimensional model with sharp cut-
off in the activation energy probability distribution.”

It is easy to apply this approximation to the macro-
scopic model, because the one-dimensional analogue of
Fig. 4 is exactly solvable. The macroscopic percolation
path approximation for the universal AC conductivity
thus found (Dyre, 1993) is:

iw
In(1+i@)"
Compared to the solution of the effective medium approx-
imation universality equation Eq. (13) this expression has
a somewhat sharper onset of AC conduction (Fig. 10).

To apply the percolation path approximation to hop-
ping, the AC conductivity in one dimension with a sharp
activation energy cut-off must be calculated in the ex-
treme disorder limit. This cannot be done analytically,
the best one can do is to solve approximately. This was
done by Dyre and Schrgder (1996) who showed that the
effective medium approximation leads to the following
equation (which accurately represents one-dimensional
simulations)

\/gln(1+\/icb—&) = Via.

Compared to the solution of the effective medium approx-
imation universality equation this equation is somewhat
less dramatic in the onset of AC conduction (Fig. 10).

We now proceed to develop a third approximation.
The idea is the following. The effective medium approx-
imation and the percolation path approximation are op-
posite extremes. The former views conduction as spa-
tially homogeneous in an effective medium, the latter
models conduction as one-dimensional. In reality, con-
duction takes place on a complex set we term the diffu-
ston cluster.

o=

(25)

(26)



How to define the diffusion cluster? Consider the DC
limit. Not all links on the fat percolation cluster carry
current - there are dead-ends. Removing these from the
percolation cluster leaves us with the so-called “back-
bone” (Stauffer and Aharony, 1992). The backbone,
which has dimension 1.7, contains loops however. This
means that many pairs of sites are connected by two or
more different paths on the backbone. In the extreme
disorder limit one of these paths is by far most favorable.
The backbone should therefore be further diluted by re-
moving inefficient paths. A lower limit to this dilution
is given by the set of so-called “red bonds,” those with
the property that if one of them is removed the back-
bone is broken into two parts. The set of red bonds has
dimension 1.1. This set is not connected, however, so the
diffusion cluster must be larger. We thus arrive at the
following limits for the diffusion cluster dimension dy:

11 < do < 17. @27)

To calculate & in the diffusion cluster approximation
(DCA), the effective medium approximation is applied to
conduction on the diffusion cluster. For the macroscopic
model this leads straight to the effective medium approx-
imation universality equation Eq. (13), which applies in
the extreme disorder limit whenever dy > 1 (Dyre, 1993).
For hopping the situation is different. When dy < 2 the
hopping effective medium approximation does not lead
to Eq. (13). Instead, the following expression is arrived
at (Schrgder and Dyre, 1999)

i\ %/?
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Figure 10 shows the solution of this equation for dy =
1.35, the value which best fit computer simulations
(Schrgder and Dyre, 1999), together with the three other
approximate analytical expressions for the two universal
AC conductivities. All four expressions are summarized
in Table I.

As mentioned already, the effective medium approxi-
mation works very well for the macroscopic model. Fig-
ure 11 compares the three approximations to hopping
simulations, using a sensitive way to plot data by giv-
ing the apparent frequency-exponent n as function of
. Clearly, the diffusion cluster approximation with
do = 1.35 gives a good representation of the numeri-
cal data. Remembering that for the macroscopic model
the diffusion cluster approximation prediction is equal to
that of the effective medium approximation which works
very well (Eq. (13)), our conclusion is simple: For both
models the diffusion cluster approximation works best.

Ing
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VIL. DISCUSSION

Before discu's;sing model predictions and-how they com-
pare to experiment, let us briefly put our findings into a

historical perspective. As mentioned in the Introduction,
the full extent of AC universality was recognized in the
1970’s. Already in the 1950’s, however, it was discov-
ered that the classical oxide glasses have more or less the
same AC properties (Taylor 1956, 1957, 1959). At that
time two models, predecessors to respectively the sym-
metric hopping model and the macroscopic model, were
proposed: a) Stevels (1957) and Taylor (1956, 1959) as-
sumed ions jump from one minimum to another in a ran-
dom potential deriving from the random network struc-
ture of the glass (Zachariasen, 1932); b) Isard (1961) re-
garded the glass as a mixture of phases with different con-
ductivity. Little progress was made with either model.
Interestingly, it was for a long time believed that the
time-temperature superposition principle implies that, if
there is any activation energy distribution at all, it must
be narrow compared to kgT (Taylor, 1959; Owen, 1963;
Isard, 1970). This belief was “confirmed” by two ex-
perimental facts: a) The DC conductivity is not non-
Arrhenius as naively expected if a range of activation
energies is involved; b) The DC conductivity is roughly
proportional to the dielectric loss peak frequency (Eq.
(6)), apparently implying that AC conduction is due to
processes with same activation energy as DC conduction.
This is all wrong. Ironically, we now know that AC uni-

- versality - and thereby the time-temperature superposi-
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tion principle - applies only when a range of activation
energies wide compared to kgT is involved. On the other
hand, even though a broad range of activation energies
contributes, in the extreme disorder limit everything ap-
pears to be controlled by just one activation energy, the
E. of Eq. (23) identified by percolation theory.

'

A. Model predictions

Let us compare the physics of the two models. The
symmetric hopping model assumes disorder on a micro-
scopic scale while the macroscopic model only assumes
disorder on length scales large enough that the local con-
ductivity concept makes sense. The symmetric hopping
model ignores Coulomb repulsions between charge car-
riers, while the macroscopic model do take these fully
into account via Maxwell’s equations. The two models
also differ in how external “control” enters: For hopping
a spatially homogeneous externally electric field is as-
sumed, while for the macroscopic model the field varies in
space (in a way determined by the model itself) and only
the potential difference across the sample is externally
controlled. Despite these differences the models both pre-
dict AC universality in the extreme disorder limit and the
two universal AC conductivities are similar.

Three approximations applicable to the universal AC
conductivity of either model have been developed. Com-
puter simulations show that for both models the best fit




is provided by the diffusion cluster approximation (for
the macroscopic model the effective medium and the dif-
fusion cluster approximations give same &(@)). The four
analytical expressions (Fig. 10 and Table I) have the fol-
lowing crucial features in common: At low frequencies
(@ < 1) conductivity is frequency-independent, at high
frequencies (& > 1) ¢'(w) follows an approximate power-
law with exponent n < 1. It can be shown that for all
four expressions the frequency-exponent n is given by

-2
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One finds @ = 2 for the effective medium approxima-
tion as well as for the macroscopic percolation path and
diffusion cluster approximations. For the hopping per-
colation path approximation a@ = 3, while the hopping
diffusion cluster approximation has @ =1 + 2/dg. In all
cases n(w) — 1 for @ — oco. This, in conjunction with
the Barton-Nakajima-Namikawa relation’s rough propor-
tionality ¢(0) ~ wm,** is the key to explaining the 16
points summarizing the experimental findings in Section
1. The details of proving this are left to the reader
(Dyre, 1988).

We have focussed exclusively on the real part of the
AC conductivity, but the imaginary part also becomes
universal in the extreme disorder limit and follows an ap-
proximate power-law (with exponent close to n). There
is however more to be said. It turns out (from effective
medium calculations confirmed by computer simulations)
that the convergence to universality for the imaginary
part is slower than for the real part. In practice the
imaginary part therefore contains more system-specific
information than the real part.!®

@—o0:n =1 (29)

B. Models contra experiment

Figure 12 gives three examples comparing model pre-
dictions to experiment. First, Fig. 12(a) compares the
very first published data indicating AC universality (Tay-
lor, 1959) to our hopping model simulations in the ex-
treme disorder limit. In this figure we follow Taylor by

14Two of the four expressions in Table I (hopping percolation
path and hopping diffusion cluster approximation) have no di-
electric loss peaks and thus no loss peak frequency. This is
an artifact of the approximations - in simulations both mod-
els do exhibit loss peaks. The relation wm ~ o(0) however
applies for all four approximations if wy, is interpreted as the
frequency marking onset of AC conduction.

15In principle the imaginary part is uniquely determined
from the real part via the Kramers-Kronig relation (Landaun
and Lifshitz, 1969), but this requires that the real part is
known at all frequencies.
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presenting dielectric loss as function of frequency. Fig-
ure 12(b) compares data for a several sodium-germanate
glasses (Sidebottom, 1999) to the same hopping model
simulations, again showing good agreement. Given the
fact that the symmetric hopping model in the extreme
disorder limit has no fitting parameters the fits in Figs.
12(a) and 12(b) are probably the best one can expect.
Many similar data exist for ionic conductive glasses which
are quite well fitted by the symmetric hopping model.
Figure 12(c) presents AC data which are better fitted
by the macroscopic model. These data are for a metal-
cluster compound. It is generally believed that conduc-
tion in these solids, which proceeds via electrons tun-
neling between metal islands, is well described by the
symmetric hopping model (van Staveren, Brom, and de
Jongh, 1991). We find however that this is not so. The
fact that the macroscopic model works better than hop-
ping probably indicates that Coulomb interactions can-
not be ignored for these systems.

C. Outlook

There are still many unsolved problems. Although one
could argue (and we certainly do) that AC universality
has been demonstrated beyond any reasonable doubt, no
rigorous proof of AC universality in the extreme disorder
limit exists for either model. Assuming AC universality,
a number of problems remains:

o In regard to the diffusion cluster approximation -
the one which works best for both models - it is im-
portant to precisely characterize the diffusion clus-
ter and determine its dimension from analytical ar-
guments and independent computer simulations.

Both models have space elements (resistors/jump
rates) with associated relaxation times much longer
than the inverse loss peak frequency. These ele-
ments play little role for the magnitude of neither
DC nor AC conductivity. One may however won-
der whether they have other physical consequences,
for instance by generating 1/f noise of the DC con-
ductivity (Morozovskii and Snarskii, 1993).

In any hopping model the complete characteri-
zation of random walks lies in the k-dependent
frequency-dependent diffusion D(k,w).'® The ob-
vious question now arises: Is D(k,w) also universal

181f P(r,t) is the probability to find the charge carrier
at site r at time ¢, given that it started at the origin at
time 0, D(k,w) is defined as follows: 1/(iw + k’D(k,w)) =
Jo dte™* [ drP(r,t)e™*. For small k’s D(k,w) reduces to
D(w).




in the extreme disorder limit? If yes, for which k’s
is this the case?

o The symmetric hopping model arises when lineariz-
ing the hopping model with random site energies
and Fermi-statistics (Shklovskii and Efros, 1984;
Boéttger and Bryksin, 1985), but how reliable is this
linearization? In other words: Does this more real-
istic model exhibit AC universality in the extreme
disorder limit and, if yes, does it have the same
universal (@) as the hopping model?

e What about hopping models that are not sym-
metricc Do they exhibit AC universality al-
ways/sometimes/never?

o Does the disorder have to be static, as we have
assumed throughout for both models, or can it be
dynamic? For instance, would hopping on a regular
lattice of charge carriers with -Coulomb repulsions
approach AC universality at low temperatures?

- The above questions deal with the theoretical physics
of AC universality. A main purpose however of future
work should be to advance our understanding to the point
where reliable information about conduction mechanisms
can be obtained from AC data and their deviations from
universality. It seems to us that we are only at the be-
ginning of such endeavors.
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FIG. 1. Experimental AC universality. AC conductivity
of typical ionically (a-c) and electromically (d-f) conduct-
ing disordered solids. Each figure shows a log-log plot of
the real part of the conductivity as function of frequency
at various temperatures. At low frequencies the conduc-
tivity is constant, at high frequencies the conductivity fol-
lows an approximate power-law with exponent below ome.
(a) S0LiF — 30KF — 20Al(POs)s glass (inset: real part
of dielectric constant) (Kulkarni, Lunkenheimer, and Loidl,
1998); (b) 0.4Ca(NOs3): — 0.6KNO3 extremely viscous lig-
uid (Howell et al,, 1974); (c) Thermoplastic polyurethane
doped with NH4CF3S03 (van Heumen et al., 1995); (d)
Poly(methylthiophene) (Rehwald, Kiess, and Binggeli, 1987);
(e) Amorphous germanium film (inset: frequency-exponent as
function of temperature) (Long and Balkan, 1980); (f) Poly-
crystalline diamond film (Fiegl et al., 1994).

FIG. 2. AC conductivity master curves. Each figure shows a
log-log plot the real part of the quantity & defined in Eq. (3)
as function of a scaled frequency. (a) gives the master curve
for the ionic conductive glass data of Fig. 1(a) (Kulkarni,
Lunkenheimer, and Loidl, 1998); (b) gives the master curve
for the electronic conducting polymer data of Fig. 1(d) (Re-
hwald, Kiess, and Binggeli, 1987); (c) gives the common mas-
ter curve for data on eight different ionic conductive glasses
(Roling, 1998).

FIG. 3. Barton-Nakajima-Namikawa relation (Eq. (5)) for 40
different alkali ion conducting glasses. The broken line corre-
sponds to p = 1 in Eq. (5). These data from four different lab-
oratories were compiled by Nakajima (1972) who presented a
similar figure for 14 electronically conducting transition metal
oxide glasses.




FIG. 4. Electrical equivalent circuit arising from discretiz-
ing Maxwell’s equations for an inhomogeneous conductor.
This circuit describes the macroscopic model (Fishchuk, 1986;
Dyre, 1993). All capacitors are equal, proportional to €oo,
while each resistor is proportional to exp(8E) where 8 =
1/kpT and E is the random activation energy. In an external
(DC or AC) field the electrostatic potentials at the nodes are
found from Kirchhoff’s equations. The resistor currents are
the free charge currents. The capacitor currents are Maxwell’s
displacement currents, parts of which are bound charge cur-
rents and parts of which are “ghost” currents. Thus in AC
fields bound and free charge may accumulate at nodes without
violating Kirchhoff’s laws.

FIG. 5. Computer simulations of the macroscopic model in
two dimensions (reproduced from Dyre (1993)). (a) shows &

as function of scaled imaginary frequency (scaling defined in-

Dyre (1993)) for the activation energy probability distribu-
tion p(E) = 2E(0 £ E < 1) at 8 equal to 5, 10, 20, 40, 80,
160 in order of increasing conductivity. The full curves are
the predictions of the effective medium approximation. (b)
shows results for six different activation energy probability
distributions at 8=160 in two dimensions compared to the
effective medium approximation universality equation (13).
At extreme disorder all distributions have same “universal”
& which is well represented by the effective medium approxi-
mation universality equation (13).

FIG. 6. Typical potential felt by a charge carrier in one di-
mension described by the symmetric hopping model. The
symmetric hopping model corresponds to the discrete version
of motion in this potential, where charge carriers reside on
a lattice (the minima), making instantaneous jumps over the
barriers connecting nearest neighbor sites. At temperatures
low compared to the barriers most time is spent close to en-
ergy minima. Occasionally, the charge carrier by chance ac-
quires enough energy from the surrounding heat bath to jump
into a neighboring minimum. If the barrier height is E, the
probability of this happening per unit time is proportional to
exp(~BE) (8 = 1/ksT). At low temperatures the charge car-
rier almost always chooses the lowest barrier, leading to the
“bounce-back effect:” After one jump the next jump most
likely goes back again (Kimball and Adams, 1978).

FIG. 7. (a) Mean-square displacement and (b) velocity auto-
correlation function as function of time for a charge carrier
in the symmetric hopping model. In the homogeneous case
with only one jump rate, the mean-square displacement is
linear in time and the velocity auto-correlation function is
a delta-function at ¢ = 0 and zero whenever ¢ > 0. In the
inhomogeneous case, as shown in the text and Fig. 6, after one
jump the next usually goes back again. This “bounce-back
effect” causes the mean-square displacement to be faster at
short times than expected from an extrapolation of the long-
time (linear) limit (Kimball and Adams, 1978; Funke, 1993).
The velocity auto-correlation function, being the second time-
derivative of the mean-square displacement (footnote 10), is
consequently negative for £ > 0, and only positive right at
t = 0 where it is a delta-function.

FIG. 8. Computer simulations of the symmetric hopping

. model in three dimensions. (a) Real part of the AC con-
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ductivity in “rationalized units” for the Box distribution of
activation energies (p(E) = 1, 0 < E < 1) at four different
inverse temperatures; (b) the same data scaled according to
Eq. (7), clearly showing convergence to one single curve as
B — oo; (c) data for five different activation energy prob-
ability distributions at large f’s, showing universality, i.e.,
that the AC conductivity at extreme disorder is independent
of probability distribution. The full curve is the prediction
of the effective medium approximation (EMA) universality
equation (13), also scaled according to Eq. (7). The simula-
tions were carried out by solving the hopping master equation
using a new numerically stable algorithm (Schrgder, 1999).
The figures (b) and (c) are reproduced from Schrgder and
Dyre (1999). :

FIG. 9. Percolation in two dimensions. On an underlying
square lattice (not shown) each link is marked black with
probability p. (a) If p is below the so-called percolation
threshold p. no connected cluster exists extending to infinity;
(b) if p > p. there is such a cluster. The percolation threshold
is precisely 0.5 in two dimensions and approximately 0.25 in
three dimensions (Isichenko, 1992). As argued in the text,
the percolation phenomenon is central to understanding AC
universality for both models.

FIG. 10. Comparison of the real part of the four approximate
analytical expressions for the universal AC conductivities of
the two models (Table I) derived in: the effective medium
approximation (EMA), the percolation path approximation
(PPA), the diffusion cluster approximation (DCA). The fre-
quency scaling is here defined such that all four curves coin-
cide at log,4(é’') = 0.5. As a guide to the eye, dots are shown
marking a line with slope one. All four expressions follow
an approximate power-law at high frequencies with exponent
below one which converges to one as scaled frequency goes to
infinity.



FIG. 11. The apparent exponent n = dlnd’/dIn& plotted as
function of & for the universal AC conductivity found from
simulations of the symmetric hopping model (symbols as in
Fig. 8(c)). The predictions of the three analytical approxima-
tions (EMA, PPA, DCA) are shown as curves. The numeri-
cal data are best fitted by the diffusion cluster approximation
with do = 1.35. - -

FIG. 12. Models compared to experiment. (a) gives the di-
electric loss (negative imaginary part of e(w) defined in Eq.
(2)) for the first data published showing AC universality
(full symbols, data for five different ionic conductive oxide
glasses taken from Fig. 5 in Taylor (1959)) compared to
our simulations of the symmetric hopping model in the ex-
treme disorder limit (open symbols as in Fig. 8(c)). The
high-frequency experimental data-points were obtained by ex-
trapolation, assuming time-temperature superposition (Tay-
lor, 1959). (b) shows the &'-data of Sidebottom (1999) on
sodium-germanate glasses compared to our symmetric hop-
ping model simulations in the extreme disorder limit, both
data sets scaled according to Eq. (7). Also shown are the
hopping diffusion cluster approximation (DCA, representing
hopping) and the macroscopic diffusion cluster approxima-
tion (DCA = EMA, representing the macroscopic model) (re-
produced from Schregder and Dyre (1999)); (c) shows data
for the metal cluster compound Pd-7/8 (Reedijk et al., 1998)
compared to our symmetric hopping model simulations. Also
shown are the hopping diffusion cluster approximation (DCA,
representing hopping) and the macroscopic diffusion cluster
approximation (DCA = EMA, representing the macroscopic
model). In this figure the frequency scaling was fixed by re-
quiring same &' at the highest frequencies for data as well as
for the two analytical approximations.

TABLE I. AC Universality equations.

Macroscopic model Symmetric hopping model
Effective medium approximation® o lnég=iw & Ingd =1t
. . B L iw ~ ==\ _ /=
Percolation path approximation T=1 ) Vén (1 +Viwg) w
o do/2
Diffusion cluster approximation® o lno=w Ing = ( F)

2Equation (13).
bEquations (25) and (26).
°Equations (13) and (28).
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