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Abstract:

Using for each genotype an SIR-type model of disease transmission dynamics, we describe
natural selection in a continucusly breeding dipleid host whese disease susceptibility and
resistance are carried at one locus with two alleles. The system is transformed into variables
that for each disease class describe the number of individuals, the gene frequency, and
the deviation from Hardy-Weinberg proportions as measured by Wright’s fixation index.
An assumption of small variation in disease response among genotypes (slow selection)
separates the system to first order into three blocks. One block describes the population
wide disease dynamics, one considers the fixation index in each class, and the third block
provides the change in gene frequencies. The first two blocks settle to equilibrium at
a rate determined by the population turn-over time while the last block after a while is
dominated by a slowly changing variable, the average gene frequency. The dynamics of the
gene frequency take the usual form for a continuous time slow selection model, and this
provides explicit, epidemiologically justified expressions for the genotypic fitnesses. We
apply the method to other disease transmission patterns (SEI and SIS) and discuss how
suitable time averages extend our results to diseases with temporally varying incidence.
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1. INTRODUCTION

Infectious diseases cause mortality, and variation among individuals in sus‘éép’tibility
and sensitivity therefore is subject to natural selection. This phenomenon was investigated
by Jayakar (1970), who incorporated the qualitative aspects of the epidemiology into the
differential fitness of the genotypes. Gillespie (1975) extended this and developed models
of the contribution to genotypic fitnesses by the disease, in that an epidemic is assumed
to run through the population each generation. This approach to a more epidemiological
fitness formulation was developed further by Lewis (1981), Anderson and May (1982),
Longini (1983), and May and Anderson (1983). The mortality of the different genotypes
is assumed to be a function of the intensity of the epidemic, and epidemiological equations
are used to determine the proportion of hosts that are infected. The host is assumed

to have discrete generations with a generation time that is considerably longer than the
period of infection. Others have relaxed these assumptions and treated both genetics and
disease as continuous processes allowing for the study of endemic diseases (Kemper, 1982).

These studies all assumed that factors other than the disease ultimately regulate the
population size, and the link between the evolutionary and the epidemiological parameters
is not transparent. Following Beck et al. (1984), we will take another approach and consider
explicit equations for the dynamics of each genotype in the presence of the disease. This
allows description of disease-induced density dependent selection in an epidemiologically
justified way. Some simplification of the model is needed to further analysis, and we
- consider only genetic variation at loci with a small effect on susceptibility and sensitivity
i the host. That is, we consider the case of slow selection at one locus. Also we assuime
two alleles and reproduction by random mating, but the approach and the results are
readily extended to multiple alleles.

A disease model with three epidemic classes and three genotypes in the host is de-
scribed by 3 x 3 = 9 coupled differential equations. If the genotypes are equal with respect
to the disease, the neutral case, then a manifold of equilibria exists characterized by the
epidemiological equilibrium and the Hardy-Weinberg manifold of equilibria characteristic
of no selection at one locus. For small fitness differences among the genotypes, the popu-
lation is expected to move slowly along this manifold. This is the foundation of the slow
selection approximation of genetic evolution.

In their analysis of the case of slow selection Beck et al. (1984) applied a rather
complicated singular perturbation method involving a variable projection directly onto
the slow manifold. The main result of this paper is a major simplification of this method,
in that we apply a transformation of the model equations that for the neutral case decouple
the dynamics in three blocks, one describing the disease dynamics, one the evolution of the
gene frequency, and one block describing the deviation from Hardy-Weinberg proportions.
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After the decoupling Beck’s projection method is still needed, but the situation is now
considerably less complex, because the singular perturbation needs to be performed only
within one block of equations.

In the first section we describe the transformation for a population without disease
and show how the selection process essentially is limited to a slow change in gene frequency.

— Continuous models with explicit description of the dynamics of each genotype has previ-

ously been studied (e.g. Nagylaki and Crow, 1974; Hoppensteadt, 1975; Nagylaki, 1977;
Freedman and Waltman, 1978; Hunt 1980, 1982) and we compare our results to these.
We then turn to the other aspect of the problem, a population- with no genetic structure
exposed to a contagious disease that is sometimes deathly. Epidemic models with varying
population size has recently been studied by several authors, and we summarize only the
information that is relevant for our model (Anderson and May, 1979; Getz and Picker-
ing, 1983; Andreasen, 1989; Busenberg and van den Driessche, 1990; Pugliese, 1990a,b;
Busenberg and Hadeler, 1990).

After these preliminaries we can state in section 4 our model that combines the epi-
demiology with the genetic structure of the host and demonstrate how our transformation
simplifies the system. The change in gene frequency can be extracted from the modecl
in a slightly complicated way outlined in section 5. The equation for the change in gene
frequency induce an expression for the approximate fitnesses for the genotypes in terms of
their effect on the disease parameters of the model. This expression is discussed in scction
6, and in section 7 we show how our method can be applied to other epidemic situations,
and we suggest extensions of the results to diseases that exhibit sustained oscillations.
Finally in section 8 the applicability of the approximations is illustrated by numerical
examples.

2. CONTINUOUS GENETICS WITH WEAK SELECTION

Our genetic model describes one autosomal locus with two alleles 4 and a in a diploid
continuously breeding host population. For the sake of simplicity, we assume that the two
sexes behave identically with respect to the processes involved. The genetic structure of
the population is determined by the density (or number) of each of the three genotypes
AA, Aa, and aa, and the densities are denoted z1, z2 and z3 respectively. Assuming
random mating we find that the change in the genotypic densities is given by

dzx =

dt1 = pZNBl(xl,sz,m:s) — My(21,22,23)2:

dz =

clt2 = 2pqN By(z1,22,23) — Ma(z1, 22, 23)T2 V)
dz -

_d_t3 :quB3($1,$27x3) —M3($1,$2,l’3)$3:
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where N = a1 + z2 + z3 is the total populat1on size while p = (22, + 7:9)/(7]\7) and
g = (223 + 22)/(2N) are the frequencies of alleles of type A and a among the alleles in the
population. The average rate of birth of the three genotypes are given by o

B, = ?(Buff + (B2 + Ba)fifa + %Bzzfzz),

2 = 5}1)—(1(%(312 + Bn1)fi1fa + 3(Bs2 + Bas) fafs + 5 Baa f7 + (Bis + le)flfé),, (2)

1 .
3 = ?(Bssfg + 1(Bs2 + Ba3) fafs + iBzzfg),

o

o

where f; = z;/N,i = 1,2, 3, are the frequencies of the three genotypes. We assume that the
genotype specific death rates M; and the pair specific birth rates B;; are density dependent
and frequency dependent, i. e. that B;; and M; may depend both on the total density N
and on the frequencies of the three genotypes. In most of our arguments, however, we
will assume an additive specification of the effects of the two sexes on the birth: rate.
This is avoiding the possibility of complicated dynamics due to fertility selection,-and it
is equivalent to assuming that only one sex, usually the female, influence the birth rate or
that both sexes have equal influence on the birth rate, i. e. we will assume B ij = B + B;
(Nagylaki and Crow, 1974; Feldman et al., 1983).

The model (1) disregards the age structure of the population. Newborn indi\}i"cluals,
e.g., reach instant sexual maturity and are counted among reproducing individuals. This
is not a particularly reasonable assumption, but it provides a good approximation of the
evolutionary process in case of weak selection where the genotype-specific birth and death
rates are almost identical. The demographic process then is expected to take place on a -
time scale faster than the time scale of changes in the gene fr'équency p. The population
dynamics is dominated by the characteristics of the average individual, and fast conver-
gence to equilibrium is expected. Therefore, details of the demographic process ls less
critical as long as the dynamic characteristics of this equ1l1br1um may be described by the
simplified model expressed in (1).

We assume that the effects of the alleles are weak in the sense that the genotype-
specific birth and death rates are almost identical. The birth and death rates of the
genotypes therefore may be written as small deviations from population birth and death
rates, in that

Bij = b(N) + €bij('$1,$2, T3)
M,' = ,u(N) + 6/1,‘((121\, 1122,1113)
with € « 1. The birth and death rates are density dependent, but the frequenéy de-

(3)

pendence is limited to the genotypic deviations, and it is therefore weak. The model is
biologically meaningful if we assume that p(oco) > b(0) > w(0) and that p(NV) is.an in-
creasing and 0(N) is a decreasing function of the population size. With the form (3) of

3




the birth and death rates, the model (1) becomes

drs. .
G =PV = pW)e + e,z )
- d , -
% = 2pgNb(N) — p(N)z + epa(e1, 22, ¢3) (4)
el e . ;*_d . e e e e I el e
—:;ti = q2Nb(N) - ‘LI.(N)-T:; + 6¢3($1,$2, .’123)

wherée 5 - _ -
Y1(z1, T2, x3) = p?Nbl'(wl,$2,$3) — pi(z1, 22, 23)T1
Bo(x1, T2, 23) = 2pqNbo(21, T2, %3) — po(21, T2, T3) T2 : (5)

153(561,132, $3) = q2N773(1?1,932,$3) - u3(931,5b‘2,$3)$3

are describing the selection in the population. The averages, b;, are given by equations
like (2). '

The two time scales of the model, the demographic and the evolutionary, will become
apparent by a change in variables (Christiansen and Fenchel, 1977). We describe the states
of the population by the total size N = z, + z3 + 23, by the frequency p of alleles 4, and
by Wright’s fixation index (Wright, 1969; Nei, 1977),

_ 4z 13 — :L'g
T (221 + 2)(233 + 72)

for (221 4+z2)(2z3+22) # 0 and F = 0 when 2z; + 2, = 0 or 223 + 22 = 0. The quantity F
is a density and frequency independent standard measure of how far the population is from
the Hardy-Weinberg proportions. When F' = 0, the genotypic frequencies are in Hardy-
Weinberg proportions, i.e., fi = p?, fo = 2pq and f3 = ¢2, the frequencies characteristic of
the population of newborns. A positive F indicates a higher number of homozygotes than
expected with random mating and a negative F' shows an excess of heterozygotes. Simple
algebra shows that the densities of the genotypes can be recovered from (N, p, F') by the
formulas

z1 = (p* + pgF)N

zp =2pq(1 — F)N (6)

z3 = (¢ + pgF)N

where ¢ = 1 — p is the frequency of a.

In principle the rate of change of N, p, and F' can be computed in a strait forward
manner using the chain rule. However, the computations get quite involved and it is
practical to utilize the transformation properties derived in Appendix A. Using these we
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find

% — (b(N) = u(N))N + ey m
P _ e, e
dF ' - N

where the weak selection terms 1 are to be discussed later..

The transformed model (7)—(9) immediately shows that the population dynamics (7)
is essentially (to the first order) independent of the genetic structure and takes place on
a time scale that is fast compared to the change in gene frequency p. Furthermore the
deviation from Hardy-Weinberg proportions decreases at a rate that is c01nparab1e"'to the
population birth rate (V) (Nagylaki and Crow, 1974; Christiansen and Fenchel, 1977)
which is a measure of the population turn-over time. Our assumptions on b and ,u 'secure
that the population equation

dN
dt

has a stable equlibrium N*, and that Hardy-Weinberg proportions, F' = 0, are stable to
the first order. The weak selection will not significantly change the equilibrium values of N

= (b(N) — w(N))N

and F, and the dynamics of p can be computed by evaluating ¢, at (N, p, F) = (N*;p,0).

Using the transformation (6) we can now compute 3,(N, p, F') from our knowl_édge of
1/;,)(:'01,&‘2,3;3) (Appendix B): 4

$p(N*,p,0) = ¢, (p?N*,2pgN* ¢ N*)
= pg((71 — 2)p — (F3 — 72)q)

where 7 = b(p?N*,2pgN*,¢*N*) — pu;(p* N*,2pgN*,¢>N*). Thus the dynamics of p are
to the first order given by : :

d . L
=L = ep(1 = p) (1 + 2 = ) — (Fa = 7).

This equation simplifies considerably if we assume that the two sexes in a mating contribute
additively to the birth rate. This is equivalent to assuming b;; = b; + b; for all 7 and
7 =1,2,3, and we get y

dp

P = ep(1=p)((rs + 73 = 2ra)p = (rs = 72)), -0

where r; = bi(p?N*,2pgN*,¢* N*) — pi(p* N*,2pgN*,¢* N*) is the net reproductive rate
" of genotype 1. '




Equation (10) is the usual equation for slow selection in a random mating population
where the change in gene frequency of allele A is proportional to the excess Malthu-
sian parameter for individuals carrying allele A (Norton, 1928; Fisher, 1930; Crow and

" Kimura, 1970; Nagylaki and Crow, 1974; Nagylaki, 1977): )

d
—P- = ep(pr1. +qr2— 7),

where 7 = p*ry + 2pgrqs + ¢?r3 is the mean Malthusian parameter and pr; + ¢r is the
average Malthusian parameter for allele A. The equation may also be expressed in terms
of the difference between the average Malthusian parameter of allele A and the average
Malthusian parameter- of allele a in the populatlon

4 A
d—f = epg((pr1 + gr2) — (pra2 + ¢r3)).

The three ways of writing equation (10) are entirely equivalent, and for this kind of equation
we will use the short form

dp _
—_ = i y - 1
5 epq(ri|p) (11)

where (r;i|p) = pr1 + (¢ — p)r2 — gr3 is the difference between the mean r of allele A and
the mean r of allele a in a population with gene frequencies p and ¢ =1 — p.

Equation (10) gives the well known condition for the existence of a polymorphic equi-
librium, namely that the heterozygote must have a higher net reproductive rate than either
of the homozygotes or a lower net reproductive rate than either homozygote. Equation
(10) has three equilibria, two fixation equilibria at p = 0,1, and an equilibrium at p = p*

with

* r3 — T2

P = L 413 —2ry
The equilibrium p* is stable and biologically meaningful (i.e. 0 < p* < 1) if and only if
r1 < ro and r3 < ro. If rp < ry,73, then p* determines an unstable equilibrium dividing

the set of gene frequencies that lead to fixation of either of one or the other allele.

The result (10) is similar to the result of Nagylaki and Crow (1974) and Nagylaki
(1977) who used a linear measure (corresponding to Fpg) of the deviation from Hardy-
Weinberg proportions. Hoppensteadt (1975) analyzed a model like (4) by transforming to
genotype frequencies and applying a version of matched asymptotic expansions with mul-
tiple time scales. Using similar methods Aronson and Weinberger (1975) and Hunt (1980,
1982) analyzed spatial diffusion of genes and slow selection, slow population growth. The
condition for polymorphism is well known (Norton, 1928; Fisher, 1930).

The analysis in this section shows that the transformation to (N, p, F) explicitly ex-
press how the dynamics splits in two time scales, and this method facilitates the com-
bination of epidemiology and host genetics. The method has been developed under the
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assumption of two alleles, but it generalizes immediately to multiple alleles as the 1)1'61)@1‘—
ties of Wright’s fixation index is shared by similar indices for multiple alleles (Nei, 1977).

3. DISEASE DYNAMICS

Consider a disease with no latent period, and assume that individuals once recovered,
acquire permanent immunity. Transmission is purely horizontal and no vertical transmis-
sion takes place. Infection may alter mortality, but does not reduce fertility. In section 7 we
will return to a discussion of some of these assumptions and consider modifications of the
discase etiology. The population is divided into three epidemic classes, with S susceptibles,
I infectious, and R recovered individuals, and the total population size is N = S+ 1 + R.
The population is well mixed so the rate at which susceptibles get infected, the force of
infection A, is proportional'to I, in that A = BI. The rate of recovery of infected indi-
viduals is v. The birth rate in the population is b, the death rate of individuals without
the disease is p, and the infected individuals has an excess mortality given by «. .This
produces the well known host regulation model (Anderson and May, 1979)

dS

dl . '

S =BSI-(vtpt+to) - (12)
dR '

The population birth-rate b depends in general on the density and composition of the .
population. However, in describing the dependence on the disease state we will restrict
attention to an additive specification of the birth rate of a pair of individuals similar to the
assumptions made in the genetic model, and we will assume that mating is random with
respect to disease class (i. e. bgs = bg, bsy = (bs + br)/2 ...). Therefore, the population
birth rate can be specified as

WS LB =& (bsuv)% B + m(N);’f,—)

The excess mortality of infected individuals make the host population-size dependent on
the level of the disease, and the model allows for density dependence in both mortality
p and disease transmission 3. We will assume that the disease cannot increase fertility
bs(N) > by(N),br(N) and that the birth rates bg(N) are decreasing functions of N while
the mortality u(N) is an increasing function with peo > bs(0) > p(0). The contact rate
B(N)N is assumed to be non-decreasing.

Using the methods of Pugliese (1990a), Andreasen (1989), and Busenberg and van
den Driessche (1990) one can show that the dynamical behavior of (12) is characterized
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by the reproduction number
B(N)N

POETETS (13)

R(N) =

The disease free equilibrium S = N determined by bs(N )= ,u(N ) is asymptotically stable

if R(N) < 1. When R(N) > 1 the disease will persist and there exists a stable endemic

“equilibrium with someé population density N *<N. The decrease in population size dueto

the pressure of the disease is an expression of the ability of the disease to slow the growth
~of the host population.

Although modél (12) is formally similar to the well known SIR-models with fixed
population size (Hethcote, 1974; Dietz, 1975) it is founded on very different the biological
assumptions. The host regulation model (12) describes the interaction between population
size and disease transmission, and the dernsity dependence of the disease transmission is de-
cisive for the resulting dynamics of the model (Getz and Pickering, 1983; Andreasen, 1989).
In addition, the mathematical properties of model (12) deviate from those of the SIR-
models. For instance, the introduction of a latent period in the host regulation model

_may lead to sustained oscillations (Anderson et al., 1981; Swart, 1989; Pugliese, 1990b),
a behavior unknown in models with fixed population size. The assumption of an additive
structure in the birth rate seems to be necessary to maintain the simple dynamics. If the
fertility contribution of a disease-free individual is lowered when mating a diseased indi-
vidual then quite complicated dynamics may result (Diekmann and Kretzschmar 1991).

4. WEAK DISEASE INDUCED SELECTION

The combination of the models from the two previous sections provides an epidemi-
ologically justified model that describes the population dynamics at the genotype level.
We assume that the population mates at random, not only with respect to genotype, but
also with respect to disease class. To maintain the simplifications obtained by this as-
sumption we also assume that additivity of the genotypic influence on the birth rate and
for simplicity we formulate the equations assuming equal birth rate in the disease classes.
Further, we assume that infectivity is independent of genotype. Since the infectivity enters
only through the magnitude of the force of infection A, genetically determined variation
in infectivity will not lead to a differential change in survival as long as all genotypes mix
homogeneously during disease transmission.

The subscripted parameters will indicate the small genotypic variation in parameters
as in equation (3), and parameters without subscript describe the main population dynam-
ics as in equation (12). The variables are subscripted according to genotypic class, aud a
variable without a subscript denotes summation over all genotypes. The dynamics of the
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combined model is then given By

I , B,

%—St—'— =p’N(b+eh) — (p+em)Sr— (B+eb)SiI

d _

—% =2pgN (b+¢€b2) — (p + ep2)S2 — (B +€B2)S21

dsS T :

7;- = qu(b‘*' €b3) - (llr +6,U3)S3 - (ﬂ +€ﬂ3)S3I

dI '

Etl = (B+¢eB)SiI = (p+em)hi = (v+em)h — (a+eam)l;

dr. ' -
d—: =(B+eb2)Sal - (p+ep) o — (v+em)h — (atear)l,  (14)
i1 |
fd—: = (B+¢Bs)SsI — (u+eus)ls — (v +evs)Is — (o +eas) I
El—g—l = (V +€V1)Il - (ﬂ +€Il1)R1
dR
d—t2 = (v+ev2)ly — (p+ep2)Ro

l .
(C% =(v+ 6V3)Is - (# +€ﬂ3)R3

where the average rate of birth of the three genotypes is calculated assuming equal'.bbirth.
rates for all disease classes, i. e. b; is given by equations like (2) with f; = (S;+I; + R;)/N.

The coordinate transformation into (N, p, F')-space is applied for each disease class, so
we transform the equations into (@, pg, Fg)-space, @ = S, I, R. For notational convenience
let p = (psS + prl + prR)/N denote the gene frequency in the total population. The
transformation properties from Appendix A allows équation (14) to be substituted by the
equations |

{

% =bN — S — BSI + eypg

1 |

;—tzﬁSI—(l/+ﬂ+a)I+€¢I (13)
dR .

_(E =vl — /.LR + Ed)R
dps I R
i = bg(Pr —ps) + b5 (PR — ps) + eps

dp E

715 = BS(ps — pr) + €¥pi Lo (16)
dpr ‘ '

I
T = VE(p] —pRr) + EPpr




dFs N ((ﬁ - ps)? pq >
—2 =p— | ——(1—-Fg)— —Fs ) +e¢
dt S Psqs ( s) Psqs S vrs
aF BS ((_1_3_5_191)__(1 Fr) - psqs(FI - Fs)) +eYrr (17)
dt pIqr p1q
dFp _ vi ((PI pr)? PIqI )
=X (1-—Fp) — Fpr—Fp) )| +e¢
dt R PR4R ( ) ~ PRYR ( R " ¢FR _

where the second order terms 1 are discussed later.

To the first order, the dynamics of (15)-(17) splits up in a) an SIR-dynamics which
is independent of the genetic structure b) a gene frequency dynamics which depends only
on SIR and on the gene frequencies and c¢) the dynamics of the deviation from Hardy-
Weinberg proportions.

The dynamics of the SIR-model was discussed in the previous section, and we will
assume that the parameters are chosen so the system (15) settles at a locally stable endemic
equilibrium (S*, I*, R*) for ¢ = 0.

The second part of the transformed equations, (16), contains a one-dimensional sin-
gularity ps = pr = pr = p for € = 0. This manifold is stable, i.e., (ps,pr,pr) — (p,p,P)
for t — oo. To see this, consider the variables §; = pg — py and &, = ps — pr, and observe

that p R
Lo b5 +hS)E -

d{z _ R

prle (—b§ + VR)§1 (VR + bg)ﬁz-
This system has a unique fixed point at (¢;,£2) = (0,0). Since equations (18) are of the
form d€/dt = (A+ B(t))¢ where the eigenvalues of A have negative real part and B(t) — 0

for t — oo, we have £;(t),£2(t) — 0 for t — oo (Coddington and Levinson, 1955, p316).

(18)

The right hand sides of the equations (17) for the deviation from Hardy-Weinberg
proportions are discontinuous at pg = 0 and pg = 1 corresponding to fixation of one allele
in a disease class, @ = S,I, R. However, if we define dFg/dt as zero when p = 0 or 1,
then the equations extends naturally to describe the dynamics of the Fg, Fr and Fp in
the closed interval [0,1]. To see this we need to analyze the behavior of Fg when initially
one of the corresponding gene frequencies is zero, i. e., for pg(0) = 0 or 1.

Assume that the allele A initially is present only among diseased or recovered indi-
viduals, i. e. pg(0) = 0. Then the class of susceptibles consists of aa individuals and the
genotypic composition is gradually changed by the birth of individuals with allele A in the
frequency p # 0. For ¢ = 0 we get from equation (14) that

pbN't
ps(t) =~ 1—7—75,— for t — 0.
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The genotypic frequencies among newborns are in Hardy-Weinberg proportions with gene '

frequency p and the initial population is in Hardy-Weinberg proportions with gene fre-
quency (. Then from equation (6) we get
2pgbN't

Fs(t)=1—§(ﬁ-b—ﬁt—)

+ O(t),

so Fs(t) — p for t — 0, and the mixture of the populations produce a deviation. from
the Hardy-Weinberg proportions due to the Wahlund effect (Christiansen, 1988). Thus,
equation (17) approximately reads as '

dFs  _ 2pgbN
dt S

as long as pg is small. For py(0) = 0 we get in a similar way that

2psqs(l — Fs)BSIt
2(p5ﬂSIt) ’

50 Ff(t) — ps + qsFs for t — 0. Therefore, equation (17) becomes dFy/dt ~ —2psqs(1 -
F5)BS as long as py is small. Finally, for pr(0) = 0 we get that Fgr(t) — p; + ¢/ Fy for
¢t — 0 and equation (17) is dFg/dt ~ —2p1q1(1 — F1)vI/R as long as pg is small. The
equations (17) are therefore bounded and well behaved for 5 in the open interval (0,1).

pr(t) = psfSt and Fr(t)=1-

Then for any initial composition of the population we have that (Fs, Fr, Fr) — (0,0,0)
for t — oo since the quadratic terms in (p — pq) go to zero.

We conclude that equations (15) (17) for € = 0 contains a 1-dimensional stable man-
ifold of fixed points

(p)T (S I R pS)pIapR,FS)FI)FR) _(S* r R*)p’p7p’0 O 0) | (19)

where T denotes the transposed. The interaction between the epidemiologically deter-
mined host regulation and other population processes is therefore independent of the gene
frequency on the fast time scale. Furthermore the population will attain Hardy-Weinberg
proportions and identical gene frequencies p in all disease classes on this time scale. The
change in gene frequency p occurs on the slow time scale determined by the second order
terms which 1s the subject of the next section.

5. THE CHANGE IN GENE FREQUENCY

The dynamics of the gene frequency p is investigated by applying the singular pertur-
bation method of Beck et al. (1984) to the system of equations (15)-(17). These equations
may be written in the form

dy

= = Gy) +e¥(y) (20)
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where y, G, and ¥ are nine-dimensional vectors. The equation G(y) = 0 has a one
parameter family of solutions y = wg(p) given by equation (19), and this solution is stable
for € = 0 so G'(wo(p)) has eight eigenvalues with negative real part bounded away from 0

and one zero eigenvalue.

For ¢ # 0 we search for solutions to the equation dy/dt = G(y) + e¥(y) close to the
stable manifold (19). These solutions will have the form - : - -

y(t) = yo(t) + eya(t,€) = wo(p(t)) + ey (2 ), (21)
in that yo is on the stable manifold. In equation (20) this expansion produces the form

4(P) 2 1 P = Glmo(p)) + G (wo(p))us +eUwo(p) + O(c?)

We separate the dynamics of p and y; by projecting onto a left-hand zero eigenvector
w(p) of G'(w(p)) and onto its orthogonal complement w(p)L. The ordinary inner product is
denoted by [-|] and the projection onto w(p)* by P which is given by Pu = u—[wlu]w/|w|?,
where |w|? = [w|w]. The change parallel to w(p) is given by

()b (PN L + eloo] 2] = efuwl@(wa(p))] + O(c?) (22)

and the change orthogonal to w(p) is given by

6TJ1

= ePG'(wo(p))y1 + eP¥(wo(p)) + O(€?).

Many expansions like (21) exists, and we choose to consider only an expansion where
[w(p)|0y1/0t] = 0 because a zero eigenvector of G'(w(p)) is tangent to the stable manifold
wg. Thus, in the expansions (21) the variable y; express the direction and relative magni-
tude of the deviation of y from wj. This requirement allows a decoupling of the dynamics
of p from the dynamics of y. Rearrangement of (22) provides the final expression for dp/d?
as

dp _ _ [w|¥(wo)]

a© [w|wg] (23)

except for terms of the order €% or smaller.

To find the normalized zero eigenvector w/[w|wy] observe that G'(wg(p)) is a block
diagonal matrix. The upper left block and the lower right block correspond to the SIIR and
the F dynamics, respectively. These two blocks are both invertible, so the zero cigenvector
w will vanish on these coordinates. For the remainder of this section we therefore may
restrict our attention to the three coordinates describing the gene frequency. The center
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three by three block of G'(wo(b)) is independent of p, and from equations (16) it is given
by 4 ! B

I I

' I R
bR b bg
0 V'ﬁ —-—VR-

G;(wo<p>>=( Bs  -BS 0

where all quantities are evaluated at the endemic equilibrium. The mean residence time
in a disease class of an individual that enters the class at the endemic equilibrium are
§s = S/(bN) = (u+ B, 6 =(BS) ' =(p+v+a)™?, and g = R/(vI) = u~! (see

equation (12)), so we may write

-1I4R -117 -1R

, —5511%‘ b5 w 55" N
Gp(wo(p)) = 67 -6t 0 (24)

.0 65" —67"
The zero eigenvector w of this block is therefore independent of the gene frequency p, and

we get '

Wp = (wl,wg,w;;) = ((SS(S + I+ R),(S[(I-*— R),&RR) (25)
Since wy(p) is (1,1,1) on the three p dimensions, we have [w|wy] = w1 + we + w3 = ||w],
where || -|| denotes the 1-norm of the vector, i.e. ||w|| = |wi|+|w2|+ |ws|. The components

of the zero eigenvector w is the total time the individuals in the population spend in the
three disease classes. Thus, the components of the normalized zero eigenvector w/[w|wy] =
w/||w|| express the fraction of their life time individuals spend in the three disease classes.

The second order terms of equations (16) can be computed as described in Appendix
B, and by the assumption of additive contributions of the sexes to the birth rate we get

Vps = pg(biN/S — p; — BiI|p)
Ypi = pg(BiS — (i + vi + a;)|p) © o (26)
Ypr = pg{vil | R — p;|p)

where all quantities are evaluated at the endemic equilibrium and as before we use

(kilp) = pky + (g — p)ka — qk3 = (pk1 + qk2) — (pk2 + qks3) (27)

for the difference between the average k’s of allele A and allele a. Inserting ¥(wg) from
equations (26) into equation (23) provide the equation for the slow dynamics along wg as

wj I Wy

dp N w
zt- =Epq (g’ m(b1|p> - (l"ilp) . (“w” § - ”w“) (ﬂzs|p>

- gl + (an 7~ ) e
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the solution to (28) will converge uniformly in € on intervals [to; T/e).

This equation provides a good approximate description of the dynamics of the gene fre-
quency. A result by Hoppensteadt (1966, 1971) shows that if (28) has an equilibrium,
stable at an exponential rate, then there exists a ¢y such that the solution p.(¢) to (28)
will converge to the solution obtained from the system (14) uniformly in ¢ on all closed
subintervals of the interval [to; 00). Otherwise, if equation (28) has a stable equilibrium

6. APPROXIMATE GENOTYPIC FITNESSES

The form of equation (28) invites an immediate pafallel to the classical population
genetic equation (11), in that it may be written as

dp
i epq{si|p),

where (s;|p) = (psy + ¢gs2) — (psa + ¢s3) and

L Nw o (w T ws I wa ) o0
s“snwn”‘ e <llwIIS nwn)"' Tel ‘+(nwnR nwn) o (29

Thus, we can define Malthusian parameters for the three genotypes by r +¢s1, r +¢s9 and
r+ 553 of genotype AA, Aa and aa, and recover equation (28) as a version of equation
(11). In this sense, equation (28) provides a definition of fitness induced by variation in
reaction to an epidemic disease described by an SIR-model.

In the fitness parameters, s;, the genetically determined variation in disease charac-
teristics is weighted by a factor which measure the relative contribution to reproduction
of the disease class in which the characteristic is acting. The contribution of the geno-
typic variation in the parameters is determined by weights w which are closely linked to
the fraction of the host life span during which the host is subjected to the action of the
parameter, e. g. the importance of a higher recovery rate v depends on the expected time
spend in I and R while the importance of the morbidity rate o depends only on the time
spend in the infectious class.

The fitness contributions of the death rate parameters y; and «; are always nega-
tive, and the fitness contribution of the birth rate parameters b; is positive. The fitness
contributions of variations f; in the infection rate coefficient and of variations »; in the
rccovery parameters may be evaluated assuming equilibrium in the fast disease dynamics.
At steady state of the disease we get from equations (12) that I = Ru/v, S =p+v+a
and (b — u)N = al. Using these relations we get

I
W —wy = bﬂS(ﬂIS 1;(I+1rz))_-ﬂb—’u (30)
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which is positive when o > 0 because then b > p from our assumptions. Thus, the
fitness contributions of variations in B are negative. When o = 0 we get the equilibrium
population size determined from the equation b(N) = u(]V ), and variation in the infection
rate coefficient B as expected is neutral to the first order. The fitness contribution of
variations v; in the recovery parameters are positive when « > 0, because we have

w3%——w2= %% (31)
Again, if @ = 0 variations in the recovery parameter is neutral to the first order. The
qualitative influence of genoty'pic variation in the genotypic parameters b;, y;, a;, v; and
; therefore is fixed in the SIR host regulation model (12), in that b; and v; provide a
positive contribution to fitness and p;, a; and B; have a negative contribution to s;. The
relative importance of the genotypic parameters, however, depends on the quantitative
characteristics of the disease.

The different weights of variations in the basic birth and death rates may be a bit
surprising. However, for & = 0 we have w; /|jw|| = S/N so the ordinary Malthusian fitness
parameter b; — u; is recovered. With the disease present and oo > 0 the mortality rate
varies through the life of an individual, so the birth rate b and the death rate [t are no
longer the sole determinants of the population growth rate.

The genotypic fitness definition in equation (29) is in terms of a linear combination of
the contribution to fitness of the variation in the epidemiological and demographic parame-
ters as one would expect since we have only retained first order effects. The change in mean
fitness also 1s well characterized as long as the SIR-model that governs the fast dynamics
of the model is unchanged, i. e., as long as the coefficients in definition (29) remain fixed.
The mean fitness always increases except in a population in genetic equilibrium (Fisher,
1930; Kimura, 1958). The condition for polymorphism is equivalent to the condition that
the net growth rate of the heterozygotes exceeds that of both homozygotes, s;, s3 < 3.

The relations (30) and (31) may be used to simplify equation (29), and by measuring
$; In units of the Malthusian parameter b — u we get

oo N W p s op S B, v N ﬁ_<+&>&
b—p b—pplwl| b b—pp bulw| B ptv+apw|\v v)a)
(32)

where

oll = £ p(p +v)
ullw]| = bs+(1+——y(u+u+a)) R.

Thus, relative measures of the genotypic variation in the disease parameters seems as
natural as the linear measures that we used in the formulation of model (14).

15




6.1. Disease of short duration

For a disease of short duration, where u/v is small, we see from (32) that similar
relative variations in the values of o and v will have comparable effects on the fitness.
Also when the disease duration is short and the added mortality is low, o small, we get
p/b~ 1 and pj||lw| = N so

RENE—— , CH Nbi_ﬂi—ig—i-l-ﬁ—%. (33)
b—pu b—p NB v «a

A childhood disease is characterized by a large fraction of recovered and immune individu-

als in the population. Thus, we expect relative variations in-a and v to out{veigh variations

in B. Since the reproduction number, R in (13), is typically in the range 4-20 for viral

childhood diseases (Anderson, 1982), we expect S/N to be in the range 0.05-0.25, so the

contrast in fitness effects may be quite large. However, variations in the three epidemiolo-

gical parameters have about equal weights in a disease which affects only a low proportion
of the individuals in the population. The infection rate coefficient 8 determines the rate
of entrance into a period of increased mortality, and small variations in this parameter are
not very important if almost all individuals enter this state early in life.

6.2. Disease effects on the birth rates

Differences between the three disease classes in birth rates complicates equations (16)
and (17). The change in genotypic frequencies between the disease classes may result
in deviations from Hardy-Weinberg proportions among newborns in the S-class. This
deviation, however, is of order £, so the convergence of F' to zero is maintained when
€ = 0. Therefore, we only need to examine equations (16), where only the first equation
changes and becomes

d I R
&s - bIg(PI —-ps)+ bRg(pR —ps) + 3(br — br) & (pr — p1)

dt
+ 3(bs — br)F(pr — ps) + 3(bs — br) E(pr — ps) + ey

The derivative G,(wo(p)) now becomes

g1 g2 g3
BS -pS 0
0 v% —VTI?;

where I R
g1 = _bI§ - bRE —1(bs— b))% — 3(bs —br) &

I

g2 = brz + 3(bs — br) — 3(br — br) &R
R

g3 = bR§ + 3(bs — br) & + 3(br — br) £%
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and the fitness weights (w;,wq,w;3) are determined as the left zero eigenvector of tliis
matrix. To obtain equation (28) for the slow change in the population gene frequency we
need to modify the first equation in (26) to ’

I R
Yps = palbsi + bri= + bri—= — pi — Billp).
S S
Thus, the approximate fitness (29) becomes
I R
8i = bsi + brig + bri —)
| H | ( S S
(4 I ) w3 I w2
BN S P T
g (IIUJH S ol H || [wll B lwl]

This equation is exactly of the form (29) if we define the birth-rate deviation b; associated
with genotype 7 as the weighted average b; = (Sbs; + Ibr; + Rbgr;)/N in the population at
equilibrium. The change due to the heterogeneity in the birth rates is therefore reflected
entirely in the weights w. ‘A

7. EXAMPLES OF OTHER DISEASES

The method can be applied to most other diseases described by SIR-type models.
Here we consider two examples: a deathly disease with a latent period, and a disease
which does not confer immunity to recovered individuals. We again assume that mortality
#(N) increases and birth rate b(/V.) decreases with populatlon size, and that the contact
rate f(N)N is not decreasing.

7.1. Disease with a latent period

Most contagious diseases do not cause the infected host to become infectious imme-
diately after contracting the disease. To describe this we introduce a latent class H of
individuals who are infected but not yet infectious and we denote by n the rate at which
these individuals become infectious. For the sake of simplicity we assume that the disease
is always deathly so that the dynamics becomes

ds

dH

— =BSI-(n+mH (34)
dI
% =nH - (p+ a)l.

The disease free equilibrium N of model (34) is unstable when the reproductlon number
(]\r)’
B(N)N n

#(N) +a 0+ p(N)’

R(N) =
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exceed unity, where N is determined by b(N) = u(N).

The genetic response to the disease is modeled as in section 4. We write explicit
expressions for the dynamics of each genotype and use the same methods as in the previous
sections to obtain the equations for the change in gene frequency in each class

dps ,
S — f;ts = b (PH =p3) +b (pz =Pps)tevps T I ——
d .
PH _ S(ps — pr) + ctpn ; (35)
dpR,
el WT(PH — pr) + €¥pi

and for the change in deviation from Hardy-Weinberg proportions in each class

dF 5G
dFs bs ((p ps)? (1— Fg)— P Fs) teps
Psqs

dt Psqs
dFy _ﬂSI ((ps_py_)(1 Fu) - Psqs (Fu — Fs)) \edp (36)
Tt PHYH PHYH
dFy _ nH ( (pr — p1)? PHYH )
= ~— -7 (1— Fy)— Fr—-F +e€
o =T orar ( T) P ( T — Fu) YEr

The model (34) of host regulation with a latent period can exhibit sustained oscil-
lations (Anderson et al., 1981; Swart, 1989; Pugliese, 1990b) which was not possible in
model (12). Provided that such oscillations do not occur and that disease transmission is
sufficiently strong to allow an endemic disease equilibrium, it is seen that model (34)-(36)
for € = 0 has a one dimensional stable singularity

CUo(p) = (S*, H*, I*,p,p,p, 0,0, 0),
and we find the change in gene frequency along this manifold governed by

dp _. N w,; R A T S
= = P4 (S” i (bilp) — (milp) (”w” Tl H)(ﬁzllp)

w2y w3 H> w3
—\ir e 1) (i) — i {ailp) |
(o = o 7. e~ e ))
where (wy,w,,ws) = (6sN,6y(I + H),6;I) measure the expected residence time in the
various disease classes, §g = S/(bN) = (u + BI)™}, ég = H/(BSI) = (u + n)~!, and
= I/(nH) = (1 + a)™! (see equation (34)), and all quantities are evaluated at the

endemic equilibrium. Thus, in this case the properties of models (15)-(17) and (34)—(36)
are very similar.
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-If model (34) settles to a periodic solution, we still can perform the projectioﬁ' onto
the left hand eigenvector w for each time ¢. (Our expression for w will not hold, however,
since we utilized the equilibrium conditions to simplify w.) The resulting equation.. for p
now takes the form

L = cq(t,p) + O(e?), - (38)

where ¢ is periodic in ¢ with a period T' determined by the disease dynamics. Provided
that the change in p does not change significantly the dynamics of the disease one can use
a standard averaging argument to see that p is well approximated by

d
-f-l- = —-/ 9(t,p1) dt

on the time interval [to; €~ !] (Sanders and Verhulst, 1985; Murdock, 1991).

We do not know if model (34) can exhibit more complicated dynamics, but if aperiodic
oscillations occur, we suggest the following averaging procedure. Let 9 be the stationary
density of the population states for ¢ = 0, i. e., 9(S, H,I)dS dH dI is the probability that

(S*(t), H*(t), I*(t)) is in a small neighborhood of (S, H,I). We conjecture that p may be
f(mnd b)

dp N Wy '

-(/ (ﬁfv_u ol Z) ﬁ'”ds‘”’ﬂl 7)
o= 1) oesamatp)

< o ”a 0deHdID
where (w1, w2, w3) = (B(N)S?E,bE(E + I),bI%S/n) for any state of the disease model.

(39)

The reason for this decoupling of the variation in the disease states and the change in
gene frequency is that as ¢ — 0 the population will pass through an ever increasing number
of population states before any appreciable change in gene frequency occurs. Thus, the
conjecture follows from the law of large numbers (Christiansen, 1984), and we expect
equation (39) to be an excellent approximation if model (34) exhibit a steady state of
sustained oscillations with a short period.

7.2. Disease without immunity of recovered individuals

Consider a disease where individuals who recover from infection do not attain im-
munity and become susceptible immediately upon recovering. The disease dynamics then
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takes the form

95 _ bN + vl — uS — BSI
dI
a—=ﬂSI—(a+u+u)I

Using the methods of Pugliese (1990a) one can show that (40) has a stable endemic equl—
librium exactly when-the reproduction number R(N);— -~ ——~ :

B(N)N

R(N) = A fvta’ -

exceed unity at the disease free equilibrium N where N is determined by b(NV) = u(N).

" In case a stable endemic equilibrium exists, the computations are quite similar to the
ones in the previous section and we obtain

dp N w wy I ws
prilo (S o ”( ilp) — (uilp) — (mg - m)(ﬂﬁlp)

. wy I W2
- e+ (s — 1) "p)>

where w = (85, (b+v)I/S). Note that variations in the two “transfer” parameters 45 and
v carry exactly the same weight in the change of the gene frequency. The interpretation

(41)

of the elements of the zero eigenvector w in terms of conditional waiting times, 65 =
S/(bN + vI) = (u+ BI)"! and é; = 1/(BS) = (p + v + @)~ ! (see equation (40)), is
meaningless here, because these waiting times do not reflect the time spent in the two
disease classes and weighing with the number of occurrences does not help.

8. NUMERICAL SOLUTIONS

To investigate the performance of the approxmations, we compare numerically the
values of p found from the solutions of the exact system to those obtained from the approxi-
mations in three different cases: i) The simple SIR-model (14) with no density dependence
in A and y; 11) the same SIR-model with seasonal variation in the transmission coefficient ;
and iii) the SEI-model (34) in a situation where the model exhibits sustained oscillations.

As it 1s conventional in quasi steady state approximations, we in all cases assume
that the genc frequency has not changed significantly during the initial transience where
the system reaches equilibrium in the fast processes. Therefore we use the same initial
conditions for the exact model and for the approximation. To reduce the effect of the
transient, the initial conditions are chosen close to the endemic (disease) equilibrium, but

far from the genetic equilibrium. In our examples the demographic time scale, 5~ or 171,
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Figure 1. The true and approximate dynamics of p in the variable population size
SIR-model (14) for twe sets of initial conditions. The parameter values are b= 2, u'= 1.5,
v =500, a = 400, B = 6 and ¢ = 0.2. The genotypic perturbations of the parameters are
i1 = 1, v; = 500, and a3 = 400 while the remaining perturbations are zero. The true
value pg (solid line) is computed from the solution to (14) as p; = (psS + prI + prR)/N
and the approximation p, (broken line) is determined from (28). 3
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Figure 2. The error p, — p: at equilibrium as a function of the size of the perturbation
£. All other parameter values are as in Figure 1.
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is on the order of 1 while the genetic time séale €1 (b/e) is 5 — 10 times larger. All
numerical solutions are obtained using a 4th order Runge-Kutta algorithm with variable

step size.

In the SIR-model with constant transmission coefficient, both disease incidence and
gene frequency settles at an asymptotically stable equilibrium. For genotypic variations
in“the parameters of the order ¢ times-the parameter value, we find-that at-equilibrium
the relative error of the approximate solution is of the order ¢ and that the solution to
the approximate equation for p follows the value obtained from the solution of the exact
equation (14) with an error less than ¢ (Fig. ffénd 2). These results appear to hold for
¢ as large as 0.25 and in situations with ultimate polymorphism (p = p*) as well as in
situations with fixation of the a or A gene (p =0 or 1).

As expected the deviation from Hardy-Weinberg proportions, F' converge to an equi-
librium of e-magnitude on the fast time scale. Figure 3 shows the deviation Fy in the
infectious class, the class under the strongest selection. In the figure ¢ = 0.2 while F}
is considerably smaller, Ff =~ —0.05. This appears to be a general pattern: in all our
numerical investigations, we find that F' deviates much less from 0 than promised by the
analysis. This is expected, however, because the deviation from Hardy-Weinberg propor-
tions depends principally on the dominance in fitness and to a lesser extent on the absolute
magnitude of the fitness differences.

The parameter values in an SIR-model often vary by two to four orders of magnitude.
For example the period of infectiousness »~! and the host life span p~! differ by several
orders of magnitude for childhood diseases. Such a difference means that there may be a
large difference in the numerical size of the parameter perturbations. Thus in Figure 1 for
e = 20%, the genotypic perturbation to gy = 1.5 is y1¢ = 1 x ¢ = 0.2 while the genotypic
perturbation to @ = 400 is aze = 400¢ = 80.0. Apparently the approximation works well
in spite of this variation in the numerical size of the perturbations. This is probably due
to the fact that the large parameters v and a appear only in products with I;. After a
short transient phase we have I/R = v™1/u™! = O(p/(a + v)) € 1 so the magnitude of
the perturbations on («a + v)I is comparable to that of uR.

If the disease is truly epidemic, i.e. if the incidence varies over time, we conjecture
that one must average over the stationary distribution as indicated in equation (39). To
illustrate this situation we first introduce into the SIR-model (14) a seasonal variation in
the transmission coeflicient,

Bi(t) = (B +€B:)(1 — ccoswt). (42)

Dictz (1976) studied the parametric resonance arising in the SIR-model with fixed popu-
lation size and seasonal transmission. A similar resonance occurs in (14) when the period of
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Figure 3. Deviations from Hardy-Weinberg proportions in the infectious class Fy
determined from the full model (14) for two sets of initial conditions. Our approximation .
assumes that F; = 0; notice the short time scale compared to Figure 1. All parameter
values are as in Figure 1. "

the forcing function T = 27 /w coincides with the intrinsic period of the damped oscillation

(Fig. 4).
The approximation to the change in gene frequency over time is obtained by 'ave_.i‘a.ging

(28) over a full period T,

dp T N(t) wi(t)
Z_ qu< 0 Wlll—v(ﬂdt (bilp) — (milp)

1 T 7wy (2) I)  w(®), '
7 (nw(nn 5(1) ||w(t)||>ﬂ'(”s(”d”p> @)

LT wm® o LT (we®) I0) w4
7 Tl + 5 [ (uw(tm R(2) uw<t>||>d”"”>)’p

where the weights w are determined as

N ORGESOF: Ok
i) =55 508w vIl
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since this is a left hand eigenvector of G (t) for all t. To find the integrand we solve
numerically the SIR-model without genetics, equation (15) with (42), and integrate by
summing over 400 points evenly spaced over one penod

Apparently the stablhty of the forced oscillation is so weak that the genetlc variation
in parameter values affects greatly both the amplitude of the oscillation and its baseline.

““Thus our assumptions that justify averaging out the fast time dynamics are not satisfied”

since the fast time dynamics-change significantly with the slow time variable. However, in
practice the method WQrksmremarkably well, Figure S

The results are robust to changes in the deta.lls of the averaging procedule Our

“simplified weights (25)

S@)+ I(t) + R(t) I(t)+ R(t) R(t)
BRI +p T ptatv’ p

wrr(t) = ( )

work just as well as wy. Replacing the solution to S, I, and R obtained from (34) with the
values obtained from solving the full 9-dimensional system has little effect. Insensitivity
to the details of the averaging is known from Lotka-Volterra type models. Utilizing the
special structure of Volterra systems Coste et al. (1978) showed that the time average of
a variable goes to its equilibrium value as the averaging period goes to infinity.

Finally we investigate the situation where the disease induces autonomous oscillations
in the disease incidence. Pugliese (1990b) shows that for density dependent disease trans-
mission and mortality the SEI-model (34) may undergo a Hopf-bifurcation producing a
stable limit cycle. We assume

B(N) = BN,
ﬂ,(N) = ﬂiN—k for s = 1a2a37 (44)
p(N) = u(l+ N/K),

and p; constant for 2 = 1,2,3. A bifurcation analysis similar to that of Pugliese (1990h)
shows that sustained oscillations occur only when the disease parameters 7 and « are much
greater than the demographic parameters b and p. In all cases the rate of approach to
the limit cycle is slow. Thus the separation of time scales between disease and genetics
does not hold, and both amplitude and period of the disease dynamics are affected by the
genetic structure of the population (Fig. 6).

Figure 7 shows the gene frequency p(t) obtained from the full model specifying the
dynamics of each genotype in each disease class and the approximation to p(t) obtained
by using equation (39) with w(t) = (B(N)S?E,bE(E + I),bI2S/n). The approximation
seems to work quite well, but we have no theoretical justification for this.
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Figure 4. Forced oscillations in the variable population size SIR-model (14) wi'tl.r_i.' sea-
sonally varying transmission coefficient (solid line). The broken lines show the oscillations
in populations consisting entirely of one genotype. The parameter values are b = 2,y = 1,

= 3, and @ = 5. The transmission coefficient is 8(t) = (8 + €B;)(1 — ccoswt) where
/3 =100, ¢ = 0.5, and w = 7. Resonance occurs at wg = 7.08. With ¢ = 0.2, the pertur-
bations are p; = 1, v3 = —2, and a3z = 4 while all other perturbations are 0. Notxce the
large effect of the small genetic variation on disease incidence.
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Figure 5. Exact (solid line) and approximate value of p(¢) for the SIR-model (14) with

time dependent transmission and parameter values as in Figure 4. The meaning of the -
approximations I (short dashes) and II (long dashes) is discussed in the text. '
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Figure 6.  Sustained autonomous oscillations in the SEI-model (34) with density de-
pendent transmission and mortality given by (44). The parameters are b = 1, u = 0.5,
K =100, «a =n =10, 0 = 7.6, and k = 0.2. With ¢ = 0.1 the parameter perturbations
are 1 = 1, a3 = 73 = 4, f3 = 8 and all other genotypic effects equal 0. The exact value
(solid line) is obtained from solving the full 9 dimensional system while the approximation
(broken line) comes from solving (34). Notice the large effect of the genetic structure on
disease incidence.
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1
Figure 7. The dynamics of the gene frequency p(t) in the SEl-model with density
dependent transmission and mortality as in Figure 6. The exact value of p(t) (solid line)

is obtained from solving the full model and the approximation (broken line) is obtained
by solving (37). ‘
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Thus in all the three systems we have 1nvest1gated our approximation works well in. o
spite of our expectation of problems in separating the tlme scales of the genetlcs and the o

disease.

9. DiISCUSSION

The existence of genetic variation in susceptibility and resistance to infectious diSeases
is well documented in farm animals and crop plants. For instance, associations between
MHC-alleles and the occurrence or severity of infectious diseases are described in- farm
animals (@stergaard et al., 1989; Owen and Axford, 1991). These associations indicate
genetic variation in various epidemiological parameters of a range of magnitudes. Loci with
major resistance effects exists in the gene-for-gene systems of plant-fungal interactions, but
more diffuse polygenic variation in susceptibility is known (Day, 1974). B

The present models are especially suited for handling the evolution of polygemc vari-
ation in susceptibility. Each locus that influence the disease dynamics is then supposed to
have a minor effect, and through the study of the slow evolution at one locus properties of
the evolution of the lot of loci are predicted. The loci with major effects, however, are not
necessarily excluded. An effect is viewed as major in terms of its detection, not necessarily
in terms of its effect on epidemiological parameters. The slow selection approximation is
not expected to describe the dynamics of major resistance genes well, even though the '
evolution of such genes in natural populations may differ substantially from the evolution
in domesticated populations. The variation in genetically based resistance in Australian
and European rabbits to the myxoma virus that was introduced 40 years ago (Fenner and
Ratcliffe, 1965) may be illuminated by evaluations of the variation in the approximate
fitnesses (29).

For human populations our method is not applicable to degenerative blood- diseases
such as sickle cell anemia and a-thalassemia that promote malaria resistance since the
genotypic variation in mortality is significant. However, recent ﬁndings indicate familial
aggregation in mortality patterns for some infectious diseases (Sgrensen et al., 1988). This
indicate genetic variation for susceptibility amenable to analysis by our models

Due to the short life time of infectious virus and bacteria, disease transmission usually
is modelled as a continuous process with few details about the course of the infection
process. Geneticists often prefer a discrete time approach to account for the demographic
details of sexual reproduction. A continuous time slow selection model allows us in a
simple way to combine explicit descriptions of the two processes on the genotype level
provided that the change in gene frequency is sufficiently slow to allow us to averagé over
age-classes. The slow selection assumption allows us to break the system of equations
into three parts. One that describes the transmission dyna,mics of the disease, one that
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describes the convergence of the genotypic frequencies to Hardy-Weinberg proportions, and
a third part that specifies change in gene frequency. We formally develop this three-block
separation by a straight forward coordinate transformation into coordinates (V,p, F') that
capture each of these processes. : - : -

The key to the transformation is Wright’s fixation index F. The fixation index has nice
dynamical propertiesin that for the neutral case, it-will decrease to zero-at an exponential——-
rate equal to the birth rate of the population in question. When Beck et al. (1984) analyzed
a slow selection approximation in a model similar to (14), they used a more complicated
transformation. Therefore they were forced to leave crucial computations to a féornputer
program of symbolic algebra manipulations. Apart from a couple of misprints we can
reproduce the results of Beck et al. (1984) with less computational effort.

Nagylaki and Crow (1974), Aronson and Weinberger (1975) and Hunt (1980, 1982)
use the absolute deviation z = (4z1z3 — 23)/N? (= 4Fpq) to measure the distance from
Hardy-Weinberg proportions. In some respects z has nicer analytical properties than the
fixation index F', in that the transformation of rates between disease classes (Appendix 1,
item 3) simplifies and z has no singularity at the fixation boundaries p =0 and p =1. In
spite of this we prefer F' since it is in essence frequency independent. Near the boundaries
the range of variation of z will approach zero irrespective of the genetic composition of the
population while for all frequencies the fixation index F' varies between 1 and the larger
of —p/q and —¢/p. So our result that F' approaches zero as the population approaches
the boundary (section 4) show that the population will indeed reach Hardy-Weinberg
proportions as it approaches the boundary.

In the transformed (N, p, F')-space, the separation in time scales becomes clear. The
disease dynamics and convergence to Hardy-Weinberg proportions are fast, while the
change in gene frequency is slow. In practice the separation of time scales may be hard to
achieve since SIR-models themselves contain multiple time scales. Usually the duration
of infection is much shorter than the population turn over time, e.g. for childhood diseases
the ratio between these characteristic times may be as small as 1073 —10~%. Numerical so-
lutions show that our slow selection approximation works although the variation in fitness
is up to 20%.

The inherent presence of a slow time scale in disease models becomes more critical
for epidemic diseases. Natural infectious diseases often exhibit large temporal variation in
incidence, and we would like to extend our equilibrium results to such epidemic situations.
By averaging the fitnesses over the stationary distribution of disease occurrence, we find
good approximations to the true selection process for models with intrinsic or forced os-
cillations. This suggests a way to average over observed disease data in order to ohtain
the appropriate weights in the fitness expressions, and this approach is expected to work
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equally well for stochastic variations in the disease parameters (Christiansen, 1984). It
is somewhat unclear why the averaging works. In general one can “average out” a fast

changing variable provided that it is independent of the slow variables (Sanders and Ver- S

hulst, 1985; Murdock, 1991). For disease models this is not satisfied, since the oscillations
arc only weakly stable leading to strong sensitivity to variations in parameter values. The
averaging procedure, however, seems to be quite robust and this may explain its apparent

SUCCESS.

The transformation into (N, p, F')-space can be applied to other slow selection prob-
lems as well. Following the scheme from this paper, it is straight forward to write and
analyze two-species competition and predator-prey models with slow selection. Our lim-
ited numerical investigations show that the neutrally stable limit cycles in the classical
Lotka-Volterra model can not be averaged successfully while for a predator-prey model
with a stable limit cycle the averaging procedure predicts the change in gene frequency
with the expected accuracy. The dynamical properties of the fixation index should be
useful in other situations, e.g. (age or spatially) structured populations.

Due to its short generation time and sloppy DNA-replication, evolutionary changes in
viral pathogens can occur on the time scale we consider leading to an “evolutionary race”
between host and pa.th'ogen (Haldane, 1949). Assuming small variation among two types
of the disease, Beck (1984) extended the Beck et al. (1984) model to include competing
viral strains. With our (N, p, F)-transformation we effortlessly can reproduce her results
and obtain two equations for the slow change in the gene frequency of host and pathogen.
Apparently the model for an SIR-type disease is degenerate in that the real part of a
pair of complex eigenvalues changes sign without the creation of a limit cycle. Some
additional biological effects must be included before the model meaningfully can describe
host-pathogen coevolution.
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APPENDIX A. FIRST ORDER EXPRESSIONS FOR dF'/dt

In this and the subsequent appendix, we derive simple transformation rules that allow
us to compute the dynamics of the new variables N, p, F when the dynamics of the genotype -
variables (z1, 2, z3) are known, or in general to find the dynamics the variables @), pg, F
when the dyna.mics of the genotype va'riables (Ql' Qz,Qg) Q=51 R are giVen For

types in the population, and z to denote the time derivative dz/dt.

1. The tmnsformatzon 13 lznear in the sense that if
&i = agi(.. )+bh( )

where a and b can be density and frequency dependent functions while ¢g; and h; are
genotype specific functions, then

N = aTN(g) + bTN(h)
where T (g) gives the dynamics of N when #; = g;.

The result is a simple consequence of the chain rule in that

3Ni +3N. +6N¢
oz, ! 3.%23:2 0z, °

N ON ON ON ON ON
— 0+ 5—92+7—93)+b| 3—h1+ 5—ho+ —hs
0z, Oz, oz

0 1 8332 02131
= aTN(g) + bTN(h).

N =

The result obviously extends to p and F. To obtain an autonomous differential equa-
tion in (N,p, F') we still need (6) to express aTn(g) + bTn(h) in terms of (N,p, F), but
the result shows that we may treat each term in the dynamics independently.

9. Vector fields of the form &; = az; have no effect on F, ie. if #; = az; then F = 0.
Notice that a is the same for all genotypes but may be frequency and density dependent.

To see this observe that

4z123 + 4x321 — 21022 F VU uv
4uv

F=

uv - uv
= 2aF — 2aF = 0.

This observation indicates that processes with rates independent of the genotype will
not affect the deviation from Hardy-Weinberg proportions.
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9. If &; = y; where y; is the abundance of genotype i in another population (or disease
class) then

.y [((py ~ ps) Dydy )
b=V (T P) oy _py_Plyp gy
z. ( Pz ( ) szz( :— 5y)

where z. and y. are the total abundance of the two populations.

Here p, and p, denote the frequency of allele A in the z and the y population respec-
tively, while F, is the deviation from Hardy-Weinberg proportions for the y population.

To see this we need (6) and some elementary algebra:

P, = 4z1ys + daesys — 222y2 F, (1‘1 n 'U_y)

du, vy Uz Uz
_ v (P2 4 PegaFe)(g) + ryqyFy) + (02 + P=g2Fo)(py + Pyay Fy) — 2P242Py0y(1 — F2)(1 - Fy)
z. . Dzlz : 8
_¥p <11y_ + zy_)
z. D qx
_ Y ((PzQy - szy)2 +F, + Dydy Fy _ 9zPy + Dzqy F:c) ‘
z. Pzqz P24y Pz9qz

Thus the mixing of two populations affects the deviation from Hardy-Weinberg in two
ways. One effect is due to the difference in gene frequency among the populations and one
effect is caused directly by differences in the values of F' in the two populations.

APPENDIX B. SECOND ORDER TERMS IN dp/dt

Since the first order dynamics of the allele frequency p have a singularity, we need
to compute the second order term in the p-component of the vector field. In general
these terms are quite complicated. However, we need only evaluate them on the manifold
(N,p, F) =(N*,p,0) or in (z;, z7, z3)-space

wo(p) = (P N*,2pgN*,¢*N*).

By the chain rule the dynamics of the gene frequency p becomes

. 2ty 1+t
= ToN PN ’

so if 1; denotes the order ¢ term in the dynamics of z; as in (4), the second order term in
the equation for p is

¥p = (P14 + 392(q — p) — ¥sp)/N.
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On the manifold wy(p) we get from (5)

P1(wo(p)) = P2NT1
" Pa(wo(p)) = 204N,
is(wo(P)) = qz,,N T3,

where 7:,~ =%),-(ﬁo (p))— ug(wo(ﬁ)). ;VI“hei:éforé, the second order terms in p reduce to
Y= pg((rr —r2)p —(rs — r2)q). ' -

In the epidemic model genes flow between disease classes. To handle this situation
we need a minor modification of the preceding argument. The first order dynamics of
(ps,pi,pr) have a similar singularity, and we compute the second order terms in the p-

component on the manifold

wo(p) = (Sl) 52’53)II,I27I31R1aR27 RB)
= (p*S*,2pqS*, ¢*S*,p*I*,2pqI*, ¢*I* , p* R*, 2pg R*, ¢* R*).

Hence for the dynamics of the allele frequency pg for the disease class @ (@ = S,I, R), we
get

_ Zau(@o(p) + dea(wo(p)) _ Par(a(p)) + Pax(wo(p)) + Fas(=o(p))
B 20" Q he

(%)

The map from ('(,ZQ],’(/SQZ, 1ZQ3) to 1, is linear according to the observations in Ap-
pendix A. We need only one additional property of this map:

If gZQ,- = k;P; where P = S,I,R, and k; may be density and frequency dependent,
then on the slow manifold wg(p) we get the second order term

p* p*
Yo = (k1p* + kzpq)@; — (k1p® + 2kopg + k3g?) 5+PQ

P*
= pq@—*(pkl + (1 — 2p)ky — qks)

= PQa:(kiIP)

where the last equality defines the meaning of (-|-).
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ENERGY SERTES NO. 2.
Af: Bent Sgrensen.

38/81

"TIL EN HISTORTETEORI (M NATURERKENDELSE, TEKNOLOGI
OG SAMFUND".

Projektrapport af: Erik Gade, Hans Hedal, Henrik Lau
og Finn Physant.

. Vejledere: Stig Andur Pederse.n, Helge Kragh og Ib

39/81

40/81

Thiersen.
Nr. 38 er p.t. udgdet.

“TIL KRITIKKEN AF VEKSTYKONOMIEN".
Af: Jens Hgjgaard Jensen.

"TELEKCMMUNIKATION I DANMARK - oplag til en tekrn—
logivurdering”.

Projektrapport ‘af: Arne Jgrgensen, Bruno Petersen og
Jan Vedde.

* Vejleder: Per Ngrgaard.

41/81

42/81

43/81

44/81

"PLANNING AND POLICY CONSIDERATICNS REIATED TO THE
INTRODUCTION OF RENEWABLE ENERGY SOURCES INTO ENER-
GY SUPPLY SYSTEMS".

ENERGY SERIES NO. 3.

Af: Bent Sgrensen.

'VIDENSKAB TEORT SAMFUND - En introduktion til materialis-
tiske videnskabsopfattelser".
Af: Helge Kragh og Stig Andur Pedersen.

1."COMPARATIVE RISK ASSESSMENT OF TOTAL ENERGY SYSTEMS".
2. "ADVANTACGES AND DISADVANTAGES OF DECENTRALIZATION".
ENERGY SERIES NO. 4.

Af: Bent Sgrensen.

"HISTORISKE UNDERSPCELSER AF DE EKSPERIMENTELLE FOR-
UDSETNINGER FOR RUTHERFORDS ATOMMO

Projektrapport af: Niels Thor Nielsen.

Vejleder: Bent C. Jdrgensen,

45/82

46/82
© 1411

47/82

' 48/82

49/82

' 50/82

_ 51/82

Er aldrig udkommet.

"EKSEMPLARISK UNDERVISNING OG FYSISK ERKENDESE-
ILLUSTRERET VED TO EKSEMP

Projektrapport af: Torben O. Olsen, Lasse Rasmussen og
Niels Dreyer Sgrensen.

Vejleder: Pent C. J@rgensen.

"BARSEBACK OG DET VERST OFFICIELT-TANKELIGE UHEID".
ENERGY SERIES NO. 5.
Af: Bent Sgrensen.

“EN UNDERSZCELSE AF MATEMATIKUNDERVISNINGEN PA ADGANCS-
KURSUS TIL K¢PBENHAVNS TEKNIKUM".

Projektrapport af: Lis Eilertzen, Jgrgen Karrebak, Troels
Lange, Preben Ngrregaard, Lissi Pedesen, Laust Risha#ij,
L1411 Rgn og Isac Showiki.

Vejleder: Mogens Niss.

"ANALYSE AF MULTISPEKTRALE SATELLITBILIEDER".
Projektrapport af: Preben Ngrreqgaard.
Vejledere: Jprgen Larsen og Rasmus Ole Rasmussen.

"HERSLEV - MULIGHEDER FOR VEDVARENDE ENERGI I EN
LANDSBY".

ENERGY SERIES NO. 6.

Rapport af: Bent Christensen, Bent Hove Jensen, Dennis
B. Mpller, Bjame Laursen, Bjame Lillethorup og Jacob-
Mprch Pedersen.

Vejleder: Bent Sgrensen.

"HVAD KAN DER GPRES FOR AT AFHJELPE PICERS BLCKERING
OVERFOR MATEMATIK 2"

Projektrapport af: Lis Eilertzen, Lissi Pedersen, Lill
Ron og Susanne Sterder.

52/82

153/82

54/82

55/82

56/82

"DESUSPENSION OF SPLITTING ELLIPTIC SYMBOLS"
- Af: Bernhelm Booss og Krzysztof W03c1echowski

"THE CONSITTUTION OF almncrs ™ E‘NGINEE‘RING
EDUCATICN".
Af: Arne Jacobsen og Stig Andur Pedersen )

"FUTURES RESEARCH" -A Plulorophlcal Analysis
of Its Subject-Matter and Methods.
Af: Stig Andur Pedersen og Johannes Witt-Hansen.

"MATEMATISKE MODELLER" ~ Litteratur pé R:)skilde
Universitetsbibliotek. : ’
En biografi.

Af: Else Hgpyrup.

Vedr. tekst nr. 55/82 se ogsd tekst nr. 62/83.

“EN-—-.TO - MANGE" -

En undersggelse af matematisk ¢kolog:..
Projektrapport af: Troels Lange.
Vejleder: Anders Madsen.

57/83

58/83

"ASPECT EKSPERIMENTET"-

Skjulte variable i kvantemekanikken?
Projektrapport af: Tom Juul Andersen.
Vejleder: Peder Voetmann C’hristiansen
Nr. 57 er udgaet.

"MATEMATISKE VANDRINGER" - Modelbetragtnin—
ger over spredning af dyr mellem smibiotoper
i agerlandet.

Projektrapport af: Per Hanmershq)] Jensen og
Lene Vagn Rasmussen.

Vejleder: Jgrgen Larsen.

59/83"THE METHODOLOGY OF ENERGY PLANNING".

60/83

61/83

62/83

63/83

64/83

65/83

66/83

67/83

68/83

ENERGY SERIES NO. 7.
Af: Bent Sgrensen.

“MATEMATISK MODEKSPERTISE"- et eksempel.
Projektrapport af: Erik O. Gade, Jgrgen Kar—
rebak og Preben Ngrregaard.

Vejleder: Anders Madsen.

"FYSIKS IDEOLOGISKE FUNKTION, SOM ET EKSEMPEL
PA EN NATURVIDENSKAB - HISIORISK SET".
Projektrapport af: Annette Post Nielsen. .
Vejledere: Jens Hgyrup, Jens H¢jgaard Jensen
og Jgrgen Vogelius.

"MATEMATISKE MODELIER" - Litteratur pd Roskilde
Universitetsbibliotek.

En biografi 2. rev. udgave.

Af: Else Hgyrup.

“GREATING ENERGY FUTURES:A SHORT GUIDE TO ENER-
GY PLANNING".

ENERGY SERIES No. 8.

Af: David Crossley og Bent Sgrensen.

"VON MATEMATIK UND KRIEG".
Af: Berhelm Booss og Jens Hgyrup.

"ANVENDT MATEMATIK - TEORI ELLER PRAKSIS".
Projektrapport af: Per Hedegdrd Andersen, Kir-
.sten Habekost, Carsten Holst-Jensen, Annelise
von Moos, Else Marie Pedersen og Erling Mgller
Pedersen. .

Vejledere: Bernhelm Booss og Klaus Griinbaum.

"MATEMATISKE MODELLER FOR PERIODISK SELEKTION
I ESCHERICHIA OOLI".

Projektrapport af: Hanne Lisbet Andersen, Ole
Richard Jensen og Klavs Frisdahl.

Vejledere: Jgrgen Larsen og Anders Hede Madsen.

"ELEPSOIDE METODEN — EN NY METODE TIL LINFAR
PROGRAMMERING? "

Projektrapport af: Lone Biilmann og Lars Boye.
Vejleder: Mogens Brun Heefelt.

"STOKASTISKE MODELIER I POPULATIONSGENETIK"

- til kritikken af teoriladede modeller.
Projektrapport af: Lise Odgdxrd Gade, Susanne
Hansen, Michael Hviid og Frank Mplgdrd Olsen.
Vejleder: Jgrgen Larsen. . .




69/83 “ELEVFORUDSETNINGER I FYSIK" ) ' 83/84 "ON THE QUANTIFICATION OF SECURITY":
- en test i 1.9 med kammentarer. PEACE RESEARCH SERIES NO. 1

. Af: Bent Sgrensen
Af: Albert C. Paulsen. nr. 83 er p.t. udgdet

N

70/83 "INDLARINGS - OG FORMIDLINGSPROBLEMER I MATEMATIK
PA VOKSENUNDERVISNINCSNIVEAU".
Projektrapport af: Hanne Lisbet Andersen, Tor-

ben J. Andreasen, Svend Age Houmann, Helle Gle— " .
rup Jensen, Keld Fl. Nielsen, Lene Yagn Ras— 85/84"ENTRIFUGALRECULATORER OG MATEMATIK".

Specialerapport af: Per Hedegdrd Andersen,-Carsten Holst- - -
Jensen, Else Marie Pedersen og Erling Mgller Pedersen.
Vejleder: Stig Andur Pedersen.

84/84 "NOGLE ARTIKLER (M MATEMATIK, FYSIK OG ALMENDANNELSE".
Af: Jens Hpjgaard Jensen, Mogens Niss m. fl.

- mussen.
\ejleder: Klaus Grinbaum og Anders Hede Madsen

71/83 "PIGER OG FYSIK"
- et problem og en udfordring for skolen? 86/84 "SECURITY IMPLICATIONS OF ALTERNATIVE DEFENSE OPTIONS

- —Af: Karin Beyer;-Sussanng Blegaa;-Birthe-Olsen, --—FOP. WESTERN EU = =
Jette Reich og Mette Vedelsby. PEACE RESEARCH SERIES NO. 2
, Af: Bent Sgrensen.
72/83 "VERDEN IF{LGE PEIRCE" - to metafysiske essa
/ om og af C.S Peirce. fys S, 87/84 "A SIMPLE MODEL OF AC HOPP]NG C('NDUCI‘IV’ITY IN DISOFDERED .
Af: Peder Voetmann Christiansen. = - SOLIDS". - :
, 7 Af: Jeppe C. Dyre.
73/83 ""EN ENERGIANALYSE AF LANDERUG" Y
- gkologisk contra traditionelt. 88/84 "RISE, FALL AND RESURRECTION OF INFINITESTMALS"
ENERGY SERIES NB. 9 Af: Detlef Laugwitz.

Specialeopgave i fysik af: Bent Hove Jensen, " .
Vejleder: Bent Sgprensen. 89/84 FJER‘_NI\WIEDPTINERING .
Af: Bjarne Lillethorup og Jacob Mgrch Pedersen.

90/84 "ENERGI I 1.G - EN TEORI FOR TILRETTELAGGELSE".

74/84 "MINIATURTSERING AF MIKROELEKTRONIK" - om vi- Af: Albert Chr. Paulsen.
denskabeliggjort teknologi og nytten af at lare

fysik.
Projektrapport af: Bodil Harder og Linda Szko~ " "
tak Jensen. 91/85 "KVANTETEORI FOR GYMNASIET".

Vejledere: Jens Hpjgaard Jensen og Bent C. Jg¢rgensen, 1. Larervejledning
) 9 e s Projektrapport af: Biger Lundgren, Henning Sten Hansen
75/84 "MATEMATIKUNDERVISNINGEN I FREMTIDENS GYMNASTUM" Og'JOhn Johansson.
- Case: Line®r programmering. Vejleder: Torsten Meyer.
Projektrapport af: Morten Blomhei, Klavs Frisdahl

og Frank Mglgaard Olsen. 92/85 "KVANTETEORI FOR GYMNASIET".
Vejledere: Mogens Brun Heefelt og Jens Bigreboe. 2. Materiale
Projektrapport af: Biger Lundgren, Henning Sten Hansen
76/84 "KERNEKRAFT I DANMARK?" ~ Et hgringssvar indkaldt og John Johansson.
af miljgministeriet, med kritik af miljgstyrelsens Vejleder: Torsten Meyer.

rapporter af 15. marts 1984,
ENERGY SERIES No. lo
Af: Niels Boye Olsen og Bent Sgrensen.

93/85 "THE SEMIOTICS OF QUANTUM - NON - LOCALITY".
Af: Peder Voetmann Christiansen.

77/84 "POLITISKE INIEKS - FUP ELLER FAKTA?" 94/85 "TREENIGIEDEN BOURBAKI - generalen, matematikeren
Opinionsundersggelser belyst ved statistiske og &nden”. . .
modeller. Projektrapport af: Morten Blomhgj, Klavs Frisdahl

Projektrapport af: Svend Age Houmann, Keld Nielsen og Frank M. Olsen.
og Susanne Stender. Vejleder: Moyens Niss.

Vejledere: Jgrgen og Jens Bj# : 95/85 "AN ALTERVATIV DEFENSE PIAN FOR WESTERN EUROPE".
78/84 "JEVNSTRAMSLEININGSEVNE OG GITTERSTRUKTUT I PEACE RESEARCH SERIES NO. 3
AMORFT GERVBNIUM". Af: Bent Sgrensen
Specialrapport af: Hans Hedal, Frank C. Ludvigsen
og Finn C. Physant.
Vejleder: Niels Boye Olsen.

96/85"ASPEKTER VED KRAFTVARMEFORSYNING".
Af: Bjarne Lilletorup.
Vejleder: Bent Sgrensen.

79/84 "MATEMATIK OC AIMENDANNEISE",

Projektrapport af: Henrik Coster, Mikael Wenner— 2//85 "ON THE PHYSICS OF A.C. HOPPING CONDUCTIVITY".

berg Johansen, Povl Kattler, Birgitte Lydholm Af: Jeppe C. Dyre.
og Morten Overgaard Nielsen, , "
Vejleder: Bernhelm Booss. 98/85 "VALGMULIGHEDER 1 INFORMATIONSALDEREN".

Af: Bent Sgrensen.

80/84 "KURSUSMATERIALE TIL MATEMATIK B".

Af: Mogens Brun Heefelt. 99/85 "Der er langt fra Q til R".

Projektrapport af: Niels Jgrgensen og Mikael Klintorp.

81/84 "FREKVENSAFHENCIG LELNINGSEWNE I AMDRET GERVENIUM". Vejleder: Stig Andur Pedersen.

Specialeraprort af: Jgrgen Wind Petersen og Jan
Christensen.
Vejleder: Niels Boye Olsen.

100/85 "TALSYSTEMETS OPBYGNING".
Af: Mogens Niss.

82/84 "MATEMATTK — OC FYSTKUNCERVISNINGEN I [ET AUTO - 101/85 "EXTENDED MOMENTUM THEORY FOR WINDMILLS IN

MATTSERELE SAMPUND". PERTURBATIVE FORM".

Rapport fra et seminar afholdt i Hvidovre Af: Ganesh Sengupta.

25-27 april 1983. i

Red.: Jens Hejgaard Jensen, Bent C. J@rgensen 102/85 OPSTILLING OG ANALYSE AF MATEMATISKE MODELLER, BELYST

o9 Mogens Niss. VED MODELLER OVER KPERS FOLEROPTACELSE OG - OMSEINING".
ProYjektrapport af: Lis Eilertzen, Kirsten Habekost, Idll Rgn
og Susanne Stender.
Vejleder: Klaus Griinbaum.



'103/85 "PDSLE KOLDKRIGERE OG VIDENSKABENS LYSE IDEER".
' Projektrapport af: Niels Ole Dam og Kurt Jensen.
Vejleder: Bent Sgrensen.

' 104/85 "ANALOCRECNEMASKINEN OG LORENZLIGNINGER".
’ Af: Jens Jxger.

lOS,‘?SS"'IHE FREQUENCY EEPENDENCE OF THF SPWIFIC HEAT AF THE y
CGF.ASS REANSITION"
Af: Tage Christensen.

"A SIMPLE MODEL AF AC HOPPING CONDUCTIVITY".

Af: Jeppe C. Dyre.

Contributions to the Third International Conference
on the Structure of Non - Crystalline Materials held
in Grencble July 1985.

106/85 "QUANTUM THEORY OF EXTENDED PARTICIES".
Af: Bent Sgrensen.

126/86

107/85 "EN MYG GYR INGEN EPIDIMI",
- flodblindhed som eksempel pd matematisk modelle-
ring af et epidemiologisk problem.
Projektrapport af: Per Hedeqdrd Andersen, Lars Boye,
CarstenHolst Jensen, Else Marie Pedersen og Erling
Mgller Pedersen.
Vejleder: Jesper Larsen.

108/85 "APPLICATIONS AND MODELLING IN THE MATEMATICS CUR -
RICULIM" - state and trends -
Af: Mogens Niss.,

109/85 “COX I STUDIETIDEN" - Cox's regressionsmodel anvendt pd
studenteroplysninger fra RUC.
Projektrapport af: Mikael Wennerberg Johansen, Poul. Kat-
ler og Torben J. Andreasen.

Vejleder: Jprgen lLarsen.

110/85“PLANNING FOR SECURITY".
Af: Bent Spgrensen

111/85 JORLEN RUNDT PA FLADE KO .
Projektrapport af: Birgit Andresen, Beatriz Quincnes
og Jimmy Staal.
Vejleder: Mogens Niss.

112/85 "VITENSKABELIGGPRELSE AF DANSK TEKNOLOGISK INNOVATICN
FREM TIL 1950 - BELYST VED EKSEMPLER".
Projektrapnort af: Erik Odgaard Gade, Hans Hedal,
Frank C. Ludvigsen, Annette Post Nielsen og Finn
Physant.
Vejleder: Claus Bryld og Bent C. Jg¢rgensen.

113/85 "DESUSPENSION OF SPLITTING ELLIPTIC SYMBOLS 11".
Af: Bernhelm Booss og Krzysztof Wojciechowski.

' 114/85 "ANVENDELSE AF GRAFISKE METODER TIIL. ANALYSE

© 120/86 "ET ANTAL SIZ\TISTISKE S'H\NDARD‘D]IEIIIER" :

123/86
124/86

125/86

127/86

128/86

130/86

132/86 "FYSIK OG DANNELSE"

Af: Jg¢rgen Larsen

121/86"SIMULATION I KONTINUERT TID".

Af: Peder Vbeummu1Christiansen.

122/86 "ON THE MBECHANISM OF GLASS IONIC CONIIJCI'IVITY

Af: Jeppe C. Dyre.

"GYMNASTEFYSIKKEN OG DEN STORE VERDEN".
Fysiklarerforeningen, IMFUFA, RIC.

"OPGAVESAMLING I MATEMATIK".
Samtlige opgaver stillet i tiden 1974-jan. 1986.

"UVBY,@ - systemet - en effektiv fotametrisk. spektral—
klassifikation af B-,A- og F-stjemer".
Projektrapport af: Birger Lundgren.

"OM UDVIKLINGEN AF DEN SPECIELLE RELATIVITETSTEORI".
Projektrapport af: Lise Odgaard & Linda Szkotak Jensen
Vejledere: Karin Beyer & Stig Andur Pedersen.

"GALOIS' BIDRAG TIL UDVIKLINGEN AF DFN ABSI‘R]\KTE
ALGEBRA" .

Projektrapport af: Pernille Sand, ieine Larson &
Lars Frandsen.

Vejleder: Mogens Niss.

"SMAKRYB" - am ikke-standard analyse.
Projektrapport af: Niels Jergensen & Mikael Klintorp.
Vejleder: Jeppe Dyre.

129/86 "PHYSICS IN SOCIETY"

Lecture Notes 1983 (1986)
Af: Bent Sgrensen

"Studies in Wind Power"
Af: Bent Serensen

131/86 "FYSIK OG SAMFUND" - Et integreret fysik/historie-

projekt om naturanskuelsens historiske udvikling
og dens samfundsma&ssige betingethed.
Projektrapport af: Jakob Heckscher, Seren Brond,
Andy Wierod.

Vejledere: Jens Heyrup, Jergen Vogelius,

Jens Hpjgaard Jensen.

Projektrapport af: Seren Brend, Andy wiei@d.
Vejledere: Karin Beyer, Jergen Vogelius.

133/86 "CHERNOBYL ACCIDENT: ASSESSING THE DATA.

ENERGY SERIES NO. 15.
AF: Bent Serensen.

AF KONTIGENSTABELLER" . -
Projektrapport af: Lone Biilmann, Ole R. Jensen
og Anne-Lise von Moos.
Vejleder: Jsrgen Larsen.

115/85 "MATEMATTKKENS UDVIKLING OP TIL RENESSANCEN".
Af: Mogens Niss.

116/85 "A PHENOMENOLOGICAL MODEL FOR THE MEYER-
NELDEL RULE".
Af: Jeppe C. Dyre.

"KRAFT & FJERNVARMEOPTIMERING"
Af: Jacob Mprch Pedersen.
Vejleder: Bent Sgrensen

117/85

' ’118/85 TILFELDIGHEDEN OG N@DVENDICIEDEN IFYLGE
PEIRCE OG FYSIKKEN".
. Af: Peder voetmann Christiansen

119/86 "DET ER CANSKE VIST - - EUKLIDS FEMIE POSTULAT
KUNNE NOK SKABE RJRE I ANDEDAMMEN".
Af: Then Maj Christiansen
. Vejleder: Mogens Niss.

134/87-

135/87

136/87

"THE D.C. AND THE A.C. ELECTRICAL TRANSPORT IN AsSeTe SYSTEM"
Authors: M.B.El-Den, N.B.Olsen, Ib Hest Pedersen,
Petr Vis&dr

"INTUITIONISTISK MATEMATIKS METODER OG ERKENDELSES-
TEORETISKE FORUDSETNINGER"

MASTEMATIKSPECIALE: Claus Larsen
Vejledere: Anton Jensen og Stig Andur Pedersen

"Mystisk og naturlig filosofi: En skitse af kristen@unnené
forste og andet mpde med grask [ilosofi”

Projektrapport af Frank Colding Ludvigsen

Vejledere: Historie: Ib Thiersen
Fysik: Jens Hejgaard Jensen

137/87 "“HOPMODELLER FOR ELEKTRISK LEDNING I UORDNEDE

FASTE STOFFER" - Resume af licentiatafhandling
Af: Jeppe Dyre ¥ '
Vejledere: Niels Boye Olsen og

Peder Voetmann Christiansen.



138/87 "JOSEPHSON EFFECT AND CIRCLE MAP.®

Paper presented at The International

Workshop on Teaching Nonlinear Phenomena

.at Universities and Schools, "Chaos in

Education". Balaton, Hungary, 26 April-2 May 1987.

By: Peder Voetmann Christiansen

13 %87 "Machbarkeit nichtbeherrschbarer -Technik
durch Fortschritte in der Erkennbarkeit
der Natur"

Af: Bernhelm Booss-Bavnbek
_Martin Bohle-Carbonell I

140/87 "ON THE TOPOLOGY OF SPACES OF HOLOMORPHIC MAPS"

By: Jens Gravesen

141/87 "RADIOMETERS UDVIKLING AF BLODGASAPPARATUR -
ET TEKNOLOGIHISTORISK PROJEKT"
Projektrapport af Finn C. Physant
Vejleder: Ib Thiersen

142/87 "The Calderdn Projektor for Operators With
Splitting Elliptic Symbols"

by: Bernhelm Booss-Bavnbek og
Krzysztof P. Wojciechowski

143/87 "Kursusmateriale til Matematik pd NAT-BAS"-

af: Mogens Brun Heefelt

144/87 “"Context and Non-Locality - A Peircean Approach

Paper presented at the Symposium on the
Foundations of Modern Physics The Copenhagen
Interpretation 60 Years after the Camo Lecture.
Joensuu, Finland, 6 - 8 august 1987.

By: Peder Voetmann Christiansen

145/87 "AIMS AND SCOPE OF APPLICATIONS AND
MODELLING IN MATHEMATICS CURRICULA"

Manuscript of a plenary lecture delivered at
ICMIA 3, Kassel, FRG 8.-11.9.1987

By: Mogens Niss

146/87 "BESTEMMELSE AF BULKRESISTIVITETEN I SILICIUM"
~ en ny frekvensbaseret milemetode.
Fysikspeciale af Jan Vedde
Vejledere: Niels Boye Olsen & Petr Visdor

147/87 "Rapport am BIS pd NAT-BAS"
redigeret af: Mogens Brun Heefelt

148/87 "Naturvidenskabsundervisning med
Samfundsperspektiv"

af: Peter Colding-Jergensen DLH
Albert Chr. Paulsen
149/87 "In-Situ Measurements of the density of amorphous
germanium prepared in ultra high vacuum"
by: Petr ViSdor
150/87 “Structure and the Existence of the first sharp

diffraction peak in amorphous germanium
prepared in UHV and measured in-situ"

by: Petr Vid¥or

151/87 "DYNAMISK PROGRAMMERING"

Matematikprojekt af:
Birgit Andresen, Keld Nielsen og Jimmy Staal

Vejleder: Mogens Niss

152/87

"PSEUDO-DIFFERENTIAL PROJECTIONS AND THE TOPOLOGY
OF CERTAIN SPACES OF ELLIPTIC BOUNDARY VALUE
PROBLEMS"

by: Bernhelm Booss-Bavnbek
Krzysztof P. Wojciechowski

153/88

154/88

155/88

156/88

157/88

158/88

159/88

160/88

161/88

162/88

163/88

164/88

165/88

YHALVLEDERTEKNOLOGIENS UDVIKLING MELLEM MILITERE
0G CIVILE KREFTER"

Et eksempel p& humanistisk teknologihistorie
Historiespeciale -

Af: Hans Hedal —— — —— . I

Vejleder: Ib Thiersen

“MASTER EQUATION APPROACH TO VISCOUS LIQUIDS AND
THE GLASS TRANSITION"

By: .Jeppe Dyre -

"A NOTE ON THE ACTION OF THE POISSON SOLUTION
OPERATOR TO THE DIRICHLET PROBLEM FOR A FORMALLY
SELFADJOINT DIFFERENTIAL OPERATOR"

by: Michael Pedersen

"THE RANDOM FREE ENERGY BARRIER MODEL FOR AC
CONDUCTION IN DISORDERED SOLIDS"

by: Jeppe C. Dyre

" STABILIZATION OF PARTIAL DIFFERENTIAL EQUATIONS
BY FINITE DIMENSIONAL BOUNDARY FEEDBACK CONTROL:
A pseudo-differential approach.”

by: Michael Pedersen
"UNIFIED FORMALISM FOR EXCESS CURRENT NOISE IN

RANDOM WALK MODELS"
by: Jeppe Dyre

"STUDIES IN SOLAR ENERGY"

by: Bent Serensen

"LOOP GROUPS AND INSTANTONS IN DIMENSION TWO"

by: Jens Gravesen

"PSEUDO-DIFFERENTIAL PERTURBATIONS AND STABILIZATION
OF DISTRIBUTED PARAMETER SYSTEMS:

Dirichlet feedback control problems"

by: Michael Pedersen

"PIGER & FYSIK - OG MEGET MERE" : -
AF: Karin Beyer, Sussanne Blegaa, Birthe Olsen,

Jette Reich , Mette Vedelsby

"EN MATEMATISK MODEL TIL BESTEMMELSE AF
PERMEABILITETEN FOR BLOD-NETHINDE~BARRIEREN"

Af: Finn Langberg, Michael Jarden, Lars Frellesen

Vejleder: Jesper Larsen

"Vurdering af matematisk teknologi
Technology Assessment
Technikfolgenabschatzung"

Af: Bernhelm Booss-Bavnbek, Glen Pate med
Martin Bohle-Carbonell og Jens Hejgaard Jensen

"COMPLEX STRUCTURES IN THF NASH-MOSER CATEGORY"

by: Jens Gravesen



166/88 "Grundbecgreber i Sandsynl1gheds-4'
regningen”

. Af: Jergen LarSen

167a/88 "BASISSTATISTIK 1. Diskrete modeller"

Ai': Jergen Larsen

167b/88 "BASISSTATISTIK 2. Kontinuerte
modeller"

Af: Jergen Larsen

168/88 "OVERFLADEN AF PLANETEN MARS"
Laboratorie~-simulering og MARS-analoger
undersegt ved Mossbauerspektroskopi.

Fysikspeciale af:
Birger Lundgren

Vejleder: Jens Martin Knudsen
Fys.Lab./HC®

169/88 "CHARLES S. PEIRCE: MURSTEN OG M@RTEL
TIL EN METAFYSIK."

Fem artikler fra tidsskriftet "The Monist"
1891-93.
Introduktion og oversattelse:

Peder Voetmann Christéansen

170/88 "OPGAVESAMLING I MATEMATIK"

Samtlige obgaver stillet i tiden
1974 - juni 1988

171/88 "The Dirac Equation with Light—-Cone Data"
af: Johnny Tom Ottesen

172/88 "FYSIK OG VIRKELIGHED"

Kvantemekanikkens grundlagsproblém
i gymnasiet.

Fysikprojekt af:
Erik Lund og Kurt Jensen

Vejledere: Albert Chr. Paulsen og
Peder Voetmann Christiansen

173/89 "NUMERISKE ALGORITMER"

af: Mogens Brun Heefelt

174/89 " GRAFISK FREMSTILLING AF
FRAKTALER 0G KAOS"

af: Peder Voetmann Christiansen

175/89 " AN ELEMENTARY ANALYSIS OF THE TIME
DEPENDENT SPECTRUM OF THE NON-STATONARY
SOLUTION TO THE OPERATOR RICCATI EQUATION

af: Michael Pedersen

176/89 " A MAXIUM ENTROPY ANSATZ FOR NONLINEAR
RESPONSE THEORY"

af : Jeppe Dyre

177/89 "HVAD SKAL ADAM STA MODEL TIL"

af: Morten Andersen, Ulla Engstrom,
Thomas Gravesen, Nanna Lund, Pia
Madsen, Dina Rawat, Peter Torstensen

Vejleder: Mogens Brun Heefelt

.179b/89 "ELEVHEFTE: Noter til et eksperlmentelt kursus om

178/89 "BIOSYNTESEN AF PENICILLIN - en matematisx.

af Ulla Eghave Rasmussen, Hans Oxvang Mortensen,
Michael Jarden

veJleder i matematik: Jesper Larsen
biologi: Erling Lauridsen

179a/89 "LERERVEJLEDNING M.M. til et ekuperimentelt forleb
om kaos' R

af: Andy Wiered, Seren Breond og Jimmy Sféal*‘.>'

. Vejledere: Peder Voetmann Christiansen’ -
Karin Beyer

kaos"
af: Andy Wiered, Seren Brend og Jlmmy Staal

Vejledere: Peder Voetmann Chrlstlanscn
Karin Beyer

180/89 "KAOS I FYSISKE SYSTEMER ekqempllficeret ved
torsions- og dobbeltpendul".

af: Andy Wiered, Seren Brand op Jimmy Staal -
Vejleder: Peder Voetmann Christiansen :4

181/89 "A ZERO-PARAMETER CONSTITUTIVE RELATION 'FOR PURE
SHEAR VISCOELASTICITY"

by: Jeppe Dyre

183/89 "MATEMATICAL PROBLEM SOLVING, MODELLING. APPLICATIONS .-
AND LINKS TO OTHER SUBJECTS - State. tiends and ‘

issues in mathematics instruction

by: WERNER BLUN, Kassel (FRG) og .
MOGENS NISS, Roskilde (Denmark)

184/89 "En metode til bestemmelse af den frekvensafhungigc‘

varmefylde af en underafkelet vaske ved glasovebgangcn""-

af: Tage Emil Christensen

185/90 "EN NESTEN PERIODISK HISTORIE"
Et matematisk projekt
af: Steen Grode og Thomas Jessen

Vejleder: Jacob Jacobsen

186/90 "RITUAL OG RATIONALITET i videnskabers udvikling"
redigeret af Arne Jakobgen og Stig Andur Pedersen

187/90 “"RSA - et kryptografisk system"
af: Annemette Sofie Olufsen, Lars Frellesen
og Ole Mpller Nielsen

Vejledere: Michael Pedersen og Finn Munk

188/90 “FERMICONDENSATION - AN ALMOST IDEAL GLASS TRANSITION"
by: Jeppe Dyre

189/90 "DATAMATER I MWWFMATIKUNDERVISNINGEN PA
GYMNASIET OG HQJERE LEREANSTALTER

af: Finn Langberg




190/90

191/90

T leajae

193/90

194a/90

Projektrapport af :

194b/90

195/90

"FIVE REQUIREMENTS FOR AN
APPROXIMATE NONLINEAR- RESPONSE
THEORY"

by: Jeppe Dyre

“MOORE COHOMOLOGY, PRINCIPAL
BUNDLES AND ACTIONS OF GROUPS
ON C*-ALGEBRAS" =

by: Iain Raeburn and Dana P, Williams

"Age~dependent host mortality in the
dynamics of endemic infectious diseases

and B
SIR-models of the epidemiology and natural
selection of. co-circulating-influenza virus.-
with partial cross-immunity"

by: Viggo Andreasen

"Causal and Diagnostic Reasoning"

by: Stig Andur Pedersen

"DETERMINISTISK KAOS"

Frank Olsen

"DETERMINISTISK KAOS"
Kerselsrapport

Projektrapport af: Frank Olsen

"STADIER PA PARADIGMETS VEJ"
Et projekt om den videnskabelige udvikling
der ferte til dannelse af kvantemekanikken.

Projektrapport for 1. modul pd fysikuddan-
nelsen, skrevet af:

Anja Boisen, Thomas Hougdrd. Anders Gorm
Larsen, Nicolai Ryge.

Vejleder: Peder Voetmann Christiansen

196/90

197/90

198/90

199/90

200/90

"ER KAOS N@DVENDIGT?"
- en projektrapport om kaos' paradigmatiske
status i fysikken. ’

af: Johannes K. Nielsen, Jimmy Staal og
Peter Boggild

Vejleder: Peder Voetmann Christiansen

"Kontrafaktiske konditionaler i HOL

af: Jesper Voetmann, Hans Oxvang Mortensen og
Aleksander Hest-Madsen

Vejleder: Stig Andur Pedersen

"Metal-Isolator-Metal systemer"
Speciale

af: Frank Olsen

"SPREDT FEGTNING" Artikelsamling
af: Jens Hejgaard Jensen

"LINEZR ALGEBRA OG ANALYSE"

Noter til den naturvidenskabelige basis-
uddannelse.

af: Mogens Niss

201/90

]

"Underseogelse af atomare korrelationer i

amorfe stoffer ved rentgendiffraktion"
af: Karen Birkelund og Klaus Dahl Jensen
Vejledere: Petr Viidor, Ole Bakander

202/90

"TEGN OG KVANTER"

Foredrag og artikler, 1971-90.
.af: Peder Voetmann Christiansen .

203/90

"OPGAVESAMLING I MATEMATIK" 1974—1990
afleser tekst 170/88 .. [ -

204/91 "ERKENDELSE OG KVANTEMEKANIK"
-et Breddemodul Fysik Projekt
:af: Thomas Jessen
Vejleder: Petr Viscor

205/91

206a+b/

207/91

208/91

209/91

210/91

211/91

212/91

"PEIRCE'S LOGIC OF VAGUENESS"

by: Claudine Engel-Tiercelin
Department of Philosophy
Université de Paris-1
{Panthéon~Sorbonne)

91 "GERMANIUMBEAMANRALYSE SAMT
A - GE TYNDFILMS ELEKTRISKE
EGENSKABER"

Eksperimentelt Fysikspeciale
af: Jeanne Linda Mortensen
og Annette Post Nielsen
Vejleder: Petr Viscor

""SOME REMARKS ON AC CONDUCTION
IN DISORDERED SOLIDS"

by: Jeppe C. Dyre

"LANGEVIN MODELS FOR SHEAR STRESS
FLUCTUATIONS IN FLOWS OF V1SCO-
ELASTIC LIQUIDS"

by: Jeppe C. Dyre

"LORENZ GUIDE" Kompendium til den
danske fysiker Ludvig Lorenz,
1829-91.

af: Helge Kragh

"Global Dimension, Tower of Algebras,
and Jones Index of Split Seperable
Subalgebras with Unitality Condition.

by: Lars Kadison

"T SANDHEDENS TJIENESTE"
- historien bag teorien for de komplekse tal.

af: Lise Arleth, Charlotte Gjerrild,
Jane Hansen., Linda Kyndlev, Anne
Charlotte Nilsson. Kamma Tulinius.

Vejledere: dJesper Largen og Bermhelm
Booss—Bavnbek

"Cyelie Homology of Triangular Matrix
Algebras”

by: Lars Kadison



