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Abstract

This report concerns a one-dimensional model of the blood flow in the
major human arteries. This study is supposed to be used as a background
for the design of a cardiovascular model used in the anaesthesia simulator
developed by the SIMA group, consisting of members from the Bio-Math = _ = __
group at Roskilde University, the Simulator Section at Herlev University
Hospital and Math-Tech ApS.

The first part of the report presents a basic model of the aorta regarded as
an elastic, tapering tube. Flow and pressure of the blood are functions of
time and (longitudinal) position in the tube and the blood is treated as an
incompressible fluid. The model consists of a system of hyperbolic partial
differential equations which are solved using two numerical techniques both
based on finite difference schemes. Results from these are displayed and the
methods are compared.

The second part presents a description of the outflow at the branches in
the arterial network with special regard to the reflections from the iliac
bifurcation, and results from this system is compared to the those of the
basic model.




Preface

This report concerns an ongoing development of a one dimensional model
of the blood flow in the major human arteries. The model is one of several
to be included in an anaesthesia simulator. In a current implementation
of the simulator a Windkessel model (zero dimensional) of the arteries is
used. This includes a description of the capillary bed through a peripheral
resistance.

In a next generation of the anaesthesia simulator the various submodels
will be replaced by more detailed models based on physiological facts,
which more adequately describe patients with pathological conditions. The
simulator is used for training of anaesthesiologists and thus has to run in real
time.

The one-dimensional model of the major arteries includes aorta, and several
of the branches. In order to implement this submodel in the simulator it has
to run faster than real time and it has to interface to the rest of the other
submodels in the system. In a first implementation the outflow is described
by a relation involving the peripheral resistance.

This report contains a background on how to make this one- dimensional
model, and models for the aorta are described in detail, both regarding the
system equations and possible numerical rutines needed for actually solving
the equations.

This study is therefore regarded as a background research for the actual
models that should be developed by the SIMA group consisting of The Sim-
ulator Section, Herlev University Hospital, The BioMath group, IMFUFA,
Roskilde University and Math-Tech ApS. And we want to thank everybody
in the SIMA group for their helpful comments throughout the work with this
Teport.

Roskilde University, June, 1995

Mette Olufsen, and Johnny Ottesen
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Chapter 1

A one-dimensional model of pulsatile
flow in aorta

The work presented in this paper is motivated by the need for a physiologically based
cardiovascular model in the anaesthesia simulator Sophus Jensen[5], Nielsen[10] and
Olufsen{14], developed in the years 1991-93 in cooperation among Risg National
Laboratory, Herlev University Hospital and Roskilde University. This work will
provide a basis for a new cardiovascular model in the next generation of the anaesthesia
simulator. This is being developed in the SIMA group which have participants from
Herlev University Hospital (the Simulator Section), Roskilde University (the BioMath
group), Math-Tech and S&W Medico Technics. '

The topic of this paper is a treatment of the pressure and flow wave that emanates from
the heart at each peak, and propagates toward the peripheral circulation through the
arterial system. The interest is focussed on the flow in the large vessels, especially the
aorta, where the Reynolds numbers are unusually high (of order 1000) even though
the the flow in the human circulation in general remains laminar. Further, it is possible
to treat the blood as a Newtonian fluid when dealing with the major arteries (when
the diameter > 0.5 mm.). However, in the capillary flow this is not possible since the
diameter of the vessels are small compared to the size of the red blood cells.

A number of people have worked on models of the pressure and flow wave generated as
aresult of an intermittent ejection of blood from the left ventricle. Most of the research
in this field has taken place in the last few decades, Anliker[3] (1971), McDonald[9]
(1974), Pedley(16] (1980), Stettler[24] (1981), Skalak[23] (1989), Lighthill[6] (1989),
Reuderink[20] (1989), Zheng[29] (1993), and Paquerot[15] (1994). However, all were
preceded by the work of W. Harvey from 1616, Noordergraaf{13], and Euler’s early
work from 1775, Skalak[23], published posthumously in 1862.
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For a long time the development of the so called Windkessel theory was the primary
focus. This describes a lumped system in which the arteries are represented by an
elastic chamber that discharges through a fixed resistance representing the capillary
bed, Skalak[23]. It seems that the representation of such a system often is made using
an analogous electrical circuit model, Noordergraaf[12], Peskin[18], Sunagawa[26],
Westerhof[27] and Westerhof[28]. The result of this modeling is a first-order approx-
imation of pressure and flow at some specific points in the arteries. The advantage
of this approach is the exclusive use of ordinary differential equations, that are easily
simulated on a small computer. However, the lack of spatial information in the system
makes it impossible to determine any continuous development of the flow, pressure
and cross-sectional area. Instead, one must be satisfied with the values at particular
key points represented in the model.

After the Windkessel theory was developed, an analysis using linearized wave prop-
agation was initiated. Within this domain, two approaches have been carried out.
The first approach dealt with a detailed analysis of the mode shapes and propagation
velocities in which the blood and the vessel wall were treated as a three-dimensional
continuum. The second approach described a one-dimensional analysis that to some

‘extend included junctions and reflections, Skalak[23].
The cardiovascular model presented in the anaesthesia simulator Sophus is based on
the Windkessel theory, Olufsen[14], and this approach does not fulfill the demands
for the aims of the second generation simulator being developed by SIMA. Among
other things it should be possible to investigate the exact regulation process of the fluid
flow (which is dependent of the spatial development of the pressure wave), and the
consequences of atherosclerosis at any given point.

In order to be able to deal with a continuous model not restricted to a linear system,
we will make a one-dimensional model based on Navier Stokes equations. Eventually,
it will cover an explicit description of the major bifurcations in the arterial tree. The
small capillaries and the remainder of the bifurcations will be disregarded, since the
model otherwise will be too comprehensive.

So far this paper covers a model of the aorta, primarily based on the work by An-
liker in [2] and [3], and Stettler[25]. The aorta is modeled as an elastic tapering
tube. The blood is handled as an incompressible inviscous fluid, and the complete
description of the system contains a momentum equation (Euler’s equation expanded
with a heterogeneous friction term proportional to the Poiseuille friction), a continuity
equation, and a state equation (an elasticity function, that relates the pressure to the
cross-sectional area). These equations are solved numerically using two different finite
difference methods. One based on the method of characteristics, Ralston[7] and the
other is Lax Wendroff’s two-step method (Richtmayer’s version), Peskin[17]. The
results from these two methods are compared, and the convergence is investigated.
Finally, a model of the branching system is considered and two methods are proposed
and evaluated.
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Figure 1.1: Major branches of the canine arterial tree, from McDonald[9]. The vessel modeled
in this section contains the aorta (starting just below the aortic arch), and the abdominal aorta
ending at the iliac bifurcation.

1.1 The aorta model

In this section we will concentrate on setting up the equations governing the flow in
aorta. These are a momentum equation, a continuity equation, and a state equation.
Figure 1.1 gives an intuitive understanding of the human arterial system. However,
it shows the quite similar arterial system of a canine. The model presented in this
section regards the aorta starting immediately after the aortic arch and ending at the
iliac bifurcation.

1.1.1 The system equations

The momentum equation consists of Euler’s equation added a friction term:

Ou Oou 10p F

ou v o 8 1.1

ot + Oz t p 0z p (1.1
where u(z,t) is the mean velocity over the cross-sectional area, p(z,?) is the mean
pressure, p is the density (constant), and % is the friction, that arises due to our



assumption of Poiseuille flow. It is given by

pu
Y it
87z'pA

where p is the viscosity, A is the cross-sectional area of the tube, and & is a proportion-
ality factor.

The continuity equation is

0A 4 0Au

at 0z
The momentum equation can be represented as a function of the flow ) = Au, by
multiplying (1.1) with A, (1.2) with », and adding the two equations. Hence

= 0 1.2)

=t +—5 = F (1.3)
- -—where—. -—=4%—=——8k711‘;7“;~—1n~ the following we will reuse-the-symbel-Ffor—F-

Expansion of the term ;’—19} in terms of () and A results in the following quasi-linear

partial differential equation:

2 2 Ad
6_Q.+_9_8_Q. Q8A+__p—F

- = = 14
ot Adz A?0z pOz 1.4
The state equation is according to Mazumdar{8] page 130 given by
EW A
p= (1— =] +po (1.5)
r A

where py is the pressure of the surroundings, r is the radius of aorta, Ag = 7r? is the
cross-sectional area at the pressure po, W is the thickness of the wall and E is Young’s
modulus. However, if one compares a plot of p versus A with data measured (from
Anliker[2] page 30 or Noordergraaf[11] page 116) this equation does not have the right
appearance. In fact the relation should form a hysteresis cycle between the systolic and
the diastolic pressure, in figure 1.2 the relation from Anliker[2] is showed as opposed
to our relationship. Therefore one should consider some other approach that takes this
property into account.

Since the tube is tapering, the radius r is a function of z. It is given by Anliker[3],
page 225

T = de
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where @ and b are determined according to the specified radius at the top and bottom
of the aorta.

Using (1.5) the critical excess pressure can be defined as

: . EW Ao EW
pe=jimp=fim = (1—\/7()—7 (10

Hence, the relative excess pressure can be expressed as

" =X 1.7
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Figure 1.2: The viscoelastic behavior of the wall. The plots show the cross-sectional area as a
function of the pressure in a non-tapered tube. A shows the relationship used in our work (using
the same parameters as in figure 3.1 but without the taper) and B (from Anliker[2]) shows the
hysteresis cycle between the systolic and the diastolic pressures. a: the original elastic curve,
b: the master hysteresis cycle between systolic (b, ) and diastolic (b2) pressures. ¢: higher order
cycles that emanates from the reflections of the pressure wave. d: path leading back to the
master cycle. The depicted situation results from the hypothetic pressure pulse shown.
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The derivative of p with respect to z is
O _ 0p0A Opdho  Opdn
Oz 0A 0z 0Ao dz  Op. dz
_ Ao 0A p.dr (1 T\ dEW

2\ A3 0z r dz r A) dz

We are now ready to write the system of equations that should be solved. This consists
of the continuity equation (1.2) and the momentum equation (1.4), and using (1.8) we

get. |
() (niog 4)2(3) -
ot \ & %%—%% oz \ Q@)

(F+ prdx_lgé—m)%) (1.9)

P

(1.8)

In order to put the equations (1.2) and (1.3) into conservation form, which is needed in
order to apply Lax Wendroff s two-step method, we introduce the quantity B chosen
to fulfill

0B A(p(t,x),pc(z‘),Ao(x))
Op p -

Then

B(p,pc, Ao) = /A®

The derivative with respect to z is

0B 836p+_6£d_A_0_+ 0B dp.
8z Opdz ' 0A, dz | Op, dz

(1.10)

The momentum equation (1.3) can be rewritten using (1.10), since the term £ —92 can be

expressed using 57 g2 Because the last two terms in (1.10) do not contain any partial
derivatives of p (and hence A) and @, they can be evaluated directly and may therefore
be added to both sides of (1.3). Consequently,

aQ 2 9B dA, OB dp.
+_( +B) Pt 52 dz t op de

ot 0 A
Using the definitions (1.5) and (1.6) of p and p., we evaluate the function B as

Ao 1 Aope  _ Aopc

IR e (=2 TS

Pc
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Finally the terms 22440 and B 2= myst be evaluated:
o ¢T Pe OT

_6_}_3_149_ - P Qﬂ-rfdl
0Ao dz =~ p(1—pg)  dz

and

9Bdp, _ p(1—52) Ao— AopepB2 (ldEW _EW dr)

ch dr pz '(1 - 2;50)2 r dzx r2 E
A(l —2pg) (dEW dr
B & iz
Tp z z

The system of equations in conservation form can thus be written as

7lo)+al e ¢ = . (1.11)
ot \ @ oz \ G +0% ) F g8 984 .

OB dAq

where the term A, dz

8B dpe 5o o
+ 55, 4z 18 given by

( 2rr A(l—QpE)) &d_r_l_ A(1—2pg)dEW

1-pE T p dx rp dz .
Ap.dr 2./AA,— AAEW
_ + =
rp dz rp dz
Apcfii_!_ 1 (2\/;r_— é) dEW
rp dz  p r/) dx

The numerical treatment of these equations will, as mentioned, be carried out in
two ways, both based on finite difference methods. The first method considered is
Richtmayer’s version of Lax Wendroff’s two-step method, Peskin[17], and the second
is based on the method of characteristics, Ralston[7].

In both cases the equations are treated in non-dimensional form. In order to do so, we
apply the following characteristic parameters:

o L = 76 [cm], the characteristic length of aorta.

e g = 70 [cm3s™1], the characteristic flow through aorta (taken as the desired
cardiac output).

o g = 981 [erns™?), the gravitational constant.

o p = 1.06 [gcm ™3], the density of the blood.
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The latter two parameters are used in order to determine a characteristic pressure pgL

[gs™2cm™1] which equals 3%z [mmHyg).

The non-dimensional form of (1.9) is given by

9 (A 4 0 1\d (A _
at\ Q Lo/ L 0 e\ Q)"
' 0
(P tts sz (vero2) e ) .
where F = 59—25. The non-dimensional friction term is
1Q -
F = -8k : 1.13
8 WRA ( )

where R = £%
. ulL

The non-dimensional form of the conservative system (1.11) is given by

(0 ) o (@s tne )= pymmte s s (o ) ew )19
at\ @ oz A+}‘2(1—pE) F+ 5T+ 5(2 T A )

where F'is as given in (1.13).

The Reynolds number characterizing the flow is given by: .

R =29 ~ 1514
ur

where r is a characteristic radius of aorta. It is taken to be 1 cm. Since we are using
a constant density and viscosity this radius only varies little due to the tapering of the
tube.

1.2 Lax Wendroff’s two-step method

This is a second-order method! dealing with the equations given in conservation form
(1.14). In addition, the pressure terms in the system of equations must be rewritten in
terms of the cross-sectional area A. Consequently, the equations will be

o(a +i “ = 0 (1.15)
ot \ Q Oz 9}_*.&;}@ - F+ré}%:;+ﬁ(2\/—_ )dEW .

! A more detailed analysis of the stability of this method should be conducted.
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In order to write the finite difference equations we need the following definitions.

Let the dependent variables be represented in the vector U.

U =(4,Q)

The system flux is

QZ Pe AOA
R = = —_— 4 —— 1.16
(Br, Ra) (Q, B (1.16)

and the right hand side of the system is represented by the vector

. _ Ap. dr 1 — A\ dEW

S_(Sl’sz)_ (O’F+r.7:'2dx+f2 (2 T r) dz ) (117)
The system of equations (1.15) may then be written as

0 0

EU+6_1:R_S (1.18)

The time step is defined by k = At and the space stepby h = Az. Let U} = U(jk, nk)
and similarly for R and S. Using a uniform grid, one can derive a four point formula,

1
using two intermediate points at (U);L:f :
2

n+
Uj+

W= o=

] k({ R, -R* S +S"
=5 ( 3-‘+1+U;-‘)+—2-(— Ty S ’) (1.19)

L L L
from Uj:_f itis possible to derive R::f and S;:f according to the definitions in (1.16)
2 2 2

1 n+il ntt
and (1.17). Similarly, R7"? and S? can be derived from U’ ;.

2 2 2
It is now possible to determine U}** by:

k n+d nt+i k n+i ntl
n+l _yn _ 2 - = 2
Uit =U? - ; (Rj+%2 Rj_g) + 5 (Sj+§2 +Sj_]§) (1.20)

The general grid used is displayed in figure (1.2).
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Figure 1.3: In order to determine the values of @ and A at n + 1, the intermediate values
defined in (1.19) must be determined first.
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n+lO0 m X

n X
1 1

-z 0 3 1
Figure 1.4: Left boundary: All variables are known at the points marked with a cross. In

. 1

order to determine the value of A7+, we apply the boundary condition for Q8+5 at the point
marked with a square, and from this itis possible to determine an approximate value at the ghost
point marked with a circle. The latter is done by taking the average of the point marked by a
circle and the point (3,7 + 1). The value of Q3™ can then be found using this construction
and the boundary condition.

1.3 The Boundary Conditions

1.3.1 The left boundary

In order to ensure a reasonable cardiac ejection rate at the proximal end of the aorta,
this boundary condition is given by

Q(0,t) = Qo(t) = (asin (Bt)) o (1.21)

where the constants « and  can be determined from the knowledge of the cardiac
output and the period of one heart beat.

The corresponding non-dimensional boundary condition is

0= (52

where L is a characteristic length of the tube, and g is a characteristic flow. *




16

In order to determine A at the left boundary, we need a value of () at the ghost point
marked by a circle on figure 1.4. This can be done using the approximation

ntl 1 ntd 4l
0+2 = 5(@_:2"'@;2) <
2 2
P oo oQett oyt (122)
2

2

We are now able to determine A using Lax Wendroff’s scheme from (1.20).

k (ot 8 L (s
A5 = 4y = 3 (BT - ()7 ) + 3 (8]

2

LM

+(51) ?)

n+% n+é—

In this scheme the only unknowns are (R;) ;? and (S;)_,°, and from (1.16) and
2
(1.17), they are given by

: +1 +1 L
(R)™F=Q"% and (5)"%% =
2 2 2

il
=)

1.3.2 The right boundary

The peripheral boundary condition is, chosen according to the approach suggested by
Anliker[3], namely

_ |4 _
Q(IIJL,t)zQL(t)=(p—I_%L&)_ =(p°(1 @ﬂm p’) (1.23)

r=xy

where p. is the end-capillary pressure, and Ry, is the outflow resistance. The dimension
less boundary condition is analogous, but contains the corresponding non-dimensional
quantities.

The problem with this approach is the assumption that the peripheral resistance is
constant. This is not strictly physiologically true, but it is difficult to determine Ry, as
an explicit function of time. In fact, Peskin argues that the pressure is approximately
proportional to the flow far away from the heart, but it is also true that there is a lack
of such condition near the heart, Peskin[17]. Therefore, and since the model is very
sensitive to this choice, it should be investigated further. However, in this report we
have chosen to use the simple boundary condition.

Treating the right boundary condition is a little more tricky, since Q)(zr, t) is not known
explicitly, but only as a function of the unknown p (and hence A).
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n+1 X
n+: X @O O
n—-x%

L-1L-3 L[ L+}

Figure 1.5: Right boundary: All variables are known at the points marked with a cross. In
order to have enough equations to determine the values of ¢) and A at (L,n + 1), we need to
add a ghost point, marked with a circle, and use the boundary condition at the point marked
with a square. Similarly to the left boundary we determine the value at the point marked with
a circle by averaging the square point over this and the point (L — 2 ,n+ 2)

From the numerical scheme in (1.20) we have got the following relations:

‘ k ntr ntl
A = ap- (R - 0T +
E n+%— n+-;-)
<(Sl L+ + (51 L~
= A7 ——((Rl)w, (Rl):ﬁz) (1.24)

since S; = 0, and

k n
o= er- g (R - R +
k nel ntl
= (a7 + ) (125)

The unknowns in these equations are Q7*?, A"+1 (R)’Iﬁ2 and (Sg)n+2 However,

n ] n .
(R) Liz d (S2); +’;‘ are both functions of Q and A +’. In order to determine

" these values we need to establish a ghost point (marked w1th a circle on figure 1.5),
and similar to the left boundary we make the relations:

n+2

el +Q :

Qitt — ———Qi (1.26)
A"+2+A

AT 5 L+} (1.27)

1 L
However, these equations add two more unknowns, namely QT? and A7L1+2 to the
system. Therefore we need two more equations. These can be found using the boundary
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condition at the time levels n + 1 and n + 1.

(pe)y, (1— ;A’l,) ) — P+ Po

ntt L
2 = 1.28
QL R, (1.28)
(pe)r (1 - \/—L%?L ) — Pe + po
o= RL (1.29)
L

The subscripts and superscripts are only mentioned if the respective variables depend
on the corresponding parameter.

We will now solve the six equations (1.24-1.29) having the six unknowns @Q7**, A7+1,

”+2 n+2 nt+l +5
Q QL+15 L+2-

In order to reduce the number of equations we make a simplification, substituting
equations (1.26) and (1.27) into (1.28). Hence, equation (1.28) can be rewritten as:

. ——
P (1 T _+£_)‘Tf) +Po—pe
L-% + QL+:} \ AL—%+AL+§

2 - RL
The four equations to be solved are thus (1.24), (1.25), (1.29), and (1.30), and the

n+d
unknowns are QL+ AL+21 , Q7 and A7,

(1.30)

Let

n+2 "'*'2

Qn+ T4 = An+f
Equation 1: Consider the residue defined as f; derived from (1.30).

Ao);
(pc)L 1- ,2,5,;) +p0'—pe nt+l
\ Ap- 1t QL—% + I

h= 7 - 5 (1.31)
Let
'n.+-;-
@ = (pc)[, + Po — Pe _ L"%
! I 2
g = (Pc)r /2 (Ao),,
, =

Ry,



f1 can then be rewritten as:

g2 z1
f1=g1———r——

Atz
2

Equation 2: Similarly, the residue f, obtained from (1.29) is

(pc)L (1 - (A;—)L> +p0 — Pe

2 = R, — T3
Let
g : (pc)L+P0_pe.
3 . RL
_ (pe)r /(Ao)
g4 = ———-RL

f2 can therefore be rewritten as:

ga

f2=93—\7-—£c:—$3

Equation 3: The residue derived from (1.24) is

k ntl
fo = Ap-7 (931 - (Rl)Lt“i) — 24
2
Let |
k
§ = =
h
_ k
T =3
n '""*‘15
gs = L+0(R1)L_%.

f3 can thus be rewritten as:

f3=95—0$1—$4

19

(1.32)

(1.33)

(1.34)
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Equation 4: Finally, the residue obtained from (1.25) is

k((z} | pev/Aozs " n+l
(($2+——f2——— —(Rz)L_% +

k ((F 4 Top. dr n 2/ Agze — T2 dEW)n+%

9 rF2dz rJF? dz

fa = '—$3+QE—Z -
L+3

+ (52)’;“:5}5) (1.35)

L+3

From (1.13) we have

X 1 1
= —8kr——*
F 8 rsz
Let
Pe AO
ks =
: L+3
1 R —
kz = _Skﬂ-ﬁ
L (2 A dEW
3= TP d.’l) L+l
2

o o (Zodr_ 1 dEW
* T \rF2dz rF? dz L4l

In the computations done so far EW is constant?, so k3 and the last term of k, vanishes.
When all the constants k; are evaluated at the point (L+3, 7+ 1) then f; can be rewritten
as:

$2

fa = —23+Q7 -0 (;—1- + ky\/zy — (Rz);ﬂ:z) +
2 2
Iy n+1§
1 (ka2 4 bay@r+ iz + (527
If
- O nty n+3

g = QL+O(RNI+ (S

then the final form of f, is given by:

(1','2

fa=—z3+ge—10 (m—l + ku/l'_z) + <k2% + k3+/T2 + k4x2>
2 2

2 An investigation of this assumption should be conducted.
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Itis now possible to find z; — z,4 using Newton’s method (See either [19] page 3791f. or
[4] page 261ff.). This method is defined by the following first-order accurate scheme:

xi41 = X; — (DF(x:)) 7 (i), ©=0,1,2,3,... (1.36)

where the indices ¢ refer to the number of iterations, and x is the vector (z1, 23, €3, Z4).
However, this method is only good if the Jacobian of Df(x¢) is nonsingular, and if it
is possible to come up with a good initial guess for xo. In this case the initial guess
can be chosen as

(1)o=Q%, (z2)0 = A}

_ "tz _ antE
(z3)o=Qp%, (zado=A4; "%
since we assume that x does not change too rapidly during a half time step.
The Jacobian is given by:

h oh 84 24
6:171 81‘2 31‘3 8.1.‘4
g&
— 1
D=1 . . .
81}1
ofs . . o

8x1 8.’54

with the values:

I
[eew)
o

|
—
[ ]
8
&
JQ

Df

1.4 The method of characteristics

In order to apply the method of characteristics to the equations, we use the form given
in (1.12). Let (¢, z(t)) describe the desired curve in the (¢, z) plane.

If we let @ = 2 we have the following identity:

d (A a (A 0 A
E(Q)=5¥(Q>+a6_x(Q> (1.37)
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The solution to the system in (1.12) along the chosen curve resulting in the identity
(1.37) is equivalent to the solution of the matrix equation

01 Zo/2-% 2 |[6Q |_| Ftis+h(Vra-4)LL
1 0 a 0 3IA th
O 1 0 a a:z;Q dtQ

Letc® = '5%\ / %{L (the squa.red wa\ie-speed), andu = % (the system velocity), then we
can rewrite the above matrix equation as

10 0 1 8, A
01 2—u? 2u 8Q | _
0 0 a -1 a.A |~
0 0 w2-¢c? a—2u 9:Q

0
T e e
d: A i

dQ-F - g+ 4 (4 - VrA) g

Non-trivial solutions to the system require that the coefficient matrix is singular, hence
the determinant

a? — 2au + u? — ¢

must be zero. This is obtained when

e A
a=u:}:c=%i 21;__2 'XO (1.39)

We will denote the characteristic curve defined by (1.39) having a positive slope by ',
and the one having a negative slope by I'_.

The singularity of (1.38) insures the existence of a vector (+y;,v2) such that

utec -1
(71a’72) ( u? — 2 —u:i:c) = (030)

This vector is given as a multiple of (1, ——).
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Figure 1.6: The figure shows the points of interest in the specified interval grid.

It is now possible to obtain the foIlowing ordinary differential equation along the
characteristics

1 th
) = 0
(02 (agm rtpese (4 vy o ) ®

diA + ! dQ = H* (1.40)
—uztc o ‘
where :
1 Ap. dr 1 /A dEW
+ I L/
B = —u+c(F+Prdm .7-"2(7‘ 7TA) dz)
- 1 Ap, dr 1 A dEW
H = _u_c(“p@“‘ﬁ(rv’”‘) d:c)

The plus and minus signs corresponds to the positive and negative characteristic,
respectively.

1.4.1 Discretization

Using specified intervals, we can now derive a first-order finite difference scheme. In
order to do so we will solve the equations on a grid as the one presented in figure 1.6,
1.e. on a grid of lines parallel to the axes.

According to the above definitions we are able to obtain a set of difference equations
along the characteristics. Locally we approximate the characteristics through the point
@ by their tangents. These must intersect the line segments AT and T B respectively
in order for the grid to be valid. The points of intersection are, as shown on the figure,
R and S, respectively. Hence we approximate the equations in (1.39) and (1.40) by

. [ Ae—Art (@ - QR) = HEA
o TQ—TR = (uR+cR)At

(1.41)
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(1.42)

. J Ae—As+ = (Qe —Qs) = HsAt
- zg—zs = (us—ecs)At

The problem of solving equation (1.12) is thus reduced to the treatment of the above
equations.

We assume that the values are known at the points A, B and T" and we want to determine
v and p at the point ¢).

By linear interpolation we get

Qr—Qr T —ZR
Qr—Qa zr—=24

= (ur + cr)f (1.43)

where 6 = £%. The interpolation condition holds only if 6 < |u % ¢|™", which is the
CFL-condition. Since we are using linear interpolation the method is first-order correct
if the CFL-condition is fulfilled.

We car.l-use the above definition and thereby derive the following equations at the points
R:

"Qr = Qr—(Qr — Qa)(ur+cr)d
Ap = Ar-— (AT - AA)(uT + CT)9
cr = cr— (cr —ca)(ur+cr)d
HE = Hf - (Hf ~ HY)(ur +cr)f

where § = %. The corresponding equations at the point S can be derived analogously.

Substituting these expressions into the equations (1.41) and (1.42) we can derive
expressions for ()¢ and Ag respectively.

1 1 -1
= 1.44
QQ (CR—UR + cs +US) ( )
1 1
Ar—A HE — H: At)
< R S+CR—URQR+CS+USQS+( R S)
and
AQ = (CR—UR-}-Cs—I—uS)_l (1.45)

(Qr— Qs + (cr —ur) Ap + (cs + us) As+
(HE (cr — ur) + Hs (cs +us)) At)
1.4.2 The boundary conditions

Using this method the values of () and A can be predicted using the one present
characteristic in combination with the specified boundary condition.
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Figure 1.7: On the left boundary z = 0 we have only access to the characteristic I'~.
Analogously we have only access to the the I't characteristic on the right boundary z = zj,

The left boundary z = 0

The boundary condition at z = 0 is (as in section 1.3.1) given by

Q(0,t) = Qo(t) = (asin (Bt)),_q

Also, the dimension less form of this equation is restated here. It is

Qo =. (gsin (,B-éit))
q q =0

The discretization of the left boundary condition involves only the negative character-
istic I'~. Therefore, we are dealing with the equations

g — s = (us — cs)At

. .
Ao — As + —'—(QQ — Qs) = H; At (1.46)
—Uusg — Cs .

where @5, As, Cs and H are calculated as for the interior points. Since we are on
the boundary z = 0, we already know the value of zg. Hence only Qg and Ag are
unknowns. We can determine ()¢ directly using the boundary condition.

Combining this result with (1.46) we get the following result for Ag.

1
us +cs

Ag = As+ (Qo— Q@s) + Hg At (147)
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The right boundary z = z;

The boundary condition at x = z, is also still defined as:

_ . JA& B
Q(:Z:L,t) = (M>x=$L — (pc (1 @ + Po Pc)

R

=z

and again, R, is the peripheral resistance in the end of aorta and p, is the end capil-
lary pressure. The dimension less version of this equation is similar, but contains the
corresponding non-dimensional quantities.

The discretization of the right boundary condition involves only the positive charac-
teristic I't, and this case is treated analogously to the left boundary condition.

IQ — TR = (uR + CR)At
) 1

Aq—AR—F—-———(QQ —QR) = HEAt (1.48)
—UR + CR

where Qr, Ar, Cr and H} are calculated as for the interior points. Since we are on
the boundary z = z; we already know the value of zq.

Again, we can calculate the unknowns Qg and Ag using (1.48) and the boundary
condition.

(Pe)e (1 - —Q('X’; + po — Pe
QQ - RL

(1.49)

For Ag we then get

(pc)Q (1 - (_Aj%' +po — pe — RL@R

= Ap—A — HE
0 @~ ARt Rp(—ur + cr) RO
c)Q + Po— Pe —’RLQR
= A3+ \[Aq [ 2 — Ar — H} At
ot y4ie ( Rr (—ur+ cr) Ar R

_ (Pe)oy/(Ao)o
Ri(—ugr + cr)

This is a cubic equation in {/Ag.
If we let ¢ = {/Ag, we can rewrite the above equation as

f=2+Bz+C



27

Again we can estimate the root using Newton’s method. The only difference to the
description on page 21 is that in this case we are only dealing with one equation.

In this case the first-order scheme looks like
Tiv1 = z; — f'(2:) 7 f(=s)

where : still refers to the number of iterations. In this case the Jacobian simply becomes
the usual derivative of f. The initial guess for z is chosen as

xo—\/A N - 1)Az)

which is the the last predicted value of \/Z at the time level where the root \/Ag =

A(NAz) should be found. If A does not change too rapidly, this value should be
rather close to the wanted root.




Chapter 2

Convergence of the two methods

In order to test the convergence of the two methods, we have applied a known solution
(z +t+1)to A and Q, respectively. Using this knowledge we have modified the right
hand side of the systems (1.12) and (1.14) and the boundary conditions in order for the
equations to be consistent.

Substituting the solution into (1.12) results in:

7(8)+ (oy
\Q )" =/e-%

. 2 )
Pe 4
( 2+ 355\ oo

Ja: (3)-

A
Q

5
s —

The result from the conservative system (1.14) is:
G, ( A ) L9 ( Q )
—_— — 2 -
ot \ @ 0z QA— + }—Tag%;—;)

2
( 24 5% Ay v/ m(z+t+1) 4pw )

+t+1 F2 dz

For both systems the corresponding boundary conditions are given by

A(0,t) = Q0,8)=t+1
ALt = Q(Lt)=t+2

and the initial condition is
A(z,0) = Q(z,0) =z +1

29
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Figuljé 2.1: The convergence rate (n) for Lax Wendroff’s two-step method and the method

of characteristics. For Lax Wendroff’s method n & 2 and log ¢ ~ —4.5, for the method of
characteristics n = 1 and log ¢ ~ —3.

In these experiments we have used the infinity norm to determine the rate of conver-
gence. Let U determine the approximate computed solution, and u the exact solution.
Further, let ~ be the size of the space step and N the number of steps in the interval
zero to one, which covers the entire domain, since the equations are dimension less.

Assume that ||U — u| is O (k™). Then

n 1 "
ch —c(ﬁ> =

log (]|U — u]les) = logec—nlogN

IU - ulle

where ¢ is some positive constant.

The order of convergence n can then be read of the graphs as the negative slope of
log ||U ~ ul| as a function of log N. Further, the constant ¢ can be determined from
the intersection of the graph with the line z = 1. As shown in figure 2.1, n = 1 for
the method of characteristics, and n & 2 asymptotically for Lax Wendroff’s two step
method. This is also the values that are expected since the method of characteristics is
supposed to be of first-order and Lax Wendroff’s method is a second-order method.




Chapter 3

Results

In this section we will present some results from both methods. One important concern
is an investigation of the behavior of the outflow resistance R, since the results are (as
we will see) very sensitive to this parameter. Also the the amount of tapering influences
the solution.

The equations solved are the ones given in (1.20) for Lax Wendroff’s two step method,
and (1.44) and (1.45), for the method of characteristics. The boundary conditions are
given as described in (1.21) and (1.23). The initial conditions are chosen so that the
flow Q(z,0) = 0 and the cross-sectional area A(z,0) = Ao (the cross-sectional area
at pressure p = po). S

The default numerical parameters and the default values of the input parameters are
stated below. .

| The default numeric parameters |
N 64 | Number of lattice points in the z direction.
3 % | The interval length of Az.
k The interval length of At. This

is determined as large as possible within
the bounds of the CFL-condition.
finaltime The end-simulation time.

31
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The default input parameters

1.06

gem™3

The density of the blood -
([3] page 231)

0.049

porse

The viscosity of the blood.
([3] page 231)

76

cm

The length of aorta.
(Empirical data)

Po

760

mmHg

-The pressure of the surroundings.

7"top

1.25

cm

The radius at the top of aorta.
(Empirical data)

Tbot

1.00

cm

The radius at the end of aorta.
(Empirical data)

0.2

The wall thickness of aorta.
(Empirical data)

3.8510°

Young‘s modulus ([21])

De

25.0

The end capillary pressure

- relative to the surroundings.
| (2lpage2d) ————— |
Ry | 0.95 | cm3s~'mmHg | The peripheral resistance of aorta.
([1] page 273)

The amplitude of the input flow
corresponding to a stroke volume
of 70 cm?3.

([2] page 22)

The multiplication factor used
when the friction is determined,
([3] page 225)

The period of one heart cycle.
([2] page 22).

0o | 733

Tper 0.8 S

In the first run (see figure 3.1) we have computed the relative blood pressure as a
function of time and space. In this run the default parameters are used. As shown in
the figure, the method of characteristics (graph A) shows a slight upward deflection
in the right boundary. In general, the method of characteristics gives rise to a slightly
higher pressure than does the Lax Wendroff method (graph B). Further, it is evident
that the value of Ky, = 0.95 used in the current prototype simulator is too high. This is
evident since the pressure rises in the right boundary, and hence the reflected wave is too
extreme. The parameter used in the current simulator is a lumped parameter consisting
of the peripheral resistance for the entire arterial system. However, this value of Ry, can
possibly have other effects when the bifurcations of the system are taken into account.
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This pressure rise also causes large reflections as time increases. If one instead lowers
the value of R;, as far down as 0.2 or even 0.1 (see figure 3.2) the reflection damps
out rather fast. Since the results are more smooth, the method of characteristics (graph
A and C) is adequate, and it is hard to distinguish between this and the results from
Lax Wendroff’s method (graph B and D). However, viewing a two-dimensional graph
displaying the pressure as a function of time (in the case R; = 0.2) over a number
of periods, it is clear that the results becomes stable after a few periods (see figure
3.3). These results are valid both using the method of characteristic (graph A) and Lax
Wendroff’s method (graph B). We therefore tend to believe, that the deviation between
the two methods is due to the fact, that the method of characteristics is a first-order
method, while Lax Wendroff’s two step method 1s of second-order.

Another concern is the amount of tapering in the system. In the results stated, the radius
of aorta varies from 1.25 cm. to 1.00 cm. which admittedly is very little compared
to the tapering of the entire arterial system. However, in the human aorta the tapering
between the top of aorta and the iliac bifurcation is approximately as stated above.
What happens when the tube is tapered further is that the pressure increases along the
aorta, and the reflection wave is returned faster. These phenomena are seen on the
graphs in figure 3.4. All the results are made keeping the radius at the top of aorta
unaltered (1.25 cm.). Also, the peripheral resistance is the same (R, = 0.4). In graph
A of figure 3.4 the aorta is tapering as in the previous runs, in B the radius at the bottom
of aortais 1.00 cm., in C it is 0.75 cm., and in D it is 0.50 cm.

Evaluating the results as a whole is complicated, since so many different factors play
important roles. If one for instance considers figure 3.3, it is hard to determine whether
the reflections could be the dicrotic notch, or merely a numerical artifact. Looking at
the graphs in figure 3.5, one can see that the further we get down the aorta the closer
the reflecting wave comes to the original pulse wave, and then after a certain point they
separate again. If all the branches of the system were present they would probably
all cause similar phenomena supporting the conjecture that the dicrotic notch is due to
the reflection stemming from the resistance in the far boundary. Further we wish to
observe an increase in the pressures throughout the aorta. This is certainly present, but
it depends a lot on the amount of tapering (as seen in figure 3.4). In general, we must
conclude that it is hard to compare these results with the reality, since the bifurcations
remain to be taken into account.
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Figure 3.1: The pressure as a function of time and space. The plots cover both the method
of characteristics (graph A) and Lax Wendroff’s method (graph B). The peripheral resistance
is in this case 0.95 which is the value used in the current simulator. However, this is a lumped
value representing the entire arterial system, and it has therefore no meaning in this example
where no bifurcations are taken into account.
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Figure 3.2: The pressure as a function of time and space. In this case Ry, has the values
of 0.2 and 0.1 respectively. Results from both the method of characteristics (char) and Lax
Wendroff’s two-step method are depicted.
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Figure 3.3: The pressure as a function of time in the middle of aorta. In this case only
Lax Wendroff’s method is considered, but the method of characteristics shows the same phe-
nomenon, namely that the solutions becomes stable after only one period. The first period
shows a pressure that is too low, and this phenomenon is due to the fact that the chosen initial
condition is not correct.
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Figure 3.4: When the tapering of the tube is increased the pressure rises and the reflection
wave becomes faster. In all four runs only Lax Wendroff’s two-step method has been used.
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Figure 3.5: The pressure as a function of time at three different positions in aorta: halfway
down, 10% down and 90% down. Notice that the first reflection wave is approaching the
original pulse wave the closer we get to the bottom of aorta. Only Lax Wendroff’s method is
considered, but the method of characteristics shows the same behavior.



Chapter 4

Timing of the two methods

In order to estimate the efficiency of, and compare, the two methods, we have made sev-
eral runs using a number of computers spanning from personal computers (a pentium
90MHz with 512 bytes cache and a 486DX2-66 having no cache) to some workstations
(a HP9000-735, a DEC-station 5000/120 and an IBM RISC 6000/250). On all com-
puters, the program was executed under UNIX and, except on the IBM machine, it was
compiled using gnu c++. All runs simulated three periods corresponding to a model
time of 2.4 sec. The results show that it is certainly possible to run the simulation in
real time (except in the cases where the grid is refined extensively). Further, it is seen
that Lax Wendroff’s method is faster than the method of characteristics. The results of
these runs are displayed in the table below.

Platform

CPU-time (Lax)

CPU-time (Char)

486DX2-66 (no cache)
Linux 1.0,
gcc 2.5.8 (-02)

DEC-station 5000/120
fatou.ruc.dk
gce 2.6.0 (-02)

Pentium-90
{512Kb cache)
Linux 1.1.47,
gce 2.2.5 (-02)

Hp9000 735
tyr.diku.dk
gcc 2.5.8 (-02)

128
256

32
64
128
256

32
64
128
256
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IBM system 6000/250
pauli.ruc.dk
x1C 1.3.0.0

32
64
128
256

0:01
0:04
0:14
0:55

0:02
0:07
0:26
1:41




Chapter 5 |

The outflow due to the branching of
the system

As shown in figure 1.1 it is obvious that the model used uptil now doesn’t match the
system that we try to model. It is insufficient since it doesn’t include anything dealing
with the many branches of the system. At each branch some of the blood leaves the
system. This outflow concerns both the major branches shown in the figure and a
number of smaller branches not included. There are several possibilities to treat these
outflows. In this section we will concentrate on the outflow along the aorta, and we
will deal explicitly with the outflow conditions at the iliac bifurcation.

The outflow along the aorta can be treated from two different points of view. The first
concerns a treatment of the outflow as a continuous function in space, while the second
models the outflow at the various bifurcations as discrete points. The continuous
approach adds an outflow condition to the right hand side of the continuity equation
(1.2), hence

0A 0Q

i, 2

ot Bz ~
The outflow is contained in the function ¥ which is dependent on the position in aorta
and the corresponding pressure.

This function could be determined as described by Anliker[3], where ¥ is a global
function that assembles all outflows along the aorta (see figure 5.1B). The function is
given by
— 57 = < z*(=
U(p,z) = { ¥(p — pc) (1.1 +0c;<;s ( 2 z)) for z < z*(= 70cm.) 5.1)
v(p — p.) 1.1 e~008(z==") forz > z*

In the paper, it does not appear why this particular function was chosen, but it does not
seem to be physiologically founded. :
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Figure 5.1: The localized outflow condition is shown in A and the general outflow seepage
used by Anliker[3] is shown in B. In B outflow distribution of blood through the arterial wall
is defined by equation (5.1). '

Since the outflow occurs at branches along the aorta, another approach is to make the
outflow condition local in the neighborhood of each bifurcation. Assume that there are
k branches along the aorta. The outflow at the k’th bifurcation could then be defined
to be proportional to

T co; (—”-(z;;—)) +1.0 ‘ N N )
) b ]
Ui(p, ) = (P—Pc>( ; ) forz € [ce — by ok + by

0 otherwise

where the bifurcation is centered at ¢, and has the width 2b,, and the actual propor-
tionality factor depends on the size of the bifurcation (see figure 5.1A).

The total outflow along the aorta will then be given by

N
U(p,z) = kX_: ar¥Vi(p, z)

where the coefficients a; must be determined as follows:

The fraction of blood (C'Oy) leaving through the branch centered at c;, is

ck+bi
/ arUi(p, z)dz = COy

x—bk
Since C'Oy can be measured, it is possible to determine a; by

COy
[oE¥E G, (p, 2)dz

ck—by

ap =

when z € [cp — bi; cx + bi]-
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Another way to treat the outflow is by decomposing the aorta into a number of in-
dependent pieces, each having no branches. These should then be joined together
at the bifurcation. In this case each piece is treated separately, and all branches can
be regarded as discrete points. At each end of the tube piece one should consider a
boundary condition and some specifications linking the two pieces of the tube together.

The advantage of the first approach is the possibility to treat the entire flow along
the aorta by one set of equations. The disadvantage is the necessity to include a
large number of grid points in order to capture the localized outflow at the branches.
However, such a grid may be too fine grained for the bulk of the tube piece, but it
is possible to use graded grids, and thereby only use the fine grained grids in the
sections close to the bifurcation. In the paper by Anliker[3] these considerations are
not discussed even though this would have been very useful. In fact he does not
discuss his choice of outflow condition at all. Due to this problem and the fact that
the global outflow condition presented by Anliker[3] is not physiologically based, we
have chosen to concentrate on the piecewise approach.

. The outflow stemming from the aorta can be divided into two groups: The first deals
with the outflow along the aorta, where the point of interest is the pressure and the flow
in the aorta before and after a particular bifurcation. This is the situation displayed in
part A and B of figure 5.2. The second type is found at the iliac bifurcation located at
the bottom of aorta. In this case the tube splits into two minor tubes of comparable size,
and we are interested in the flow and pressure in both of these. This is the situation
" illustrated in figure 5.2.C. If one is interested in finding the pressure and the flow in the
radial artery, this can be treated as the case illustrated in figure 5.2.A and B. Instead of
letting the outflow condition be determined at the top, we let Q®) and Q(® switch role,
and the boundary condition 2%)7},& should be assigned to the lower part of aorta. In the
following we will sketch how the bifurcations can be treated.

The exact modeling of the bifurcations can be discussed further, and we will introduce
two different approaches. One way of attacking the problem is to use the approach
suggested by Stettler[25], where a separate segment containing the branch is introduced
(see figure 5.2.A). Within this segment the tube is assumed to taper linearly (as opposed
to the exponential tapering in the bulk of the arteries). In order to predict the flow and
the pressure across such a segment, the following conditions are applied: First, we
assume that the flow is continuous over the segment, hence

1]

d [=
QW = Q@ 4 OB 4 = / A dz (5.2)

Second, we apply Bernoulli’s relation

. . z2 au R
PV — pli) = g((u(:))z — @M)?) 4 pL o ds+ Apl) (5.3)
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Figure 5.2: A sketch of the different kinds of branching systems. In A the bifurcation is
modeled using a separate segment, in B the outflow is determined as a point, and in C the iliac
bifurcation is showed.

where 7 = 2,3.

L @

() — @)=
AP =X R0 4

reflects the curvature of the branching vessel as well as the friction loss due to viscosity.

0.37 (%Re(j)\/%(f}) (0.36328;) for Re\/BZ > 10%¢
4 for Rel) R" B2 <101

AU =

and finally Rel) = E(J:li and RY) is the radius of curvature of the branching vessel.

The subscripts refer to the numbers shown in figure 5.2. However, as demonstrated
by Lighthill[6], the error in assuming that the total flow into a bifurcation equals the
outflow, and that the pressure is continuous can be estimated by regarding the magnitude
of the rate of change of the pressure over a bifurcation using a linearized model. For
a bifurcation such as the iliac where the dimension of the branches is of order 1 cm.,
the error is approximately one percent, so it makes sense to regard the bifurcation as
a point over which the pressure and flow are continuous (see figure 5.2.B). Hence, we
are left with the conditions:

QW =Q® + QB and pM = p® = p (5.4)

Assuming that the flow in the two branches of the iliac bifurcation are equal (Q?) =
Q®, and hence QY = 2QQ(»)), only one of them needs to be determined. One difference
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between the two cases (A, B versus C) is that the flow in C deflects when moving from
1 to 2, whereas the flow in A has the same direction before and after the bifurcation.
Another difference is that in A and B the rate of change of the cross-sectional area is
smooth in the transition from 1 to 2: The aorta keeps on tapering with the same rate.
In C the cross-sectional area is discontinuous at the splitting point. However, if one
allows discontinuities in the cross-sectional area, and disregards the angle between I
and II in C, the two situations can be treated using the same set of equations.

In appendix A the bifurcation is modeled using the assumption that it happens at a point,
i.e. equations in (5.4) should be applied. In appendix B the approach of using a separate
bifurcation segment is used, hence the equations (5.2) and (5.3) should be applied. The
conditions linking two tube pieces together at some bifurcation are obtained using
conservation of mass and Bernoulli’s relation. Further, one must determine boundary
conditions for the right hand side of tube 1 and the left hand side of tube 2. The
mathematical description (which is rather technical) of this is done in the appendices A
and B. The idea follows the same approach used in section 1.3.2 where the boundary
condition concerning the right boundary at the bottom of the aorta is treated, and the
numerical treatment will be based on Richtmayer’s version of Lax Wendroff’s two step
method.

5.1 The boundary conditions

The boundary condition that ensures a reasonable cardiac ejection rate at the proximal
end of the aorta is analogous to the one given in section 1.3.1.

At the bifurcation point (in the case where we do not know the relationship between
Q?) and Q(®)) and at the bottom of the arteries the condition stated in section 1.3.2 will
be used again.

However, due toits problems another approach is suggested by Anliker{2] and Stettler[24]:
Here the total outflow is ‘

QY = By = p (A9 + RQW (55)

where R, and R, are lumped parameters. The first term represents outflow from
relatively small rigid branches perpendicular to the main conduit, and consequently the
outflow is assumed to be proportional to a Poiseuille flow. The second term represents
outflow from a branch into two symmetrical vessels. Equation (5.5) can be validated
empirically, but it is not possible to establish it from the physical theory. Because the
outflow in general depends on both Q') and p(*) one may argue in favour of the linear
relationship in (5.5).

Since we concentrate on boundary conditions that can be either derived from the theory
or empirically established, we have still chosen to focus on the simple condition stated



48

in section 1.3.2, knowing that this condition does not mathematically quite fulfill the
demands described above.

5.2 Model evaluatidn and results

As stated above the equations including the iliac bifurcation are solved numerically
using Lax Wendroff’s two step method, Peskin[17]. In order to be able to compare the
branching model to the results presented in section 1.3 we carry out simulations of two
systems: System 1 consists only of the aorta (part I in figure 5.2.C) while system 2
comprises both the aorta, the iliac bifurcation and one of the femoral arteries viewed as
a symmetrical bifurcation point (parts I and II in figure 5.2.C). Note that the boundary
condition using the peripheral resistance Ry, is in both cases applied only once, namely
at the right boundary. However, when comparing E;, from the two systems we get

fRo)

the relation R( ) ~ EL_ where R(l) and R(z) are the resistances in system ! and 2,
2 Y

respectively.

~ Asseen in figure 5.3 and 5.4 both systems show an increase of pressure along the aorta

(in figure 5.4 the aorta is the part between z = 0 cm. and z = 42.5 cm.). Both systems
also show an increase in the steepness of the pressure profiles along the aorta. However,
this is difficult to see on the 3D plots presented. In the physiological situation it is also
possible to detect a dicrotic notch and as indicated in figures 5.3 and 5.4 this is due
to the reflections in the system, which in turn are consequences of the tapering of the
vessels. Itis seen that introduction of the bifurcation does not change these phenomena
and we therefore conclude that our model shows the right qualitative behavior.

Figures 5.5.A and B show a plot of p(zy,t), where z, is at the bottom of aorta, for a
number of peripheral resistances. In both cases the pressure increases with increased
resistance, but in case of system 1, where no bifurcations are taken into account, the
reflections become more evident and also reflections of higher order appear as Ry is
increased which in turn causes a large disturbance of the pressure profile. Finally,
figure 5.5.C shows the systolic and diastolic pressures as a function of the peripheral
resistance (the two top lines concern the systolic pressure and the two bottom lines the
diastolic pressure). Also, in this figure it is possible to detect a more stable increase of
p(zr,t) with increasing Ry,.
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Figure 5.5: A and B show the pressure as a function time for four values of Rz. Since a
symmetrical bifurcation is the value of Ry, in A equals %L in B. In C the systolic and diastolic
pressures are plotted as functions of Ry, for system 1 and 2, respectively.



Chapter 6

Conclusion

As expected the method of characteristics is not as reliable as Lax Wendroff’s two-step
method. It is generally not a good idea to start out using the method of characteristics,
and thereafter manipulating it to obtain a finite difference method. These manipula-
tions require more considerations and increase the computation time, as shown in the
previous section. Another thing that makes Lax Wendroff’s method superior is the
fact that it is second-order correct. According to Ralston[7] it is, however, possible to
develop a second-order scheme also for the method of characteristics, but using this
approach the method will no longer be explicit, and the required computing time will
therefore increase even more. Another drawback is that the second-order method of
characteristics becomes considerably more complicated. Therefore the work in this re-
port has verified that it is best to use Lax Wendroff’s two-step method in this particular
project — both with respect to accuracy and speed.

Further we can conclude that the system is rather sensible to the peripheral resistance (as
shown in the results in figure 3.4). Therefore results from inclusion of bifurcations (e.g.
the iliac bifurcation) should focus on this dependency. Due to the argument presented
by Lighthill[6] we will concentrate on the approach that concerns the bifurcation at a
point as shown in figure 5.2.B and derived in detail in appendix A.

The most important point is the qualitative effect of moving the boundary condition
to the Femoral arteries. The fact that the pressure profiles in aorta are more stable
when the boundary condition is placed after the iliac bifurcation, confirms the point
stated by Peskin[17] that the flow and pressure are proportional only when far away
from the heart. We will therefore conclude that if a suitable boundary condition should
be applied (in system 1) at the bottom of aorta, the peripheral resistance should be a
function of time. However, since this can be a difficult task, it is more reasonable —
and also adequate ~ to include at least one of the major bifurcations in order to work
with the boundary condition suggested in (1.3.2).

Another point we want to consider is the range of pressures in system 1. The current
choice of parameters seems to create an excessive gap between the systolic a diastolic
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pressures. In the case of system 2 with By, = 0.5 this gap becomes more reasonable,
and we believe that this situation could be improved further through slight changes in
the geometry.

These studies have been very useful to our work in estimating the level of detail needed
in order to construct an adequate model for the arterial system and we conclude that
trying to lump everything into one single tapered tube is not feasible




Appendix A

A discrete outflow determined at a
single point

In this section we will develop the equations necessary for treating a bifurcation as
displayed in figure 5.2.B. First of all, assume that the flow is conserved, hence

p(L, 1)

@nujy_@ﬁ@Jysz@J)zﬁﬁmfg

(A.1)

and, secondly assume, that the pressure is continuous across the bifurcation. Hence
(1)(L t) = p(2)(L t) = pt®

According to Lighthill[6] page 233 these assumptions should be adequate. The latter
condition results in the additional requirement that

) 4@ Aw
1 0 _ (2 0 — (3

This fact is due to the state equation defined in (1.5). The superscripts (1) and (2)
refers to the two parts of the tube as displayed in figure 5.2.

Seen from the first part of the tube (1), the equations at the points on the right boundary
are

QW+ = @my_%awwzi @m%")+

£ (s34 (s e
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and
(A(l))2+l - (A(l))’L‘ - E ((Rgl))nﬂ: (R(l )L_-) | (A4)

As in the case of the right boundary condmon in section 1.3.2, we need a ghost point in

n+ 3 n+i n+i
order to determine (RM)}"/ s 44 and (S(l))Hl ,and hence (Q(l))LI% and (A(l))L:"é. The
equations determinating the ghost point are given by

@Y™ L gyt
(Q(l))z’f% _ @71+ )i
2

(A.5)
and

+1 n+1
(A(l));_z% + (A(l))L+§2_
2

(ADYFE = (A.6)

The corresponding equations concerning the points on the left boundary of the second

part of the'tube (2) are given by -

@ = @ -5 (R - (R);1}) +

L+1
g(( 32))1;;; + (552))22) (A7)
and
(APt = (4@ _ 2 ((R(z))’;z_(Rp)Zz) (A8)

Similar to the treatment of the left boundary, we need the ghost point to determine
n+t ntx .
Q™) Ltg and (A®) I:%E . They are found from the approximations

y Q)+ (@)1

(A9)

and

(A.10)

We now have twelve unknowns: (QU)7+?, (Q(l))2+15,(Q(1))ZIi (A(l))Z‘H,(A(l))T%,

ntd nt+l n -- n+ 3 n+l
(AO)LE, (@O)EP, (@)L, (@), (A3, (D)5, and (4G

However, we have only eight equations. As in section 1.3.2 we apply the boundary
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condition twice, namely at the time levels (n + 3) and (n + 1). This adds the following
two equations to the system.

(3) (1 :ﬂ;ﬁ; p n+3

el pal (3) — . c - A — Pe 0

@)p (@)t = P Pe ; (A1)
(RO B

L
and

A(a) n+1
® (1,— 5 | — Pe + po

@), —
n ni1 _ (PP)L —pe _
(@MEF —(@W)iH = o = = (A.12)
L
In addition, we apply the relation (A.2) to obtain the too remaining equations
‘ @y
() |1~ = @) |1 |
U Ny
' A(3)
= ) [1- —(—"Lf—_ (A.13)
\ (A@)L"
and
(1) (2)
Q) | (Ao )L _ (2 | (Ag )
() (1 (AT | T ()L \1 \———(A(Z))ZH)
(3)
= (), [1— e

Using the above relations, it is possible to eliminate the right hand sides of (A.11) and
(A.12). We have chosen to replace the right hand side by the expressions dealing with
the first part of the tube!.

If we let
‘ il ntl
2= QW) 2= (QW)? z3=(QW)}3
1 n+1- 71.+-z
za= (@M 25 =(Q®) 7 zs=(QW)]3
L £
zr= (A ag= (A2 zg = (AM)}2
2 1 n+g n+1
Ti0 = (A( ))E+ T = (A(z))L 2 oz = (A(z))L_?_
2

In both or in one of the cases one could just as well have replaced the right hand side by the
expressions dealing with the second part of the tube.
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and define § = £, and 4 = — we can use the above definitions to solve the equations
(A3-A.14), and thereby wrlte the residuals in a more compact way. Further, we use
the definitions of R and S (from page 14).

Equation 1 - from (A.3):

A= —a+ QW) -6

zo( gl))L+l dr()
F 2 — 12 -
Y + (r) ;2 72 ( dz )L+]_ + 72 VT Zg
2 2

(dgr/)mz (58 _%)

1),/ 4
1
L+%

2

1
kg = —8’67(%
e — 2\/r (dEW
3T P d(L' L+1

o o (2P a1 dEW
rF? dz rF?2 dg L+

Using the definition (1.13) for F' A, f; can be rewritten as

)+

u|-- NI"‘

ho= ot @ -0 (B b - ()]
(kz— + k3\/Tg + kazo + (5(1)) _1_)

Finally, if we let

— (@) + 0 (RP) 1o ()7

2

Np—- wp-l

then

f1—91—$1—9( +k1\/_)+’)’(k22§+k3\/5‘;+k4$9)
9



Equation 2 - from (A .4):

fo = —ar+(A); —0 (25— (R

bs = (AD)z + 6 (RY)™

[N

then

f2 = -—1,'7—9233'}‘ ks

Equation 3 - from (A.5):

(QU)TE +as

.f3 = -1+ 5
Let now
My ™+
(5
2 L1

then

T
f3=—$2+73+k6

Equation 4 - from (A.6):

1
(A(l))Zti + 9
2
2

fa = —zz+

1)\ "+3
L= ()
2 ).,

2

then

f4=—1‘8+%+k7
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Equation 5 - from (A.7):

. (2) A(2))
: nt+d 2= (Pt )L_l-\/ﬂhz( 0 Jp-1
fs = —z4+(QO) -0 (RQ)) 2 Te 4 d 2

L+ | gy F2 t
1
n+} z12(pP) o1 (dr@\ "2
y (552))L 1+F+ ,n+1_L 2 ( y A
+3 (T(z))L_%_y:z x L-i
1 1° 2,/7T12 212 (dEW>n+22‘
= TZ19 —
F2F 1 (r@Y™3 dz -
Let
ks (p£2) At()z))
2
. f L—:i;
L T{dEW— — —_— -
= dz )L—l
& @ dr? 1 dEW
B r@F dz  rOF2 dz ),

Using k, and the above, f5 can be written as

fo = —za+(QP)7 -9 ((Rgz))zii,: - (325— + ks@)) +

2 Z12

n+%
Y ((59)) + 7‘72ﬁ + ko\/T12 + km»’hz)

L+} T12
Finally, we let
— (O _ g (p@\"™3 (2\"+3
92 = (@) 9(R2 )L_}_% +7(52 )L+%
then

2

z z '
fs=g2—z4+0 (x_s + ksx/xm) +7 (kz'x—s— + kor/T12 + k10$12>
12 12

Equation 6 - from (A.8):

fo = —zw0+ (A(z))z -0 ((me? - 936)

L+3



n+%

L+3

ki = (A(z).)ﬁ -0 (Rgz))
Then we can rewrite fg as

fo=—z10+ 026 + k11

Equation 7 — from (A.9):

nti
2

fr = —zs+

QW nti
G = (T)
L+}

2

Then

z
f7=—$5+-2—6+k12

Equation 8 — from (A.10):

1

Z12 + (A(Z))ZI%

fo = —zn+ 2
Let
AR\ ™2
bs = (T)
L+3
Then we get

z
f8="$11+—21—2+k13

Equation 9 - from (A.11):

fo = —zotzs+

( (Ql))L

+ —Pe +P0
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Let

" _ ((pﬁ”)-pe+po>
14 —
L

R®)

Lo (Y AY
15 — R(s)
L

Then fo can be simplified as

k
fo = —zo 4 25+ kig — ——

N

Equation 10 - from (A.12):

(1)
(P (1— Moz _ 5, + po

z7

fio = —zitaa+ — e L o

The constants k4 and k5 are reused since p, and Ag are not dependent of time.
Therefore

k15
N

fio=—z1+ 24+ k1a —

Equation 11 - from (A.13):

(1) (2)
fu=-M) (1 — sl (Ao )e , + (PP (1 | A
Zg T11

e = —(0449),
ki = (Pgl) Agl)

L
le — (pE:Z) AgZ)

L
Then f;, can be written as

f =
T s VEn

+ ki
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Equation 12 - from (A.14):

frz= - (1 - \I (45 ' + ()1 (1 A
Z7 Z10

Since neither p. nor Ao depends on ¢, we can reuse the constants k¢ — kis. Doing so,
f12 can be rewritten as

k k
fro= = — 2

+ k
NN T

In order to solve these twelve equations using Newton’s method (see page 21 and [4],
[19]) we need to specify the Jacobian of the system. Having this matrix, we can follow
the same recipe as for the right boundary condition in section 1.3.2.

The Jacobian is given by:

(-1 0 & 0 0 0 O 0 & 0 0 0
0 0 -6 0 0 0 -1 0 0 0 0 0
0 -1 3 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 O -1 1 0 0 0
0 0 0 -1 0 & O 0 0 0 0 &
0 0 0 0 0 6 0 0 0 -1 o0 O
Df=| 0 0 0 0 -1 3 0 0 0 0 0 0
0o 0 0 0 0 0 O o o o -1 12
0 -1 0 0 1 0 O = 0 0 0 0
Tg
-1 0 0 1 0 0 i%;% 0 0 0 0 0
0 0 0 0 0 0 —2z 0 0 R0
Zg Z11
0 0 0 0 0 0 —-f 0 0 Ay 0
2z, 2z,
where
{ _ —2!9(83-1-’)’]02
1 = __$9
x2 ]Cl T k
= 4= 2 3
o= o He i) e (hZ e k)
£ = 206 + k2
T12

fa = 0(—§+ " >+~x(—k2—xi+ i +k)
IL‘%z 2,/3712 -'.U%z 2\/112 10
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In the case of B in figure 5.2, we have that A()(L,t) = A®)(L,t) and the number of
equations can be reduced, since the conditions in (A.13) and (A.14) are not necessary.

Following this, it is easily seen that the unknowns (AM)7+! and (AM);72 coincide

with the corresponding unknowns for A®). Further, the unknowns (AM)7 +§ and
2
l
(A(Z)) I 21 are already known from the tubes 2 and 1, respectively. Therefore, neither

of the equatlons (A.6) and (A.10) are necessary. The result of this simplification is that
we in the case of B in figure 5.2 are left with eight equations having eight unknowns.




Appendix B

A discrete outflow using a separate
segment containing the branch

In this section we will develop the equations necessary for treating a bifurcation point
of type A in figure 5.2. First of all, assume that the mass is conserved, hence

s

= 7 (B.1)

QW — @ _ % LL“ Adz = QO

where

d L+ d
— Adr = — (A 2) (1Y A(2)
dt/L dz dt(A + A® 4 VADAD)

if we as shown in figure 5.2.A assume that the tube taper linearly in the bifurcation
segment. Secondly we apply Bernoulli’s relation.

L+¢ Hoy

O — @ 1P (@) (1)y2
P = p?+ (0P + 0 0)) [T S

£ .
@ 1 P (N2 o (N2 /“2 v 3)
p +2((v )+ (v ))—I-pL 8tdS+Ap

ds + Ap(z)

where Ap(), i = 2,3 is accounting for the friction loss due to the curvature of the
branches being considered. The integral is discretized using a backward discretization
scheme. Thus

22 v
p/x1 o ds = ZP_Aft (v(z1,t) + v(z2,t) — (v(21,t — AL) + v(20,t — At))
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. These assumptions are presented by Stettler[25] and Skalak[22]. Similarly, a backward
discretization of the time-derivative in (B.1) is used. If the time level t = n + 1 and
t — At = n we get

y , }
Eg ((A(l))n-}-l + (A(2))n+1 + \/(A(l))n+1(A(2))n+1> —

¢ (A(l))'n,+1 + (A(2))n+1 + (A(I)A(2))n+1 _ ((A(l))n + (A(Z))n + (A(I)A(2))n>

3 At

Using the fact that v = 9;, the definition of p(A), and the latter condition we get the
requirements ,

n+1
1 — 4] =20
¢ A1)
L
n+l n+1 n+1
| AP o [ (100" QW\?
_ (2) a0 r x , x|
= P (1 \A(z))) + 2 (A(2)) + (A(l) + (B.2)
| L+¢ \ A 7

€
QW\™3z  [Q@\™tE )
(A(l) 4o, +(207)

L+
pf Q(l) n+1 Q(z) n+1
& (F‘))L +(m)

L+¢
n+1
, Q@ g\ n+1 oW 2\ n+l
+§ (1—4—(5) i-l- (Zm) + (B3)
n n n+d n+l
P€ Q +1 s _Qﬁ)_ +1 _ Q_(l_) +3 N _Qg +3 N (A (3))
 \\am A, AD ), AB) . P e

Seen from the first part of the tube (1), the equations at the points on the right boundary
are

@ = (Q‘”)“——’“—((RS’)”*?—(R&”)Z’ji)+

L+
n+i nt+i
(st (o)) ®
2
and
k n+i ntl
(Dyn41  _ Wy _ % (" T2 _ (p(1)\"T2
(A = (40 - (R - (R)1) 8.5)
As in the case of the right boundary condition in section 1.3.2, we need a ghost pomt
1 n k(3 n
in order to determine (R(l))Z:i and (SW); 7 +2 - and hence (Q®)); +§ (A(l))I:_2
2

The equations determinating the ghost pomt are given by

(QW)F"E +(QU);1

CRIE 5

(B.6)
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and

(Ay?* + (A2

(ADY*E = — 2 (B.7)

The corresponding equations concerning the points on the left boundary of the second
part of the tube are given by

. nt+l (2) n+3
Q@M = (@4 - (( )L+z+‘— B (Rz )L+€—15) *
k N3 (2) nts
2 ((52 )L+5+ + <S )L+E ’) ‘ ®
and
n n o _ k(o ts (2))"+3
(A = (A4 - 3 ((Rl )L+e+‘5 a (Rl )L+2—15) ®2)

Similar to the treatment of the left boundary, we need the ghost point to determine

Q)72 and (A}

Lt They are found from the approximations

L+§ i

n+l ntl
(Q(z))L 2_1+(Q(2))L : 1
+6~1 +6+1
2

(@42 = (B.10)

and

nt+i
(A(Z))L+£ ; +(4 (2))L+2+%

'n+l
(AP)1E = 5

(B.11)

We now have twelve unknowns: (Q()7+1, (Q(l))”;—, (Q(l))n:?l , (A (A(l))n+%,

nt+i n n+l n+i n n+ nt+l
(A3 (@M)EE (@14, (@P)yZ_ s (AP, (AP)p1f, and (AP) 17
However we have only eight equations. As in section 1.3.2 we apply the boundary

condition twice, namely at the time levels (n + ) and (n + 1). This adds the following
two equations to the system.

@M)F"F - (@) -

2 " . il
32 ((A“) 5y (aont Py \/ AW A@)E

((A‘”)Z (A®) L+£+\/A(l (A ))L+£))

1 3) AL "+
(p(s))Z:Eg Pt (1 -\ ' — Pe + Po

RG) R(3®

(B.12)

L+%-
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and

QM) — (@™)itz -

2
3k

(( 1))Z+1 4+ (A(Z) n+l + \/(A(l) n+1(A(2))

((A(l))Z’”li + (A®) (2) ’Llig +\/ (1) "+2(A(2))L+€)) =

A®)
o)ty [P (1- T ) = pe o
2 -
R® | R®

n+41

L+§

(B.13)

Introducing the boundary conditions adds two more unknowns to the system namely
1
(A(a))::% and (A(3))2:'_1§. However, if we apply the relation (B.4) we are able to obtain

the remaining equations

A(z)
= (P )+e (1— (—O‘ﬁii‘ +

N

Q)2

+

-

N

(@)
(am); *

Q)14

@Mz

A()L

L+4

1
ANz
( )L+§

Q@)

: (45))
(7 ( (AT

d

Using the relation at time level n + 1 yields:

(AM)7

(A7,

@i\ ((Q(”)”])
(A(?))’,-ii;z (Am)*E
+£
+e

(B.14)
(QW)s* )
+
(A(l))“+2
(B.15)
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n n 2
- (p(z))L 1— (A(z))lﬁf + P (Q(”)Lﬂ n (Q(l))LH (B.16)
¢ (A0 ) "2 \\(4®)z) T\ (A '
n : n 'n+
+ﬂ§ (Q (1)yn+1 N (Q@)hh _ (Q(l))L 2 (Q(z))L+s + (Ap(2)> :
(3)yn+1
= (P)pee |1- TER +§ ((g(—s))m) + (g:ﬁ;::) )(3-17)
2
)L+§ )L+§
3)yn+1 ntl 3)\*+3
IS RGN Uil S [CLOREIRCAR ) ) BN
k| (A 0 ( A(s))ﬁl% ( A(l))ZJr% ( A(3))z:;; L+5
2
If we let
. al
ry= QW) 2= (QW)'T  zs= (Q(”)H_
’ n nti nti
4= (Q(z))Li}5 Ts5 = (Q(Z))Hfz z6 = (Q? )L+§__
zr= (A og=(ADF 2= (A(l))’g:%
. ) ntl ) n
o0 = (AL on = (ADE 2o = <A<2>)L:g__
n4+ n
13 = (A(a))“’g = (A%
and define § = 7, and vy = k 5 We can use the above definitions to solve the equations
q

(B.4-B.17), and thereby wrlte the residuals in a more compact way. Further, we use

the definitions of R and S (from page 14).

3

Eguation 1 - from (B.4):

' 2 (pM)p414/2e (AP, 1
_ iy _pl%s c /L+ +32 ()\*t3z
fl - $1+(Q )L 0 To + ]_-2 (RZ )L—:i; +
xg(p,(:l))[,_,.; (dr(l)) 1
vy F+ 2 + = | 2¢/7z9 —
( (T(l))L_*_;_f? dz L+} F2 ? ( )L*‘%
dz L+-15

1) A(l

k] = (pc(: 0 ))
]:2 L+

L
2
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‘ 1
]C2 - —8]537!'72—
L L 2/E (dEW
T P \deo Lal

L = pM) drV) 1 dEW
4T\ rOF2 dg r)F2 dzx L+

Using the definition (1.13) for F' A, f; can be rewritten as
fi = —e+(@QM)E -6 ( + /s - (R“’)Zfi)
(kz— + k3\/To + kszo + (S(l)) _)

Finally, if we let

|>-4

(Q(l))n+0( (1)) + (S(l))L_

W= N

then

f1—91—$1—9( +k1\/_)+7(k22—z+k3\/379+k4$9>

Equation 2 - from (B.5):

fo = —zr+ (A} - <x3 - (R(l))L--)

= (4 +0 (R);

[SIE ]

then

fo=—z7—0z3+ ks

Equation 3 - from (B.6):

G
2

fs = —z2+



then

x
f3=—12+73+k6

Equation 4 - from (B.7):

Wy*+s

fa  = —Zg+

2
Let
AW\ ™3
()
2 -1
then
f4 = —Zg+ % + k;
Equation 5 - from (B.8):
f5 = _$4+(Q(2))2+5
2 (2
-0 (R(Z))”;‘ _ | = 4 (vt ))L’kf‘%\/x12 (A0 )L+e-4
2 L+é+d T12 F2

ntl :L‘12(p£2))L+£—’§

)
(2) dr
Y ((52 )L+E+;_+F+ (T(g))L+£;%p ( dr )L+€-l+

; T12 dEW
F? (2\/7@— (T(2))L+€—%) ( d )L_l—)




(2) (2)
b = (_A)
F? )
: L+§-3

Nz (dEW)
kg = -_—
I~}

F? dz

b = p? dr(2)_ 1 dEW
r@F2 dz r@F dz ).,

Using k, and the above, fs can be written as

fo = —za+ (@)}, -0 ((Rgz))n+% - ('aié‘ + ks@)) +

Lté+g Z12

i
71.+2

) T,
7 ((52 )L+§+% + k2 T12 + koy/Z12 + k10$12)

Finally, we let

2= (@ =0 (R 2L+ (587

then

2
fs=g2—24+80 (——;6 + ks\/fvm) + (kz—;s + kor/T12 + k10$12>
12 12

Equation 6 - from (B.9):

. wt}
o = —a:10+(A(2))L+£—9< (Rf)“_&%—ms)

n+%

Fa = (A®)7, =6 (RE)L+5+;—,

Then we can rewrite fg as

foe = —z10+ 026 + k11

Equation 7 - from (B.10):

n+d
Tg + (Q(2))L+§+%

2

fr = —zs+
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Q(z) n+ ';'
iz = (T)
L+é+3

Then |

Z
f7=—$5+56+k12

Equation 8 - from (B.11):

nti
T2 + (A(z))L+2+’—
fo = —zu+t K .
Let
AD\™TE
ks = (T)
L+e+g
Then we get
T
fse=—zu+ -%-Z + ki3

Equation 9 - from (B.12):
fo = —zp+1z5+
2
2% (s 20+ vEsT — (AN + (AN +(AD)E(Aa)Ere)) +

(3)
(P®) (1— Bade} b4 po

13

RO
Let
2
kg = 'ggk'
o ) o (p£3))L+§—pe+Po
kis = _3_k((A1)L+(A2)L+£+ (A1)2(A2)Z4e) + ;2(3)
nti
(PN 2V (AL
ke = — ;

R®)
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Then fo can be simplified as
k1

\/T13

fo = —z2+ 25+ ks (zs + 211 + /TsT11) + ks +

Equation 10 - from (B.13):

2
fio = —ztz4+ 3—i (z7 + 210 + V/Z7Z10 — (28 + T11 + /ZsZ11)) +

PS)
( ﬁa))LJ,g (1 —y/%ade) _p 4 pg

13

, R®3)
The constants k;4 and k¢ are reused since p, and A, are not dependent of time. If we
then let

( £3))L+§. — Pe + Po

b = S
Then .
- — e . ,,_—_k
fio = —z1+ 244 kg (27 + 10+ V27210 — (28 + z11 + VZsT1)) + Far + ;6
V214

Equation 11 — from (B.14):

A(l) A(2)
fu o= —(pM) (1_ (As )r + () 1ee (1_ (Ao Drve | o
T8 11

{((2)+(2))-

2
pE(zs 2 (@Y (@)
* (z;+—‘( it )) +(297),,

k zg  \ (AW~ (A2)i.,
Let

kis = =P + (pP)Le

pE (@M (Q@)7

Tk (( Z»L+ e )+ (82?)

E\ (At (AP, L+¢
o = (VD).
ko = — (P£2) (At()2)
L+¢

by = g
ke = 2



Then fy, can be written as
k1o kao ( of )2 (1‘2)2
= —= k k — -
fu \/-'E_8+ \/ﬁ-i- 18 + K21 ( .~ + o~ +
ka2 (-z_s + 2)

Z11 Ig

Equation 12 — from (B.15);:

4 (1) (A(3)) ¢
fiz = —(P,(;l))L (1_ EO_)L +(p£3))L+§ (1_ IO L4y +

2

@) | :

S A
RIS
SN’
)

+

z13

k . T13 Tg

n+-;- 3)\n
pf (Q3)L+§, T (Q(l))n (Q( )L+§ 3
| e tao ((Am)% vl | RSP

Reusing the constants kg, k21, k22, and letting

ks =~ + (pP)p¢
et (@M, @k + (a59)
vt T oy 14t
kg = — (P@ (Aés)'
L+4
where
QO™ — (P g
L+&¢ — R(3)
(A48, , ¢
(p(s))L+§ (1 = $13L+ — Pe +Po
kag
= RO =t
If
k _ (p£3))L+§ — Pe + Do
25 - R(S)
3)
ke = _( ‘(23))“'% (Ag )L+§

R
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Then fy5 can be written as

2
k k kas + 2= 2
fiz = D o2y kos + kx ((—_—3') + (2) ) +

VTs  \/Tis 13

kos + 2=
ka2 (____\/'F + Iz

Z13 o

Equation 13 — from (B.16):
| lA(l) ) A2
s = =) (1— (45 e + (PP L4 (1— (Ao Jrse +
I7 Z10
£ () @)
2 T10 z7

£<ﬂ+ﬂ_(2+&>>
k \z1o 27 g ITn

Since neither p, nor Ay depends on ¢, we can reuse the constants k;g, k20, k22, and ko3.
Letting '

kyr = =ML+ 0P )1e + (ApD) e

Doing so, fi3 can be rewritten as

k1o k20 ( T4 2 Z1 2
= ke ((25) +(2)) +
f13 \/E Z10 23 27 10

T z z z
(B2 ()
T10 Z7 T3 Z11

Equation 14 — from (B.17):

(1) 14(3)
fia = —(pf:‘))L (1— ———(A; )L) +(p5:3))L+§ (1_ (Ag )L+§) +

() @)

ntl 3\t
_FE (Q3 L+§ + _:El_ f?_ (Q( ))L+%-

Ap®
k T14 T7 zg Z13 +( P )L+§

It is possible to use some of the constants defined previously. Let

ks = —(pM)p+ (P£3))L+§ + (Ap(a)) 44
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and
3)
(Q(S))n+1 (p )L 5
L+% R(3)
| (49)
D) |1 =22 | —pe + 1o
_  Eaet ka6
- R®) N>

where we have reused k.5 and k¢ since p. and Ag do not depend on ¢.

Using the definition of (Q{®) nhi from equation 12 and the above, we get the following
L+% q
expression for fi4

2
k k kas + 228 2
fia = e + kag + ka2 ((—4) + (il-> ) +

VIT  A/T14 T14 7
k k
- k25+ﬁ+ﬂ_ 2+k25+ﬁ
T14 Z7 Tg :L'iS

In order to solve these fourteen equations using Newton’s method (see page 21 and
[4], [19]) we need to specify the Jacobian of the system. Having this matrix, we can
follow the same recipe as for the right boundary condition in section 1.3.2.

The Jacobian Df is given by:
-1 0 & 0 0 0 0 0 & O 0 0 0 0
0 0 -6 0 0 0 -1 0 0 O 0 0 0 0
0 -1 3 0 0 0 0 0 0 0 0 0 O 0
0 0 0 0 0o 0 0 -1 1 0 0 0 0 0
0 0 0--1 0 & O 0 0 0 0 & 0 0
0 0 0 0 0 6 0 0 0 -1 0 0 0 0
0 0 0 0 -1 % 0 0 0 0 0 0 O 0
0 0 0 0 0 0 0 0 0 0 -1 % 0 0
0 -1 0 0 0 0 & 0 0 e 0 z—kgf;—z 0
%13
-1 0 0 1 0 0 67 58 0 59 610 0 0 _21;3/2
0 & 0 0 &2 0 0 & 0 O &4 0 0 0
0 &s 0 O 0 0 0 & 0 O 0 0 &7 0
€18 —%81 0 & —fflz 0 &2 ’—czx?xz 0 & —%zf"‘ 0 0 0
b =2 0 0 0 0 & R0 0 0 0 G &
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where
& = —20z3 + vk,
Ty
2
£ = _9(_&_'_ ky . T3 ks
3 2ym) ’“2x3+2¢ac—9+’““)
_ 20z¢ + vk,
& =
T2

3 +7 —k2§—+—+k10>

s = ki (1 + —\/—z—Tl)

e = ki (1 + =
2\/$11
_f? = k14 (

& o= —1-
2%
o = k14(1+ \/E)

o = —1-=
2\/-'611

fn = 2]921%-!-@
§12 = 2k21%*+@
11 In
613 - _ 1511392 _ 2k21l‘g _ k22$2
2m8/ z3 z3
514 _ kz(}z _ 2]621127% _ kzgl‘s
2113 73 =t
2k
15 = —212$2 +@
xs xS
bs = — k139 _ 2’62135% _ kyozs
2:1:8/2 3 z3
_ ka4 —13, 35 — /
7 = —2:1:3/2 + (2k21 (kzs + Fae ) - kzz) ( 2y (kzs + 72%?))
13 v/ 213 z3
13
k
Go = 2l

$7 $7
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k
£19 = 2 272“ +@
T10 Z10
Lo = _—];19 _ kg7l B koo
223/ z? z?
fn = — k23°2 _ 2karzl  kaoz
2331(/) z3 z2,
k
£2 = 2 272:51 + 5:3_2.
z7 Iz
€3 = — k1o - 2knz} _ koo
9273/% z3 2
T13-5485 — k
£24 = ka2 Py (k25 + 7%_??)
2
13
— k24 -7 k _ k.
f25 - = —'2—3—/5 + (2]621 (k’zs + Fae — koo 14;%1‘?2_ (k25 + ﬁ)
: T14 /T14 22,
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