
Roskilde
University

Whatever happened to meta-programming? (Invited talk)

Gallagher, John Patrick

Published in:
AGP-2002, Madrid, 17-20 September 2002

Publication date:
2002

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Gallagher, J. P. (2002). Whatever happened to meta-programming? (Invited talk). In AGP-2002, Madrid, 17-20
September 2002 Universidad Politécnica de Madrid.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain.
 • You may freely distribute the URL identifying the publication in the public portal.
Take down policy
If you believe that this document breaches copyright please contact rucforsk@kb.dk providing details, and we will remove access to the work
immediately and investigate your claim.

Download date: 17. May. 2025

AGP’02, Madrid 1

Whatever Happened to

Meta-Programming?

John Gallagher

University of Bristol

AGP’02, Madrid 2

Youthful Expectations

!10-15 years ago
! Meta-interpreters + partial evaluation

! Meta-interpreters “for real” -- to realise language implementation

and extensions

! Compiling control, clever and efficient program control

! Self-applicable partial evaluation for generating compilers and

compiler-compilers

! Inventing abstract machines

! Reflection (demo, holds, etc) for knowledge management and

problem solving

! Conferences for meta-programming (META, Programs as Data,..)

! Progress and continued activity, but…..

AGP’02, Madrid 3

Middle-age realism

!The dreams live on - the problems are

becoming better understood

!how to express semantics

!how to make more powerful partial evaluators

!the essential role of static analysis

!how to design good object program

representation

AGP’02, Madrid 4

Object Language and Meta Language

P Q

Object program

P written in

language L

Meta program

Q written in

language M

(possibly L=M)

!P"
The representation of P in Q

!P" is some data structure in Q

AGP’02, Madrid 5

The real target for tools

!We usually talk of developing language-specific

tools, e.g.

! an analyser for C

! a transformer for Prolog

! a verifier for VHDL

!Each tool is complex and hard to develop

!We should analyse, transform, prove etc. in the

meta-language

!One meta-language can serve many object

languages

AGP’02, Madrid 6

Language Semantics as a Parameter

!A systematic method for developing object

language processors

!Explicit object language definitions, written

down in a meta-language

!syntax and semantics definitions

!Construct language independent tools,

parameterised by semantics

AGP’02, Madrid 7

One program executing another

!An interpreter for language L, IntL

!Takes a (representation of) a program in L

and some input data, and computes some

output data

 IntL : ProgL # Input $ Output

!The familiar partial evaluation equations

(Futamura projections) show that we can

“compile” a program

 PE(IntL, p) = “p compiled into the language of IntL”

AGP’02, Madrid 8

One more generalisation

!A universal interpreter U

!Takes a language definition (syntax and

semantics) as parameter

!Parses and executes a program according to

the given syntax and semantics

U : LangDefs # Progs # Input $ Output

!PE wrt a fixed language definition

 PE(U, DefL) = IntL

AGP’02, Madrid 9

Object language definition

! Syntax

! abstract syntax = terms, parse trees

!utilities (tokenizers and parsers) to convert concrete

programs (e.g. strings, flowcharts) to abstract syntax

! Semantics

! transitions

!derivations

! abstract machine states

!denotations

AGP’02, Madrid 10

Transition Systems

!Operational semantics

!Define abstract machine

!Computation states

!Transitions - binary relation on states

!Derivations

!Transitions can be Big-step or Small-step

AGP’02, Madrid 11

Big-step vs. small-step

!Big-step

!the total effect of each program construct is

expressed

!initial state % final state

!Small-step

!the immediate effect of each statement is

expressed

!initial state % next state

AGP’02, Madrid 12

Small-step semantics

!Operational semantics (small-step or structural)

!a set of computation states Q (configurations)

including terminal states F

!a set of transitions - a relation % in Q # Q

!each transition describes a basic computation

step

!derivations (computations)

!q0 % q1 % q2 % ….

!terminating derivation if qn & F

AGP’02, Madrid 13

Big-step semantics

!Operational semantics (big-step or natural)

!a set of computation states Q (configurations)

including terminal states F

!a set of transitions - a relation % in Q # Q

!each transition describes a complete

computation for some program construct

!derivations and transitions are not distinguished

AGP’02, Madrid 14

Interpreter for small-step semantics

! a predicate transition(S1,S2) to represent S1 % S2

! a predicate derivation(D) where D=[q0,q1,q2,…]

derivation([Q]) :- terminal(Q).

derivation([Q1,Q2|Qs]) :-

transition(Q1,Q2), derivation([Q2|Qs]).

derivation(Q,Q) :- terminal(Q).

derivation(Q1, Q) :-

transition(Q1,Q2), derivation(Q2,Q).

whole derivation

sequence is observed

only initial and final

states are observed

derivation(Q) :- terminal(Q).

derivation(Q1) :-

transition(Q1,Q2), derivation(Q2).

only current

state is observed

AGP’02, Madrid 15

Example - simple imperative language
(Peralta, Gallagher, Saglam, SAS’98, Peralta, PhD 2000)

!Computation state is a pair <Code, Store>

! In a terminal state, the Code is empty (')

<x := expr, t> % < ', t[x/val(expr,t)] >

<if b then s1 else s2, t> % < s1, t > if val(b,t) = true

<if b then s1 else s2, t> % < s2, t > if val(b,t) = false

<s1;s2, t > % < s11; s2, t1 >

if <s1, t> ! <s11, t1> (s11 " ')

<s1;s2, t > % < s2, t1 >

if <s1, t> ! <s11, t1> (s11 = ')

<while b do s, t> % <if b then (s;while b do s) else skip, t>

<skip, t> % < ', t>

AGP’02, Madrid 16

Syntax representation

x := expr assign(X, Expr)

if b then s1 else s2 ifte(B,S1,S2)

s1;s2 compose(S1,S2)

while b do s while(B,S)

skip skip

i := 2;

j := 0;

while (n*n > 1) do

 {if (n*n = 2) then

 i := i+4;

 else

 i := i+2; j := j+1;

 }

compose(assign(i,2),

 compose(assign(j,0),

 while(n*n > 1,

 ifte(n*n=2,

 assign(i, i+4),

 compose(assign(i,i+2),

 assign(j,j+1))

)

)

)

AGP’02, Madrid 17

Representation of transitions

Represent configuration <stmt, t> as c(Stmt, T)

transition(c(assign(X, Expr), T), c(empty, T1)) :-

val(Expr, T, V),

update(T,T1,X,V).

transition(c(ifte(B,S1,S2),T), c(S1, T1)) :-

val(Expr, T, true).

transition(c(ifte(B,S1,S2),T), c(S2, T1)) :-

val(Expr, T, false).

transition(c(while(B,S),T), c(compose(ifte(B,while(B,S),skip)), T)).

transition(c(compose(S1,S2), T), c(compose(S11,S2), T1)) :-

transition(c(S1,T), c(S11,T1)), S11 (empty.

transition(c(compose(S1,S2), T), c(S2, T1)) :-

transition(c(S1,T), c(S11,T1)), S11 = empty.

AGP’02, Madrid 18

Program Specialization

!PE(P,input1) = Pinput1

!P(input1, input2) = Pinput1(input2)

!when applied to language interpreters, can

be regarded as generalised compilation

!PE(Int, P) = IntP

!IntP is a translation of P into the language of Int

!self application yields compiler

!PE(PE,Int) = PEInt, and PEInt(P) = IntP

AGP’02, Madrid 19

Specialization of Transition Semantics

derivation(I,J,N) :-

 d1(I,J,N).

d1(I,J,N) :-

 d2(J,N).

d2(J,N) :-

 d3(0,2,N).

d3(I,J,N) :-

 {Y = N*N},

 gt_test1(Y,R)

 d4(I,J,N,R).

Specialization of derivation semantics w.r.t. example program

d4(I,J,N,false).

d4(I,J,N,true) :-

 d5(I,J,N).

d5(I,J,N) :-

 {Y = N*N},

 eq_test1(Y,R),

 d6(I,J,N,R).

d6(I,J,N,true) :-

 d7(I,J,N).

d6(I,J,N,false) :-

 d8(I,J,N).

d7(I,J,N) :-

 {I1 = I+4},

 d3(I1,J,N).

d8(I,J,N) :-

 {I1 = I+2},

 d9(I1,J,N).

d9(I,J,N) :-

 {J1 = J+1},

 d3(I,J1,N).

AGP’02, Madrid 20

Analysing at Meta-Level

The program above was submitted to a convex-hull

analyser for CLP.

Analysis returns a set of linear constraints associated

to each predicate call. E.g. (partial result).

d7_query(I,J,N) :- J >= 0, J-0.5*I =< -1.0

d9_query(I,J,N) :- J >= 0, J- 0.5*I =< -2.0

Each predicate d1, d2, etc. corresponds to an imperative

program point. Thus the results can be interpreted back

to the object level easily.

AGP’02, Madrid 21

Big-step semantics

! The total effect of a complete language construct is

specified

! Often specified in compositional style

! <Statement, Init, Final>

<x := expr, t, t[x/val(x,t)] >

 val(b,t) = true, <s1, t, t1>

<if b then s1 else s2, t, t1>

 val(b,t) = false, <s2, t, t1>

<if b then s1 else s2, t, t1>

<s1, t, t1> <s2, t1, t2>

<s1 ; s2, t, t2>

<if b then (s;while b do s) else skip, t, t1>

<while b do s, t, t1>

AGP’02, Madrid 22

Big-step interpreter

!The big-step transition relation functions also as a

derivation relation.

! transition(S, Init, Final) can be specialized w.r.t. a

given program S.

!The resulting program differs from the small-step

semantics

! intermediate states are visible.

!program is not tail recursive

AGP’02, Madrid 23

Specialized Big-step interpreter

i := 2;

j := 0;

while (n*n > 1) do

 {if (n*n = 2) then

 i := i+4;

 else

 i := i+2; j := j+1;

 }

d(I,J,N, I’,J’,N’) :-

 d1(I,2,I1),

 d2(J,0,J1),

 d3(I1,J1,N,I’,J’,N’). % while

etc.

More complex analysis?

Variables are duplicated

Answers must be propagated during analysis

AGP’02, Madrid 24

Labelled Transition Semantics

!A compositional style of small-step semantics

!Used extensively for process algebras

! Process language with constructs a.P, P1+P2,

P|Q, P\L, P[f] (Milner)

! (Labelled) transitions, and derivations, are

defined similarly to the imperative language

! Specialized meta-programs have been “model checked”

using static analysis techniques (e.g. Leuschel et al.)

a.P %a P P %a P1

P|Q %a P1|Q

Q %a Q1

P|Q %a P|Q1
etc.

AGP’02, Madrid 25

“Low-level” meta-language

!We can use a low-level meta-language to

represent the semantics of a high-level

object-language

!E.g. proof mechanism for full first order

logic realised by Horn clause program

!Search space of prover pruned using

analysis of Horn clause meta-program.

AGP’02, Madrid 26

Requirements of meta-language

!convenient representation of syntax

!important only for readability

!representation of transitions

!relational style fits better with traditional style

of semantic specification

!non-determinism

!fixpoint semantics

!framework for abstract interpretation

AGP’02, Madrid 27

Static Analysis of Term Structure

q([],X,X).

q([c(X1)|Y],Acc,X) :-

integer(X1), q(Y,c(X1,Acc),X).

q([d(X1)|Y],Acc,X) :-

 integer(X1), q(Y,d(X1,Acc),X).

p(X,Y) :- q(X,0,Y).

Aim of set-based analysis (a.k.a. type inference- to find a safe

approximation of the set of values that can appear at

a given program point (work goes back to [Reynolds, 1968])

SY ::= 0 | c(Int, SY) | d(Int, SY)

(SY is an infinite regular set of terms)

AGP’02, Madrid 28

Uses of Set-based Analysis

For imperative program analysis the environment stack

is modelled as a component of the state.

The stack can be unbounded in the presence of recursive

procedures (hence, stack must be approximated)

Over approximation means that control is undefined

at procedure exit.

Details - Gallagher-Peralta (HOSC, 2001)

AGP’02, Madrid 29

Current and Future Work

!Using set-based analysis of meta-programs

!Verification experiments

! infinite state model checking [Charatonik &

Podelski]

! cryptographic protocols [Abadi & Blanchet]

!using meta-language representation of protocol

!Shape analysis in imperative language

AGP’02, Madrid 30

Related Research
!The Boyer-Moore prover (ACL2) (and other

provers) is essentially a meta-level approach

!First, systematically translate the object

program/system to a LISP-like functional

program

!Verify the functional program

!Interpret the results back to the object program

!The Supercompiler project (Turchin et al.)

!target Java - execute Java via meta-level

interpreter, and optimise at that level

AGP’02, Madrid 31

Powerful tools for the meta-language

!Generally, analysis, proof, and

transformation tools are better developed

for declarative languages.

!Transport these advantages to other

languages, by using declarative languages

as a meta-language

AGP’02, Madrid 32

Some day….

!Programming will cease to be an error-prone

and time-consuming handcraft

!Most programs will be generated, verified by

other programs

!Meta-programming is one of the unifying

principles of computing

!Systematic meta-programming is key

