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Abstract. Automatic termination analysers typically measure the size
of terms applying norms which are mappings from terms to the natural
numbers. This paper illustrates how to enable the use of size functions
defined as tuples of these simpler norm functions. This approach enables
us to simplify the problem of deriving automatically a candidate norm
with which to prove termination. Instead of deriving a single, complex
norm function, it is sufficient to determine a collection of simpler norms,
some combination of which, leads to a proof of termination. We propose
that a collection of simple norms, one for each of the recursive data-types
in the program, is often a suitable choice. We first demonstrate the power
of combining norm functions and then the adequacy of combining norms
based on regular types.

1 Introduction

Termination analysis aims to determine that a given program definitely termi-
nates on a given input. An analyser must guarantee a (correct) verdict within a
finite amount of time. Such a tool typically reports either “yes” - it succeeded
to prove termination, and in this case the program is guaranteed to terminate;
or “no” - it did not succeed to prove termination. The quality of the tool is a
function of its usability. A strong tool will succeed to prove termination for a
wide range of terminating programs, preferably with less intervention from the
user.

Proofs of termination are often based on size functions which map program
states to the elements of a well founded domain. A proof follows by showing that
the states encountered through computation decrease in size and in particular
as the program goes through its loops. As the domain is well-founded and the
size of the input is bounded, the size of the initial state can decrease only a finite
number of times and hence the computation must terminate.

For logic programs, loops occur through recursion and it is the size of the
predicate calls that is required to decrease between recursive calls. Termination
analysers such as those described in [6, 19, 22] choose the natural numbers as
the well-founded domain. Size is measured using so-called semi-linear norms [2]
which map to the natural numbers and define the size of a term as the sum of
the sizes of some of its arguments.

In this setting, a term is said to be rigid with respect to a given norm if its
size does not change under instantiation. For example, assuming a list-length
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norm (which indicates the number of elements in a list), both [X, Y, Z] and
[X, Y, Z|Xs] contain 3 elements but only the first term is rigid as the length of
the second term can change under instantiation. To illustrate the importance of
this notion for termination analysis, consider the recursive clause of the append/3
relation: append([X |Xs], Y s, [X |Zs])← append(Xs, Y s, Zs). To prove termina-
tion it does not suffice to observe that the length of the list in the first (and
third) argument decreases in the recursive call (by one). One must also ensure
that the argument is rigid when this clause is used. Otherwise the decrease in
size could occur infinitely many times. Analysers hence maintain two types of
information: about size — to detect a decrease; and about instantiation — to
detect rigidity.

Instantiation information with respect to the given norm is obtained through
abstract interpretation over the domain Pos of positive Boolean functions. The
domain elements are interpreted as instantiation dependencies with respect to
the given norm. For example, a formula of the form x ∧ (y → z) describes a
program state in which x is definitely bound to a rigid term and there exists an
instantiation dependency such that whenever y becomes bound to a rigid term
then so does z. For details on Pos see [20].

Size relations express linear information about the sizes of terms with respect
to a given norm function [1, 4, 7, 16]. For example, the relation x ≤ z ∧ y ≤ z
describes a program state in which the sizes of the terms associated with x and
y are less or equal to the size of the term associated with z. Similarly, a relation
of the form z = x + y describes a state in which the sum of the sizes of the
terms associated with x and y is equal to the size of the term associated with
z. Several methods for inferring size relations are described in the literature
[1, 4, 7, 8]. They differ primarily in their approach to obtaining a finite analysis
as the abstract domain of size relations contains infinite chains.

This paper makes two contributions. First we address the situation where
termination analysis should consider a combination of several norms. Namely,
the size function used to prove termination combines several different measures
on terms, perhaps because at least one of these measures decreases, or because a
linear combination of the measures decreases. In many cases termination proofs
follow due to the extra precision gained from dependencies between the size
(and instantiation) information with respect to the different norms. In [17] the
idea of using tuple of norm was used to increase the precision of lower-bound
time-complexity analysis.

Second, we consider an alternative approach to guessing a suitable norm for
termination analysis. Instead of trying to derive a single complex norm function
(perhaps defined as a set of interdependent norms), we derive a collection of
simpler norms, some combination of which, hopefully leads to a proof of termi-
nation. We do not specify how these norms should be combined. Instead, the
system tries to find an appropriate combination. Of course, a general solution is
impossible because if the program is terminating then there always exists a well
founded domain and a size function which satisfy the requirements for the proof
of termination [13].
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Guessing a suitable norm reduces the level of intervention by the user and is
often considered the main missing link in automatic termination analysis [10]. It
has been recognised that type information provides a useful insight to this prob-
lem [3, 10, 21, 11, 12, 24] as recursive types represent recursive data-structures
and thus identify potential sources of infinite recursion. We infer one norm per
recursive data type in the program. Intuitively, for each type σ a corresponding
norm ‖ · ‖σ counts the number of subterms of type σ in (typed) terms. This
idea has been applied recently also in [24]. We take the extra step and propose
that combining this collection of norms results in a very powerful technique not
only for the inter-arguments size relations analysis but also for the instantiation
dependency analysis.

Our presentation is based on regular types, expressed as deterministic “reg-
ular unary logic” (RUL) programs [25]. The types could either be declared or
inferred, and we do not even require that the types are correct, although we
are more likely to derive useful norms for proving termination if the types are
correct and accurate.

Our aim is to generate norms from the types inferred by a recent type infer-
ence system [14]. This system does not use a “widening” to introduce recursive
types. This means that recursion in the inferred types always reflects some re-
cursive dependency in the program itself. For this reason it seems a promising
starting point for deriving norms for termination analysis.

2 Preliminaries

Termination analysis for logic programs can be implemented (as for example
in [6, 22]) using a technique termed abstract compilation. The program to be
analysed is first abstracted, using the chosen norm, to corresponding constraint
logic programs over CLP(R) and CLP(B) programs. These describe size and
instantiation dependencies specified by the original program. The analyser char-
acterises also size and instantiation for data occurring in loops. We do not detail
the techniques in which this information is derived. Details can be found in the
literature on termination analysis. See for example [9] for a survey and [6, 22]
for specific analysers. Instead we limit our presentation on termination to the
abstraction process to CLP(R) and explain intuitively the results obtained.

At the heart of the process is the choice of a norm. A semi-linear norm
∣∣ · ∣∣

is a mapping from terms to the natural numbers defined recursively such that∣∣X
∣∣ = 0 for a variable X and for each function symbol f/n in the underlying

signature there is a statement of the form
∣∣ f(t1, . . . , tn)

∣∣ = cf + Σi∈If

∣∣ ti
∣∣

where constant cf and indecies If ⊆ {1, . . . , n} are determined by f/n.
In the examples we mention two norms: list-length (ll) which measures the

number of elements of a list, and term-size (ts) which measures the number of
nodes in the tree representation of a term. These are defined as:
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∣∣T
∣∣
ll
=



1 +

∣∣Xs
∣∣
ll
if T = [X|Xs]

0 otherwise

∣∣T
∣∣
ts
=




1+
n∑

i=1

∣∣ ti

∣∣
ts
if f/n ∈ Σ and

T = f(t1, . . . , tn)

0 otherwise

The abstraction of a program with respect to a given norm is obtained by sys-
tematically replacing the predicate arguments in the program by corresponding
abstract arguments. These are obtained by applying the norm to the argument,
except that, whenever the norm is applied to a variable it is mapped to a fresh
variable representing its size, instead of being mapped to 0. A given variable is
mapped to the same size variable, wherever it occurs in a clause. For example,
consider the append/3 relation depicted below (on the left), and its abstraction
using the list-length norm (on the right). The concrete term [ ] is abstracted to 0
because

∣∣ [ ]
∣∣
ll

= 0 and the concrete term [A|B] is abstracted to 1 + B1 because∣∣ [A|B]
∣∣
ll

= 1 +
∣∣B

∣∣
ll

which we denote as 1 + B1. The CLP(R) program on the
right is an abstraction of the concrete logic program on the left, in the sense
that whenever append(t1, t2, t3) is a consequence of the concrete program, then
append(

∣∣ t1
∣∣
ll
,
∣∣ t2

∣∣
ll
,
∣∣ t3

∣∣
ll
) is a consequence of the abstract program.

append([],A,A). append(0,A1,A1).

append([A|B],C,[A|D]) :- append(1+B1,C,1+D1) :-

append(B,C,D). append(B1,C1,D1).

The append program specifies the relation
{

(x, y, z)
∣∣z = x.y

}
(z equals

the concatenation of x and y). The abstract program specifies the relation{
(x, y, z)

∣∣z = x + y
}

(the length of z is equal to the sum of the lengths of x
and y). The instantiation analysis which can be obtained by applying a Pos anal-
ysis to the program on the right specifies the relation

{
(x, y, z)

∣∣x ∧ (y ↔ z)
}

(x is rigid with respect to the norm and that y is rigid if and only if z is). A
termination analysis based on the list-length norm infers also that all the loops
in the program are of the form append(x, y, z)← append(u, v, w) with size infor-
mation: (u<x) ∧ (y=v) ∧ (w<z). From all of this information together it infers
that the program terminates for queries in which the first or third arguments
are instantiated to rigid terms. For details concerning the specific termination
analyser we have extended in this work, see [6, 15].

3 Combining Norms

When basing termination analysis on program abstraction it is important to re-
member that variables occurring in the abstract program range over information
about size and rigidity with respect to a given norm. This makes it difficult to ap-
ply one norm on one part of the program and another on a different part. First,
one must know how to interpret values for each abstracted variable (with respect
to which norm); and second, one must take care that variables abstracted by dif-
ferent norms do not interact (if different occurrences of variable X are abstracted
by different norms then this can lead to problems). Both of these problems are
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solved if care is taken so that the two abstractions introduce distinct sets of
abstracted variables. Namely, the abstraction of a variable X by the ith norm is
Xi (interpreted as “the size of X by normi”).

The key idea in this paper is to combine two or more norms by applying
them simultaneously. This means that each argument in a predicate of the orig-
inal program is replaced by two or more (renamed apart) abstract arguments
each one specifying size and rigidity information with respect to the correspond-
ing norm. The advantage of this approach is that inter-arguments relations can
provide information about the dependencies with respect to each norm and be-
tween different norms. A similar phenomenon is observed in [12] where the au-
thors abstract each argument by a single but different norm (depending on its
type). However, we do not encounter the technical difficulties described in [12]
by considering a semantic approach based on binary clauses as described in [6].

Example 1. Consider the program below (on the left) where some of the program
points have been annotated (e.g., a©). Termination analysis (of ground queries)
using a list-length norm or a term-size norm does not succeed. The program
contains three types of loops: (1) those where list-length is invariant but term-
size decreases — recursive calls to point a©, (2) those where list-length decreases
but term-size increases — recursive calls to point b©, and (3) those where both
measures decrease — recursive calls to point c© (keep in mind that

∣∣0 ∣∣
ts

= 1).
To perform a termination analysis combining the two norms each argument

in the original program is abstracted first with respect to term-size and then
with respect to list-length. The resulting abstract program is given below (on
the right). Note that the two abstractions introduce disjoint sets of variables.
Analysing this program indicates that all loops decrease in one of the two ar-
guments which correspond respectively to the term-size and list-length of the
original program. For ground queries both arguments are rigid (each with re-
spect to the corresponding norm).

p([ ]).

p([s(s(X)),Y|Xs]) :-

a© p([X,Y|Xs]),

b© p([s(s(s(s(Y))))|Xs]).

p([0|Xs]) :-

c© p(Xs).

p(2+X1,1).

p(4+X1+Y1+Xs1, 2+Xs2) :-

p(2+X1+Y1+Xs1,2+Xs2),

p(5+Y1+Xs1,1+Xs2).

p(2+Xs1,1+Xs2) :-

p(Xs1,Xs2).
2

The previous example illustrates an argument for a program which is directly
recursive. Our approach is not restricted to direct recursion as the termination
analyzer we use makes all (indirect) loops explicit in terms of a direct recursion.

Example 2. Consider the program below (left) which multiplies the elements
(natural numbers) in a (non-empty) list by iteratively replacing the first two
elements by their multiplication. The program terminates if the list is ground.
Attempting to prove this automatically using the term-size norm will indicate
that the calls to times and plus are rigid (in their first and second arguments)
and decrease in size (in their first arguments). So, corresponding calls to these
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predicates surely terminate. However the loop on factor does not decrease in
term-size (we replace the first two elements by their multiplication). Termination
for these loops can be shown using the list-length norm. This, on the other hand
gives no useful information for times and plus. So, neither of the two single
analyses provide a proof or termination.

The abstract program for the combined analysis is given below (right). Each
argument in the original program is abstracted first with respect to term-size
and then with respect to list-length. Analysing this program does give a proof of
termination because in all loops one of the two abstract arguments corresponding
to the first argument in the original program decreases in size and is rigid (with
respect to the appropriate norm).

factor([X],X).

factor([X,Y|Xs],T) :-

times(X,Y,Z),

factor([Z|Xs],T).

times(0,X,0).

times(s(X),Y,Z) :-

times(X,Y,XY),

plus(XY,Y,Z).

plus(0,X,X).

plus(s(X),Y,s(Z)):-

plus(X,Y,Z).

factor(2+X1,1, X1,X2).

factor(2+X1+Y1+Xs1,2+Xs2, T1,T2) :-

times(X1,X2, Y1,Y2, Z1,Z2),

factor(1+Z1+Xs1,1+Xs2, T1,T2).

times(1,0, X1,X2, 1,0).

times(1+X1,0, Y1,Y2, Z1,Z2) :-

times(X1,X2, Y1,Y2, XY1,XY2),

plus(XY1,XY2, Y1,Y2, Z1,Z2).

plus(1,0,X1,X2,X1,X2).

plus(1+X1,0, Y1,Y2, 1+Z1,0) :-

plus(X1,X2, Y1,Y2, Z1,Z2). 2

In the previous two examples we observe that when performing two separate
analyses, each loop in the program decreases in size for at least one of two mea-
sures considered. The question is: Does this constitute a proof of termination?
The answer depends on rigidity information. The point is that when observing
a decreasing size with respect to one of the norms, we must observe also rigid-
ity with respect to the same norm. For the above two examples, assuming that
the initial query is ground (in the respective first arguments of p or factor),
we can guarantee that each loop is both decreasing and rigid with respect to
the appropriate norm (because rigidity with respect to term-size implies rigidity
with respect to list-length). This is not always the case as demonstrated by the
following example.

Example 3. For the following program neither of the two separate termination
analyses, using list-length or term-size, detect a decrease in size for the loop on
t. The combined analysis does give a proof of termination for queries in which
the first argument of t is bound to a ground term. With the combined analysis
we maintain a dependency between the term-size of N and the list-length of Xs
in ll(N, Xs) (they are equal).

t(N) :-

ll(N,Xs),

select(_,Xs,Xs1),

ll(M,Xs1), t(M).

t(0).

ll(s(N),[X|Xs]) :- ll(N,Xs).

ll(0,[]).

select(X,[Y|Xs],[Y|Ys]) :-

select(X,Xs,Ys).

select(X,[X|Xs],Xs). 2
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Correctness: The correctness of our approach is straightforward. All we have
done is to implicitly duplicate the original arguments of each concrete predicate.
E.g. the plus definition becomes:

plus(0,0, X,X, X,X).

plus(s(X),s(X), Y,Y, s(Z),s(Z)):- plus(X,X, Y,Y, Z,Z).

and clearly the success set of this program is isomorphic to the original. Then,
each copy of an argument is abstracted with respect to a corresponding norm.
Correctness follows because the different norms rename the copies apart and
because the analyses (for size and instantiation dependencies) applied to each
copy are known to be correct. At first it might seem that we could as well have
done the analyses separately. But (1) this would complicate the specification of
the termination check; and (2) by doing the analyses together we often derive
(size and rigidity) dependencies between the different abstractions of various
arguments. This sometimes helps provide termination proofs. These are the main
differences between our approach and the one described in [24].

4 Norms from Types

In this section we reconsider how norms can be defined based on type informa-
tion which may be inferred or provided. We refer (as do others) to such norms
as typed-norms. This has been considered previously in [3, 10, 21, 11, 12, 24].
Inferring norms from type information makes sense as recursive types represent
recursive data-structures and thus identify some potential sources of infinite re-
cursion. Moreover, typed-norms are more refined than semi-linear norms because
whereas semi-linear norms measure the size of a term T according to its prime
functor (recursively, as a function of the size of its arguments), typed-norms
define the size of T based on its type. This means that the same term can be
measured differently depending on its type. This is particularly useful when the
same function symbol may occur in different type contexts. Our construction is
based on the notion of regular types [25]. The main intuition is that for each type
σ defined in the program, a typed-norm ‖ · ‖σ counts the number of sub-terms
of type σ in the (typed) term it is applied to. The novelty in our approach is to
then compose the norms corresponding to the (recursive) types defined in the
program. This leads to a powerful technique which avoids many of the problems
encountered in previous works.

Regular Types: A regular type is a set of terms defined by a regular tree gram-
mar. For our purposes, the formulation of regular tree grammars using regular
unary logic (RUL) programs is convenient. An RUL program is a logic program
consisting of clauses of the form: τ(f(X1, . . . , Xn))← τ1(X1), . . . , τn(Xn), where
X1, . . . , Xn are distinct variables. If f has arity zero, then the body of the clause
is true. An RUL program is deterministic if no two clause heads have a com-
mon instance. In this paper we assume deterministic RUL programs whenever
we mention RUL programs. Let R be an RUL program, and τ be a predicate in



Combining Norms to Prove Termination 133

R. Then the regular type τ is the success set of τ in R. There is a distinguished
regular type any, which represents the set of all terms over the signature.

Example 4. The following RUL program defines list of nat, the regular type
consisting of the set of lists of natural numbers in successor notation.

list_of_nat([]). nat(0).

list_of_nat([X|Xs]) :- nat(s(X)) :- nat(X).

nat(X), list_of_nat(Xs). 2

We assume that each predicate p/n in a given program comes with a type
declaration of the form “:−type(τ1, . . . , τn)” where τ1, . . . , τn are types defined
in an accompanying RUL. In our examples we use declared types, but inferred
types, or a combination of declared and inferred types can be used as well. The
more accurate the types are, the more likely there are to derive useful norms for
proving termination.

Example 5. The programs given in Examples 1 and 2 can be typed by adding
the following declarations which assume the type definitions given in Example 4.

:- type p(list_of_nat). :- type factor(list_of_nat,nat).

:- type times(nat,nat,nat).

:- type plus(nat,nat,nat).

These declarations be can inferred automatically using the goal directed anal-
ysis described in [14].

2

Defining Norms from Regular Types: The idea of type-based norms
consists in associating each type σ used in the program with a corresponding
norm function ‖ · ‖σ. When applied to a term t of type τ (denoted t:τ) ‖ · ‖σ
counts the number of subterms of type σ within t. Typed norms can be computed
directly from an RUL program simply by running the RUL on the term to be
measured. For example, let σ and τ be RUL predicates and let t be a term of
type τ . Then ‖t:τ‖σ is the number of calls to σ encountered when executing the
query τ(t) (excluding calls in which the argument is a variable). In fact it is
implemented as a meta-interpreter for RUL’s which counts calls.

Typed-norm definitions are derived from an RUL program as follows: for each
type σ defined in the program (excluding any) and clause τ(f(X1, . . . , Xn)) ←
τ1(X1), . . . , τn(Xn) we introduce an equation of the form

‖f(X1, ..., Xn) : τ‖σ = c(τ, σ) + ‖X1:τ1‖σ + . . . + ‖Xn:τn‖σ
where c(τ, σ) = 1 if τ = σ, and 0 otherwise. In addition we assume that
‖t:τ‖any = 0, for all t:τ and that ‖X :τ‖σ = 0 where X is a variable, for all
τ and σ.

Example 6. Consider the type definition from Example 4. There are two types
and so we define two norm functions, one to count the number of subterms of
type list of nat (denoted by l) and one to count the number of subterms of
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type nat (denoted by n) within a term (of type list of nat or of type nat).
For instance, to evaluate ‖ [s(0), s(s(0))] ‖l and ‖ [s(0), s(s(0))] ‖n we count re-
spectively the number of calls to list_of_nat and to nat in the derivation of
the query “?- list_of_nat([s(0),s(s(0))])” (and this works out to 3 and
5). The typed-norms are defined as:

‖T‖l =




1 + ‖Xs‖l if T = [X|Xs]
1 if T = [ ]
0 if T = s(X)
0 if T = 0
0 otherwise

‖T‖n =




1 + ‖X‖n if T = s(X)
1 if T = 0
‖X‖n + ‖Xs‖n if T = [X|Xs]
0 if T = [ ]
0 otherwise

2

Program abstraction with respect to typed norms is similar to the usual ab-
straction with respect to semi-linear norms. The abstraction for type σ replaces
an argument of type τ by ‖t:τ‖σ except that typed variable X :τ is mapped to
a corresponding size variable Xσ if the predicate defining σ is reachable from
the predicate definition τ and otherwise to 0. Abstracting the programs shown
in Examples 1 and 2 according to the typed-norms of Example 6 give similar
results (except for constants) to the abstraction made in the Examples.

Example 7. The following program (14.4 in [23]) colors a map so that no two
adjacent regions have the same color. The predicates member/2 and select/3
(omitted) are the standard predicates (see [23]). A map is represented as a list
of regions where each region has a color (represented by a variable) and a list
of colors (represented by variables) for the adjoining regions. An example initial
query is given in the box (note the use of shared variables).

color_map([Region|Regions],Colors) :-

color_region(Region,Colors),

color_map(Regions,Colors).

color_map([],Colors).

color_region(region(Color,NBRs),Cs) :-

select(Color,Cs,Cs1),

members(NBRss,Cs1).

members([X|Xs],Ys) :-

member(X,Ys),

members(Xs,Ys).

members([],Ys).

?- color map(
[region(P,[E]), % portugal
region(E,[F,P]), % spain
region(F,[E,I,S,B,G,L]), % france
region(B,[F,H,L,G]), % belgium
region(H,[B,G]), % holland
region(G,[F,A,S,H,B,L]), % germany
region(L,[F,B,G]), % luxembourg
region(I,[F,A,S]), % italy
region(S,[F,I,A,G]), % switzerland
region(A,[I,S,G])], % austria
[red,yellow,blue,white]).

Proving termination for this program is not straightforward and cannot be
performed using the available termination analysers. The term-size norm is not
suitable because the list of regions in the initial query contains variables (and
hence is not rigid with respect to term-size). The list-length norm is not suitable
because the first clause invokes a call to color region which traverses the list
of neighbours in that region (so even if the first argument in color map is rigid,
still the lists of neighbours inside the elements of that list are not rigid). A
specialised semi-linear norm cannot be defined because the list functor occurs
in two different type contexts (for regions and for neighbours) and should be
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treated differently in each. Using norms derived from types we obtain a suitable
norm and a proof of termination. The types for this program are given as:

:- type color_map(list_of_region,list_of_color).

:- type color_region(region,list_of_color).

:- type select(color,list_of_color,list_of_color).

:- type members(list_of_color,list_of_color).

:- type member(color,list_of_color).

list_of_region([]).

list_of_region([X|Xs]) :-

region(X), list_of_region(Xs).

region(region(A,B)) :-

color(A), list_of_color(B).

list_of_color([]).

list_of_color([X|Xs]) :-

color(X), list_of_color(Xs).

color(red). color(blue).

color(white). color(yellow).
2

5 Implementation

The implementation of an analyser which supports the combination of norms
and typed-norms is derived from the termination analyser described in [6] sim-
ply by changing the abstraction module. No other changes are necessary. The
user provides a program and selects a set of norms and then the program is ab-
stracted with respect to this selection. Norms can be selected from a predefined
collection (like listlength, termsize, etc,) or defined by the user. Alternatively
the user can supply types (inferred or declared) and specify that the analyser
should use a combination of the corresponding typed-norms. For regular types
we use the analyser described in [14]. The termination analyser can be accessed
at http://wwww.cs.bgu.ac.il/~mcodish/TeminWeb.

6 Related Work

The idea of using type information to define norms has previously been studied
by Bossi et al. [3], Martin et al. [21], Decorte et al. [10, 11, 12] and more re-
cently by Vanhoof and Bruynooghe [24]. Our approach builds primarily on the
techniques of Decorte et al. and of Vanhoof and Bruynooghe.

Decorte et al. observe in [10] and [11] that different predicate arguments
can be measured by different (typed-) norms. The authors also observe that
inter-arguments relations between different norms can provide useful informa-
tion. Their work suffers from two restrictions. First, at most one typed-norm
can be applied to a term of a given type. Second, as reported in [12], the use of
different norms for different types renders the computation of inter-arguments
relations far from trivial (they propose a solution based on a notion re-execution).

Vanhoof and Bruynooghe make the observation in [24] that interesting typed-
norms can be defined by counting the number of subterms of a given type oc-
curring in (typed-) terms. They address the “single norm per type” restriction
of the Decorte et al., observing that sometimes an argument should be mea-
sured by several different norms and they propose to consider a collection of
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norms, one per type defined in the program. However, to avoid the problems
with inter-arguments relations described in [12] they perform a collection of sep-
arate analyses one for each norm. As a consequence there are no inter-arguments
relations between arguments measured by different norms. However, the nature
of their basic norms (counting in a term the number of subterms of a given type)
is quite powerful and for many examples this leads to a proof of termination.

Our approach to combining norms simply by duplicating predicate arguments
and applying the analyses simultaneously solves the problems encountered in
both of the lines of work described above: we take the same collection of norms
as proposed in [24]; we allow mixed norms (determined by different types); we
allow several norms for arguments of the same type; we maintain inter-arguments
size dependencies between different measures; and finally, if there are several
candidate norms and it is not clear which (linear combination of different norms)
is suitable then our system can find it automatically. This approach was also
applied in [17] in the context of lower-bound time-complexity analysis to increase
the precision of the inter-arguments size relations analysis.

The use of types to refine other program analyses has recently been con-
sidered in [5] and [18]. In those papers the authors observe that if a program
is well-typed then only subterms of the same type can be unified. Hence, type
information is used to refine the analysis of unifications in a program by consid-
ering for each type which of subterms can be matched. The idea of multiplying
the arguments of predicates — one copy per type containing size information
with respect to that type — closely resembles the approach used in [18] where
for each type the corresponding copy of an argument contains its subterms of
that type.

7 Conclusion

This paper describes a technique which enables a termination analyser to con-
sider a combination of several (typed-) norms. The simple idea to replicate the
arguments of a predicate for each norm goes a long way and solves many of the
problems encountered in previous works. First because the analysis benefits from
dependencies amongst different measures of the terms. Second because the anal-
yser can discover which combination of the measures derived from the program’s
types is suitable to prove termination; and finally, because the implementation
becomes straightforward.
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