
Roskilde
University

A Program Transformation for Backwards Analysis of Logic Programs

Gallagher, John Patrick

Published in:
Logic Based Program Synthesis and Transformation, 13th International Symposium, LOPSTR 2003

Publication date:
2003

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Gallagher, J. P. (2003). A Program Transformation for Backwards Analysis of Logic Programs. In M.
Bruynooghe (Ed.), Logic Based Program Synthesis and Transformation, 13th International Symposium,
LOPSTR 2003 (pp. 92-105). Springer. http://www.springer.de/comp/lncs/index.html

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain.
 • You may freely distribute the URL identifying the publication in the public portal.
Take down policy
If you believe that this document breaches copyright please contact rucforsk@kb.dk providing details, and we will remove access to the work
immediately and investigate your claim.

Download date: 18. Jun. 2025

http://www.springer.de/comp/lncs/index.html

A Program Transformation for Backwards
Analysis of Logic Programs

John P. Gallagher?

Roskilde University, Computer Science, Building 42.1
DK-4000 Roskilde, Denmark

e-mail: jpg@ruc.dk

Abstract. The input to backwards analysis is a program together with
properties that are required to hold at given program points. The purpose
of the analysis is to derive initial goals or pre-conditions that guarantee
that, when the program is executed, the given properties hold. The so-
lution for logic programs presented here is based on a transformation of
the input program, which makes explicit the dependencies of the given
program points on the initial goals. The transformation is derived from
the resultants semantics of logic programs. The transformed program
is then analysed using a standard abstract interpretation. The required
pre-conditions on initial goals can be deduced from the analysis results
without a further fixpoint computation. For the modes backwards anal-
ysis problem, this approach gives the same results as previous work, but
requires only a standard abstract interpretation framework and no spe-
cial properties of the abstract domain.

1 Introduction

The input to backwards analysis is a program together with properties that are
required to hold at given program points. The purpose of the analysis is to derive
initial goals or pre-conditions that guarantee that, when the program is executed,
the given properties hold. Discussion of the motivation for backwards analysis
is given by King and Lu [KL02] and Genaim and Codish [GC01]. For example,
in a logic program, it is useful to know which instantiation modes of goals will
definitely not produce run-time instantiation errors caused by calls to built-in
predicates with insufficiently instantiated arguments [KL02], and which goals
are sufficiently instantiated to ensure termination [GC01]. By contrast, program
analysis frameworks usually start with given goals, and derive properties that
hold at various program points, when those goals are executed.

An essential aspect of static analysis using abstractions or approximations is
that the analysis results are safe. Backwards analysis algorithms have distinctive
characteristics in this regard. The final result, namely (a description of) the set
of initial goals that guarantee the establishment of the given properties, should

? Supported by European Framework 5 Project ASAP (IST-2001-38059)

be an under approximation of the actual set of goals that satisfy the require-
ments. Analyses usually yield an over approximation, this has led investigators
to develop special abstract interpretations that give an under approximation.

In this paper we develop a method for using standard abstraction and over-
approximation techniques, and still obtain valid results for backwards analysis.
This is achieved by analysing not the original program, but rather a transformed
program that makes explicit the dependencies between the given properties and
initial goals.

The method is presented in terms of (constraint) logic programs. The es-
sential idea is to transform a given program P into another program (or rather
meta-program) whose semantics is a dependency relation 〈A,B〉, where B is a
call at some specified program point, and A is an atomic goal for P . Analysis
of this transformed program yields an over-approximation of the set of depen-
dencies between A and B, which can then be examined to find goals A that
guarantee some required property of B.

1.1 Making Derivations Observable

The transformation to be presented in Section 2 makes explicit the dependen-
cies of program points on initial goals. The transformation can be viewed as
the implementation of a more expressive semantics than usual. Standard se-
mantics (such as least Herbrand models, c-semantics, s-semantics, call and suc-
cess patterns for atomic goals, and so on) do not record explicitly the relation-
ship between initial goals and specific program points. The resultants semantics
[GLM96,GG94] provides a sufficiently expressive framework.

Resultants Semantics A resultant is a formula Q1 ← Q2 where Q1, Q2 are
conjunctions of atoms1. If Q1 is an atom the resultant is a clause. Variables
occurring in Q2 but not in Q1 are implicitly existentially quantified. All other
variables are free in the resultant.

Definition 1. OL(P)
Given a definite program P , the resultants semantics OL(P) is the set of all

resultants2 p(X̄)θ ← R such that p(X̄) is a “most general” atom (that is, an
atom of the form p(x1, . . . , xn) where x1, . . . , xn are distinct variables) for some
predicate in P , and← p(X̄), . . . ,← R is an SLD- derivation (with a computation
rule selecting the leftmost atom) of P ∪{← p(X̄)} with computed answer θ. Such
a resultant represents a partial computation of the goal p(X̄). We include the
zero-length derivations of form p(X̄)← p(X̄).

From here on the leftmost computation rule is assumed and the subscript L in
OL(P) is omitted. There is also a fixpoint definition of O(P); abstract interpre-
tation of the resultants and related semantics was considered in [CLM01].
1 Standard terminology and notation for logic programming is used [Llo87].
2 Strictly speaking OL(P) contains equivalence classes of resultants with respect to

variable renaming, rather than resultants themselves.

Other standard semantics can be derived as abstractions of O(P). The subset
of elements p(X̄)θ ← R ∈ O(P) where R = true is isomorphic to the s-semantics
[BGLM94], from which in turn the c-semantics [Cla79] and the least Herbrand
model [Llo87] can be derived by computing all instances and ground instances
respectively. Calls generated by a given goal can also be derived from O(P). The
set of calls that arise from a given atomic goal A in a leftmost SLD derivation is
given by the set calls(P,A) = {B1θ | H ← B1, . . . , Bn ∈ O(P),mgu(A,H) = θ}.
We assume as usual that A is standardised apart from the elements of O(P).

1.2 Backwards Analysis Based on the Resultants Semantics

The possibility of using the resultants semantics for backwards analysis does not
seem to have been considered previously. The relation B ∈ calls(P,A) can be
read backwards; given B, A is a goal that invokes a call B.

We can capture the essential information about the dependencies between
calls and goals using the downwards closure of O(P), denoted O+(P). That is,
O+(P) is O(P) extended with all the instances obtained by substitutions for free
variables, which are variables occurring in the resultants’ heads. Then define a
relation D, called the goal dependency relation for P .

D(A,B) ≡ (A← B, . . . , Bn ∈ O+(P))

The goal dependency relation for a program is closely related to the binary clause
semantics of Codish and Taboch [CT99] (but is downwards closed with respect
to the free variables).

Proposition 1. Let P be a program, and D be the goal dependency relation
for P . Then (i) if D(A,B) then B ∈ calls(P,A), and (ii) for all goals A and
B ∈ calls(P,A), there exists a substitution σ such that D(Aσ,B).

Proof. (i). If D(A,B) then O(P) contains A′ ← B′
1, . . . , B

′
n such that A ←

B, . . . , Bn is an instance obtained by a substitution, say θ, for the variables
in A′. Hence mgu(A,A′) = θ and B = B′

1θ, and so B ∈ calls(P,A) (ii) If
B ∈ calls(P,A) then O(P) contains A′ ← B′

1, . . . , B
′
n, mgu(A,A′) = σ and

B = B′
1σ. The instance Aσ ← B, . . . , B′

nσ is thus contained in the downwards
closure O+(P) and hence D(Aσ,B) holds.

Definition 2. Let P be a program and D be the goal dependency relation for P .
Let Θ and Φ be properties of atoms; that is, for every atom A, Θ(A) and Φ(A)
are either true or false. We say that a call-dependency Θ → Φ follows from D
if there does not exist D(A,B) such that Θ(A) ∧ ¬Φ(B).

Definition 3. A property Θ is called downwards closed if, whenever Θ(A) holds,
Θ(Aϕ) holds for all substitutions ϕ.

Proposition 2. Let P be a program, and D be the goal dependency relation for
P . Suppose Θ → Φ follows from D, and that Θ is a downwards closed property.
Then for all goals A, and B ∈ calls(P,A), Θ(A)→ Φ(B).

Proof. Let A be a goal, such that Θ(A) holds. For all B ∈ calls(P,A), we must
establish that Φ(B) holds. For each such B there exists some instance Aσ such
that D(Aσ,B) by Proposition 1. Θ(Aσ) holds since Θ is a downwards closed
property. Hence Φ(B) holds since Θ → Φ follows from D.

Proposition 2 establishes that we can use the goal dependency relation of a
program in order to establish dependencies between goals and calls, provided
that the properties on goals are downwards closed. The next proposition shows
that we can use over-approximations of the goal dependency relation to deduce
dependencies.

Proposition 3. Let S be a goal dependency relation and let S′ be a relation
including S. Then, if the call-dependency Θ → Φ follows from S′, it also follows
from S.

Proof. Suppose that Θ → Φ follows from S′. Then there does not existD(A,B) ∈
S′ such that Θ(A) ∧ ¬Φ(B). Hence such a pair does not exist in S either, and
so Θ → Φ follows from S.

We can also explain how our approach achieves the “under-approximations” of
the conditions on initial goals discussed earlier. Given a call property Φ, suppose
Θ → Φ follows from the goal dependency relation D. In an over-approximation
of D, we will in general be able to establish dependencies Θ′ → Φ, such that
Θ′ → Θ. Put another way, the larger the approximation is, the more chance
there is of finding a counterexample D(A,B) such that Θ(A) ∧ ¬Φ(B) . The
greater the over-approximation, the more restrictive are the properties Θ′ for
which Θ′ → Φ can be shown.

The backwards analysis method can now be summarised in the following way.
The concrete semantics on which we define properties is the goal dependency
relation D for a given program. Given a program P we define a transformed
program containing a predicate whose logical consequences contain the goal de-
pendency relation D. Using abstract interpretation of the transformed program,
we compute approximations of D, which can be used to establish dependencies
between goals and calls, as proved in Propositions 2 and 3.

We shall also define an even more refined transformed program, whose se-
mantics is restricted to a subset of the goal dependency relation D, containing
tuples D(A,B) where B is a call occurring at one of a specified set of program
points.

Basing our approach on a downwards closed semantics allows a straightfor-
ward approach to implementation, using for example the framework presented
in [GBS95]. Our analyses are based on the c-semantics [Cla79], which is the set
of atomic logical consequences of a program. Given a program P , let C(P) be
the c-semantics of P . As shown in [GBS95], C(P) can be given a least fixpoint
form.

2 The Program Transformation

First, the resultants semantics is formulated as a program transformation.

2.1 Resultants Semantics by Program Transformation

A resultant A ← Q is represented as a meta-predicate R(A,Q). Let P be a
program. For each program clause H ← D1, . . . , Dn (n > 0) in P we produce n
clauses.

R(H, (Q,D2, . . . , Dn))← R(D1, Q)
R(H, (Q,D3, . . . , Dn))← D1,R(D2, Q)
· · ·
R(H,Q)← D1, . . . , Dn−1,R(Dn, Q)

For each unit clause H ← true produce a single clauseR(H, true)← true. Finally,
for each predicate p we add a clause R(p(x̄), p(x̄)) where p(x̄) is a most general
call to p.

In the bodies of the clauses for R there are calls to the original program
atoms D1, D2 and so on, so it is assumed that the clauses for P are included
in the transformed program. These object program calls could have been writ-
ten R(D1, true),R(D2, true) respectively since A is in the minimal model of the
program iff there is a ground instance of a resultant A← true in the resultants
semantics of the program. If this modification were made, the transformation cor-
responds closely to the fixpoint definition of the resultants semantics [GLM96].
We denote by ResP the collection of clauses defining the predicate R as shown
above, together with P itself.

Example 1. Let P be the “naive reverse” program. The transformed program is
shown in Figure 1. The meta-predicate R is denoted res in the program.

res(rev([],[]),true) :- true.
res(rev([X|Xs],Zs),(Q,app(Ys,[X],Zs))) :-

res(rev(Xs,Ys),Q).

res(rev([X|Xs],Zs),Q) :-

rev(Xs,Ys), res(app(Ys,[X],Zs),Q).

res(app([],Ys,Ys),true) :- true.
res(app([X|Xs],Ys,[X|Zs]),Q) :-

res(app(Xs,Ys,Zs),Q).

res(rev(X,Y),rev(X,Y)) :- true.
res(app(X,Y,Z),app(X,Y,Z)) :- true.

rev([],[]).

rev([X|Xs],Zs) :-

rev(Xs,Ys),

app(Ys,[X],Zs).

app([],Ys,Ys).

app([X|Xs],Ys,[X|Zs]) :-

app(Xs,Ys,Zs).

Fig. 1. ResP where P is the naive reverse program

Proposition 4. Let P be a program. Then for all resultants A← G ∈ O+(P),
R(A,G) ∈ C(ResP).

Proof. (Outline). A derivation corresponding to a resultant can be represented
as an AND-OR proof tree. The proof is by induction on the depth of AND-OR
trees.

Note that C(ResP) contains more instances of resultants than does O+(P).
Specifically, local variables in resultants are also instantiated, as well as head
variables. The transformed program thus represents an approximation of the
dependency relation. In practice this is not a loss in precision, since clearly no
dependencies will be derived between local variables in resultants and head vari-
ables.

2.2 From Resultants to Binary Clauses

The program above can be modified to yield (the downwards closure of) binary
clauses [CT99]. Only the first call in the right-hand-side of the resultants is
recorded, rather than the whole resultant. A resultant A1 ← A2 in which both
A1 and A2 are atoms is called a binary clause. In the binary clause semantics, a
resultant A← B1, . . . , Bn is abstracted to A← B1.

The transformed program corresponding to the binary clauses is as follows.
A meta-predicate B(A1, A2) represents the binary resultant A1 ← A2.

B(H,Q)← B(D1, Q).
B(H,Q)← D1,B(D2, Q).
· · ·
B(H,Q)← D1, . . . , Dn−1,B(Dn, Q).

As before, we add a clause B(p(x̄), p(x̄)) for each predicate p where p(x̄) is a
most general atom for p. Note that a unit clause in P produces no clauses for B.
Let BinP be the transformed program consisting of P together with the clauses
defining the predicate B as shown above.

Example 2. Let P be the “naive reverse” program. The transformed program is
shown in Figure 2. The meta-predicate B is denoted bin in the program.

bin(rev([X|Xs],Zs),Q) :-

bin(rev(Xs,Ys),Q).

bin(rev([X|Xs],Zs),Q) :-

rev(Xs,Ys), bin(app(Ys,[X],Zs),Q).

bin(app([X|Xs],Ys,[X|Zs]),Q) :-

bin(app(Xs,Ys,Zs),Q).

bin(rev(X,Y),rev(X,Y)) :- true.
bin(app(X,Y,Z),app(X,Y,Z)) :- true.

rev([],[]).

rev([X|Xs],Zs) :-

rev(Xs,Ys),

app(Ys,[X],Zs).

app([],Ys,Ys).

app([X|Xs],Ys,[X|Zs]) :-

app(Xs,Ys,Zs).

Fig. 2. BinP where P is the naive reverse program

Proposition 5. Let P be a program. Then for all resultants A← B1, . . . , Bn ∈
O+(P), B(A,B1) ∈ C(BinP).

C(BinP) is an over approximation of the goal dependency relation for P . As
was the case for the resultants program ResP , the downwards closure of local
variables is included in the relation B in C(BinP).

2.3 Transforming with Respect to Program Points

Next, a further simplification is made, when calls at specified program points are
to be observed, rather than all calls. We may if required observe only a specific
argument of a call at some program point. A meta-predicate Dep(A1, A2) is
defined, whose meaning is that there is a clause A1 ← A2 in the binary clause
semantics, and A2 is a call, or some argument of a call, at one of the specified
program points to be observed.

Let H ← B1, . . . , Bj , . . . , Bn be a clause in a program P . Suppose that we
wish to observe calls to Bj in this clause body, and determine some property
of initial goals which establish some property of Bj . In the semantics, only the
binary clauses of the form A← Bj are to be observed: no other calls other than
those to Bj need be recorded.

To achieve this, we simply modify the binary clause transformation shown
above. Specifically, instead of the clauses of form B(p(x̄), p(x̄)), we create base
case clauses for the given program points.

For instance, for the clause H ← D1, . . . , Dj , . . . , Dn with one point Dj to
be observed, the following clauses for Dep are generated.

Dep(H,Dj)← D1 . . . , Dj−1 Dep(H,Q)← Dep(D1, Q).
Dep(H,Q)← D1,Dep(D2, Q).
· · ·
Dep(H,Q)← D1, . . . , Dn−1,Dep(Dn, Q).

For each body atom to be observed, we add one clause similar to the one for Dj

above. We can see that the only atoms that can appear in the second argument
of Dep are instances of Dj . Denote by DepP the transformed program consisting
of P together with the clauses defining Dep as shown above.

Proposition 6. Let P be a program, and {Dj1 , . . . , Djk
} be a set of body atoms

from clauses in P . Let DepP be the transformed program consisting of P to-
gether with the clauses defining Dep as shown above. Then for all resultants
A ← Dji

, . . . ∈ O+(P), where Dji
is an instance of one of the specified atoms,

Dep(A,Dji
) ∈ C(DepP).

The transformation can be refined (with respect to computational efficiency)
by having a separate Dep predicate corresponding to each predicate in P . That
is, each occurrence of Dep(p(t̄), Q) in the transformed program is replaced by
Depp(t̄, Q).

The transformation can be varied by observing in the second argument of
Dep not the actual call, but simply one or more variables from the call. This is
illustrated in the next example.

Example 3. Let P be the “naive reverse” program. Suppose the call that we wish
to observe is app(Ys,[X],Zs) in the recursive clause for rev as shown in Fig-
ure 3. For example, we suppose that we require that integer(X) holds whenever
this call is encountered. We need observe only the variable X in app(Ys,[X],Zs).

However, the transformation is independent of the actual property. The trans-
formed program, shown in Figure 3, consists of P together with the clauses defin-
ing drev/2 and dapp/3 (representing the meta-predicates Deprev and Depapp).
In place of the call app(Ys,[X],Zs) in the final argument, we observe only the
variable X.

drev([X|Xs],Zs,X) :-

rev(Xs,Ys).

drev([X|Xs],Zs,Q) :-

drev(Xs,Ys,Q).

drev([X|Xs],Zs,Q) :-

rev(Xs,Ys), dapp(Ys,[X],Zs,Q).

dapp([X|Xs],Ys,[X|Zs],Q) :-

dapp(Xs,Ys,Zs,Q).

rev([],[]).

rev([X|Xs],Zs) :-

rev(Xs,Ys),app(Ys,[X],Zs).

app([],Ys,Ys).

app([X|Xs],Ys,[X|Zs]) :-

app(Xs,Ys,Zs).

Fig. 3. Transformed Naive Reverse Program for Backwards Analysis

Next, we apply standard static analysis techniques to the transformed program.

2.4 Analysis of the Transformed Programs

The transformed program can be input to an abstract interpretation framework.
In the experiments carried out so far, analysis was based on the c-semantics
abstracted using pre-interpretations [GBS95]. A pre-interpretation is a mapping
from terms into a (finite) domain D, defined by a pre-interpretation function
J . For each n-ary function symbol f , J contains a function Dn → D, writ-
ten J(f(d1, . . . , dn)) = d for d1, . . . , dn, d ∈ D. A mapping α is defined induc-
tively as α(c) = d where J(c) = d, for 0-ary functions c, and α(f(t1, . . . , tn)) =
J(f(α(t1), . . . , α(tn))) for terms with functions of arity greater than 0. An ab-
stract “domain program” is generated by abstract compilation, in the style in-
troduced by Codish and Demoen [CD93]. A bottom-up analysis of the domain
program yields its c-semantics. Let P be a program and C(P) its minimal model,
which is identical to the c-semantics in this case. Let P J be the abstract domain
program for some pre-interpretation J . The safety result is that for all atoms
p(t1, . . . , tn) ∈ C(P), p(α(t1), . . . , α(tn)) ∈ C(P J).

Example 4. We analyse the above example where we wish to establish the prop-
erty app(Ys,[X],Zs) ↔integer(X), for the occurrence of app(Ys,[X],Zs) in
the recursive clause for rev/2. A simple type domain could be used, consist-
ing of the types int, listint, other. We construct an abstract “domain program”
as described in [GBS95], based on the pre-interpretation constructed from the
program’s function symbols and the given types.

[] −→ listint [int | other] −→ other [other | other] −→ other
[listint | other] −→ other [int | int] −→ other [listint | int] −→ other
[other | int] −→ other [int | listint] −→ listint [listint | listint] −→ other
[other | listint] −→ other

rev(X1,X2):-

[]→X1,[]→X2.

rev(X1,X2):-

rev(X3,X4),app(X4,X5,X2),

[X6|X3]→X1,[]→X7,[X6|X7]→X5.

app(X1,X2,X2):-

[]→X1.

app(X1,X2,X3):-

app(X4,X2,X5),[X6|X4]→X1,[X6|X5]→X3.

drev(X1,X2,X3):-

rev(X4,X5),[X3|X4]→X1.

drev(X1,X2,X3):-

rev(X4,X5),dapp(X5,X6,X2,X3),

[X7|X4]→X1,[]→X8,[X7|X8]→X6.

drev(X1,X2,X3):-

drev(X4,X5,X3),[X6|X4]→X1.

dapp(X1,X2,X3,X4):-

dapp(X5,X2,X6,X4),[X7|X5]→X1,[X7|X6]→X3.

Fig. 4. Domain Program for Backwards Analysis of Naive Reverse

The pre-interpretation is encoded as a predicate →/2 corresponding to the
pre-interpretation, that is, for each mapping f(d1, . . . , dn) → d in the pre-
interpretation, we write an atomic clause f(d1, . . . , dn)→ d : −true. The domain
program is shown in Figure 4. Its least model over the pre-interpretation for the
domain of simple types is shown in Figure 5.

2.5 Interpretation of the Analysis Result

Examining the results in Figure 5, we see a number of abstract facts for drev.
(There are no results for dapp derived since no call to app affects the given
program point.) The results show that whenever rev/2 is called with its first ar-
gument a list of integers, then X is an integer at the given program point. This is
indicated by the fact that drev(listint, X1, int) is in the model of the abstract pro-
gram, and there are no other tuples drev(listint, X1, Y) where Y 6= int. By contrast,
there is a tuple drev(other, X1, int) but there is also a tuple drev(other, X1, listint),
so although goals of the form rev(other,Y) might establish the property, they
are not guaranteed to establish it.

In terms of the discussion in Section 1.2, the goal dependency Θ → Φ follows
from the abstract relation, where Θ(rev(X, Y)) is true if X is a list of integers,
and Φ(app(Ys, [X], Zs)) is true is this call arises from the specified program point,
and X is an integer.

Example 5. Let P be the quicksort program, shown in Figure 6. Backwards anal-
ysis was considered for this program in [KL02]. Suppose we wish to check the
calls to the built-in predicates ≥ and <. The intention is that these predicates
require their argument to be ground when called in order to prevent run-time
instantiation errors. The transformed quicksort program is included in Figure 6.

app(listint,X1,X1) rev(listint,listint) drev(listint,X1,int)
app(listint,int,other) rev(other,other) drev(other,X1,int)
app(other,other,other) drev(other,X1,listint)
app(other,int,other) drev(other,X,other)
app(other,listint,other)

Fig. 5. Least model of program in Figure 4, over domain of simple types

qsort([],Ys,Ys).

qsort([X|Xs],Ys,Zs) :-

partition(Xs,X,Us,Vs),

qsort(Us,Ys,[X|Ws]),

qsort(Vs,Ws,Zs).

partition([],Z,[],[]).

partition([X|Xs],Z,Ys,[X|Zs]) :-

X ≥ Z, partition(Xs,Z,Ys,Zs).

partition([X|Xs],Z,[X|Ys],Zs) :-

X < Z, partition(Xs,Z,Ys,Zs).

dqsort([X|Xs],Ys,Zs,Q) :-

dpartition(Xs,X,Us,Vs,Q).

dqsort([X|Xs],Ys,Zs,Q) :-

partition(Xs,X,Us,Vs),

dqsort(Us,Ys,[X|Ws],Q).

dqsort([X|Xs],Ys,Zs,Q) :-

partition(Xs,X,Us,Vs),

qsort(Us,Ys,[X|Ws]),

dqsort(Us,Ys,[X|Ws],Q).

dpartition([X|Xs],Z,Ys,[X|Zs],X ≥ Z).

dpartition([X|Xs],Z,Ys,[X|Zs],Q) :-

X ≥ Z, dpartition(Xs,Z,Ys,Zs,Q).

dpartition([X|Xs],Z,[X|Ys],Zs,X<Z).

dpartition([X|Xs],Z,[X|Ys],Zs,Q) :-

X < Z, dpartition(Xs,Z,Ys,Zs,Q).

Fig. 6. Transformed Quicksort Program for Backwards Analysis

2.6 Analysis of Quicksort

We perform groundness analysis on the program in Figure 6. A pre-interpretation
over the domain elements g and ng (standing for ground and non-ground) is
constructed. This is equivalent to the Pos boolean domain.

[] −→ g [g | g] −→ g [g | ng] −→ ng [ng | g] −→ ng [ng | ng] −→ ng

After generating the domain program, the least model is computed and is shown
in Figure 7. (When computing the minimal model we assign the success modes
g≥g and g<g to the built-ins).

Examining the results via the relation dqsort, we see that the only calls to
qsort(X,Y,Z) that guarantee that the required groundness properties g≥g and
g<g are those in which X is ground. The arguments Y and Z are completely inde-
pendent of the property. For dpartition, note that a variable X1 occurs in both
the final argument of dpartition and in the second argument of partition.
This variable can be instantiated by g or ng. Thus the second argument of
partition has to be ground to establish g≥g and g<g. In addition, the argu-
ments of ≥ and < are ground if either the first argument of partition or the
third and fourth are ground. These are the same results reported by King and
Lu [KL02], summarised as X2 ∧ (X1 ∨ (X3 ∧X4)) in the notation of Pos, where
X1, . . . , X4 are the arguments of partition.

partition(g,X1,g,g) qsort(g,X1,X1)
qsort(ng,ng,g)
qsort(ng,ng,ng)

dpartition(ng,X1,ng,X2,g<X1) dqsort(ng,X1,X2,ng≥ng)
dpartition(ng,X1,g,X2,g<X1) dqsort(ng,X1,X2,ng≥g)
dpartition(ng,X1,ng,X2,ng<X1) dqsort(ng,X1,X2,g≥ng)
dpartition(g,X1,ng,X2,g<X1) dqsort(ng,X1,X2,ng<ng)
dpartition(g,X1,g,X2,g<X1) dqsort(ng,X1,X2,ng<g)
dpartition(ng,X1,X2,ng,g≥X1) dqsort(ng,X1,X2,g<ng)
dpartition(ng,X1,X2,g,g≥X1) dqsort(g,X1,X2,g≥g)
dpartition(ng,X1,X2,ng,ng≥X1) dqsort(g,X1,X2,g<g)
dpartition(g,X1,X2,ng,g≥X1) dqsort(ng,X1,X2,g≥g)
dpartition(g,X1,X2,g,g≥X1) dqsort(ng,X1,X2,g<g)

Fig. 7. Least model of program in Figure 6, over groundness domain

2.7 Computing the Goal Conditions

For examples such as the ones discussed above, the required properties of the
input goals that guarantee the observed property were derived informally by
examining the abstract tuples. We now explain how to do this systematically.

Let Dep(A,B) be the abstract dependency relation returned by the analysis,
which is a finite set of tuples. Let Φ be the property required in the call; that is, we
seek calls B where Φ(B) is true. Consider the set S = {A | Dep(A,B)∧Φ(B)}. S is
the set of calls that possibly establishes Φ(B). Now consider candidate properties
Θ that hold for all elements of S. For each such property, check whether there
exists Dep(A,B) such that Θ(A) and ¬Φ(B). If there is, the candidate property
is eliminated. For all other candidate properties, we have established that Θ → Φ
follows from the abstract dependency relation.

We illustrate this process for the quicksort example. Consider the relation
dqsort shown in Figure 7. The required property is that Φ(g ≥ g) and Φ(g < g)
are true and Φ is false for all other arguments of ≥ and <. The tuples in the
abstract dqsort relation in which Φ holds are the following.
dqsort(g, X1, X2, g≥g)
dqsort(g, X1, X2, g<g)
dqsort(ng, X1, X2, g≥g)
dqsort(ng, X1, X2, g<g)

A candidate property is then that the first argument of qsort can be either
g or ng, to establish the required property. However, we can search the relation
to find a counterexample to the candidate property that the first argument is
ng, such as dqsort(ng,X1,X2,ng<g). However we can find no counterexample
to the property that the first argument is g. Hence we have established that
qsort(g,X1,X2) → Φ.

2.8 The Relative Pseudo-Complement

Domains which possess a relative pseudo-complement allow a more direct method.
Giacobazzi and Scozzari [GS98] identified a property of abstract domains that
allows analyses to be reversible. This property is central to the approach of King
and Lu [KL02,KL03]. The key property is that the domain possesses a rela-
tive pseudo-complement operator. We quote the definition as given by King and
Lu. Let D be an abstract domain with meet and join operations u and t. Let
d1, d2 be elements of D. The pseudo-complement of d1 relative to d2, denoted
d1 ⇒ d2 is the greatest element whose meet with d1 is less than d2: that is,
d1 ⇒ d2 = t{d ∈ D | d u d1 v d2}.

To take Example 5 again, treat g and ng as true and false respectively. The
set of abstract tuples for say, dpartition in Figure 7, can be rewritten as the
following boolean expression, in the domain Pos, which possesses a relative
pseudo-complement operation (here q(X, Y) means X ≥ Y ∧X < Y).

dpartition(X1, X2, X3, X4, q(X5, X6)) ≡
(X2 ↔ X6) ∧ ((X̄1 ∧ X̄3 ∧X5) ∨ (X̄1 ∧X3 ∧X5) ∨ (X̄1 ∧ X̄3 ∧ X̄5)∨
(X1 ∧ X̄3 ∧X5) ∨ (X1 ∧X3 ∧X5) ∨ (X̄1 ∧ X̄4 ∧X5) ∨ (X̄1 ∧X4 ∧X5)∨
(X̄1 ∧ X̄4 ∧ X̄5) ∨ (X1 ∧ X̄4 ∧X5) ∨ (X1 ∧X4 ∧X5))

The pseudo-complement of the above boolean expression relative to the de-
sired property X5 ∧X6 gives X2 ∧ (X1 ∨ (X3 ∧X4)), which is equivalent to the
result derived in Example 5, and the same as that reported by King and Lu
[KL02] for this predicate.

3 Related Work

The most closely related work is that of King and Lu [KL02,KL03], who de-
scribe a method for backwards analysis of logic programs, and report results
for the domain of ground and non-ground modes. Their results have all been
reproduced by the technique shown above, but a formal proof of equivalence
has not yet been constructed. Their approach requires the construction of an
abstract interpretation which under-approximates the concrete semantics. This
requires the definition of a universal projection operator, and requires a con-
densing domain possessing a relative pseudo-complement operator. The fixpoint
computation uses a greatest fixpoint rather than the standard least fixpoint. Our
approach appears to be more flexible in the sense that a wide variety of domains
can be used for the analysis, not only condensing domains. The relative pseudo-
complement, if it exists, can be used in our approach to extract the result from
the abstract program, but is not essential.

Mesnard et al. [Mes96,MN01] have also performed termination inference,
which is a form of backwards analysis.Their approach uses a greatest fixpoint,
and in this respect seems to align more with the approach of King and Lu.

The binary clause semantics of Codish and Taboch [CT99] was used to make
loops observable, by deriving an explicit relationship between a calls and its

successor calls. The transformation presented here can be targeted to observe any
program points of interest, not only loops, but the spirit of the approach is the
same. In later work based on binary clause semantics, Genaim and Codish [GC01]
perform termination inference which involves backwards analysis. However, they
use the framework of King and Lu for the backwards analysis, rather than the
binary clause semantics.

Binary clause semantics is derived from the more general and expressive re-
sultants semantics [GLM96,GG94]. We do not know of any implemented ap-
plications of resultants semantics, apart from the present work and that of
[CT99,GC01], nor any previous suggestion that resultants semantics could form
the basis for backwards analysis.

The approach of transforming programs to realise non-standard semantics
is also followed in the query-answer transformations, which include magic-set
transformations and its relations [DR94,BMSU86]. There, the aim is to simu-
late a top-down goal-directed computation, in a bottom-up semantic framework.
A related approach is advocated by Codish and Søndergaard [CS02]. Different
semantics for logic programs can be represented by meta-interpreters, which
are also written as logic programs. Codish and Genaim’s implementation of the
binary semantics [GC01] follows this style.

4 Conclusion

A method for backwards analysis of logic programs has been presented. Given
a program, and one or more specified body calls, a program transformation is
performed. In the transformed program, the dependencies between the selected
calls and initial goals is made explicit. Analysis of the transformed program
using abstract interpretation yields an over-approximation of the dependency
relation, and it was proved that dependencies could safely be derived from the
approximation.

In contrast to previous work on backwards analysis, our approach requires no
special properties of the abstract domain, nor any non-standard operations such
as universal projection, or a greatest fixpoint computation. This is put forward
as an advantage of our approach, since implementations can be based on existing
abstract interpretation tools.

Experimental results carried out so far indicate that this method is of similar
complexity to other reported work on backwards analysis, and gives equivalent
precision at least over the Boolean domain Pos. A detailed analytical comparison
is difficult due to the great differences between the two approaches. It is indeed
quite surprising that two such different algorithms yield the same results in
experiments carried out so far.

Our use of downwards closed semantics does not seem to be essential to our
general approach, but does allow a simpler analysis and implementation.

Acknowledgements

Thanks to Andy King and Mike Codish for introduction to, and discussions on
backwards analysis, and to Maurice Bruynooghe and the LOPSTR’03 referees
for valuable comments on an earlier draft. Roberto Giacobazzi, Samir Genaim
and Maurizio Gabbrielli also provided useful feedback on the version appearing
in the LOPSTR’03 Pre-proceedings. This research is supported in part by the
IT-University of Copenhagen.

References

[BGLM94] Annalisa Bossi, Maurizio Gabbrielli, Giorgio Levi, and Maurizio Martelli.
The s-semantics approach: Theory and applications. Journal of Logic Pro-
gramming, 19/20:149–197, 1994.

[BMSU86] F. Bancilhon, D. Maier, Y. Sagiv, and J. Ullman. Magic sets and other
strange ways to implement logic programs. In Proceedings of the 5th ACM
SIGMOD-SIGACT Symposium on Principles of Database Systems, 1986.

[CD93] M. Codish and B. Demoen. Analysing logic programs using “Prop”-ositional
logic programs and a magic wand. In D. Miller, editor, Proceedings of
the 1993 International Symposium on Logic Programming, Vancouver. MIT
Press, 1993.

[Cla79] K. Clark. Predicate logic as a computational formalism. Technical Report
DOC 79/59, Imperial College, London, Department of Computing, 1979.

[CLM01] Marco Comini, Giorgio Levi, and Maria Chiara Meo. A theory of observables
for logic programs. Information and Computation, 169(1):23–80, 2001.

[CS02] Michael Codish and Harald Søndergaard. Meta-circular abstract interpreta-
tion in prolog. In Torben Mogensen, David Schmidt, and I. Hal Sudburough,
editors, The Essence of Computation: Complexity, Analysis, Transforma-
tion, volume 2566 of Lecture Notes in Computer Science, pages 109–134.
Springer-Verlag, 2002.

[CT99] Michael Codish and Cohavit Taboch. A semantic basic for the termination
analysis of logic programs. The Journal of Logic Programming, 41(1):103–
123, 1999.

[DR94] S. Debray and R. Ramakrishnan. Abstract Interpretation of Logic Programs
Using Magic Transformations. Journal of Logic Programming, 18:149–176,
1994.

[GBS95] J. Gallagher, D. Boulanger, and H. Sağlam. Practical model-based static
analysis for definite logic programs. In J. W. Lloyd, editor, Proc. of Inter-
national Logic Programming Symposium, pages 351–365, 1995.

[GC01] S. Genaim and M. Codish. Inferring termination conditions of logic pro-
grams by backwards analysis. In International Conference on Logic for
Programming, Artificial intelligence and reasoning, volume 2250 of Springer
Lecture Notes in Artificial Intelligence, pages 681–690, 2001.

[GG94] Maurizio Gabbrielli and Roberto Giacobazzi. Goal independency and call
patterns in the analysis of logic programs. In Proceedings of the 1994 ACM
Symposium on Applied Computing, SAC 1994, pages 394 – 399, 1994.

[GLM96] Maurizio Gabbrielli, Giorgio Levi, and Maria Chiara Meo. Resultants se-
mantics for Prolog. Journal of Logic and Computation, 6(4):491–521, 1996.

[GS98] R. Giacobazzi and F Scozzari. A logical model for relational abstract
domains. ACM Transactions on Programming Languages and Systems,
20(5):1067–1109, 1998.

[KL02] Andy King and Lunjin Lu. A backward analysis for constraint logic pro-
grams. Theory and Practice of Logic Programming, 2(4-5):514–547, 2002.

[KL03] Andy King and Lunjin Lu. Forward versus backward verification of logic
programs. In ICLP’2003 (to appear), 2003.

[Llo87] J.W. Lloyd. Foundations of Logic Programming: 2nd Edition. Springer-
Verlag, 1987.

[Mes96] F. Mesnard. Inferring left-terminating classes of queries for constraint logic
programs. In M. J. Maher, editor, Joint International Conference and Sym-
posium on Logic Programming, pages 7–21. MIT Press, 1996.

[MN01] F. Mesnard and U. Neumerkel. Applying static analysis techniques for
inferring termination conditions of logic programs. In Static Analysis Sym-
posium, volume 2126 of LNCS, pages 93–110, 2001.

