
Roskilde
University

Abstract Domains Based on Regular Types

Gallagher, John Patrick; Henriksen, Kim Steen

Published in:
20th International Conference, ICLP 2004, Proceedings

Publication date:
2004

Document Version
Også kaldet Forlagets PDF

Citation for published version (APA):
Gallagher, J. P., & Henriksen, K. S. (2004). Abstract Domains Based on Regular Types. I B. Demoen, & V.
Lifschitz (red.), 20th International Conference, ICLP 2004, Proceedings Springer.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain.
 • You may freely distribute the URL identifying the publication in the public portal.
Take down policy
If you believe that this document breaches copyright please contact rucforsk@kb.dk providing details, and we will remove access to the work
immediately and investigate your claim.

Download date: 18. Jun. 2025

Abstract Domains Based on Regular Types ?

John P. Gallagher and Kim S. Henriksen

Computer Science, Building 42.1, P.O. Box 260, Roskilde University, DK-4000
Denmark

Email: {jpg,kimsh}@ruc.dk

Abstract. We show how to transform a set of regular type definitions
into a finite pre-interpretation for a logic program. The derived pre-
interpretation forms the basis for an abstract interpretation. The core of
the transformation is a determinization procedure for non-deterministic
finite tree automata. This approach provides a flexible and practical way
of building program-specific analysis domains. We argue that the con-
structed domains are condensing: thus goal-independent analysis over
the constructed domains loses no precision compared to goal-dependent
analysis. We also show how instantiation modes such as ground, variable
and non-variable can be expressed as regular types and hence integrated
with other regular types. We highlight applications in binding time anal-
ysis for offline partial evaluation and infinite-state model checking. Ex-
perimental results and a discussion of complexity are included.

1 Background

There is a well-established connection between regular types and finite tree au-
tomata (FTAs) [1], although typical regular type definition notations [2, 3] usu-
ally correspond to top-down deterministic FTAs, which are less expressive than
FTAs in general. We show how to build an analysis domain from any FTA on
a given program’s signature, by transforming it to a pre-interpretation for the
signature. The main contribution of this paper is thus to link the rich descriptive
framework of arbitrary FTAs, which includes modes and regular types, to the
analysis framework based on pre-interpretations, and demonstrate the practical-
ity of the link and the precision of the resulting analyses.

In Section 2, we introduce the essential concepts from types and FTAs [4] and
a review of the approach to logic program analysis based on pre-interpretations
[5–7]. In Section 3 it is shown how to determinize a given FTA on order to con-
struct a pre-interpretation. Section 4 contains some examples. Implementation
and complexity issues are discussed in Section 5.

An informal example is given first, to give some intuition into the procedure.

Example 1. Given a program containing functions [], [|] and unary function f ,
let the type list be defined by list = []; [any|list] and the type any as any =

? Work supported in part by European Framework 5 Project ASAP (IST-2001-38059),
and the IT-University of Copenhagen.

f(any); []; [any|any]. Clearly list and any are not disjoint: any includes list. We
can determinize the types, yielding two types list and nonlist (l and nl) with
type rules l = []; [nl|l]; [l|l] and nl = [nl|nl]; [l|nl]; f(l); f(nl). Every ground term
in the language of the program is in exactly one of the two types.

Computing a model of the usual append program over the elements l and
nl (using a procedure to be described) we will obtain the following “abstract
model” of the relation append/3: {append(l, l, l), append(l, nl, nl)}. This can be
interpreted as showing that for any correct answer to append(X, Y, Z), X is a list,
and Y and Z are of the same type (list or nonlist). Note that it is not possible
to express the same information using only list and any, since whenever any is
associated with an argument position, its subtype list is automatically associated
with that argument too. Hence a description of the model of the program using
the original types could be no more precise than {append(list, any, any)}.

2 Preliminaries

Let Σ be a set of function symbols. Each function symbol in Σ has a rank
(arity) which is a natural number. Whenever we write an expression such as
f(t1, . . . , tn), we assume that f ∈ Σ and has arity n. We write fn to indicate
that function symbol f has arity n. If the arity of f is 0 we write the term f()
as f and call f a constant. The set of ground terms (or trees) TermΣ associated
with Σ is the least set containing the constants and all terms f(t1, . . . , tn) such
that t1, . . . , tn are elements of TermΣ and f ∈ Σ has arity n.

A finite tree automaton (FTA) is a means of finitely specifying a possibly
infinite set of terms. An FTA is defined as a quadruple 〈Q,Qf , Σ,∆〉, where Q
is a finite set of states, Qf ⊆ Q is the set of accepting (or final) states, Σ is a
set of ranked function symbols and ∆ is a set of transitions. Each element of ∆
is of the form f(q1, . . . , qn)→ q, where f ∈ Σ and q, q1, . . . , qn ∈ Q.

FTAs can be “run” on terms in TermΣ ; a successful run of a term and an FTA
is one in which the term is accepted by the FTA. When a term is accepted, it is
accepted by one or more of the final states of the FTA. Different runs may result
in acceptance by different states. At each step of a successful bottom-up run,
some subterm identical to the left-hand-side of some transition is replaced by the
right-hand-side, until eventually the whole term is reduced to some accepting
state. The details can be found elsewhere [4]. Implicitly, a tree automaton R
defines a set of terms (or tree language), denoted L(R), which is the set of all
terms that it accepts.

Tree Automata and Types An accepting state of an FTA can be regarded
as a type. Given an automaton R = 〈Q,Qf , Σ,∆〉, and q ∈ Qf , define the
automaton Rq to be 〈Q, {q}, Σ,∆〉. The language L(Rq) is the set of terms
corresponding to type q. A term t is of type q if and only if t ∈ L(Rq).

A transition f(q1, . . . , qn) → q, when regarded as a type rule, is usually
written the other way around, as q → f(q1, . . . , qn). Furthermore, all the rules
defining the same type, q → R1, . . . , q → Rn are collected into a single equation

of the form q = R1; . . . ;Rn. When speaking about types we will usually follow the
type notation, but when discussing FTAs we will use the notation for transitions,
in order to make it easier to relate to the literature.

Example 2. Let Q = {listnat, nat}, Qf = {listnat}, Σ = {[], [|], s1, 00}, ∆ =
{[]→ listnat, [nat|listnat]→ listnat, 0→ nat, s(nat)→ nat}. The type listnat
is the set of lists of natural numbers in successor notation; the type rule notation
is listnat = []; [nat|listnat], and nat = 0; s(nat).

Let Σ = {[], [|], s1, 00}, Q = {zero, one, list0, list1}, Qf = {list1}, and
∆ = {[]→ list1, [one|list1]→ list1, [zero|list0]→ list1, []→ list0, [zero|list0]→
list0, 0 → zero, s(zero) → one}, or list1 = []; [one|list1]; [zero|list0] and list0 =
[]; [zero|list0]. The type list1 is the set of lists consisting of zero or more elements
s(0) followed by zero or more elements 0 (such as [s(0), 0], [s(0), s(0), 0, 0, 0],
[0, 0], [s(0)], . . .). This kind of set is not normally thought of as a type.

Deterministic and Non-deterministic Tree Automata It can be shown
that (so far as expressiveness is concerned) we can limit our attention to FTAs
in which the set of transitions ∆ contains no two transitions with the same
left-hand-side. These are called bottom-up deterministic finite tree automata.
For every FTA R there exists a bottom-up deterministic FTA R′ such that
L(R) = L(R′). The sets of terms accepted by states of bottom-up deterministic
FTAs are disjoint. Each term in L(R′) is accepted by exactly one state.

An automaton R = 〈Q,Qf , Σ,∆〉 is called complete if for all n-ary functions
f ∈ Σ and states q1, . . . , qn ∈ Q, it contains a transition f(q1, . . . , qn) → q. We
may always extend an FTA 〈Q,Qf , Σ,∆〉 to make it complete, by adding a new
state q[to Q. Then add transitions of the form f(q1, . . . , qn) → q[for every
combination of f and states q1, . . . , qn (including q[) that does not appear in ∆.
A complete bottom-up deterministic finite tree automaton in which every state
is an accepting state partitions the set of terms into disjoint subsets (types), one
for each state. In such an automaton q[can be thought of as the error type, that
is, the set of terms not accepted by any other type.

Example 3. Let Σ = {[], [|], 00}, and let Q = {list, listlist, any}. We define

the set ∆any, for a given Σ, to be the set of transitions {f(
n times︷ ︸︸ ︷

any, . . . , any) →
any |fn ∈ Σ}. Let Qf = {list, listlist}, ∆ = {[] → list, [any|list] → list, [] →
listlist, [list|listlist] → listlist} ∪ ∆any. The type list is the set of lists of any
terms, while the type listlist is the set of lists whose elements are of type list;
note that list includes listlist.

The automaton is not bottom-up deterministic; for example, three transitions
have the same left-hand-side, namely, []→ list, []→ listlist and []→ any. So for
example the term [[0]] is accepted by list, listlist and any. A determinization
algorithm can be applied, yielding the following. q1 corresponds to the type any∩
list∩ listlist, q2 to the type (list∩any)− listlist, and q3 to any−(list∪ listlist).
Thus q1, q2 and q3 are disjoint. The automaton is given by Q = {q1, q2, q3}, Σ
as before, Qf = {q1, q2} and ∆ = {[] → q1, [q1|q1] → q1, [q2|q1] → q1, [q1|q2] →

q2, [q2|q2] → q2, [q3|q2] → q2, [q3|q1] → q2, [q2|q3] → q3, [q1|q3] → q3, [q3|q3] →
q3, 0→ q3}. This automaton is also complete; the determinization of this example
will be discussed in more detail in Section 3.

An FTA is top-down deterministic if it has no two transitions with both the same
right-hand-side and the same function symbol on the left-hand-side. Top-down
determinism introduces a loss in expressiveness. It is not the case that for each
FTA R there is a top-down deterministic FTA R′ such that L(R) = L(R′). Note
that a top-down deterministic automaton can be transformed to an equivalent
bottom-up deterministic automaton, as usual, but the result might not be top-
down deterministic.

Example 4. Take the second automaton from Example 2. This is not top-down
deterministic, due to the presence of transitions [one|list1]→ list1, [zero|list0]→
list1. No top-down deterministic automaton can be defined that has the same
language. Thus the set accepted by list1 could not be defined as a type, using
type notations that require top-down deterministic rules (e.g. [2, 3]).

Example 5. We define the set ∆any as before. Consider the automaton with tran-
sitions ∆any ∪ {[]→ list, [any|list]→ list}. This is top-down deterministic, but
not bottom-up deterministic (since [] → list and [] → any both occur). Deter-
minizing this automaton would result in one that is not top-down deterministic.

2.1 Analysis Based on Pre-Interpretations

We now define the analysis framework for logic programs. Bottom-up declarative
semantics captures the set of logical consequences (or a model) of a program.
The standard, or concrete semantics is based on the Herbrand pre-interpretation.
The theoretical basis of this approach to static analysis of definite logic programs
was set out in [5, 6] and [7]. We follow standard notation for logic programs [8].

Let P be a definite program and Σ the signature of its underlying language
L. A pre-interpretation of L consists of

1. a non-empty domain of interpretation D;
2. an assignment of an n-ary function Dn → D to each n-ary function symbol

in Σ (n ≥ 0).

Correspondence of FTAs and Pre-Interpretations A pre-interpretation
with a finite domain D over a signature Σ is equivalent to a complete bottom-up
deterministic FTA over the same signature, as follows.

1. The domain D is the set of states of the FTA.
2. Let f̂ be the function Dn → D assigned to f ∈ Σ by the pre-interpretation.

In the corresponding FTA there is a set of transitions f(d1, . . . , dn)→ d, for
each d1, . . . , dn, d such that f̂(d1, . . . , dn) = d. Conversely the transitions of
a complete bottom-up deterministic FTA define a function [4].

Semantics parameterized by a pre-interpretation We quote some defini-
tions from Chapter 1 of [8]. Let J be a pre-interpretation of L with domain D.
Let V be a mapping assigning each variable in L to an element of D. A term
assignment TV

J (t) is defined for each term t as follows:

1. TV
J (x) = V (x) for each variable x.

2. TV
J (f(t1, . . . , tn)) = f ′(TV

J (t1), . . . , TV
J (tn)), (n ≥ 0) for each non-variable

term
f(t1, . . . , tn), where f ′ is the function assigned by J to f .

Let J be a pre-interpretation of a language L, with domain D, and let p be an n-
ary function symbol from L. Then a domain atom for J is any atom p(d1, . . . , dn)
where di ∈ D, 1 ≤ i ≤ n. Let p(t1, . . . , tn) be an atom. Then a domain instance
of p(t1, . . . , tn) with respect to J and V is a domain atom p(TV

J (t1), . . . , TV
J (tn)).

Denote by [A]J the set of all domain instances of A with respect to J and some
V .

The definition of domain instance extends naturally to formulas. In partic-
ular, let C be a clause. Denote by [C]J the set of all domain instances of the
clause with respect to J .

Core bottom-up semantics function T J
P The core bottom-up declarative

semantics is parameterised by a pre-interpretation of the language of the pro-
gram. Let P be a definite program, and J a pre-interpretation of the language
of P . Let AtomJ be the set of domain atoms with respect to J . The function
T J

P : 2AtomJ → 2AtomJ is defined as follows.

T J
P (I) =

 A′

∣∣∣∣∣∣
A← B1, . . . , Bn ∈ P
A′ ← B′

1, . . . , B
′
n ∈ [A← B1, . . . , Bn]J

{B′
1, . . . , B

′
n} ⊆ I

MJ [[P]] = lfp(T J

P): MJ [[P]] is the minimal model of P with pre-interpretation J .

Concrete Semantics The usual semantics is obtained by taking J to be the
Herbrand pre-interpretation, which we call H. Thus AtomH is the Herbrand
base of (the language of) P and MH [[P]] is the minimal Herbrand model of P .

The minimal Herbrand model consists of ground atoms. In order to cap-
ture information about the occurrence of variables, we extend the signature
with an infinite set of extra constants V = {v0, v1, v2, . . .}. The Herbrand pre-
interpretation over the extended language is called HV . The model MHV [[P]] is
our concrete semantics.

The elements of V do not occur in the program or goals, but can appear
in atoms in the minimal model MHV [[P]]. Let C(P) be the set of all atomic
logical consequences of the program P , known as the Clark semantics [9]; that
is, C = {A | P |= ∀A}, where A is an atom. Then MHV [[P]] is isomorphic to C(P).
More precisely, let Ω be some fixed bijective mapping from V to the variables

in L. Let A be an atom; denote by Ω(A) the result of replacing any constant
vj in A by Ω(vj). Then A ∈ MHV [[P]] iff P |= ∀(Ω(A)). By taking the Clark
semantics as our concrete semantics, we can construct abstractions capturing
the occurrence of variables. This version of the concrete semantics is essentially
the same as the one discussed in [7].

In our applications, we will always use pre-interpretations that map all ele-
ments of V onto the same domain element, say dv. In effect, we do not distin-
guish between different variables. Thus, a pre-interpretation includes an infinite
mapping {v0 7→ dv, v1 7→ dv, . . .}. For such interpretations, we can take a sim-
pler concrete semantics, in which the set of extra constants V contains just one
constant v instead of an infinite set of constants. Then pre-interpretations are
defined which include a single mapping {v 7→ dv} to interpret the extra constant.
Examples are shown in Section 4.

Abstract Interpretations Let P be a program and J be a pre-interpretation.
Let AtomJ be the set of domain atoms with respect to J . The concretisation
function γ : 2AtomJ → 2AtomHV is defined as γ(S) =

{
A

∣∣ [A]J ⊆ S
}

MJ [[P]] is an abstraction of the atomic logical consequences of P , in the
following sense.

Proposition 1. Let P be a program with signature Σ, and V be a set of con-
stants not in Σ (where V can be either infinite or finite). Let HV be the Her-
brand interpretation over Σ ∪V and J be any pre-interpretation of Σ ∪V. Then
MHV [[P]] ⊆ γ(MJ [[P]]).

Thus, by defining pre-interpretations and computing the corresponding least
model, we obtain safe approximations of the concrete semantics.

Condensing Domains The property of being a condensing domain [10] has to
do with precision of goal-dependent and goal-independent analyses (top-down
and bottom-up) over that domain. Goal-independent analysis over a condens-
ing domain loses no precision compared with goal-dependent analysis; this has
advantages since a single goal-independent analysis can be reused to analyse
different goals (relatively efficiently) with the same precision as if the individual
goals were analysed.

The abstract domain is 2AtomJ , namely, sets of abstract atoms with respect
to the domain of the pre-interpretation J , with set union as the upper bound
operator. The conditions satisfied by a condensing domain are usually stated in
terms of the abstract unification operation (namely that it should be idempotent
and commutative) and the upper bound t on the domain (which should satisfy
the property γ(X t Y) = γ(X) ∪ γ(Y)). The latter condition is clearly satisfied
(t = ∪) in our domain). Abstract unification is not explicitly present in our
framework. However, we argue informally that the declarative equivalent is the
abstraction of the equality predicate X = Y . This is the set {d = d | d ∈ DJ}
where DJ is the domain of the pre-interpretation. This satisfies an idempotency
property, since for example the clause p(X, Y)← X = Y, X = Y gives the same

result as p(X, Y)← X = Y . It also satisfies a relevant commutativity property,
namely that the solution to the goal q(X, Y), X = Y is the same as the solution
to q(X, Y), where each clause q(X, Y) ← B is replaced by q(X, Y) ← X =
Y,B. These are informal arguments, but we also note that the goal-independent
analysis yields the least, that is, the most precise, model for the given pre-
interpretation, which provides support for our claim that domains based on
pre-interpretations are condensing.

3 Deriving a Pre-Interpretation from Regular Types

As mentioned above, a pre-interpretation of a language signature Σ is equivalent
to a complete bottom-up deterministic FTA over Σ. An arbitrary FTA can be
transformed to an equivalent complete, bottom-up deterministic FTA. Hence,
we can construct a pre-interpretation starting from an arbitrary FTA.

An algorithm for transforming a non-deterministic FTA (NFTA) to a deter-
ministic FTA (DFTA) is presented in [4]. The algorithm is shown in a slightly
modified version.

input: NFTA R = 〈Q, Qf , Σ,∆〉,
Set Qd to ∅; set ∆d to ∅
repeat

Set Qd to Qd ∪ {s}, ∆d to ∆d ∪ {f(s1, . . . , sn)→ s}
where
∀fn ∈ Σ, ∀s1, . . . , sn ∈ Qd, C = s1 × ...× sn

s = {q ∈ Q|∃(q1, . . . , qn) ∈ C, f(q1, . . . , qn)→ q ∈ ∆}
until no rule can be added to ∆d

Set Qdf
to {s ∈ Qd | s ∩Qdf

6= ∅}
output: DFTA Rd = 〈Qd, Qdf

, Σ,∆d〉

Description: The algorithm transform the NFTA from one that operates on
states, to one that operates on sets of states from the NFTA. In the DFTA, the
output of the algorithm, all reachable states in the NFTA are contained in sets
that make up the new states - these are contained in the set Qd. A state in the
NFTA can occur in more than state in the DFTA. Potentially every non-empty
subset of the set of states of the NFTA can be a state of the DFTA.

The sets in Qd and the new set of transitions, ∆d, are generated in an iterative
process. In an iteration of the process, a function f is chosen from Σ. Then a
number of sets, s1, . . . , sn corresponding to the arity of f , is selected from Qd

- the same set can be chosen more than once. The cartesian product is then
formed, (s1×· · ·×sn), and for each element in the cartesian product, q1, . . . , qn,
such that a transition f(q1, . . . , qn) → q exists, q is added to a set s. When all
elements in the cartesian product have been selected, the set s is added to Qd if
s is non-empty and not already in Qd. A transition f(s1, . . . , sn) → s is added
to ∆d if s is non-empty.

The algorithm terminates when Qd is such that no new transitions are added.
Initially Qd is the empty set, so no set containing a state can be chosen from Qd

and therefore only the constants (0-ary functions) can be selected on the first
iteration.

Example 6. In Example 3 a non-deterministic FTA is shown; Σ = {[]0, [|
]2, 00}, Q = {list, listlist, any}, ∆ = ∆any ∪ {[] → list, [any | list] → list, [] →

listlist, [list | listlist]→ listlist}.
A step by step application of the algorithm follows:
Step 1: Qd = ∅,∆d = ∅. Choose f as a constant, f = []. Now s = {q ∈

Q | [] → q ∈ ∆} = {any, list, listlist}. Add s to Qd and the transition [] →
{any, list, listlist} to ∆d.

Step 2: Choose f = 0. Now s = {q ∈ Q | 0→ q ∈ ∆} = {any}. Add s to Qd

and the transition 0→ {any} to ∆d.
Step 3: Choose f = [|], s1 = s2 = {any, list, listlist}. Now s = {q ∈ Q |

∃q1 ∈ s1,∃q2 ∈ s2, [q1 | q2]→ q ∈ ∆} = {any, list, listlist}. Add s to Qd and the
transition [{any, list, listlist} | {any, list, listlist}]→ {any, list, listlist} to ∆d.

Step 4: Choose f = [|], s1 = s2 = {any}. Now s = {q ∈ Q | ∃q1 ∈
s1,∃q2 ∈ s2, [q1 | q2] → q ∈ ∆} = {any}. Add s to Qd and the transition
[{any} | {any}]→ {any} to ∆d.

Step 5: Choose f = [|], s1 = {any}, s2 = {any, list, listlist}. Now
s = {q ∈ Q | ∃q1 ∈ s1,∃q2 ∈ s2, [q1 | q2] → q ∈ ∆} = {any, list}. Add s to Qd

and the transition [{any} | {any, list, listlist}]→ {any, list} to ∆d.
Step 6: Choose f = [|], s1 = {any, list, listlist}, s2 = {any}. Now

s = {q ∈ Q|∃q1 ∈ s1,∃q2 ∈ s2, [q1 | q2]→ q ∈ ∆} = {any}. Add s to Qd and the
transition [{any, list, listlist}|{any}]→ {any} to ∆d.

Step 7 to 11: No new sets added to Qd. New transitions added to ∆d:
[{any, list} | {any, list}] → {any, list}, [{any, list} | {any, list, listlist}] →
{any, list, listlist}, [{any, list, listlist} | {any, list}] → {any, list}, [{any} |
{any, list}]→ {any, list}, [{any, list} | {any}]→ {any}.

The states of states Qd and the transitions ∆d in the resulting DFTA are
equivalent to the states and transitions in Example 3. q1 = {any, list, listlist},
q2 = {any, list} and finally q3 = {any}.

In a naive implementation of the algorithm where every combination of argu-
ments to the chosen f would have to be tested in each iteration, the complexity
lies in forming and testing each element in the cartesian product, for every com-
bination of states in Qd. It is possible to estimate of the number of operations
required in a single iteration of the process, where an operation is the steps
necessary to determine whether f(q1, . . . , qn) → q ∈ ∆. Since ∆ is static, an
operation on Σ can be considered to be of constant time. The number of opera-
tions can be estimated by the formula #op = (s ∗ e)a, where s is the number of
states in Qd, e is the average number of elements in a single state in Qd and a is
the arity of the chosen f . Every time a state is added to Qd, an iteration in the
algorithm will require additional operations. The worst case is if the algorithm
causes an exponential blow-up in the number of states[4].

Obtaining a Complete FTA: The determinization procedure does not return a
complete FTA in general. We can complete it as outlined in Section 2, by adding

an extra state and corresponding transitions. Another way is to ensure that the
input NFTA accepts every term. We can easily do this by adding the standard
transitions ∆any to the input NFTA. The output DFTA is then guaranteed to
be complete.

The algorithm’s efficiency can be improved by generating the new states,
Qd, before the new transitions, ∆d, are generated. Each iteration in the naive
algorithm will redo work from previous iterations, though only combinations
containing a newly added state can result in new states. The transitions can be
generated in one iteration if all states in Qd are known.

The new states are formed based on the transitions in the NFTA. The NFTA
does not change during the algorithm and a preprocessing of the NFTA can be
used to determine, for a given fn, which states from Qd can possibly occur as
arguments in transitions: those states in Qd not containing a state from the
NFTA that occurring as and argument of f cannot result in any new state being
added to Qd.

Experimental results using an optimised version of the above algorithm (to
be described in detail in a forthcoming paper) show that the algorithm can
handle automata with hundreds of transitions. Table 3 in Section 5 gives some
experimental results.

4 Examples

In this section we look at examples involving both types and modes. The use-
fulness of this approach in a binding time analysis (BTA) for offline partial
evaluation will be shown. We also illustrate the applicability of the domains to
model-checking.

We assume that Σ includes one special constant v (see Section 2.1). The
standard type any is assumed where necessary (see Example 3), and it includes
the rule v → any.

Definition of Modes as Regular Types Instantiation modes can be coded
as regular types. In other words, we claim that modes are regular types, and
that this gives some new insight into the relation between modes and types. The
set of ground terms over a given signature, for example, can be described using
regular types, as can the set of non-ground terms, the set of variables, and the set
of non-variable terms. The definition of the types ground (g) and variable (var)
are g = 0; []; [g|g]; s(g) and var = v respectively. Using the determinization

Input states Output states Corresponding modes

g, var, any {any,g}, {any,var}, {any} ground, variable, non-ground-non-variable
g, any {any,g}, {any} ground, non-ground
var, any {any,var}, {any} variable, non-variable

Fig. 1. Mode pre-interpretations obtained from g, var and any

algorithm, we can derive other modes automatically. For these examples we
assume the signature Σ = {[], [|], s, 0} with the usual arities, though clearly
the definitions can be constructed for any signature. Different pre-interpretations
are obtained by taking one or both of the modes g and var along with the type
any, and then determinizing. The choices are summarised in Figure 1. We do
not show the transitions, due to lack of space. To give one example, the mode
non-variable in the determinized FTA computed from var and any is given by
the transitions for {any}.

{any} = 0; []; [{any}|{any}]; [{any, var}|{any}]; [{any}|{any, var}];
[{any, var}|{any, var}]; s({any}); s({any, var})

Let P be the naive reverse program shown below.

rev([], []). rev([X|U],W)← rev(U, V), app(V, [X],W).
app([], Y, Y). app([X|U], V, [X|W])← app(U, V,W).

The result of computing the least model of P is summarised in Figure 2, with
the abbreviations ground=g, variable=v, non-ground=ng, non-variable=nv and
non-ground-non-variable=ngnv. An atom containing a variable X in the ab-
stract model is an abbreviation for the collection of atoms obtained by replacing
X by any element of the abstract domain. The analysis based on g and any is

Input types Model

g, v, any {rev(g, g), rev(ngnv, ngnv), app(g, var, ngnv), app(g, var, var),
app(g, g, g), app(g, ngnv, ngnv), app(ngnv, X, ngnv)}

g, any {rev(g, g), rev(ng, ng), app(g, X, X), app(ng, X, ng)}
var, any {rev(nv, nv), app(nv, X, X), app(nv, X, nv)}

Fig. 2. Abstract Models of Naive Reverse program

equivalent to the well-known Pos abstract domain [10], while that based on g,
var and any is the fgi domain discussed in [7]. The presence of var in an ar-
gument indicates possible freeness, or alternatively, the absence of var indicates
definite non-freeness. For example, the answers for rev are definitely not free,
the first argument of app is not free, and if the second argument of app is not
free then neither is the third.

Combining Modes with Other Types Consider the usual definition of lists,
namely list = []; [any|list]. Now compute the pre-interpretation derived from
the types list, any and g. Note that list, any and g intersect. The set of disjoint
types is {{any, ground}, {any, list}, {any, ground, list}, {any}} (abbreviated as
{g, ngl, gl, ngnl} corresponding to ground non-lists, non-ground lists, ground

lists, and non-ground-non-lists respectively). The abstract model with respect
to the pre-interpretation is

{rev(gl, gl), rev(ngl, ngl),
app(gl,X,X), app(ngl, ngnl, ngnl), app(ngl, gl, ngl), app(ngl, ngl, ngl)}

Types for Binding Time Analysis Binding time analysis (BTA) for offline
partial evaluation in Logen [11] distinguishes between various kinds of term
instantiations. Static corresponds to ground, and dynamic to any. In addition
Logen has the binding type nonvar and user-defined types.

A given set of user types can be determinized together with types represent-
ing static, dynamic (that is, g and any) and var. Call types can be computed
from the abstract model over the resulting pre-interpretation, for example us-
ing a query-answer transformation (magic sets). This is a standard approach to
deriving call patterns; [12] gives a clear account and implementation strategy.

Let P be the following program for transposing a matrix.

transpose(Xs, [])← makerow([], [], []).
nullrows(Xs). makerow([[X|Xs]|Y s], [X|Xs1], [Xs|Zs])←

transpose(Xs, [Y |Y s])← makerow(Y s,Xs1, Zs).
makerow(Xs, Y, Zs), nullrows([]).
transpose(Zs, Y s). nullrows([[]|Ns])← nullrows(Ns).

Let row and matrix be defined as row = []; [any|row] and matrix =
[]; [row|matrix] respectively. These are combined with the standard types g, var
and any. Given an initial call of the form transpose(matrix, any), BTA with
respect to the disjoint types results in the information that every call to the
predicates makerow and transpose has a matrix as first argument. More specif-
ically, it is derived to have a type {any,matrix, row, g} or {any,matrix, row},
meaning that it is either a ground or non-ground matrix. Note that any term of
type matrix is also of type row. This BTA is optimal for this set of types.

Infinite-State Model Checking The following example is from [13].

gen([0, 1]). trans1([0, 1|T], [1, 0|T]). trans(X, Y)←
gen([0|X])← gen(X). trans1([H|T], [H|T1])← trans1(X, Y).
reachable(X)← trans1(T, T1). trans([1|X], [0|Y])←

gen(X). trans2([0], [1]). trans2(T, T1).
reachable(X)← trans2([H|T], [H|T1])←

reachable(Y), trans(Y,X). trans2(X, Y).

It is a simple model of a token ring transition system. A state of the system is a
list of processes indicated by 0 and 1 where a 0 indicates a waiting process and
a 1 indicates an active process. The initial state is defined by the predicate gen
and the the predicate reachable defines the reachable states with respect to the
transition predicate trans. The required property is that exactly one process is

active in any state. The state space is infinite, since the number of processes (the
length of the lists) is unbounded. Hence finite model checking techniques do not
suffice. The example was used in [14] to illustrate directional type inference for
infinite-state model checking.

We define simple regular types defining the states. The set of “good” states
in which there is exactly one 1 is goodlist. The type zerolist is the set of list
of zeros. (Note that it is not necessary to give an explicit definition of a “bad”
state).

one = 1 goodlist = [zero|goodlist]; [one|zerolist]
zero = 0 zerolist = []; [zero|zerolist]

Determinization of the given types along with any results in five states repre-
senting disjoint types: {any, one}, {any, zero}, the good lists {any, goodlist},
the lists of zeros {any, zerolist} and all other terms {any}. We abbreviate these
as one, zero, goodlist, zerolist and other respectively. The least model of the
above program over this domain is as follows.

gen(goodlist) trans1(goodlist, goodlist), trans1(other, other)
trans2(other, other) trans(goodlist, goodlist), trans(other, other)
trans2(goodlist, other) reachable(goodlist)
trans2(goodlist, goodlist)

The key property of the model is the presence of reachable(goodlist) (and the
absence of other atoms for reachable), indicating that if a state is reachable
then it is a goodlist. Note that the transitions will handle other states, but in
the context in which they are invoked, only goodlist states are propagated. In
contrast to the use of set constraints or directional type inference to solve this
problem, no goal-directed analysis is necessary. Thus there is no need to define
an “unsafe” state and show that it is unreachable.

In summary, the examples show that accurate mode analysis can be per-
formed, and that modes can be combined with arbitrary user defined types.
Types can be used to prove properties expressible by regular types. Note that
no assumption needs to be made that programs are well-typed; the programmer
does not have to associate types with particular argument positions.

5 Implementation and Complexity Issues

The implementation is based on two components; the FTA determinization algo-
rithm described in Section 3, which yields a pre-interpretation, and the compu-
tation of the least model of the program with respect to that pre-interpretation.

We have designed a much faster version of the determinization algorithm pre-
sented in Section 3. Clearly the worst-case number of states in the determinized
FTA is exponential, but our algorithm exploits the structure of the given FTA
to reduce the computation. Nevertheless the scalability of the determinization
algorithm is a critical topic for future study and experiment. A forthcoming pub-
lication will describe our algorithm and its performance for typical FTAs. We

note that, although the states in the determinized FTA are formed from subsets
of the powerset of the set of states in the input FTA, most of the subsets are
empty in the examples we have examined. This is because there are many cases
of subtypes and disjoint types among the given types.

The number of transitions in the determinized FTA can increase rapidly,
even when the number of states does not, due to the fact that the output is a
complete FTA. Hence, for each n-ary function, there are mn transitions, if there
are m states in the determinized automaton. We can alleviate the complexity
greatly by making use of “don’t care” arguments of functions in the transitions,
of which there are usually several, especially in the transitions for the {any}
state, which represents terms that are not of any other type. If there exists an
n-ary function f and states q1, . . . , qj−1, qj+1, . . . , qn, q such that for all states
qj , there is a transition f(q1, . . . , qj , . . . , qn)→ q, then we can represent all such
transitions by the single transition f(q1, . . . , qj−1, X, qj+1, , . . . , qn)→ q. The jth

argument is called a don’t care argument. Our algorithm generates the transitions
of the determinized FTA with some “don’t care” arguments (though not all the
possible don’t cares are generated in the current version), which is critical for
the scalability of the model computation.

Abstract Compilation of a Pre-Interpretation The idea of abstract com-
pilation was introduced first by Debray and Warren [15]. Operations on the
abstract domain are coded as logic programs and added directly to the target
program, which is then executed according to standard concrete semantics. The
reason for this technique is to avoid some of the overhead of interpreting the
abstract operations.

A pre-interpretation can be defined by a predicate → /2 defining the FTA
transitions. We introduce the predicate → /2 directly into the program to be
analysed, as follows. Each clause of the program of the form is transformed
by repeatedly replacing non-variable terms occurring in the clause, of form
f(x1, . . . , xm) where x1, . . . , xm (m ≥ 0) are variables, by a fresh variable u
and adding the atom f(x1, . . . , xm)→ u to the clause body, until the only non-
variables in the clause occur in the first argument of →. If P is the original
program, the transformed program is called P̄ .

When a specific pre-interpretation J is added to P̄ , the result is a domain
program for J , called P̄ J . Clearly P̄ J has a different language than P , since the
definition of→ /2 contains elements of the domain of interpretation. It can easily
be shown that least model MJ [[P]] = lfp(T J

P) is obtained by computing lfp(TP̄ J),
and then restricting to the predicates in P (that is, omitting the predicate→ /2
which was introduced in the abstract compilation). An example of the domain
program for append and the pre-interpretation for variable/non-variable is shown
below. (Note that don’t care arguments are used in the definition of → /2).

app(U, Y, Y)← []→ U. app(U, Y, V)← app(X, Y, Z), [X|X]→ U, [X|Z]→ V.
v → var. []→ nonvar. [|]→ nonvar.

Prog Pre-int NFTA DFTA Det.Time Model time

P / |P | / |Σ| J Q ∆ Qd ∆d Secs Secs

trans / 6 / 2 g,any 2 5 2 6 0.0 0.02
var,any 2 4 2 7 0.0 0.02
list,any 2 5 2 5 0.0 0.01

matrix,row,any 3 7 3 8 0.0 0.03
g,var,any 3 6 3 8 0.0 0.03

peep / 227 / 110 g,any 2 221 2 279 0.07 2.25
var,any 2 112 2 349 0.05 1.29
list,any 2 113 2 347 0.05 1.28

matrix,row,any 3 115 3 515 0.05 1.98
g,var,any 3 222 3 446 0.08 3.03

plan / 29 / 13 g,any 2 25 2 24 0.01 0.21
var,any 2 14 2 30 0.01 0.11
list,any 2 15 2 33 0.01 0.03

matrix,row,any 3 17 3 34 0.0 0.13
g,var,any 3 26 3 81 0.04 0.07

press / 155 / 32 g,any 2 66 2 58 0.03 0.92
var,any 2 33 2 67 0.03 0.67
list,any 2 34 2 65 0.02 0.66

matrix,row,any 3 36 3 91 0.03 0.85
g,var,any 3 64 3 83 0.03 1.01

Fig. 3. Experimental results

Computation of the Least Domain Model The computation of the least
model is an iterative fixpoint algorithm. The iterations of the basic fixpoint
algorithm, which terminates when a fixed point is found, can be decomposed
into a sequence of smaller fixpoint computations, one for each strongly connected
component (SCC) of the program’s predicate dependency graph. These can be
computed in linear time [16]. In addition to the SCC optimisation, our implemen-
tation incorporates a variant of the semi-naive optimisation [17], which makes
use of the information about new results on each iteration. A clause body con-
taining predicates whose models have not changed on some iteration need not
be processed on the next iteration.

Experimental Results Figure 3 shows a few experimental results (space does
not permit more). For each program, the table shows the number of clauses and
the number of function symbols. The time to perform the determinization and
compute the least model is shown. Timings were obtained using Ciao Prolog
running on a machine with 4 Intel Xeon 2 GHz processors and 1 GByte of mem-
ory. The determinization algorithm currently does not find all the “don’t care”
arguments. Insertion of don’t care values by hand indicates that the method
scales better when this is done. More generally, finding efficient representations
of sets of domain atoms is a critical factor in scalability. For two-element pre-
interpretations such as Pos, BDDs [18] or multi-headed clauses [19] can be used.

6 Related Work and Conclusions

Prior work on propagating type information in logic programs goes back to
[20] and [21]. Our work can be seen partly as extending and generalising the
approach of Codish and Demoen [22]. Analysis of logic programs based on types
was performed by Codish and Lagoon [23]. Their approach was similar in that
given types were used to construct an abstract domain. However their types were
quite restricted; each function symbol had to be of exactly one type (which is
even more restrictive than top-down deterministic FTAs). Hence several of the
application discussed in this paper are not possible, such as modes, or types such
as the goodlist type of Example 4. On the other hand, their approach used a
more complex abstract domain, using ACI unification to implement the domain
operations, which allowed polymorphic dependencies to be derived. Like our
approach, their domain was condensing.

Work on regular type inference is complementary to our method. The types
used as input in this paper could be derived by a regular type inference, or
set constraints. One possible use for the method of this paper would be to en-
hance the precision given by regular type inference. For example, (bottom-up)
regular type inference derives the information that the first argument of rev/2
in the naive reverse program is a list; using a pre-interpretation derived from
the inferred type, it can then be shown that the second argument is also a list.
This approach could be used to add precision to regular type inference and
set constraint analysis, which are already promising techniques in infinite state
model-checking [14].

Applications in binding time analysis for offline partial evaluation have been
investigated, with promising results. As noted in Section 4 various mode analyses
can be reproduced with this approach, including Pos analysis [24].

References

1. Frühwirth, T., Shapiro, E., Vardi, M., Yardeni, E.: Logic programs as types for
logic programs. In: Proceedings of the IEEE Symposium on Logic in Computer
Science, Amsterdam. (1991)

2. Mishra, P.: Towards a theory of types in Prolog. In: Proceedings of the IEEE
International Symposium on Logic Programming. (1984)

3. Yardeni, E., Shapiro, E.: A type system for logic programs. Journal of Logic
Programming 10(2) (1990) 125–154

4. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S., Tom-
masi, M.: Tree Automata Techniques and Applications. http://www.grappa.univ-
lille3.fr/tata (1999)

5. Boulanger, D., Bruynooghe, M., Denecker, M.: Abstracting s-semantics using a
model-theoretic approach. In Hermenegildo, M., Penjam, J., eds.: Proc. 6th Inter-
national Symposium on Programming Language Implementation and Logic Pro-
gramming, PLILP’94. Volume 844 of Springer-Verlag Lecture Notes in Computer
Science. (1994) 432–446

6. Boulanger, D., Bruynooghe, M.: A systematic construction of abstract domains. In
Le Charlier, B., ed.: Proc. First International Static Analysis Symposium, SAS’94.
Volume 864 of Springer-Verlag Lecture Notes in Computer Science. (1994) 61–77

7. Gallagher, J., Boulanger, D., Sağlam, H.: Practical model-based static analysis for
definite logic programs. In Lloyd, J.W., ed.: Proc. of International Logic Program-
ming Symposium, MIT Press (1995) 351–365

8. Lloyd, J.: Foundations of Logic Programming: 2nd Edition. Springer-Verlag (1987)
9. Clark, K.: Predicate logic as a computational formalism. Technical Report DOC

79/59, Imperial College, London, Department of Computing (1979)
10. Marriott, K., Søndergaard, H.: Bottom-up abstract interpretation of logic pro-

grams. In: Proceedings of the Fifth International Conference and Symposium on
Logic Programming, Washington. (1988)

11. Leuschel, M., Jørgensen, J.: Efficient specialisation in Prolog using the hand-
written compiler generator LOGEN. Elec. Notes Theor. Comp. Sci. 30(2) (1999)

12. Codish, M., Demoen, B.: Analysing logic programs using “Prop”-ositional logic
programs and a magic wand. In Miller, D., ed.: Proceedings of the 1993 Interna-
tional Symposium on Logic Programming, Vancouver, MIT Press (1993)

13. Roychoudhury, A., Kumar, K.N., Ramakrishnan, C.R., Ramakrishnan, I.V.,
Smolka, S.A.: Verification of parameterized systems using logic program trans-
formations. In Graf, S., Schwartzbach, M.I., eds.: Tools and Algorithms for Con-
struction and Analysis of Systems, 6th Int. Conf., TACAS 2000. Volume 1785 of
Springer-Verlag Lecture Notes in Computer Science. (2000) 172–187

14. Charatonik, W.: Directional type checking for logic programs: Beyond discrimina-
tive types. In Smolka, G., ed.: Programming Languages and Systems, 9th European
Symposium on Programming, ESOP 2000. Volume 1782 of Springer-Verlag Lecture
Notes in Computer Science. (2000) 72–87

15. Debray, S., Warren, D.: Automatic mode inference for logic programs. Journal of
Logic Programming 5(3) (1988) 207–229

16. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM Journal of
Computing 1(2) (1972) 146–160

17. Ullman, J.: Implementation of Logical Query Languages for Databases. ACM
Transactions on Database Systems 10(3) (1985)

18. Schachte, P.: Precise and Efficient Static Analysis of Logic Programs. PhD thesis,
Dept. of Computer Science, The University of Melbourne, Australia (1999)

19. Howe, J.M., King, A.: Positive Boolean Functions as Multiheaded Clauses. In
Codognet, P., ed.: International Conference on Logic Programming. Volume 2237
of LNCS. (2001) 120–134

20. Bruynooghe, M., Janssens, G.: An instance of abstract interpretation integrating
type and mode inferencing. In Kowalski, R., Bowen, K., eds.: Proceedings of
ICLP/SLP, MIT Press (1988) 669–683

21. Horiuchi, K., Kanamori, T.: Polymorphic type inference in prolog by abstract
interpretation. In: Proc. 6th Conference on Logic Programming. Volume 315 of
Springer-Verlag Lecture Notes in Computer Science. (1987) 195–214

22. Codish, M., Demoen, B.: Deriving type dependencies for logic programs using
multiple incarnations of Prop. In Le Charlier, B., ed.: Proceedings of SAS’94, Na-
mur, Belgium. Volume 864 of Springer-Verlag Lecture Notes in Computer Science.
(1994) 281–296

23. Codish, M., Lagoon, V.: Type dependencies for logic programs using ACI-
unification. Theoretical Computer Science 238(1-2) (2000) 131–159

24. Marriott, K., Søndergaard, H.: Precise and efficient groundness analysis for logic
programs. LOPLAS 2(1-4) (1993) 181–196

