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Summary
The human transcriptome predominantly consists of noncoding RNAs (ncRNAs), transcripts that do not encode
proteins. The noncoding transcriptome governs a multitude of pathophysiological processes, offering a rich source of
next-generation biomarkers. Toward achieving a holistic view of disease, the integration of these transcripts with
clinical records and additional data from omic technologies (“multiomic” strategies) has motivated the adoption of
artificial intelligence (AI) approaches. Given their intricate biological complexity, machine learning (ML) techniques
are becoming a key component of ncRNA-based research. This article presents an overview of the potential and
challenges associated with employing AI/ML-driven approaches to identify clinically relevant ncRNA biomarkers and
to decipher ncRNA-associated pathogenetic mechanisms. Methodological and conceptual constraints are discussed,
along with an exploration of ethical considerations inherent to AI applications for healthcare and research. The ul-
timate goal is to provide a comprehensive examination of the multifaceted landscape of this innovative field and its
clinical implications.

Copyright © 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Artificial intelligence; Biomarker; Machine learning; Molecular pathways; Noncoding RNA; Personalised
medicine
Introduction
Although approximately 80% of the genome is tran-
scribed, only 1–2% of the human genome represents
protein-coding genes.1 The vast majority of the hu-
man transcriptome consists of transcripts that are
classically defined as not being translated into func-
tional proteins; noncoding RNAs (ncRNAs). This
broad definition encompasses a diverse family of
transcripts, ranging from long ncRNAs (lncRNAs,
exceeding 200 nucleotides in length) to small ncRNAs
(shorter than 200 nucleotides) (Fig. 1). Among these,
*Corresponding author. Translational Research in Respiratory Medi-
cine, University Hospital Arnau de Vilanova and Santa Maria, IRBL-
leida, Avda. Alcalde Rovira Roure 80, 25198, Lleida, Spain.
**Corresponding author. Department of Physiology, Faculty of Medi-
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microRNAs (miRNAs) and lncRNAs have attracted
considerable attention and extensive study.

While much remains to be unravelled about the
functions of ncRNAs, they are already recognised as
crucial contributors to the evolution and development of
organismal complexity.2 A substantial body of evidence
highlights their roles as regulators of genome organi-
sation and gene expression, operating at various levels
including epigenetic, transcriptional and post-tran-
scriptional.3 Over the past decades, research has identi-
fied ncRNAs as modulators of signalling pathways and
mechanisms that govern a spectrum of processes,
ranging from differentiation and growth to stress re-
sponses,4 across a variety of cell types and tissues. Given
their critical regulatory roles in normal cellular activities,
it is not surprising that dysregulation of ncRNAs leads
to diseases. Nonetheless, a major challenge in current
research is to elucidate the mechanisms of action and
functions of ncRNAs, which is essential for defining
1
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Fig. 1: Noncoding transcriptome and key potential points for molecular phenotyping and biomarker development. Abbreviations: circRNAs,
circular RNAs; eRNAs, enhancer RNAs; gRNAs, guide RNAs; lncRNAs, long noncoding RNAs; miRNAs, microRNAs; piRNAs, piwi-interacting
RNAs; rRNAs, ribosomal RNAs; siRNAs, small interfering RNAs; snRNA, small nuclear RNA; tRNAs, transfer RNAs.
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their clinical relevance and exploiting their potential as
therapeutic targets.5 Advancements in functional geno-
mics have markedly enhanced our comprehension of
ncRNA biology,3 thereby expanding our understanding
of the roles of these transcripts in the pathogenesis and
progression of human diseases.6 Alterations in ncRNA
expression profiles directly affect the mechanisms they
regulate, suggesting that ncRNAs can be causative ele-
ments in disease development. The first evidence
describing the role of ncRNAs in this context appeared
at the beginning of the 21st century.7 Further compel-
ling evidence has shown that dysregulated ncRNA
expression profiles are intrinsic to diseases, including
cancer, cardiovascular conditions, metabolic diseases
and neurological disorders.8–10 This knowledge has pro-
vided the basis for developing therapeutic approaches.11

Results from recent clinical trials (https://www.
clinicaltrials.gov/study/NCT04045405) suggest the
potential translation of ncRNA-based therapeutics,
particularly specific antisense oligonucleotides.12

ncRNAs represent a rich resource of next-
generation biomarkers. In contrast to the DNA
sequence, which is constant in an individual, ncRNA
expression is highly dynamic and rapidly altered in
response to a number of factors, including stressors.
The ncRNA profile can be informative of the molecular
configuration of the patient, providing an innovative
approach for the development of mechanism-based
clinical biomarkers as demonstrated by different
studies.13,14 Importantly, ncRNAs are not confined
within cells; they can be released into the bloodstream
and other bodily fluids in a stable form.15 Extracellular
ncRNAs hold immense translational potential, as they
can be obtained through noninvasive biopsies and
quantified cost-effectively using techniques readily
available in clinical laboratories.16 The utility of
www.thelancet.com Vol 106 August, 2024
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circulating ncRNAs as biomarkers has been demon-
strated in various conditions.17,18

It is worth noting that a commercial ncRNA-based test
is available to aid in clinical decision-making and guide
healthcare. In 2012, the FDA approved the prostate can-
cer antigen 3 assay (the Progensa® PCA3 assay) to aid in
determining the need for repeated prostate biopsies in
men who have had a previous negative biopsy. The assay
consists of an in vitro nucleic amplification test, which
measures the RNA concentration of prostate-specific
antigen (PSA) and a lncRNA, prostate cancer antigen 3
(PCA3). The market for miRNA-based laboratory devel-
opment tests (LDTs) has been active in the last decade.
Different companies have developed different in vitro
diagnostic tests, e.g. ThyraMIR®, RosettaGX Reveal™,
miRView™, NIS4®, HepatomiR®, OsteomiR® or
ThrombomiR®, among others. Furthermore, numerous
clinical trials (approximately 300 active trials, https://
clinicaltrials.gov/, accessed November 2023) are
currently underway, promising to provide valuable in-
sights into the clinical utility of ncRNA-based biomarkers
in the short and medium term.

The aim of this article is to review the potential and
challenges of using artificial intelligence (AI)/machine
learning (ML)-based approaches to identify clinically
applicable ncRNA biomarkers for personalised health-
care and the elucidation of ncRNA-related molecular
mechanisms underlying disease pathogenesis. In this
regard, we discuss the methodological and conceptual
limitations as well as potential future steps. As appli-
cations based on AI may carry several risks, ethical as-
pects are also discussed.
Machine learning to address the biological
complexity of the noncoding transcriptome
Despite substantial investments aimed at developing
ncRNA-based biomarkers, the translation of these find-
ings into clinical practice is still limited.19 The reasons
for this gap between preclinical research and clinical
adoption are multiple. In addition to technical limita-
tions, one of the important barriers lies in data anal-
ysis.20 A notable portion of studies focused on ncRNA-
based biomarkers have traditionally employed ap-
proaches that overlook valuable information. These
methods often rely on simplistic criteria, such as the
fold change between two sample groups or univariate
and linear associations between ncRNAs and clinical
outcomes.

Routine clinical practice provides a large amount of
information on patient data, including baseline charac-
teristics, disease-related information and pharmacolog-
ical variables. An effective analysis should encompass
the complex interplay between ncRNAs and patient
outcomes, considering demographic factors, clinical
data and pharmacological variables. Furthermore, it is
crucial to account for biological sex, as mounting
www.thelancet.com Vol 106 August, 2024
evidence highlights its impact on disease development,
progression and response to treatment.21–29 Ultimately,
the integration of ncRNA data into electronic health
records and the existing biomarker landscape promises
to yield invaluable insights for their practical imple-
mentation in clinical settings. In line with this strategic
approach, previous research underscores the potential
of ncRNA signatures, such as miRNA profiles, to serve
as adjuncts to current benchmark biomarkers, facili-
tating the transition from laboratory research to clinical
application.30,31

The inherent biological complexity of the ncRNA
family requires particular attention. Coordinated alter-
ations in multiple ncRNAs play a pivotal role in
orchestrating a diverse array of biological processes.32

Individual ncRNAs exert only modest effects on the
multifaceted and intricate biological mechanisms un-
derlying diseases. Rather than understanding the im-
plications of isolated biological alterations in disease, it
becomes imperative to decipher the interconnections
between these alterations and other layers of informa-
tion, e.g. genomics, proteomics and metabolomics, to
gain insight into their impact on pathology. Therefore,
the ideal framework to study ncRNAs is based on the
concept of “several mediators-one disease” as opposed
to the traditional “one mediator disease” notion.
Nevertheless, given the vast number of ncRNAs
involved in regulating biological processes, identifying
those specifically relevant to a particular disease remains
a formidable challenge.

The integration of innovative strategies is para-
mount to make substantial progress in incorporating
ncRNA-based biomarkers into clinical practice.33 ML
methodologies learn from vast datasets to discern
patterns for diagnostic, prognostic or predictive pur-
poses. Through ML analyses, intricate relationships
between molecular components and various variables,
including sociodemographic and clinical factors, could
be revealed. In contrast to traditional statistical
methods that consider limited interactions, ML
methods identify complex interactions between fea-
tures and clinical outcomes. ML algorithms are also
well-suited for dissecting complex conditions and
biological mechanisms, providing valuable insights
into the biological programmes underlying diseases.
As such, ML-based approaches have emerged as an
indispensable tool for addressing the intricate nature
of ncRNAs. ML approaches may capture the multi-
faceted interplay inherent in ncRNA networks facili-
tating the identification of relationships between
ncRNAs and their interactions with other molecular
components within the cellular environment. Given
these advantages, ML methods represent the logical
progression in the field of ncRNAs. In the following
section, we discuss in further detail the potential of
ML-based applications in ncRNA research and
biomarker discovery.
3
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Application of machine learning in noncoding
transcriptome research
Techniques, such as qPCR, microarray and next-
generation sequencing, have generated an abundance
of transcriptomic data, facilitating the search for
meaningful features within extensive datasets.34 In
recent years, there has been a rapid proliferation of ML
methods in the analysis of high-dimensional ncRNA
datasets. Table 1 summarises the most common su-
pervised ML methods in biomarker discovery using
ncRNAs, providing an overview of advantages, disad-
vantages and performance of each approach. Given that
different ML models have distinct strengths and weak-
nesses, choosing the appropriate algorithm typically
involves trade-offs. This decision is not solely data-
dependent but also relies on factors, such as the
research question, available computational resources
and the need for data interpretability. Therefore, it is
essential to evaluate multiple ML methods and compare
their performance before deciding which one to use for
the specific research question (as discussed below). In
the following paragraphs, we include examples that
suggest the prominent role of the application of ML in
the analysis of ncRNAs (Table 2).

Numerous studies have suggested that the integra-
tion of supervised ML techniques represents a valuable
resource for the identification of potential ncRNA-
based biomarkers, the development of classifiers for
data-informed clinical decision-making and the eluci-
dation of the molecular underpinnings of diseases.
One remarkable example is provided by Errington
et al.35 The authors used four separate ML methods
(LASSO, random forest, regression partition tree and
XGBoost) to identify miRNA biomarkers associated
with pulmonary arterial hypertension (PAH). The
consensus ML approach defined miR-187–5p and miR-
636 as putative biological markers to predict PAH. The
performance of each method was variable [area under
the ROC curve (AUC) from 0.72 to 0.84]. Of note, the
addition of the random forest model to the PAH-
established biomarker NT-proBNP provided a classifi-
cation model with higher accuracy compared to the
single NT-proBNP model (AUC = 0.84 vs. AUC = 0.97
for the random forest model). The miRNA expression
profiles also provided novel insights into disease
pathogenesis. The integration with their associated
target genes using public human lung and whole blood
RNA datasets revealed novel mediators of PAH and
drug targets.

More recently, an ML-based integrative procedure
using 101 algorithm combinations in 2509 colorectal
cancer patients from 17 independent public datasets and
a clinical in-house cohort was implemented to construct
an immune-related lncRNA signature (IRLS).36 IRLS
showed consistent and successful performance in mul-
tiple cohorts (5-year AUC up to 0.79) and was proven to
be an independent risk factor for overall survival. The
signature had superior accuracy to other clinical char-
acteristics and molecular alterations used to assess the
prognosis of colorectal cancer in clinical practice. The
combination of IRLS with a conventional tool to evaluate
the risk and treatment demand, the American Joint
Committee on Cancer (AJCC) classification, was
significantly better than that of each score alone in
multiple datasets. Interestingly, responders to
fluorouracil-based adjuvant chemotherapy presented a
significantly higher IRLS score than nonresponders
(AUC up to 0.84). IRLS also defined a low-risk group of
patients, which benefited more from bevacizumab and
tended to be resistant to fluorouracil-based adjuvant
chemotherapy (AUC up to 0.78). Therefore, the signa-
ture might be useful to optimise personalised treatment
since it allows to predict the response to therapy. The
same group identified a consensus ML-derived lncRNA
signature (CMDLncS) for predicting recurrence risk in
stage II/III colorectal cancer.37 To do that, ten ML al-
gorithms were used in 76 combinations and tested in
1640 stage II/III colorectal cancer patients from 15 in-
dependent datasets and a clinical in-house cohort. The
CMDLncS model had a stable and robust performance
at different follow-up timepoints in multiple indepen-
dent cohorts (C-index up to 0.85). The signature showed
a better performance than common clinical and mo-
lecular features previously associated with the disease.
Patients with high CMDLncS also showed a higher
sensitivity to fluorouracil-based adjuvant chemotherapy.
Similar results were observed when validated using RT‒
qPCR assays. Overall, lncRNA-based signatures con-
structed using ML constitute a clinically translatable tool
to improve clinical outcomes in patients with colorectal
cancer. Such signatures also contribute to the refine-
ment of personalised therapeutic strategies.

The use of single supervised ML methods has also
yielded prominent results. For example, the support
vector machine (SVM) algorithm was used to construct a
diagnostic classifier based on mRNAs, lncRNAs and
circular RNAs (circRNAs) detected in extracellular vesi-
cles from human plasma.38 The study population
included 159 healthy individuals, 150 patients with
cancer (five cancer types) and 43 patients with other
diseases. The classifier showed an optimal sensitivity
and specificity (between 96% and 98%) to first distin-
guish patients with cancer from healthy individuals and
then diagnose hepatocellular cancer (between 84% and
94%). The classifier also displayed a higher accuracy
than α-fetoprotein (AFP), a traditional biomarker for risk
assessment in hepatocellular cancer (AUC = 0.95 vs.
AUC = 0.83). In the same way, the SVM algorithm was
combined with exosomal miRNA profiling to develop
diagnostic models for pulmonary tuberculosis and
tuberculous meningitis, a complex clinical condition, in
which the diagnosis is challenging when based solely on
www.thelancet.com Vol 106 August, 2024
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Method Brief method description Advantages Disadvantages Performance and computational
efficiency

K-nearest
neighbours
(K-NN)

To classify samples, K-NN method
assigns samples to the class label of the
most similar training samples. Similarity
is determined by a distance metric, e.g.
Euclidean distance (a most common
distance metric). The method first
computes the distance between a new
data sample to all the samples in the
training set. The class label of the new
data sample is determined by using the
class label of k nearest neighbours, for
example by taking majority vote. For
regression tasks, the value of new data
sample is computed by using the mean
of k nearest neighbours’ values.

• There is no training required.
• Works well with datasets when there

is a clear distinction among classes.
• Makes no assumptions about data

distribution.

• Selection of k is required for optimal
results.

• Sensitive to outliers.
• Sensitive to high-dimensional data

containing irrelevant features, more
than most other ML methods.

• Performance: good when there is a
clear distinction among classes. Note
the accuracy can vary depending on
the selected k value, and the dataset
(e.g. presence of irrelevant features in
the dataset).

• Computational efficiency: fast during
training, as there is no training
required. Training data is only loaded
in memory. The method may be slow
during testing, especially for large
datasets, and/or high number of
features, or large values of k.

Naïve Bayes Naïve Bayes method is based on Bayes’
Theorem which specifies how
dependent events are related. It
determines conditional probability
(probability of an event given the
occurrence of another event). Naïve
Bayes method on the other hand,
considers the naïve assumption of
conditional feature independence. That
is, all features are equally important and
the value of one feature is independent
of the value of any other feature for a
given class variable.

• In general, the method performs
better than other methods with
small data sets if the assumption of
conditional feature independence
holds.

• Very fast to execute as probabilities
can be directly computed.

• Assumption of conditional
independence of features, which does
not always hold. However, despite
this, the method often achieves good
performance.

• Performance: high if assumption of
conditional independence of features
holds and lower if this assumption is
violated.

• Computational efficiency: Fast.

Decision Trees
(CART, C4.5, ID3,
CHAID)

Decision trees are rule-based methods
that apply divide and conquer approach
to create models with logical decisions
organized in a tree-like structure. The
model divides/splits the data into
increasingly smaller groups of related
classes using the decisions based on the
data’s features/predictors. Various
decision tree algorithms exist, e.g.
CART (classification and regression
trees), C4.5, ID3, CHAID (chi-square
automatic interaction detection).
Mostly vary depending on the method
used to find the most important
feature to choose from in order to split
the data in the dataset. To find the
most important feature CHAID uses chi-
square tests, ID3 uses information gain,
C4.5 uses gain ration and CART uses
GINI index.

• Can effectively handle data
nonlinearity.

• Can handle missing data.
• Small trees yield interpretable model,

making decision trees suitable for
tasks when interpretability is crucial.

• Can be used on data with both
relatively small and large sample size.

• Have high variance, i.e. small changes
in data can result in large change in
the model’s predictions.

• Prone to overfitting (i.e. high
performance on the training data,
but poor performance on test/unseen
data), especially when deep trees are
built. They are also prone to
underfitting (i.e. poor performance
both on both training and test/
unseen data), especially with small
trees.

• Due to above disadvantages decision
trees are more suitable during
exploratory analysis of ncRNA
research.

• Large trees may be difficult to
interpret.

• Performance: even though
performance for training data can be
high, decision trees can have lower
performance in test data as they are
prone to overfitting. In this case,
pruning of decision trees is
recommended.

• Computational efficiency: in general,
fast. However, large trees take longer
to train and make predictions.

Random Forest
(RF)

An ensemble-based method that
performs predictions using a group of
decision trees. For each decision tree, RF
applies bootstrap resampling on the
input dataset. In addition, each decision
tree is trained on a random feature
subset. For classification, the method
uses majority voting to combine
decision trees’ predictions. For
regression, the final decision is made by
averaging decision trees’ predictions.

• Well-known for its high accuracy.
• Can effectively handle data

nonlinearity.
• Can handle noisy or missing data.
• When compared to single decision

tree, RF reduces overfitting due to
ensemble learning, bootstrap
resampling and the selection of
random feature subsets within each
decision tree.

• Can handle large dataset with high
dimensionality.

• Challenging to interpret, especially
for larger complex models.

• Performance: In general, high,
however hyperparameter tuning is
often needed to achieve optimum
results (e.g. selection of number of
trees, and number of features to use
during splitting of data).

• Computational efficiency: depends on
the number and the depth of the
trees. Thus, for large number of trees
that are deep, training of RF can be
computationally intensive.

(Table 1 continues on next page)
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(Continued from previous page)

Extreme
Gradient
Boosting
(XGBoost)

Gradient Boosting is an ensemble
method that combines several models,
usually decision trees, to make a final
decision. In order to minimize the loss
function, the method applies gradient
descent.
XGBoost is a grading boosting that
computes second-order gradients of
the loss function to minimize loss. The
method also uses regularization to
penalize complex models, using L1 an
L2 regularization, which helps to reduce
over fitting, a common problem in
machine learning. See LASSO and Ridge
regression method descriptions for
more detail on L1 and L2.

• Well-known for its high accuracy.
• Reduces overfitting by including

regularization.
• Can handle missing data effectively.

• Difficult to interpret due to the
complexity of the model.

• Parameter tuning may be needed to
tune the model in order to achieve
optimum results.

• Performance: in general, high, if
tuning of hyperparameters is
performed.

• Computational efficiency: fast and
efficient.

Artificial Neural
Networks (ANN)

ANN methods aim to resemble the
behaviour of human neural
architecture. ANN is made up of
interconnected layers of neurons
consisting of input layer (independent
variables), one or more hidden layers
and an output layer (dependent
variable). Each neuron receives
weighted outputs from neurons in a
previous layer, which are then added
together and transformed nonlinearly
at neuron’s output. The main aim is to
iteratively modify the weights in order
to minimize the prediction error.

• Well-known for its high accuracy.
• Able to capture intricate non-linear

relationships in the data.

• Prone to overfitting and underfitting.
• Parameter tuning necessary to find

the optimal model, especially for
complex tasks.

• In general, requires large amounts of
data to train the model.

• Due to its black box nature ANNs are
difficult to interpret.

• Performance: high with sufficient
data and with well-tuned
hyperparameters.

• Computational efficiency: in general,
slow during the training phase,
especially for complex network
architectures and faster during
testing.

Support Vector
Machine (SVMs)

Support vector machines use a kernel to
translate data input into a
multidimensional space. To separate
the data, the algorithm creates a
hyperplane by maximizing the margin
and minimizing the classification error.
SVM kernels that are frequently
employed include sigmoid, radial basis
function, polynomial, linear, and
nonlinear kernels.

• Well-known for high accuracy.
• Can effectively handle data

nonlinearity. Compared to ANNs,
SVMs are more suitable when dealing
with small to medium-sized datasets.
Furthermore, SVMs are effective
when the number of features is large
relative to the number of samples (as
is usually the case for ncRNA data).

• Are not very sensitive to noisy data.
• In general, SVMs are resistant to

overfitting.
• Effective in minimizing outliers.

• Testing several kernels and model
parameter combinations is necessary
to find the optimal model.

• Difficult to interpret.

• Performance: High, especially with
well selected kernel and optimized
hyperparameters.

• Computational efficiency: slow during
training, especially when: non-linear
kernels are used, for large datasets
and high-dimensional data (such as
ncRNA data). SVMs are in general fast
during testing.

Least absolute
shrinkage and
selection
operator
(LASSO) and
Ridge regression

A regression method that uses L1
regularization, i.e. it adds a penalty that
equals to the absolute value of the
magnitude of the coefficients. As a
result, some coefficients may become
zero and get eliminated from the
model, reducing model complexity. The
method thus automatically performs
feature selection by eliminating less
important features.
Ridge regression uses L2 regularization,
i.e. the penalty is the sum of the
squares of the magnitude of the
coefficients. Similar to LASSO, Ridge
regression can also shrink some
coefficients, but never sets them to
zero. Unlike LASSO, Ridge regression
does not perform variable selection.

• Well-suited for problems that have
large number of features.

• Reduces model complexity and over-
fitting.

• LASSO: automatically performs
feature selection.

• Ridge regression: effectively handles
multicollinearity.

• LASSO: If features are correlated, the
method selects one feature
arbitrarily, which may result in
removing features that may be as (or
more) important than the selected
feature. The method should thus be
avoided if the data has many
correlated features.

• Performance: generally good when
hyperparameters of L1 (for LASSO)
and L2 (for ridge regression)
regularization are fine-tuned. In the
presence of multicollinearity, LASSO
may result in reduced performance.

• Computational efficiency: LASSO can
be more computationally intensive
than Ridge regression due to the
feature selection.

(Table 1 continues on next page)
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(Continued from previous page)

Elastic network
(Enet) regression

A linear regression algorithm that uses
regularization to penalize complex
models. The method combines the
penalties of Lasso and Ridge regression
i.e. it applies both L1 and L2 penalties
to the standard least-squares objective
function. This helps to reduce
overfitting and handles
multicollinearity. The method can also
be applied for classification problems.

• Combines the advantages of feature
selection from LASSO and effectively
handles multicollinearity from Ridge
regression.

• Has shown to outperform other
linear regression methods.

• Reduces overfitting.

• Not suitable for datasets with very
large number of features compared
to the number of samples.

• Performance: generally high when
hyperparameter tuning is performed.

• Computational efficiency: more
computationally expensive when
compared to Lasso and Ridge
regression.

Table 1: Most prevalent supervised machine learning methods in biomarker discovery utilizing noncoding RNAs, based on current publications.

Review
the electronic health record due to, for example, over-
lapping symptoms and radiological features, technical
limitations, cost, accessibility to tests, among other fac-
tors.39 The prospective multistage study including 370
individuals facilitated the development of an ML
framework combining patient data from electronic
health records and exosomal miRNAs, with superior
performance in differentiating pulmonary tuberculosis
and tuberculous meningitis from highly suspected cases
(sensitivity and specificity over 89%). Comparable ap-
proaches obtained similar results in other conditions.
Neural networks based on miRNA features were re-
ported to improve the diagnosis of acute coronary syn-
drome.40 Herein, 34 previously published miRNAs
associated with myocardial infarction were validated for
their predictive value as early diagnostic markers of
acute coronary syndrome. A neural network model
including ten miRNAs provided the highest accuracy
(0.96) in the diagnosis of the conditions while main-
taining the same specificity as the clinical gold standard
troponin T (0.96). Devaux et al.41 have developed a ML
model designed to predict in-hospital mortality
following SARS-CoV-2 infection. The study analysed a
panel of 2906 cardiac-enriched lncRNAs, previously
established,42 alongside clinical data from 1286 COVID-
19 patients across four distinct cohorts (PrediCOVID
from Luxembourg, NAPKON from Germany, ISAR-
IC4C from United Kingdom and BQC19 from Canada).
The three European cohorts totalling 804 patients were
merged and used as a discovery cohort for feature se-
lection and model optimization. The fourth cohort,
BQC19, consisting of 482 patients, was used for vali-
dation purposes. The study identified age and LEF1-
AS1, a lncRNA, as predictive features, achieving an
AUC of 0.83 through utilization of a multilayer feed-
forward neural network classifier. Random forest has
also demonstrated its utility in identifying circulating
miRNA profiles associated with pulmonary function and
radiologic features in survivors of SARS-CoV-2-induced
ARDS. This approach has provided novel insights into
the potential molecular pathways underlying the patho-
genesis of pulmonary sequelae.43
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According to these findings, ML algorithms have the
capability to aggregate and assess information from
various dimensions, resulting in models that incorpo-
rate ncRNAs with diagnostic and/or predictive potential.
These approaches hold particular importance in het-
erogeneous populations and multifactorial diseases,
where the delineation of patient subgroups using novel
predictors, in conjunction with traditional clinical vari-
ables, offers considerable value. Ultimately, this
approach has the potential to stratify relatively homo-
geneous patient groups, thus facilitating more precise
medical management and substantially influencing
healthcare procedures for personalised patient benefit.44

In a recent study by Katipally et al.,45 molecular subtypes
were identified among patients who underwent hepatic
resection for limited colorectal liver metastases. Using a
31-feature set comprising 24 mRNAs and 7 miRNAs,
the researchers developed a neural network classifier to
predict molecular subtypes in the discovery cohort,
which was then applied to the validation cohort. The
study revealed three distinct molecular subtypes: im-
mune, canonical and stromal, each associated with
varying rates of 5-year progression-free survival and 5-
year overall survival. Notably, integrating molecular
subtypes into a clinical risk score led to improved pre-
dictive accuracy. Two circulating miRNAs, let-7g–5p and
miR-143–3p, have been proposed as novel tools to
define subpopulations of patients with suspected stable
coronary artery disease referred for coronary computed
tomography angiography.46 A panel of ten miRNAs
previously associated with the disease showed low
discriminating value in the whole population
(AUC = 0.54–0.64) and there was no incremental benefit
when combining it with a clinical model based on
traditional cardiovascular risk factors with respect to the
discriminatory capacity for coronary atherosclerosis
burden using a classical statistical analysis. However,
both miRNAs facilitated the classification of patients
into distinct subpopulations with specific clinical pro-
files based on the presence, extent and severity of cor-
onary atherosclerosis. This classification was achieved
using a classification tree algorithm, specifically the chi-
7
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Machine learning (ML)
approach

Noncoding
RNA family

Disease/
Condition

Sample
matrix

Study question Population Main findings Reference

ncRNA-based
biomarker
discovery

Supervised. LASSO, RF,
Regression Partition
Tree and XGBoost.

miRNAs Pulmonary
arterial
hypertension
(PAH)

Plasma To identify patients at risk of
PAH earlier and provide new
insights into disease
pathogenesis

64 treatment
naïve patients
with PAH and
43 disease and
healthy controls

miR-187–5p and miR-636 as
potential biological markers
to predict PAH, and reveal
novel disease mechanisms
and highlight future
putative drug targets

(Errington
et al.,
EBioMedicine,
2021)

Supervised. RSF, Enet,
Lasso, Ridge, stepwise
Cox, CoxBoost, plsRcox,
SuperPC, GBM, and
survival-SVM.

lncRNAs Colorectal
cancer (CRC)

Multiple
sample
matrices

To apply immune-related
lncRNA signature (IRLS) to
develop and validate a risk
stratification signature in
CRC

2509 CRC
patients from 17
independent
public datasets
and a clinical in-
house cohort

IRLS as a powerful signature
for assessing the prognosis,
recurrence, and benefits of
fluorouracil-based ACT,
bevacizumab, and
pembrolizumab treatments
in CRC

(Z. Liu et al.,
Nat Commun,
2022)

Multiple
sample
matrices

To explore the clinical
significance of lncRNAs in
stage II/III CRC and
systematically identify a
consensus machine learning-
derived lncRNA signature
(CMDLncS)

1640 stage II/III
CRC patients
were enrolled
from 15
independent
datasets and a
clinical in-house
cohort

CMDLncS for identifying
patient at high risk of
recurrence that could
optimize precision
treatment to improve the
clinical outcomes in stage II/
III CRC

(Z. Liu et al.,
EBioMedicine,
2022)

Supervised. SVM mRNAs,
lncRNAs
and
circRNAs

Cancer (five
cancer types:
hepatocellular,
gastric,
colorectal,
breast, kidney
cancer)

Plasma To investigate the potential
of extracellular vesicle long
RNA for cancer diagnosis

159 healthy
individuals, 150
patients with
cancer and 43
patients with
other disease

exLR as specific markers
potentially useful for cancer
diagnosis.

(Y. Li et al.,
Clin Chem,
2019)

Supervised. SVM miRNAs Background
Tuberculosis
(TB): Pulmonary
tuberculosis
(PTB) and
tuberculous
meningitis
(TBM)

Plasma To investigate the potential
of exosomal miRNAs and
electronic health records in
TB diagnosis

370 individuals,
including PTB,
TBM, non-TB
disease controls
and healthy
controls

Patients’ data from
electronic health records
combined with exosomal
miRNAs (miR-20a, miR-20b,
miR-26a, miR-106a, miR-
191, miR-486) achieved
superior performance in
differentiating PTB and TBM
from those highly suspected
cases

(Hu et al.,
EBioMedicine,
2019)

Supervised. NN miRNAs Acute coronary
syndrome (ACS)

Whole
blood and
serum

To determine the diagnostic
value of miRNA profiling in
ACS

66 patients with
ACS and 68
controls

NN model including ten
miRNAs provided the
highest accuracy (0.96) in
diagnosis of the conditions
while maintaining the same
specificity as the clinical gold
standard troponin T (0.96)

(Kayvanpour
et al., J Mol Cell
Cardiol, 2021)

Unsupervised. K-means
clustering

miRNAs Subclinical lung
injury

Plasma To evaluate associations of
plasma EV-miRNAs with
lung function

656 participants Specific miRNA expression
profile identified a cluster of
patients with an increased
risk of declining lung
function over time

(Eckhardt
et al., Am J
Respir Crit Care
Med, 2023)

(Table 2 continues on next page)
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square automatic interaction detector (CHAID). Strik-
ingly, circulating miRNAs added higher discriminative
value to the trees compared with other biomarkers, e.g.
hs-cTnT or hs-CRP. In the same manner, the classifi-
cation and regression tree (CART) algorithm was used
to construct regression tree models in 810 patients with
end-stage renal disease on hemodialysis.47 Again, two
miRNAs, miR-186–5p and miR-632, complemented risk
factors to identify patient subpopulations with specific
cardiovascular risk patterns, particularly a subgroup
with high risk, which may benefit most from intensive
monitoring. While their discriminative value was
diluted when analysing the whole population, the
regression tree selected miRNAs as biomarkers partic-
ularly relevant for four subpopulations of patients. The
inclusion of both miRNAs allowed for better discrimi-
nation during the first two years of the follow-up (inte-
grated AUC = 0.71) compared with regression tree
models without miRNAs (integrated AUC = 0.68). In the
same line, the combined use of circulating miR-133a–3p
www.thelancet.com Vol 106 August, 2024
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Machine learning (ML)
approach

Noncoding
RNA family

Disease/
Condition

Sample
matrix

Study question Population Main findings Reference

(Continued from previous page)

ncRNA-based
classification
of disease
subtypes

Supervised. NN miRNAs Oligometastatic
colorectal liver
metastases

Formalin-
fixed
paraffin-
embedded
specimens

To independently validate
previously defined molecular
subtypes in the phase 3 New
EPOC randomized clinical
trial

240 patients
who underwent
hepatic
resection for
limited
colorectal liver
metastases

Molecular subtypes of
oligometastatic colorectal
liver metastases and
integrated risk stratification
are prognostic and warrant
further study as a possible
predictive biomarker to
personalize therapies

(Katipally
JAMA Oncol,
2023)

Supervised. CHAID miRNAs Coronary artery
disease (CAD)

Plasma To explore the diagnostic
performance of circulating
miRNAs as biomarkers in
patients with suspected
stable CAD

200 patients
with suspected
stable CAD

Circulating miRNAs emerge
as an interesting tool to
classify subpopulations of
patients with suspected
stable CAD according to the
presence, extension and
severity of coronary
atherosclerosis

(de Gonzalo-
Calvo et al., J
Intern Med,
2019)

Supervised. CART miRNAs Patients on
haemodialysis
(HD)

Plasma To test whether miRNAs,
and nonstandard predictive
models, such as decision tree
learning, provide useful
information for medical
decision-making in patients
on HD

810 patients
with end-stage
renal disease
who had been
treated with
regular HD

miR-186–5p and miR-632,
complemented risk factors
to identify patient
subpopulations with a
higher cardiovascular risk

(de Gonzalo-
Calvo et al.,
Theranostics,
2020)

Supervised. Decision
Trees, Naïve Bayes, K-
nearest neighbors,
LogitBoost, Logistic
Model Tree, Simple
Logistic, RF and
Sequential Minimal
Optimization

miRNAs Endocrine
hypertension
(EHT)

Plasma To train ML algorithms for
diagnosing endocrine
hypertension subtypes using
multi-omics (MOmics) data.
It also aims to provide an
understanding of
discriminating features and
their importance to different
disease combinations

354
hypertensive
subjects and 133
normotensive
volunteers

Potential of ML-based
approaches in the
combination of Momics
data, including ncRNAs, to
construct innovative tools
with a high impact on
patient management

(Reel et al.,
EbioMedicine,
2022)

Supervised. Stepwise
Cox, CoxBoost, ridge
regression, RSF, GBM,
Survival-SVM, LASSO,
SuperPC, plsRcox, and
Enet

lncRNAs
and miRNAs

Muscle-invasive
urothelial cancer
(MUC)

Multiple
Bladder
Cancer
(BLCA) and
MUC tissue
samples

To combine mRNA, lncRNA,
miRNA expression profiles,
genomic mutations, and
epigenomic DNA
methylation data to develop
an integrated consensus
subtype of MUC

BLCA cohort
and cohorts
from external
datasets

Comprehensive analysis of
multiomic data can offer
important insights and
further refine the molecular
classification of MUC.
Identification of robust
consensus machine
learning-driven signature
represents a valuable tool
for early prediction of
patient prognosis and for
screening potential
candidates likely to benefit
from immunotherapy.

(Chu et al. Mol
Ther Nucleic
Acids, 2023)

Abbreviations: CART, Classification and Regression Tree; CHAID, Chi-square Automatic Interaction Detector; circRNA, circular RNA; Enet, Elastic network; GBM, Generalized boosted regression modelling;
lncRNA, long noncoding RNA; mRNA, messenger RNA; miRNA, microRNA; NN, Neural network; plsRcox, Partial least squares regression for Cox; RF, Random Forest; RSF; Random survival forest; SuperPC,
Supervised principal components; SVM, Support vector machine.

Table 2: State of the art of machine learning methods in noncoding RNA transcriptome research.
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and clinical data has emerged as a promising biomarker
for delineating a low-risk subphenotype in patients
suffering from heart failure and central sleep apnea.48

The utilisation of ncRNAs in decision tree models
may not be universally applicable to all transcripts since
the potential to define subpopulations of other families,
such as circRNAs, is still not fully understood.49

Along this line, the combination of multidimen-
sional omic analysis and ML to classify subtypes of
disease has provided promising results. This approach
www.thelancet.com Vol 106 August, 2024
was used in the context of arterial hypertension, a major
cardiovascular factor with high heterogeneity, in which
the definition of disease subtypes is fundamental to
avoid underdiagnosis.50 In a large cohort of hypertensive
patients (n = 487) from 11 reference centres, 409 fea-
tures (plasma small metabolites, plasma miRNAs, uri-
nary steroid metabolites, plasma steroids and plasma
catechol O-methylated metabolites) were analysed. Us-
ing eight classifiers (decision trees, naïve bayes, K-
nearest neighbours, logitBoost, logistic model tee,
9
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simple logistic, random forest and sequential minimal
optimisation), an ML pipeline was developed based on
multiomic features that allowed the classification of five
disease combinations (AUC = 0.95, Specificity = 96%).
miR-15a–5p and two plasma small metabolites were
present in all disease combinations. Although the find-
ings should be further validated in external cohorts, this
work demonstrates the potential of ML-based ap-
proaches in the combination of omic data, including
ncRNAs, to construct innovative tools with a high
impact on patient management. Indeed, Chu et al.51

employed an integrative approach, combining mRNA,
lncRNA and miRNA expression profiles, along with
genomic mutations and epigenomic DNA methylation
data, to develop a consensus subtype of muscle-invasive
urothelial cancer. The authors explored ten different
multiomic integration strategies to achieve this. Subse-
quently, they identified stable prognosis-related genes
by analysing differential expression across subtypes and
utilised ten ML algorithms to construct a robust
consensus signature. This signature not only demon-
strated significant prognostic value but also exhibited
strong performance in predicting responses to both
immunotherapy and drug-based therapies in the
training and validation cohorts.

Unsupervised ML approaches have also been
demonstrated to be useful in the development of
ncRNA-based biomarkers. K-means clustering was used
to find previously unknown patterns of plasma extra-
cellular vesicle-enriched miRNAs associated with sub-
clinical lung injury in a large longitudinal cohort study
[The U.S. Veterans Affairs Normative Aging Study
(NAS)].52 A cluster of participants with a characteristic
miRNA expression profile that showed an increased risk
of declining lung function over time [relative risk (RR)
1.19, 95% CI 1.05–1.35] was defined. The 11 miRNAs
differentially expressed in the group at higher risk were
related to specific biological pathways implicated in
cellular immunity, inflammatory response and airway
structural integrity that could emerge as potentially
treatable targets. The results not only have a direct
impact on biomarker development but also on other
aspects of disease.

Challenges and perspectives in the application
of AI/ML-based methods to implement
noncoding RNA in research and clinical practice
The use of AI/ML-based methods in the field of ncRNA
research faces several obstacles. Many of these obstacles
are similar to those experienced in other areas of
biomedical research.

The common experimental design is based on “many
ncRNAs in few patient samples” resulting in relatively
small datasets with high-dimensional feature spaces, a
phenomenon known as “curse of dimensionality.” This
scenario leads to a significant risk of overfitting, i.e. the
ncRNA-based ML models might fit too closely to the
training data, limiting the generalisation to broader pa-
tient populations. The validation through multicentric
studies with adequately sized samples is therefore
fundamental to evaluate model performance and, by
extension, its clinical applicability. In addition, the
effective management of dimensionality is crucial.
Dimensionality reduction techniques such as principal
component analysis (PCA), mitigate collinearity issues
and generate a concise feature set that effectively pre-
serves a substantial portion of variability within the data.
Other strategies for reducing the number of ncRNA
candidates can be found in the literature. A clustering-
based method was proposed to reduce the number of
candidate miRNA combinations, thereby avoiding the
exponential number of combinations.53 The combina-
tions of representative cluster members could then be
entered into ML-based analyses and provide miRNA-
based biomarkers with high accuracy. The selection of
discriminative features using random forest or analo-
gous methods, in conjunction with a preliminary
filtration step to eliminate redundant information by
removing highly correlated ncRNAs, have also been
employed.51,54

A complex ncRNA-based classifier with an excess of
features may have limited utility, as the findings are
likely to be challenging to interpret from a biological
perspective. Indeed, the interpretability of the ML
models is often complicated due to their complex ar-
chitectures, making it difficult to understand how pre-
dictions are made. Feature importance analysis and
techniques such as SHAP (SHapley Additive exPlana-
tions) increase the interpretability. Additionally, incor-
porating biological expertise into the model
development process can help ensure biologically
meaningful decisions. Nevertheless, most ncRNAs have
poorly understood functions, making it challenging to
interpret their biological involvement and, conse-
quently, their associations with disease. The absence of
functional annotation may impede the biological in-
sights derived from ncRNA expression data.

ML methods require, as do most analyses, reliable
and trustworthy data. ncRNA datasets often exhibits a
significant amount of missing data due to technical er-
rors. The handling of undetectable values because
ncRNAs may be simply nonexpressed also deserves
special consideration.55 Such incomplete data can pre-
sent difficulties for ML methods, potentially leading to
unreliable outcomes. Addressing this limitation re-
quires careful data preprocessing, including for example
imputation methods.56,57 In addition, imbalanced class
distributions and biases in the ncRNA data can impact
ML model performance, particularly in the context of
underrepresented ncRNA candidates.

Another limitation is the paucity of studies that have
compared different ML methods and their effectiveness
in analysing ncRNA data,58 as ML-based algorithms do
www.thelancet.com Vol 106 August, 2024
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not perform consistently across all datasets. Therefore,
the most appropriate method to use for analysis is often
determined empirically.59 Conducting comparative
studies to evaluate various ML algorithms could aid in
identifying the most suitable approach for specific
ncRNA datasets and research objectives. The combina-
tion of multiple algorithms to address limitations
arising from algorithm selection has also been docu-
mented in the literature.51,60 Ensemble methods, which
use multiple algorithms to construct a model, repre-
sents an indispensable tool.61

The integration of ncRNA and clinical features using
ML methods in decision support system may improve
patient management, similar to other biomarkers.62

Nevertheless, a critical evaluation of ncRNA-based
model performance against guideline-recommended
pathways and established clinical algorithms is crucial
to assess their utility in clinical practice. Rigorous vali-
dation of ML-based profiles or algorithms should pre-
cede their application to patient groups for which they
were not originally designed.

The compartmentalisation of ncRNAs in biofluids, as
well as the characterisation of ncRNA profiles within
different cell populations and across different subcellu-
lar compartments, also warrants investigation. In this
regard, integration of single-cell RNA sequencing
(scRNA-seq) technology with ML holds immense po-
tential for ncRNA research, as scRNA-seq enables the
profiling of ncRNA expression at the single-cell level,
providing insights into cellular heterogeneity. ML algo-
rithms designed for scRNA-seq data analysis can assist
in identifying ncRNA biomarkers associated with spe-
cific cell populations or disease states.

The proliferation of high-throughput technologies
has facilitated the generation of omic data with different
but complementary information, i.e. genomics, tran-
scriptomics, proteomics or metabolomics, among
others. Multiomic data integration, combining ncRNA
expression data with other omic data could provide a
more comprehensive understanding of the biological
processes driving disease pathogenesis. In this context,
the use of ML models has emerged as a useful approach
to integrate information from different omic layers.63

Additionally, many ML-based methods have been
developed for predicting ncRNA-gen/protein in-
teractions.64 Integrating ML approaches with underlying
biological networks, such as gene regulatory networks
and protein–protein interaction networks, represents an
asset for elucidating the molecular mechanisms of
ncRNAs in biological processes and disease pathology.
This is particularly relevant since the combination of
experimentally confirmed ncRNA with protein–protein
interactions enhance the capacity to identify disease
modules and predict comorbidity patterns between dis-
eases and could ultimately facilitate the identification of
novel drug–targets and a better understanding of dis-
ease progression.65
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Emerging methods such as deep learning and rein-
forcement learning offer exciting opportunities to
address current challenges in ncRNA research. Deep
learning models, with their capacity to discern infor-
mative patterns from large datasets, can identify
nonlinear relationships between ncRNAs and biological
phenotypes. Various deep learning models that have
successfully been used in ncRNA research with contri-
butions in the areas of ncRNA identification, prediction
of interactions and biological mechanisms and disease
classifications, among others.66 Reinforcement learning,
although less explored, could be used for the prediction
of potential ncRNA-based biomarkers and ncRNA-
disease association prediction.67,68 A more comprehen-
sive examination of these techniques will provide valu-
able insights in the short to medium term.

ML techniques are progressively being employed for
the study of ncRNA biology, especially in the case of the
prediction of miRNA targets.69 However, the perfor-
mance of ML heavily relies on user-defined variables
chosen for model training. Considerations for classifier-
based ncRNA target prediction methods include the
challenges of class imbalance and dataset reliability
mentioned above. The landscape of mRNA regulation is
characterised by the intricate interplay between miRNAs
and their target mRNAs, where each mRNA can be
modulated by multiple miRNAs, and conversely, each
miRNA may have thousands of potential binding sites
across the transcriptome. The skewed distribution be-
tween these classes impacts the performance of pre-
diction algorithms, impeding their ability to accurately
discern true miRNA-mRNA interactions. The absence
of a predicted target may also stem from various bio-
logical factors beyond the scope of computational pre-
diction, adding further complexity to the analysis.
Addressing these challenges requires a detailed under-
standing of both the computational methodologies
employed and the underlying biological intricacies gov-
erning ncRNA regulatory mechanisms. Moreover,
evolutionary disparities among biological species, for
instance in the case of lncRNAs, complicates data inte-
gration and generalisation of findings.

Beyond the specific obstacles of incorporating AI/ML
in ncRNA research, the field of ncRNA-based bio-
markers and therapeutics must also address more gen-
eral challenges. These limitations are multifaceted,
involving methodological, technical and experimental
considerations.70 The use of artificial case–control de-
signs with selected patients and healthy controls, which,
while useful for evaluating molecular pathways and
pathological mechanisms, tend to overestimate the value
of a given biomarker. To achieve more accurate and
clinically relevant results, biomarker analyses should be
conducted in real clinical settings, e.g. with patients
suspected of having a disease. Additionally, cost-
effectiveness is rarely explored, yet this is crucial for
evaluating their potential for routine clinical practice.
11
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The use of biospecimens that are easy to collect and
commonly used in clinical laboratories, such as urine or
saliva, should also be considered, especially for specific
populations, e.g. children.

Another significant challenge is the labour-intensive
nature of current ncRNA quantification assays, which
necessitates simplification, miniaturisation and auto-
mation. Pre- and post-analytical variables significantly
impact results and are often the primary causes of in-
consistencies among findings published by different
groups.19 For instance, pre-analytical variables, such as
the impact of circadian rhythm, are frequently over-
looked but warrant careful consideration during study
design. Adopting best practice guidelines and stand-
ardising protocols are urgently needed to enhance the
reliability and comparability of measurements.

The decreasing costs of microarrays and sequencing
techniques present an opportunity to exploit the tran-
scriptome for biomarker development. However, dif-
ferences in sensitivity, specificity and biases between
platforms, e.g. microarrays, RNA-seq or scRNA-seq
could lead to inconsistent findings. Most scRNA-seq
approaches employ poly-A dependent methods, which
restrict the ability to quantify ncRNA species, such as
mature miRNAs or circRNAs. To overcome these chal-
lenges, it is necessary to address the variability inherent
to different platforms and implement cross-platform
validation techniques.

In the past decade, the field of therapeutic tools
based on ncRNA has witnessed considerable growth,
particularly miRNA-based products, e.g. anti-
microRNAs (antimiRs) and miRNA mimics, with the
technology now regarded as a promising component in
the therapeutic market.71 Numerous ncRNA-based
therapeutics are presently undergoing clinical investi-
gation for various conditions, such as diverse forms of
cancer, cardiovascular disease, genetic disorders and
viral infections.72 These therapies offer several advan-
tages, including high specificity, precise targeting of
disease-related genes or proteins, cost-effectiveness and
a relatively straightforward manufacturing process.73

Nevertheless, the safety of mimic therapy is still a
matter of debate.74 The successful translation of RNA
therapies into widespread clinical use still depends on
further interdisciplinary research on delivery, stability
and potential off-target effects.73 The promising ad-
vancements arising from preclinical research will ulti-
mately overcome the issues currently faced in the field
of ncRNA therapeutics.

The implementation of open science practices be-
comes essential to ensure the advancement of knowl-
edge and the acquisition of generalizable data.
Particularly, sharing data, code and research protocols,
permit facilitating transparency and reproducibility in
ncRNA-ML research. Given the dynamic and heteroge-
neous nature of the field, the ability to reproduce results
is fundamental for validating research findings. Sharing
scientific data additionally enables researchers to
combine data types to strengthen analyses, facilitates to
reuse data that are difficult to generate or from limited
sources. Beyond its role in the generalization of the
scientific results, data sharing also fosters collaboration
and accelerates scientific progress by enabling re-
searchers to address more complex biological questions.

It is of paramount importance to ensure the use of
high-quality data to guarantee both the accuracy and the
usefulness of applications and projects that are based on
shared data. For this purpose, various publicly available
repositories have been specifically designed for the
harmonisation of ncRNA research outputs. These
include RNAcentral (https://rnacentral.org) and miR-
Base (https://www.mirbase.org) databases, which collect
published ncRNA and miRNA sequences and annota-
tions, respectively. Furthermore, platforms such as
RNALocate v2.0 (http://www.rna-society.org/rnalocate/)
have been developed to explore the associations between
ncRNAs at the subcellular level.75 General-purpose data
sharing platforms have also been launched, e.g. NCBI
Gene Expression Omnibus (GEO) (https://www.ncbi.
nlm.nih.gov/geo) or EMBL-EBI (https://www.ebi.ac.
uk/), permitting researchers query, download experi-
ments and curated gene expression profiles.76 Addi-
tionally, platforms providing secure spaces for creating
and sharing methods and protocols across different
scientific areas have been designed to address the
reproducibility of the procedures, e.g. protocols.io
(https://www.protocols.io).77 Consistently, software
development services have also been created for code
sharing with the aim to replicate generated code in other
investigations, e.g. GitHub (https://github.com), the
world’s leading platform for software development
promoting developers’ collaboration in a secure space.78

Open-source code platforms provide a venue to support
for ML research, namely Kaggle (https://www.kaggle.
com), a comprehensive repository of community-
published models, data and code, further allows data
scientists participate in ML and data challenges.79 In
these trials, created models can be trained on different
datasets, what ultimately exposes the model to a broader
range of variations, enabling it to learn more compre-
hensive and discriminative feature representation.
Ethical aspects
The potential of AI/ML-based methods and tools in
research and clinical routine is high, and the ability of
these to be a positive force in medicine creates opti-
mism among patients and other end-users. However,
the complexity and unknowns of such systems may
hinder their appropriate use. Additionally, due to the so-
called black boxes of AI/ML, their adoption into
research and clinical routine may be further impeded, as
they are not readily trusted.80,81 There are also issues of
trust among patients for the use of AI/ML-based systems
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that need attention before widespread adoption of such
tools in clinical decision-making.82 All these factors lead
to the quest for ethical and trustworthy AI, and this has
become a central issue for governance and technology
impact when implementing AI/ML-based systems.81

Ethical concerns include bias in general. For
example, an algorithm may benefit some specific groups
more than others, or there could be differing perfor-
mance of an AI/ML-based system for different sub-
populations.83,84 Further bias may arise due to lack of
data from underreporting (based on stigma and/or
silence), but it can also be due to unreliable or poorly
performing biomarkers. Bias in the build and compo-
sition of the AI/ML-based models also constitutes an
important reason for concern and could be a result of
there being a substantial amount of missing data. This
is also an issue regarding the use of ncRNA biomarkers
with health record data. Algorithms are highly depen-
dent on the objective measures included in them,
meaning that unreliable or absent biomarkers and
subjective measures will have a very negative impact on
AI model performance. In addition, large-scale omic
data employment for AI would suffer from both
technology-specific biases and batch effects, and differ-
ences in data treatment processes or data preprocessing
pipelines may confound data analysed by AI, impairing
model performance.85

Lack of transparency in AI models may also result
in inappropriate use, low explainability or low trust.86

Therefore, a concern for the trustworthiness of AI
and ML-based results is that these methods are sensi-
tive to errors in data integrity and health record data.
There is also the possibility that AI models may rein-
force existing biases in healthcare because of using
inherently biased learning data or due to developers
unintentionally causing the AI model to incorporate
their own, often unconscious, biases.82 Algorithmic
bias is common and is accentuated by health dispar-
ities,87 as exemplified in a recent article that found
consistent underreporting of female and black patients
regarding the management of acute chest pain in US
emergency departments.88 Such biases and inequalities
would also be preserved in potential AI/ML-based
models built on these data.

Consequently, the clinical safety of AI/ML-based
tools is a major issue, and to ensure their safe use, it
has been suggested that independent assessment, reg-
ulatory protection and governmental oversight proced-
ures need to be installed to protect against potential
harm and ensure validity, precision and accuracy.82

Accordingly, inherent ethical, technical, domain-
specific and legal consequences of the use of specific
AI/ML-based models need to be evaluated, considering
the different phases of AI, i.e. design, development,
deployment and monitoring.80,85

There are also concerns about the cost‒benefits of
adding advanced molecular analysis, such as that of
www.thelancet.com Vol 106 August, 2024
ncRNAs, in combination with AI algorithms, as the
development, testing and validation, as well as running
costs should be justified by the extra gain in health
outcomes. Furthermore, in insurance-covered health-
care systems, patients may also risk that insurance
companies employ AI to discover otherwise unknown
medical information that could increase costs for indi-
vidual patients (by either denying coverage or increasing
premiums). Thus, there are also important consider-
ations regarding the protection of patient rights.

Overall, it is therefore not surprising that first AI
international regulations have already been proposed.
For instance, on December 2023 the European Union
Parliament and Council reached a political deal on a bill
to ensure AI in Europe is safe, respects fundamental
rights and democracy. Ultimately, the aim is to establish
obligations for AI based on its potential risks and level
of impact.89 Nevertheless, as gaps in AI regulation
remain, it is important to assess ethical aspects based on
soft ethics guidelines that go beyond hard legal re-
quirements. Broad and interdisciplinary expertise will
be needed to make the required assessment of trust-
worthiness of AI/ML-based tools that will eventually
support their implementation in research and clinical
routine.
Conclusions and future steps
The successful integration of ncRNA biomarkers into
clinical practice demands substantial efforts, encom-
passing the establishment of experimental standards,
rigorous evaluation of the biomarker value and
comprehensive functional investigations aimed at un-
derstanding their role in disease progression and ther-
apeutic potential. In this context, the more widespread
utilisation of ML for biomarker development holds the
potential to expedite the identification of disease-
relevant ncRNAs, thereby reducing both the cost and
time needed for these discoveries to reach clinicians and
patients. Furthermore, ML methodologies offer a more
unbiased exploration of features, allowing for the iden-
tification of unexpected or previously overlooked mole-
cules that might remain undiscovered if solely guided by
existing medical knowledge.

These formidable tasks can only be accomplished
through collaborative partnerships between academia
and industry. Such partnerships are crucial in advancing
the development of clinically applicable and cost-
effective molecular tests. These collaborations are
pivotal in ensuring the reliability, acceptance, use and
sustainability of novel molecular tests based on ncRNAs
and ML.

In summary, the fusion of cutting-edge technology,
interdisciplinary collaboration and a commitment to
rigorous standards holds the promise of unlocking the
full potential of ncRNAs as transformative tools in
clinical practice and personalised healthcare.
13
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Search strategy and selection criteria

Two databases, PubMed and Scopus, were employed for the literature search.
Selected full-text studies underwent individual examination to determine their
eligibility for inclusion in the review. Each document was meticulously evaluated to
ensure a comprehensive overview of the topic, encompassing all relevant
perspectives.
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Outstanding questions
Many AI/ML methods are currently employed in
ncRNA research. However, it is essential for researchers
to understand their practical application, including their
benefits, obstacles and ethical dimensions. Additional
efforts at different levels are necessary to integrate ML
into ncRNA research for both biomarker development
and molecular phenotyping.

Contributors
Conception and design: DdGC and GK. Data acquisition: All authors.
Manuscript drafting: DdGC, MPP and GK. Writing: All authors Review
& editing: All authors. Final approval of the submitted version: All
authors.

Declaration of interests
YD holds patents and licensing agreements related to the use of RNAs
for diagnostic and therapeutic purposes and is Scientific Advisory Board
(SAB) member of Firalis SA. The other authors declare no competing
interests.

Acknowledgements
This article is based upon work from COST Action AtheroNET,
CA21153, supported by COST (European Cooperation in Science and
Technology). This article is based upon work from COST Action Car-
dioRNA, CA17129, supported by COST (European Cooperation in Sci-
ence and Technology).

DdG-C has received financial support from the Instituto de Salud
Carlos III (Miguel Servet 2020: CP20/00041), co-funded by the Euro-
pean Union. DdGC was further funded by Fundación Francisco Soria
Melguizo (Madrid, Spain), Beca SEPAR – Ayuda a la investigación
(1437/2023) and Beca SOCAP – Investigador emergent. CIBERES
(CB07/06/2008) is an initiative of the Instituto de Salud Carlos III. MP
is the recipient of a predoctoral fellowship (PFIS 2023: FI23/00022)
from Instituto de Salud Carlos III and co-funded by the European
Union. LTD acknowledges grants from the Novo Nordisk Foundation
(NNF22OC0078203 and NNF23OC0081177) and Innovation Fund
Denmark (1044-00139B, 0154-00054B). YD has received funding from
the EU Horizon 2020 project COVIRNA (grant agreement #
101016072), the National Research Fund (grants #C14/BM/8225223,
C17/BM/11613033 and COVID-19/2020-1/14719577/miRCOVID), the
Ministry of Higher Education and Research, and the Heart Foundation-
Daniel Wagner of Luxembourg. GK acknowledges lab support provided
by grants from the Icelandic Research Fund (217946-051), Icelandic
Cancer Society Research Fund and University of Iceland Research Fund.

The funders played no role in the design of the study, data collec-
tion, data analysis, interpretation of results or writing of the paper.
References
1 Frith MC, Pheasant M, Mattick JS. The amazing complexity of the

human transcriptome. Eur J Hum Genet. 2005;13:894–897.
2 Liu G, Mattick JS, Taft RJ. A meta-analysis of the genomic and

transcriptomic composition of complex life. Cell Cycle.
2013;12:2061–2072.

3 Statello L, Guo CJ, Chen LL, Huarte M. Gene regulation by long
non-coding RNAs and its biological functions. Nat Rev Mol Cell
Biol. 2021;22:96–118.
4 Mendell JT, Olson EN. MicroRNAs in stress signaling and human
disease. Cell. 2012;148:1172–1187.

5 Nemeth K, Bayraktar R, Ferracin M, Calin GA. Non-coding RNAs
in disease: from mechanisms to therapeutics. Nat Rev Genet.
2024;25:211–232.

6 Eichner H, Karlsson J, Loh E. The emerging role of bacterial reg-
ulatory RNAs in disease. Trends Microbiol. 2022;30:959–972.

7 Adrian Calin G, Dan Dumitru C, Shimizu M, et al. Frequent de-
letions and down-regulation of micro-RNA genes miR15 and
miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad
Sci U S A. 2002;99:15524–15529.

8 Singh N, Ramnarine VR, Song JH, et al. The long noncoding
RNA H19 regulates tumor plasticity in neuroendocrine prostate
cancer. Nat Commun. 2021;12. https://doi.org/10.1038/S41467-
021-26901-9.

9 Hunkler HJ, Groß S, Thum T, Bär C. Non-coding RNAs: key
regulators of reprogramming, pluripotency, and cardiac cell speci-
fication with therapeutic perspective for heart regeneration. Car-
diovasc Res. 2022;118:3071–3084.

10 Shirvani H, Ghanavi J, Aliabadi A, et al. MiR-211 plays a dual role
in cancer development: from tumor suppressor to tumor enhancer.
Cell Signal. 2023;101. https://doi.org/10.1016/J.CELLSIG.2022.
110504.

11 Shah AM, Giacca M. Small non-coding RNA therapeutics for car-
diovascular disease. Eur Heart J. 2022;43:4548–4561.

12 Täubel J, Hauke W, Rump S, et al. Novel antisense therapy tar-
geting microRNA-132 in patients with heart failure: results of a
first-in-human Phase 1b randomized, double-blind, placebo-
controlled study. Eur Heart J. 2021;42:178–188.

13 Francesco Ruggiero C, Fattore L, Terrenato I, et al. Identification of
a miRNA-based non-invasive predictive biomarker of response to
target therapy in BRAF-mutant melanoma. Theranostics.
2022;12:7420–7430.

14 Dong Y, Gao Q, Chen Y, et al. Identification of CircRNA signature
associated with tumor immune infiltration to predict therapeutic
efficacy of immunotherapy. Nat Commun. 2023;14. https://doi.org/
10.1038/S41467-023-38232-Y.

15 Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO.
Exosome-mediated transfer of mRNAs and microRNAs is a novel
mechanism of genetic exchange between cells. Nat Cell Biol.
2007;9:654–659.

16 Walter E, Dellago H, Grillari J, Dimai HP, Hackl M. Cost-utility
analysis of fracture risk assessment using microRNAs compared
with standard tools and no monitoring in the Austrian female
population. Bone. 2018;108:44–54.

17 Devaux Y. MicroRNAs as biomarkers in the brain-heart axis? Eur
Heart J Acute Cardiovasc Care. 2022;11:617–619.

18 Giannella A, Castelblanco E, Zambon CF, et al. Circulating small
noncoding RNA profiling as a potential biomarker of atheroscle-
rotic plaque composition in type 1 diabetes. Diabetes Care.
2023;46:551–560.
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34 Karađuzović-Hadžiabdić K, Peters A. Artificial intelligence in
clinical decision-making for diagnosis of cardiovascular disease
using epigenetics mechanisms. Epigenetics Cardiovasc Dis.
2021:327–345.

35 Errington N, Iremonger J, Pickworth JA, et al. A diagnostic miRNA
signature for pulmonary arterial hypertension using a consensus
machine learning approach. eBioMedicine. 2021;69:103444. https://
doi.org/10.1016/J.EBIOM.2021.103444.

36 Liu Z, Liu L, Weng S, et al. Machine learning-based integration
develops an immune-derived lncRNA signature for improving
outcomes in colorectal cancer. Nat Commun. 2022;13. https://doi.
org/10.1038/S41467-022-28421-6.

37 Liu Z, Guo CG, Dang Q, et al. Integrative analysis from multi-
center studies identities a consensus machine learning-derived
lncRNA signature for stage II/III colorectal cancer. eBioMedicine.
2022;75. https://doi.org/10.1016/J.EBIOM.2021.103750.

38 Li Y, Zhao J, Yu S, et al. Extracellular vesicles long RNA sequencing
reveals abundant mRNA, circRNA, and lncRNA in human blood as
potential biomarkers for cancer diagnosis. Clin Chem. 2019;65:798–
808.

39 Hu X, Liao S, Bai H, et al. Integrating exosomal microRNAs and
electronic health data improved tuberculosis diagnosis. EBioMedi-
cine. 2019;40:564–573.

40 Kayvanpour E, Gi WT, Sedaghat-Hamedani F, et al. microRNA
neural networks improve diagnosis of acute coronary syndrome
(ACS). J Mol Cell Cardiol. 2021;151:155–162.

41 Devaux Y, Zhang L, Lumley AI, et al. Development of a long
noncoding RNA-based machine learning model to predict COVID-
19 in-hospital mortality. Nat Commun. 2024;15:4259.

42 Firat H, Zhang L, Baksi S, et al. FIMICS: a panel of long noncoding
RNAs for cardiovascular conditions. Heliyon. 2023;9. https://doi.
org/10.1016/J.HELIYON.2023.E13087.

43 García-Hidalgo MC, González J, Benítez ID, et al. Identification of
circulating microRNA profiles associated with pulmonary function
and radiologic features in survivors of SARS-CoV-2-induced ARDS.
Emerg Microbes Infect. 2022;11:1537–1549.

44 Goretti E, Wagner DR, Devaux Y. miRNAs as biomarkers of
myocardial infarction: a step forward towards personalized medi-
cine? Trends Mol Med. 2014;20:716–725.

45 Katipally RR, Martinez CA, Pugh SA, et al. Integrated clinical-
molecular classification of colorectal liver metastases: a biomarker
analysis of the phase 3 new EPOC randomized clinical trial. JAMA
Oncol. 2023;9:1245–1254.

46 de Gonzalo-Calvo D, Vilades D, Martínez-Camblor P, et al. Circu-
lating microRNAs in suspected stable coronary artery disease: a
coronary computed tomography angiography study. J Intern Med.
2019;286:341–355.

47 de Gonzalo-Calvo D, Martínez-Camblor P, Bär C, et al. Improved
cardiovascular risk prediction in patients with end-stage renal dis-
ease on hemodialysis using machine learning modeling and
circulating microribonucleic acids. Theranostics. 2020;10:8665–
8676.

48 de Gonzalo-Calvo D, Martinez-Camblor P, Belmonte T, et al.
Circulating miR-133a-3p defines a low-risk subphenotype in pa-
tients with heart failure and central sleep apnea: a decision tree
www.thelancet.com Vol 106 August, 2024
machine learning approach. J Transl Med. 2023;21. https://doi.org/
10.1186/S12967-023-04558-W.

49 Vilades D, Martínez-Camblor P, Ferrero-Gregori A, et al. Plasma
circular RNA hsa_circ_0001445 and coronary artery disease: per-
formance as a biomarker. FASEB J. 2020;34:4403–4414.

50 Reel PS, Reel S, van Kralingen JC, et al. Machine learning for
classification of hypertension subtypes using multi-omics: a multi-
centre, retrospective, data-driven study. eBioMedicine. 2022;84.
https://doi.org/10.1016/J.EBIOM.2022.104276.

51 Chu G, Ji X, Wang Y, Niu H. Integrated multiomics analysis and
machine learning refine molecular subtypes and prognosis for
muscle-invasive urothelial cancer. Mol Ther Nucleic Acids.
2023;33:110–126.

52 Eckhardt CM, Gambazza S, Bloomquist TR, et al. Extracellular
vesicle-encapsulated microRNAs as novel biomarkers of lung
health. Am J Respir Crit Care Med. 2023;207:50–59.

53 Yang Y, Huang N, Hao L, Kong W. A clustering-based approach
for efficient identification of microRNA combinatorial bio-
markers. BMC Genomics. 2017;18. https://doi.org/10.1186/
S12864-017-3498-8.

54 Perez-Pons M, Molinero M, Benítez ID, et al. MicroRNA-centered
theranostics for pulmoprotection in critical COVID-19. Mol Ther
Nucleic Acids. 2024;35. https://doi.org/10.1016/J.OMTN.2024.102118.

55 Lakkisto P, Dalgaard LT, Belmonte T, Pinto-Sietsma SJ, Devaux Y,
de Gonzalo-Calvo D. Development of circulating microRNA-based
biomarkers for medical decision-making: a friendly reminder of
what should NOT be done. Crit Rev Clin Lab Sci. 2023;60:141–152.

56 Rios R, Miller RJH, Manral N, et al. Handling missing values in
machine learning to predict patient-specific risk of adverse cardiac
events: insights from REFINE SPECT registry. Comput Biol Med.
2022;145. https://doi.org/10.1016/J.COMPBIOMED.2022.105449.

57 Liu M, Li S, Yuan H, et al. Handling missing values in healthcare
data: a systematic review of deep learning-based imputation tech-
niques. Artif Intell Med. 2023;142. https://doi.org/10.1016/J.
ARTMED.2023.102587.

58 Higuchi C, Tanaka T, Okada Y. Systematic comparison of machine
learning methods for identification of miRNA species as disease
biomarkers. Lect Notes Comput Sci. 2015;9044:386–394.

59 Wong WKM, Thorat V, Joglekar MV, et al. Analysis of half a billion
datapoints across ten machine-learning algorithms identifies key
elements associated with insulin transcription in human pancreatic
islet cells. Front Endocrinol. 2022;13. https://doi.org/10.3389/
FENDO.2022.853863.

60 García-Hidalgo MC, Benítez ID, Perez-Pons M, et al. MicroRNA-
guided drug discovery for mitigating persistent pulmonary com-
plications in critical COVID-19 survivors: a longitudinal pilot study.
Br J Pharmacol. 2024. https://doi.org/10.1111/BPH.16330.

61 Sammut SJ, Crispin-Ortuzar M, Chin SF, et al. Multi-omic ma-
chine learning predictor of breast cancer therapy response. Nature.
2022;601:623–629.

62 Doudesis D, Lee KK, Boeddinghaus J, et al. Machine learning for
diagnosis of myocardial infarction using cardiac troponin concen-
trations. Nat Med. 2023;29:1201–1210.

63 Picard M, Scott-Boyer MP, Bodein A, Périn O, Droit A. Integration
strategies of multi-omics data for machine learning analysis.
Comput Struct Biotechnol J. 2021;19:3735–3746.

64 Pepe G, Appierdo R, Carrino C, Ballesio F, Helmer-Citterich M,
Gherardini PF. Artificial intelligence methods enhance the dis-
covery of RNA interactions. Front Mol Biosci. 2022;9. https://doi.
org/10.3389/FMOLB.2022.1000205.

65 Gysi DM, Barabási AL. Noncoding RNAs improve the predictive
power of network medicine. Proc Natl Acad Sci U S A. 2023;120.
https://doi.org/10.1073/PNAS.2301342120.

66 Alam T, Al-Absi HRH, Schmeier S. Deep learning in LncRNAome:
contribution, challenges, and perspectives. Noncoding RNA.
2020;6:1–23.

67 Cui L, Lu Y, Sun J, et al. RFLMDA: a novel reinforcement learning-
based computational model for human MicroRNA-disease associ-
ation prediction. Biomolecules. 2021;11. https://doi.org/10.3390/
BIOM11121835.

68 Su B, Wang W, Lin X, Liu S, Huang X. Identifying the potential
miRNA biomarkers based on multi-view networks and reinforce-
ment learning for diseases. Brief Bioinform. 2023;25. https://doi.
org/10.1093/BIB/BBAD427.

69 Betel D, Koppal A, Agius P, Sander C, Leslie C. Comprehensive
modeling of microRNA targets predicts functional non-conserved
and non-canonical sites. Genome Biol. 2010;11. https://doi.org/10.
1186/GB-2010-11-8-R90.
15

https://doi.org/10.1186/S13293-019-0222-1
https://doi.org/10.1186/S13293-019-0222-1
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref28
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref28
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref28
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref29
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref29
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref29
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref30
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref30
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref30
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref31
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref31
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref31
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref32
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref32
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref32
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref33
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref33
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref33
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref33
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref33
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref34
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref34
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref34
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref34
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref34
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref34
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref34
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref34
https://doi.org/10.1016/J.EBIOM.2021.103444
https://doi.org/10.1016/J.EBIOM.2021.103444
https://doi.org/10.1038/S41467-022-28421-6
https://doi.org/10.1038/S41467-022-28421-6
https://doi.org/10.1016/J.EBIOM.2021.103750
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref38
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref38
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref38
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref38
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref39
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref39
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref39
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref40
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref40
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref40
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref41
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref41
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref41
https://doi.org/10.1016/J.HELIYON.2023.E13087
https://doi.org/10.1016/J.HELIYON.2023.E13087
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref43
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref43
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref43
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref43
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref44
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref44
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref44
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref45
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref45
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref45
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref45
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref46
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref46
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref46
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref46
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref47
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref47
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref47
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref47
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref47
https://doi.org/10.1186/S12967-023-04558-W
https://doi.org/10.1186/S12967-023-04558-W
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref49
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref49
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref49
https://doi.org/10.1016/J.EBIOM.2022.104276
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref51
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref51
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref51
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref51
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref52
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref52
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref52
https://doi.org/10.1186/S12864-017-3498-8
https://doi.org/10.1186/S12864-017-3498-8
https://doi.org/10.1016/J.OMTN.2024.102118
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref55
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref55
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref55
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref55
https://doi.org/10.1016/J.COMPBIOMED.2022.105449
https://doi.org/10.1016/J.ARTMED.2023.102587
https://doi.org/10.1016/J.ARTMED.2023.102587
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref58
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref58
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref58
https://doi.org/10.3389/FENDO.2022.853863
https://doi.org/10.3389/FENDO.2022.853863
https://doi.org/10.1111/BPH.16330
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref61
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref61
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref61
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref62
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref62
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref62
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref63
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref63
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref63
https://doi.org/10.3389/FMOLB.2022.1000205
https://doi.org/10.3389/FMOLB.2022.1000205
https://doi.org/10.1073/PNAS.2301342120
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref66
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref66
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref66
https://doi.org/10.3390/BIOM11121835
https://doi.org/10.3390/BIOM11121835
https://doi.org/10.1093/BIB/BBAD427
https://doi.org/10.1093/BIB/BBAD427
https://doi.org/10.1186/GB-2010-11-8-R90
https://doi.org/10.1186/GB-2010-11-8-R90
http://www.thelancet.com


Review

16
70 Pinilla L, Barbé F, de Gonzalo-Calvo D. MicroRNAs to guide
medical decision-making in obstructive sleep apnea: a review. Sleep
Med Rev. 2021;59. https://doi.org/10.1016/J.SMRV.2021.101458.

71 Bonneau E, Neveu B, Kostantin E, Tsongalis GJ, De Guire V. How
close are miRNAs from clinical practice? A perspective on the
diagnostic and therapeutic market. EJIFCC. 2019;30:114.

72 Winkle M, El-Daly SM, Fabbri M, Calin GA. Noncoding RNA
therapeutics - challenges and potential solutions. Nat Rev Drug
Discov. 2021;20:629–651.

73 Ha Thi HT, Than VT. Recent applications of RNA therapeutic in
clinics. Prog Mol Biol Transl Sci. 2024;203:115–150.

74 Hong DS, Kang YK, Borad M, et al. Phase 1 study of MRX34, a
liposomal miR-34a mimic, in patients with advanced solid tu-
mours. Br J Cancer. 2020;122:1630–1637.

75 Cui T, Dou Y, Tan P, et al. RNALocate v2.0: an updated resource for
RNA subcellular localization with increased coverage and annota-
tion. Nucleic Acids Res. 2022;50:D333–D339.

76 Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive for
functional genomics data sets–update. Nucleic Acids Res. 2013;41.
https://doi.org/10.1093/NAR/GKS1193.

77 Welcoming protocols.io. Nat Protoc. 2024. https://doi.org/10.1038/
S41596-024-01012-Z.

78 Gilroy SP, Kaplan BA. Furthering open science in behavior anal-
ysis: an introduction and tutorial for using GitHub in research.
Perspect Behav Sci. 2019;42:565–581.

79 Bentzien J, Muegge I, Hamner B, Thompson DC. Crowd
computing: using competitive dynamics to develop and refine
highly predictive models. Drug Discov Today. 2013;18:472–478.

80 Zicari RV, Brodersen J, Brusseau J, et al. Z-Inspection ®: a process
to assess trustworthy AI. IEEE Trans Technol Soc. 2021;2:83–97.
81 Vetter D, Amann J, Bruneault F, et al. Lessons learned from
assessing trustworthy AI in practice. Digital Society. 2023;2:1–25.

82 Richardson JP, Smith C, Curtis S, et al. Patient apprehensions
about the use of artificial intelligence in healthcare. NPJ Digit Med.
2021;4. https://doi.org/10.1038/S41746-021-00509-1.

83 Zicari RV, Brusseau J, Blomberg SN, et al. On assessing trust-
worthy AI in healthcare. Machine learning as a supportive tool to
recognize cardiac arrest in emergency calls. Frontiers in Human
Dynamics. 2021;3:673104.

84 Allahabadi H, Amann J, Balot I, et al. Assessing trustworthy AI in
times of COVID-19: deep learning for predicting a multiregional
score conveying the degree of lung compromise in COVID-19 pa-
tients. IEEE Trans Technol Soc. 2022;3:272–289.

85 Uddin M, Wang Y, Woodbury-Smith M. Artificial intelligence for
precision medicine in neurodevelopmental disorders. NPJ Digit
Med. 2019;2. https://doi.org/10.1038/S41746-019-0191-0.

86 Walsh CG, Chaudhry B, Dua P, et al. Stigma, biomarkers, and
algorithmic bias: recommendations for precision behavioral health
with artificial intelligence. JAMIA Open. 2020;3:9–15.

87 Tat E, Bhatt DL, Rabbat MG. Addressing bias: artificial intelligence
in cardiovascular medicine. Lancet Digit Health. 2020;2:e635–e636.

88 Lee P, Le Saux M, Siegel R, et al. Racial and ethnic disparities in the
management of acute pain in US emergency departments: meta-
analysis and systematic review. Am J Emerg Med. 2019;37:1770–
1777.

89 Artificial intelligence act: deal on comprehensive rules for trustworthy
AI | News | European Parliament. https://www.europarl.europa.eu/
news/en/press-room/20231206IPR15699/artificial-intelligence-act-deal-
on-comprehensive-rules-for-trustworthy-ai. Accessed December 14,
2023.
www.thelancet.com Vol 106 August, 2024

https://doi.org/10.1016/J.SMRV.2021.101458
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref71
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref71
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref71
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref72
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref72
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref72
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref73
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref73
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref74
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref74
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref74
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref75
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref75
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref75
https://doi.org/10.1093/NAR/GKS1193
https://doi.org/10.1038/S41596-024-01012-Z
https://doi.org/10.1038/S41596-024-01012-Z
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref78
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref78
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref78
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref79
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref79
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref79
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref80
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref80
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref81
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref81
https://doi.org/10.1038/S41746-021-00509-1
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref83
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref83
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref83
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref83
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref84
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref84
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref84
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref84
https://doi.org/10.1038/S41746-019-0191-0
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref86
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref86
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref86
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref87
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref87
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref88
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref88
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref88
http://refhub.elsevier.com/S2352-3964(24)00283-4/sref88
https://www.europarl.europa.eu/news/en/press-room/20231206IPR15699/artificial-intelligence-act-deal-on-comprehensive-rules-for-trustworthy-ai
https://www.europarl.europa.eu/news/en/press-room/20231206IPR15699/artificial-intelligence-act-deal-on-comprehensive-rules-for-trustworthy-ai
https://www.europarl.europa.eu/news/en/press-room/20231206IPR15699/artificial-intelligence-act-deal-on-comprehensive-rules-for-trustworthy-ai
http://www.thelancet.com

	Machine learning for catalysing the integration of noncoding RNA in research and clinical practice
	Introduction
	Machine learning to address the biological complexity of the noncoding transcriptome
	Application of machine learning in noncoding transcriptome research
	Challenges and perspectives in the application of AI/ML-based methods to implement noncoding RNA in research and clinical p ...
	Ethical aspects
	Conclusions and future steps
	Outstanding questions
	ContributorsConception and design: DdGC and GK. Data acquisition: All authors. Manuscript drafting: DdGC, MPP and GK. Writi ...
	Declaration of interests
	Acknowledgements
	References


