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Introduction

During the COVID-19 pandemic, much has been said about the importance of host-

specific and virus-specific factors as predictors of the risk of infection and severity of

disease. For example, host factors such as increased age, male gender, ethnicity, and

comorbidities such as metabolic and pulmonary disorders have been recognized as risk

factors for severe disease, whereas host immunity stemming from prior infection or

vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is

associated with reduced severity. Similarly, the viral evolution of SARS-CoV-2 over the past

4 years has been scrutinized to estimate changes in the relative transmissibility, virulence

and vaccine-match of each emerging variant over time during the COVID-19 pandemic.

However, despite this scrutiny, variation in transmissibility and severity of disease remain

imperfectly understood.

An aspect that has been comparatively ignored is the importance of transmission

factors such as the size of viral inoculation and the duration of exposure, i.e., the dose

of exposure (see Figure 1). The dose of exposure is determined by human behavior,

environmental conditions and mitigation strategies, such as indoor versus outdoor

exposure, indoor crowding, indoor air ventilation and physical distancing. As observed

for a range of pathogens, the risk of getting infected, and in some studies, also the disease

severity and post infection sequelae depend on the dose encountered (1–10). In 2021,

Van Damme et al. (11) postulated that the dose of SARS-CoV-2 at infection was an

important missing factor in understanding several incompletely explained observations

in the epidemiology of COVID-19. Nevertheless, epidemiological models (and common

thinking) continue to parameterize exposure as a dichotomous phenomenon, where the

susceptible host is being considered as either exposed (and at risk of infection and severe

disease) or unexposed (and therefore not at risk). We hypothesize that a quantitative

exposure approach, where dose of exposure is included as a factor that determine

important factors such as risk of infection, incubation period, outcome of infection and

transmissibility, may be helpful for our understanding of the epidemiology of COVID-19,

also in the ongoing transition of the pandemic to endemicity. But more importantly, if this

hypothesis can be generalized across other pathogens, a quantitative exposure approach to

infection epidemiology may open new options for mitigation of a future severe pandemic,

Disease X, and point a way forward to a control strategy with a gentler impact on society.
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FIGURE 1

A model of interacting host, pathogen and transmission factors a�ecting the outcome of exposure to an infectious pathogen. The outcome is

conceptualized as a continuum ranging from no infection over asymptomatic infection to severe illness or death. We hypothesize that the risk of a

severe outcome depends on the dose of exposure. This hypothesis may explain incompletely understood variations in transmissibility and severity,

and may be a key in improving preparations for the next pandemic. The inserted graph illustrates the principle of di�erent dose-reponse curves for

mild and severe outcome, and is based on salmonella-data from Teunis et al. (2).

Is the dose of exposure important in
terms of disease severity?

There are plausible biological explanations for the existence of

a dose-response relation. When pathogenic microorganisms (virus,

bacteria, fungi or parasites) enter the human body, they encounter

a system of barriers mounted by the host. These include physical

and chemical barriers as well as non-specific innate and specific

adaptive immunological responses (12). For the infectious agent

to gain a foothold in the host and establish an infection, at least

onemicroorganismmust overcome these host barriers.We propose

that it is not only the risk of infection that can be explained by the

dose-response framework, but also that the continuum of outcomes

of the infection from subclinical to severe illness depends on the

infectious dose. Possibly, the incubation period may also be seen as

a function of the infectious dose, usually with a shorter incubation

following a high dose of exposure, as suggested for very different

infections including cholera (13), measles (6) andHIV (14). Finally,

transmissibility, i.e., the ability to generate more cases, may also be

affected. We hypothesize that intensive exposure from a primary

case will result in a higher viral load in the secondary case, and that

this in turn will lead to a higher risk of ongoing transmission and

possibly superspreading. The severity of the primary case is also

critical for understanding severity of subsequent cases, i.e., a severe

primary case will transmit more virus and generate more severe

secondary cases (6). In very large families, institutions, refugee

camps or virgin soil outbreaks where there are several subsequent

generations of cases this may generate an exponential increase in

severity of the disease as has been shown for measles (15).

Empirical data from a wide range of infections support our

proposal to widen the risk factor paradigm to also include dose

dependency. For example, the risk of becoming ill after exposure

to gastrointestinal pathogens such as cholera (1, 13), salmonella

and cryptosporidium (2) is known to be dose dependent. Also, for

HIV infection, a dose-response relation is well established (3, 14).

Likewise, studies of several respiratory tract infections including

influenza (5), measles (6, 7, 15), pneumococcal disease (8), and

tuberculosis (9) confirm or corroborate that intensity and duration

of exposure are critical to understanding the outcomes of infection,

including severity. For example, in a Danish study of hospitalized

measles cases, children infected at home by siblings and therefore

exposed to high doses were at greater risk of dying than children

infected outside the home (6).

Less is known about dose-response relations for coronavirus

infections but studies of human coronavirus 229E (10) and SARS-

CoV-2 (11, 16–18) corroborate the applicationmore generally. This

is furthermore in line with several observations of the importance

of viral dose of SARS-CoV-2 for infectivity (19–22), the correlation

between viral load and disease severity (23), and a recent study

showing that transmission of SARS-CoV-2 increased with duration

of exposure (24).

Given these studies, the evidence for dose-response affecting

the severity of measles, another airborne disease, and the biological

rationale explained above, we hypothesize that there is a dose-

response relation for the effects of airborne infections in general.

The dose represents the number of virus in the inhaled air, and

response may include all the consequences of exposure, ranging

from the risk of becoming infected, the length of the incubation

period, subsequent contagiousness, and the probability of severe

disease outcomes, late sequelae and death.

This hypothesis is compatible with studies that show that

increased ventilation and the use of face masks offer some

protection against COVID-19 (25–27). Whereas the results from

these studies also can be interpreted as reduced likelihood of

a none-or-all process, ventilation and face masks reduces the

exposure dose, which may in turn reduce the risk of getting

infected as well as reduce the severity of illness. Although the model

proposed by Koelle et al. (27) does not support this possibility,

an experimental inquiry into this topic is clearly warranted. To

this end we need laboratory studies, including animal models such
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as those which was established for SARS-CoV (4). There is a

further need for observational studies with a specific focus on the

role of dose of exposure with disease severity, incubation period

and further transmissibility as outcomes. Studies of household

transmission or outbreaks can serve as data sources at this end.

The role of infectious inoculum may also be addressed in studies

of the impact of personal protection devices, indoor versus outdoor

exposure, and in investigation of ventilation systems and air

cleaners on modifying the outcome of infection.

Human challenge studies provide the most important evidence

for dose-response relations (1, 2, 10, 13, 28). However, human

challenge studies may be difficult to perform due to ethical

concerns. These concerns are of course a particular issue with

infections with a severe outcome, and in experiments where

the dose of potential exposure is enhanced rather than reduced.

Therefore, a dose-response assessment will often depend on a panel

of studies with different methods, including observational studies.

Finally, for mathematical modeling, we suggest adding

quantitative exposure parameterization (rather than a dichotomous

variable) to existing models. For this purpose, inspiration may

be gained from Quantitative Microbial Risk Assessment (QMRA).

QMRA is a systematic approach to provide information to

understand the nature of the potential effects from microbial

exposure, and the dose-response assessment phase is an essential

quantitative element of QMRA. It estimates the risk of a hazard (for

example, infection, illness or death) given a known dose of exposure

to a pathogen. QMRA was first proposed for use in the treatment

of water in microbiological risk management in the 1990s, and

represents a mainstream tool to determine the microbial safety of

e.g., food and water. Teunis et al. (2) provide an example of how

to bridge QMRA and epidemiological data, and Koelle et al. (27)

is a recent example of a quantitative framework for understanding

the relationship between (i) inoculum dose and the risk of infection

and (ii) inoculum dose and the risk of developing severe disease.

Future work should aim to integrate a dose-response framework

into models of population transmission and burden of illness.

The perspective for a “Disease X
scenario”

The dose-response paradigmmay have important ramifications

for pandemic response. A new disease with pandemic potential—

Disease X—comes with many “known unknowns.” An exploration

of the dose-response relation and its relevance for severity

represents one of the “known unknowns,” and may have profound

implications for the mitigation strategy.

If early evidence (e.g., studies of outbreaks and clusters) of

a new Disease X of public health importance does support a

dose-response relationship, we suggest that it would be reasonable

to include this relationship in the mathematical models that

underpin control and mitigation strategies. Initially, this could be

done unconditionally on the severity of the disease, in order to

understand the spread of Disease X. Later it would be relevant

to include severity as a dose-dependent outcome, if data support

this extension. Modeling may be based first on observation of the

patterns of the spread of the disease as it was during the SARS-

CoV-2 initially, and then followed by assessment of the effects of

variousmeasures to reduce the exposure dose. If the disease is lethal

or severe, investigating mechanisms for reducing the probability of

infection, the severity of disease, and/or mortality is important.

If it is impossible to contain Disease X at the epicenter, and

the pathogen is spreading globally, such control strategies will no

longer have elimination as a goal. Rather, it will serve to limit

the burden of disease until an effective treatment or vaccine is

available. As we have experienced in the COVID-19 pandemic

response, this comes with high societal costs due to the need to

use of blunt measures (lockdowns, school closures and restrictions

of movements). However, with compelling evidence of a dose

dependency, efforts to control epidemic spread may also include

environmental strategies to lower the infectious dose, a sort of

“dilution strategy.” Such an effect could be achieved by meeting

outdoors, avoiding exposure in overcrowded indoor settings and

through increased mechanical ventilation indoor and the use of

face masks.

The main objective in a public health response to a future

Disease X is to minimize severe illness, reduce the burden on health

facilities, minimize societal disruption, and preserve the economy

of the society. We hypothesize that a focus on dose dependency

of the emerging pathogen may be a key factor in designing future

control strategies that achieve all that.
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