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3 Universidad Politécnica de Madrid (UPM) Madrid, Spain
4 Spanish Council for Scientific Research (CSIC), Madrid, Spain

Abstract. Natural semantics (big-step) and structural operational se-
mantics (small-step) each have advantages, so it can be useful to produce
both semantic forms for a language. Previous work has shown that big-
step semantics can be transformed to small-step semantics. This is also
the goal of our work, but our main contribution is to show that this
can be done by specialisation of an interpreter that imposes a small-
step execution on big-step transition rules. This is arguably more direct,
transparent and flexible than previous methods. The paper contains two
examples and further examples are available in an online repository.

Keywords: Interpreter specialisation · Operational semantics

1 Introduction

The goal of this work is to transform big-step operational semantics to small-
step operational semantics. This has previously been studied [2,18,30]. The main
novelty is the method, which we consider to be more direct and transparent than
previous approaches. We formulate the transformation as the specialisation of a
“small-step” interpreter for big-step semantic rules. Once a suitable interpreter
has been written, in which the definition of a “small step” has been encoded (see
Section 3), the transformation consists of partially evaluating it with respect
to given big-step semantics. The specialised interpreter contains the small-step
transition rules, with minor syntactic modification. We describe experiments
using an off-the-shelf partial evaluator for logic programs [23] (Section 4).

2 Background

Natural semantics (NS) was proposed by Kahn [22] as a proof-theoretic view
of program semantics. Structural operational semantics (SOS) was developed

? Partially funded by MICINN projects PID2019-108528RB-C21 ProCode, TED2021-
132464B-I00 PRODIGY, and FJC2021-047102-I, and by the Tezos foundation.
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by Plotkin [27,28]. The motivation of SOS was to define machine-like execution
of programs in a syntax-directed style, omitting all unnecessary details of the
machine. Both styles have their advantages, which we do not discuss here.

We use the nicknames big-step and small-step for NS and SOS respectively, as
they neatly express the difference between NS and SOS. Both approaches define
the behaviour of a program as runs in a transition system. The system states
(or configurations) have the form 〈s, σ〉 where s is a program expression (such
as a statement) and σ is a program environment (such as a store); sometimes s
is omitted when it is empty or associated with a final state.

In big-step semantics, transitions are of the form 〈s, σ〉 =⇒ σ′, or 〈s, σ〉 =⇒ s′

depending on the language being defined, which means that s is completely eval-
uated in σ, terminating in final state σ′ or value s′. In small-step semantics, a
transition has the form 〈s, σ〉 ⇒ 〈s′, σ′〉, which defines a single step from s in
environment σ to the next configuration 〈s′, σ′〉. We may also have transitions
of the form 〈s, σ〉 ⇒ σ′ or 〈s, σ〉 ⇒ s′ for the case that s terminates in one step.
There is a small-step (terminating) run iff (〈s, σ〉, v) is in ⇒∗, the transitive
closure of ⇒. Note that we use =⇒ and ⇒ for big and small-step transitions
respectively. For transition relations =⇒ and ⇒ for a given language, the equiv-
alence requirement is that 〈s, σ〉 =⇒ v iff for some n, 〈s, σ〉 ⇒n v, for all 〈s, σ〉.

Interpreter specialisation. The idea of specialising a program with respect to par-
tial input, known as program specialisation, partial evaluation or mixed compu-
tation, originated in the 1960s and 1970s [3,7,9,24]. Specialisation of a program
interpreter with respect to an object program is related to compilation [9]. When
the interpreter and the object program are written in the same language, the
specialisation may be viewed as a source transformation of the object program
(whereas it is in fact a transformation of the interpreter). This idea was exploited
to transform programs [10,12,13,14,21,29], and can result in deep changes in pro-
gram structure, possibly yielding superlinear speedups [21], in contrast to partial
evaluation itself, which gives only linear speedups and does not fundamentally
alter program structure. A transformation technique for logic programs with the
similar aim of “compiling-in” non-standard semantics, compiling control [5], has
also been shown to be realisable as interpreter specialisation [26].

The idea of transformation by interpreter specialisation is thus well known,
yet its potential has not been fully realised, probably due to the fact that effective
specialisation of complex interpreters is beyond the power of general purpose
program specialisers and needs further research.

Summary of the approach. Let b be a set of big-step rules for a language and
〈s, σ〉 =⇒ v be a big-step transition derived using b; let I be an interpreter for
big-step rules (written in a small-step style, see Section 3) and pe be a partial
evaluator. Following the notational conventions of Jones et al. [20], [[p]] denotes
the function corresponding to program p and we have the following equations.

v = [[b]] 〈s, σ〉
= [[I]] [b, 〈s, σ〉]
= [[ [[pe]] [I,b] ]] 〈s, σ〉
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In the first equation, b is itself an evaluator (indeed, a set of big-step rules
is a logic program). [[I]] [b, 〈s, σ〉] is the result of running the interpreter on b
and 〈s, σ〉 and the equation expresses the assumption that the interpreter yields
the same result as running b. The expression [[pe]] [I,b] represents the result of
specialising I with respect to the set of big-step rules b. This yields an interpreter
specific to b that follows the small-step style of I, which can be applied directly
to a configuration. It contains (after some minor syntactic modification) the
small-step semantic rules corresponding to b.

Horn clause representation of semantics and interpreters. Both big-step and
small-step semantics are defined using rules with premises and conclusion, typi-
cally written as follows.

premises

conclusion
if condition

With a suitable encoding of syntactic objects and environments as first-order
terms, this is a first-order logic implication premises ∧ condition → conclusion
The conclusion is an atomic formula (a big- or small-step transition) so assuming
that the premises and conditions are conjunctions, it is a Horn clause.

The close connection between transition rules and Horn clauses, and hence to
the logic programming language Prolog, was noticed by Kahn and his co-workers
and exploited in the Typol tool [6]. Similarly, small step transition rules, together
with a rule specifying a run of small-step transitions, can also be written as Horn
clauses and used to execute programs.

Interpreters for logic programs can themselves be written as logic programs,
where the program being interpreted is represented in some way as a data struc-
ture in the interpreter (see [16,17] for a discussion of representations).

In the following, we use Prolog syntax and teletype font for Horn clauses.

3 A Small-step Interpreter for Big-step Semantics

Rule normalisation. A big-step rule has the following form (following [25]).

〈s1, σ1〉 =⇒ σ′1, . . . , 〈sn, σn〉 =⇒ σ′n
〈s0, σ0〉 =⇒ σ′0

if c

This will be written as a Horn clause, where E1 stands for σ1, etc.

bigstep(S,E0,E01):-C,bigstep(S1,E1,E11),...,bigstep(Sn,En,En1)

The condition C could in general be interspersed among the other rule premises,
rather than appearing on the left.

To simplify the interpreter, we assume that rules have at most two premises,
including the conditions c. Rules can always be transformed to this normal form,
possible adding extra syntax constructors. We could incorporate the normalisa-
tion in the interpreter, but we chose to automatically pre-process the rules to
conform to the two-premise form. As an example, consider the following big-step
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inference rule taken from the call-by-value semantics of the λ-calculus, which is
not in normal form.

〈e1, ρ〉 =⇒ clo(x, e, ρ′) 〈e2, ρ〉 =⇒ v2 ρ′[x/v2] = ρ′′ 〈e, ρ′′〉 =⇒ v

〈app(e1, e2), ρ〉 =⇒ v

After normalising, we get three rules, with new constructors app1 and app2.

〈e1, ρ〉 =⇒ clo(x, e, ρ′) 〈app1(x, e, ρ′, e2), ρ〉 =⇒ v

〈app(e1, e2), ρ〉 =⇒ v

〈e2, ρ〉 =⇒ v2 〈app2(x, e, ρ′, v2), ρ〉 =⇒ v

〈app1(x, e, ρ′, e2), ρ〉 =⇒ v

ρ′[x/v2] = ρ′′ 〈e, ρ′′〉 =⇒ v

〈app2(x, e, ρ′, v2), ρ〉 =⇒ v

Structure of the interpreter. The main interpreter loop is as follows.

run([A]) :- smallStep(A,As), run(As).
run([]).

The run predicate takes as argument a stack of bigstep goals. The height
of the stack is at most one. At each iteration of the main loop, if the stack is
not empty, the top of the stack A is taken and a small step is applied, that is,
smallStep(A,As) is called, resulting in As, which is either [] or [A1]. The
loop is repeated until the stack is empty.

Definition of a small step. We now proceed to define smallStep, the crucial
predicate in the interpreter. Given a call smallStep(bigstep(S,E,V),As),
the cases of the smallStep procedure in Figure 1 correspond to whether the
rule with conclusion bigstep(S,E,V) has 0, 1 or 2 premises. For base cases 0
and 1, smallStep terminates immediately, returning either [] (for 0 premises)
or [B] (where B is the single big-step premise). In the third case, the premises
are B1 and B2. We recursively call smallStep on [B1], yielding [D1], and
then construct a new big-step call for the resulting goals [D1,B2]. This last
step is performed by the predicate foldStack, which is now described.

Folding the stack. Consider the general form of a big-step rule with 2 premises.
The rule has one of the following forms.

〈s′1, σ1〉 =⇒ σ′1 〈s′2, σ2〉 =⇒ σ′2
〈f(s1, . . . , sk), σ0〉 =⇒ σ′0

〈s′1, σ1〉 =⇒ σ′1 c

〈f(s1, . . . , sk), σ0〉 =⇒ σ′0

Small step evaluation of such a rule evaluates the first premise, applying small
steps until the first premise is completely evaluated, and then continues to the
second premise. A typical example is the big-step rule for statement composition.

〈s1, σ〉 =⇒ σ′ 〈s2, σ′〉 =⇒ σ′′

〈s1 ; s2, σ〉 =⇒ σ′′
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smallStep(A,[]) :- % rule with zero big step premises
givenRule(_,A,Bs),
evalConditions(Bs,[]).

smallStep(A,[B]) :- % rule with one big step premise
givenRule(_,A,Bs),
evalConditions(Bs,[B]).

smallStep(A,As) :- % rule with 2 premises
rule(K,A,[B1,B2]),
bigStepPred(B1),
smallStep(B1,D1),
foldStack(D1,B2,K,As).

foldStack([],B2,_,As) :- % B1 terminated
evalConditions([B2],As).

foldStack([D1],B2,K,[H]) :- % Make new big step H with [D1,B2]
newBigStep(D1,B2,K,H).

Fig. 1. Definition of a small step.

Evaluating s1 ; s2 in small steps, the evaluation of the first premise may take
several small steps: 〈s1, σ〉 ⇒ 〈s1,1, σ1,1〉 ⇒ . . . ⇒ σ′, which we can rewrite as
the first small step followed by a big step for the rest.

〈s1, σ〉 ⇒ 〈s1,1, σ1,1〉, 〈s1,1, σ1,1〉 =⇒ σ′

Thus after the first small step 〈s1, σ〉 ⇒ 〈s1,1, σ1,1〉, the remaining premises of
the rule are are 〈s1,1, σ1,1〉 =⇒ σ′, 〈s2, σ′〉 =⇒ σ′′. These form an instance of
the rule premise, and so we can fold them to yield a single big-step, namely
the rule conclusion 〈s1,1 ; s2, σ1,1〉 =⇒ σ′′. Note that if we apply the rule to this
configuration, we obtain the same premises again. Hence, we derive the following
relation between small-step pairs of big-step calls.

(〈s1, σ〉 =⇒ σ′) ⇒ (〈s1,1, σ1,1〉 =⇒ σ′)

(〈s1 ; s2, σ〉 =⇒ σ′′) ⇒ (〈s1,1 ; s2, σ1,1〉 =⇒ σ′′)

The final state variables σ′ and σ′′ are arbitrary and can be eliminated, yielding
the following recursive small-step rule for s1 ; s2.

〈s1, σ〉 ⇒ 〈s1,1, σ1,1〉
〈s1 ; s2, σ〉 ⇒ 〈s1,1 ; s2, σ1,1〉

Auxiliary rules and constructors. In the general case for 2-premise rules, the
first premise 〈s′1, σ1〉 =⇒ σ′1 is split into a first small step and then a big step.

〈s′1, σ1〉 ⇒ 〈s′1,1, σ1,1〉, 〈s′1,1, σ1,1〉 =⇒ σ′1

After executing the small step, the remaining rule premises are thus

〈s′1,1, σ1,1〉 =⇒ σ′1, 〈s′2, σ2〉 =⇒ σ′2

(and similarly where the second premise is c). This is not always an instance of
the original rule, and so it is not always possible to fold using the same rule, as



6

we did with the rule for s1 ; s2. In particular, the variables s′1, σ1 might be reused
later in the premises. In such cases, we invent a new constructor, including s′1
and/or σ1 if needed as arguments, and construct a new auxiliary rule for the
new constructor. We illustrate with an example. Consider the (normalised) rule
for app shown above.

〈e1, ρ〉 =⇒ clo(x, e, ρ′) 〈app1(x, e, ρ′, e2), ρ〉 =⇒ v

〈app(e1, e2), ρ〉 =⇒ v

After executing a small step 〈e1, ρ〉 ⇒ 〈e1,1, ρ1,1〉 the remaining premises are
〈e1,1, ρ1,1〉 =⇒ clo(x, e, ρ′) 〈app1(x, e, ρ′, e2), ρ〉 =⇒ v. Note that ρ is used again
later in the premises, so it is not possible to fold them into an app construct.
Instead, we make a new constructor app aux, and build rules as follows.

〈e1, ρ〉 ⇒ 〈e1,1, ρ1,1〉
〈app(e1, e2), ρ〉 ⇒ 〈app aux(e1,1, e2, ρ), ρ1,1〉

〈e1,1, ρ1,1〉 =⇒ clo(x, e, ρ′), 〈app1(x, e, ρ′, e2), ρ〉 =⇒ v

〈app aux(e1,1, e2, ρ), ρ1,1〉 =⇒ v

The second rule is an auxiliary big-step rule for app aux, which is used later in
the interpreter when needed. The interpreter does not store these auxiliary rules,
but rather reconstructs them as needed, as this simplifies partial evaluation.

The complete interpreter, implemented in Ciao Prolog [15] along with the
annotation file for the partial evaluator (Logen [23]), and a number of examples
including the ones in the paper, are available online5.

4 Examples

Simple imperative language. Figure 2(a) shows the big-step semantics for a sim-
ple imperative language containing assignments, statement composition, if-then-
else and while statements. These are already in normal form. There is a function
V that evaluates expressions and conditionals in a state. Specialising our small-
step interpreter (using Logen) with respect to these rules gives the output shown
in Figure 2(b). The small-step rules shown in Figure 2(c) are directly extracted
(eliminating the redundant “final state” arguments as shown above). The rules
are similar to textbook small-step semantics for imperative constructs.

Call-by-value semantics for λ-calculus. This example is taken from Vesely and
Fisher’s paper [30], and we applied normalisation to obtain 2-premise form (see
the rule for app(e1, e2) shown at the start of Section 3). The big-step rules are
shown in Figure 3(a). The specialised clauses for smallStep are in Figure 3(b)
and the same rules typeset in standard notation in Figure 3(c). The results
are somewhat different from those in [30], where the authors use small-step
transitions yielding values rather than configurations.

5 https://github.com/jpgallagher/Semantics4PE/tree/main/
Big2Small

https://github.com/jpgallagher/Semantics4PE/tree/main/Big2Small
https://github.com/jpgallagher/Semantics4PE/tree/main/Big2Small
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〈x := e, σ〉 =⇒ σ[x/v]
if V (e, σ) = v

〈s1, σ〉 =⇒ σ′

〈if (b) s1 else s2, σ〉 =⇒ σ′ if V (b, σ) = true

〈s1, σ〉 =⇒ σ′ 〈s2, σ′〉 =⇒ σ′′

〈s1 ; s2, σ〉 =⇒ σ′′
〈s2, σ〉 =⇒ σ′

〈if (b) s1 else s2, σ〉 =⇒ σ′ if V (b, σ) = false

〈skip, σ〉 =⇒ σ

〈if (b) s;while (b) s else skip, σ〉 =⇒ σ′

〈while (b) s, σ〉 =⇒ σ′

(a) Big-step rules for a simple imperative language

smallStep__1(asg(var(D),C),A,B,[]) :-
eval__2(C,A,E,F),
eval__3(D,F,E,B).

smallStep__1(ifthenelse(C,D,_),A,B,[bigstep(D,E,B)]) :-
eval__2(C,A,E,1).

smallStep__1(ifthenelse(C,_,D),A,B,[bigstep(D,E,B)]) :-
eval__2(C,A,E,0).

smallStep__1(while(C,D),A,B,[bigstep(ifthenelse(C,seq(D,while(C,D)),skip),
A,B)]).

smallStep__1(seq(C,D),A,B,[bigstep(D,E,B)]) :-
smallStep__1(C,A,E,[]).

smallStep__1(seq(C,D),A,B,[bigstep(seq(F,D),E,B)]) :-
smallStep__1(C,A,G,[bigstep(F,E,G)]).

(b) Small-step clauses from the specialised interpreter.

〈if (b) s1 else s2, σ〉 ⇒ 〈s1, σ′〉 if V (b, σ) = true 〈x := e, σ〉 ⇒ σ[x/v]
if V (e, σ) = v

〈if (b) s1 else s2, σ〉 ⇒ 〈s2, σ′〉 if V (b, σ) = false 〈skip, σ〉 ⇒ σ

〈s1, σ〉 ⇒ σ′

〈s1 ; s2, σ〉 ⇒ 〈s2, σ′〉
〈s1, σ〉 ⇒ 〈s′1, σ′〉

〈s1 ; s2, σ〉 ⇒ 〈s′1 ; s2, σ′〉

〈while (b) s, σ〉 ⇒ 〈if (b) s;while (b) s else skip, σ〉

(c) Small-step rules from (b) rewritten in standard form.

Fig. 2. Transformation of the semantics of a simple imperative language.
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〈var(x), ρ〉 =⇒ v
if ρx = v

〈e1, ρ〉 =⇒ clo(x, e, ρ) 〈a41(e2, x, e, ρ
′), ρ〉 =⇒ v

〈app(e1, e2), ρ〉 =⇒ v

〈val(v), ρ〉 =⇒ v

〈e2, ρ〉 =⇒ v2 〈a42(x, e, ρ′, v2), ρ〉 =⇒ v

〈a41(e2, x, e, ρ′), ρ〉 =⇒ v

〈lam(x, e), ρ〉 =⇒ clo(x, e, ρ)

ρ′[x/v2] = ρ′′ 〈e, ρ′′〉 =⇒ v

〈a42(x, e, ρ′, v2), ρ〉 =⇒ v

(a) Big-step rules for the call-by-value λ-calculus (from [30]), after normalising

smallStep1(val(A),_,A,[]).
smallStep__1(var(C),A,B,[]) :-

eval__2(A,C,B).
smallStep__1(lam(B,C),A,clo(B,C,A),[]).
smallStep__1(app4_2(C,D,E,F),A,B,[bigstep(D,A,B)]) :-

eval__3(C,F,E,A).
smallStep__1(app(C,D),A,B,[bigstep(app4_1(D,E,F,G),A,B)]) :-

smallStep__1(C,A,clo(E,F,G),[]).
smallStep__1(app(C,D),A,B,[bigstep(app_aux_3(F,D,A),E,B)]) :-

smallStep__1(C,A,clo(G,H,I),[bigstep(F,E,clo(G,H,I))]).
smallStep__1(app4_1(C,D,E,F),A,B,[bigstep(app4_2(D,E,F,G),_,B)]) :-

smallStep__1(C,A,G,[]).
smallStep__1(app4_1(C,D,E,F),A,B,[bigstep(app4_1(H,D,E,F),G,B)]) :-

smallStep__1(C,A,I,[bigstep(H,G,I)]).
smallStep__1(app_aux_3(C,D,E),A,B,[bigstep(app4_1(D,F,G,H),E,B)]) :-

smallStep__1(C,A,clo(F,G,H),[]).
smallStep__1(app_aux_3(C,D,E),A,B,[bigstep(app_aux_3(G,D,E),F,B)]) :-

smallStep__1(C,A,clo(H,I,J),[bigstep(G,F,clo(H,I,J))]).

(b) Small-step rules taken from the specialised interpreter

〈val(v), ρ〉 ⇒ v

〈e1, ρ〉 ⇒ 〈e3, ρ′〉
〈app(e1, e2), ρ〉 ⇒ 〈app′(e3, e2, ρ), ρ′〉

ρ x = v

〈var(x), ρ〉 ⇒ v

〈e2, ρ〉 ⇒ v2
〈a41(e2, x, e, ρ′), ρ〉 ⇒ 〈a42(x, e, ρ′, v2), ρ′′〉

〈lam(x, e), ρ〉 ⇒ clo(x, e, ρ)

〈e2, ρ〉 ⇒ 〈e3, ρ′′〉
〈a41(e2, x, e, ρ′), ρ〉 ⇒ 〈a41(e3, x, e, ρ′), ρ′′〉

ρ′[x/v2] = ρ′′

〈a42(x, e, v2, ρ′), ρ′′〉 ⇒ 〈e, ρ′′〉
〈e3, ρ′〉 ⇒ clo(x, e, ρ′′)

〈app′(e3, e2, ρ), ρ′〉 ⇒ 〈a41(e2, x, e, ρ′′), ρ〉

〈e1, ρ〉 ⇒ clo(x, e, ρ′)

〈app(e1, e2), ρ〉 ⇒ 〈a41(e2, x, e, ρ′), ρ〉
〈e3, ρ′〉 ⇒ 〈e4, ρ′′〉

〈app′(e3, e2, ρ), ρ′〉 ⇒ 〈app′(e4, e2, ρ), ρ′′〉

(c) Small-step rules from (b) rendered in standard notation.

Fig. 3. Transformation of big-step to small-step semantics for the call-by-value λ-
calculus.
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5 Related Work

Vesely and Fisher [30] start from an evaluator for big-step semantics and then
transform it in (ten) stages to a small-step evaluator. While our interpreter
embodies some of the same transformations (for instance, continuation-passing
transformation corresponds roughly to specialisation of our run predicate), some
of their transformations are more low-level, and are subsumed by standard fea-
tures of partial evaluation (for instance, argument lifting). We also exploit the
uniform representation as Horn clauses and the term representation of object
programs in the interpreter to avoid explicit defunctionalisation or continuations-
to-terms. When comparing our results to theirs, we note (as also observed in [2])
that they choose a version of small-step transitions that yields a term rather than
a configuration. Therefore our transitions are not directly comparable in terms
of the number of rules and constructors in the resulting small-step semantics.

Ambal et al. [2] describe a transformation that also starts from a continuation-
passing transformation of a big-step evaluator. The transformation steps are cer-
tified in Coq. To eliminate the continuation stack they introduce a new syntax
constructor for each continuation, much as we do for the case when direct folding
cannot be applied. Overall, the transformation seems similar to ours though the
method differs and we are comparing the results more closely.

Huizing et al. [19] describe a direct transformation of big-step rules - so their
approach is not explicitly based on an interpreter. Ager [1] defines a transforma-
tion from L-attributed big-step rules to abstract machines, a related problem.
His is also a direct transformation of rules rather than based on an explicit eval-
uator. Our procedure can also handle rules that are not L-attributed (such as
Kahn’s big-step semantics for Mini-ML [22]).

Discussion and future research. We claim that interpreter specialisation gives a
more direct and transparent approach. Its correctness depends on validating the
interpreter and the correctness of the partial evaluator, an established and well-
tested tool. We do not yet have a formal proof of correctness of the interpreter.
However, our interpretive approach using Horn clauses allows execution of the
original big-step rules, the interpreter and its specialisation, so we have been
able to perform extensive validation showing that they all produce the same
results for a given configuration. This is a practical advantage of exploiting the
close relationship between semantic rules and Horn clauses, though clearly not
a replacement for a formal proof of correctness. Furthermore, the definition of
what is a small step can be modified; for example, evaluation of conditionals in
if statements could be done in small steps instead of as an atomic operation by
a small modification of the interpreter. We are applying the method to further
cases of big-step semantics; among other challenging examples we are targeting
the semantics for Clight [4].

At present we generate structural operational semantics, with transitions
from configurations to configurations. Other styles that could be targeted by an
interpreter are transitions that yield values rather than configurations (e.g. as
used by Vesely and Fisher [30]) and reduction semantics [8]. The related problem
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of transforming a big-step semantics to an abstract machine seems also a feasible
goal for interpreter specialisation; in this case, the interpreter would incorporate
implementation details that would be inherited by the abstract machine.

We also note that our previous work on translating imperative programs
to Horn clauses [11] is related to the present work. Instead of performing the
specialisation [[pe]] [I,b], we would also provide the first component of the initial
configuration 〈s, σ〉; that is, we compute [[pe]] [I,b, s], obtaining Horn clauses
which would compute directly on the environment σ.

Acknowledgements. Discussions with Robert Glück, Bishoksan Kafle, Morten
Rhiger and Mads Rosendahl are gratefully acknowledged. The paper was im-
proved by the suggestions of the anonymous reviewers.
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